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Abstract 

This paper is to present an extended shape preserving topology optimization formulation aiming at 

preserving specific local structural domain configuration. By introducing Artificial Week Elements 

(AWE) established with respect to shape preserving control points, we constrain its elastic strain 

energy to suppress the warping deformation. Compared with the existing global compliance 

topology optimization, this formulation acts as a control of local compliance of the structure. 

Numerical results have shown how the strain energy constraint related to AWE influences the 

optimized solution, especially the effect of the upper limit of the constraint. Comparative studies 

have evidently shown that the effect of shape preserving can be successfully achieved. Possible 

structural distortions are also illustrated in order to have an in-depth understanding of the design 

mechanism. 
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Deformation, Local Strain Energy 

Introduction 

Topology optimization method has been developed as one of the most effective techniques in 

saving structural weight and improving multidisciplinary performances. Recent advances of 

topology optimization techniques have been summarized by excellent literature surveys such as 

Guo and Cheng (2010), Sigmund and Maute (2013), Deaton and Grandhi (2014).  

Meanwhile, different topology optimization formulations were also presented to obtain required 

structural deformation patterns. In these literatures, constraints on a single or multiple nodal 

displacements were normally issued. For example, in the works of Liu et al. (2008), warping 

deformation of beam cross-section was considered in a new anisotropic beam theory as well as in 

topology optimization. Rong and Yi (2010) designed the multi-points displacements using a newly 

developed phase transferring method. Typically, in the works of Qiao and Liu (2012), a geometric 

average displacement function integrating the deformation field, which was similar to a P-norm 

scheme, was proposed to minimize the structural maximum deformation. In this way, the 

magnitudes of different nodal displacements were controlled to form a better deformation. Other 

displacement designs can be found mostly in topology optimization of compliant mechanisms (see 

e.g. Wang et al. 2005, Stanford et al. 2012 and 2013).  

However, constraints on the magnitudes of nodal displacements might not appropriate in many 

complicated engineering cases searching better structural deformation behaviors. For example, 

challenges of suppressing structural local warping deformation to maintain structural coordinative 

displacements are always faced during the aircraft structure design, manufacturing and assembling 

(Niu 1988, Barrett 1992, Wang 2000), which are considered as shape preserving design. Key 

difficulties lies in that the popularly used global compliance and nodal displacements in topology 

optimization cannot effectively describe and suppress the local warping deformation.  

Therefore, this paper proposes to implement multi-point shape preserving constraints in an extended 

topology optimization formulations by introducing strain energy based quantitative approach 

describing warping deformation magnitudes in shape preserving domain.  
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Figure 1. An illustrative structure system for shape-preserving design problem (Dashed lines 

indicates probable deformation for the loaded structure) 

Multi-Point Shape Preserving Design 

Local domains are concerned for shape preserving as shown in Figure 1. They may be void (e.g. a 

structural opening for process, feature or maintenance) or solid (e.g. a structural branch or a 

component), or even hybrid (e.g. parts or equipment). When it comes to situations like structural 

installing, connecting and assembling problems mostly based on the point locations, it is essential to 

have proper design of multi-point shape preserving i.e. coordinative displacement of control points. 

Therefore, we propose to define Artificial Week Elements (AWE) established with respect to the 

above mentioned control points. The local strain energies related to AWE are considered as 

additional constraints to suppressing the warping deformation.  

Structural Deformation 

The nodal displacement vector Ωu  of the local domain Ωis composed by two components of rigid 

displacement vector ΩRu  and warping deformation vector ΩWu , i.e.  

Ω ΩR ΩWu = u + u  (1) 

To achieve the structural shape preserving design necessitates suppression of the warping 

deformation. As a result, local strain energy is used to describe and constrain warping deformation 

quantitatively here. It is expressed as  

T

Ω Ω Ω Ω

1

2
C  u K u  (2) 

where ΩK  is the local domain stiffness matrix. 

Since no strain energy produced by rigid displacement, the above expression can be written as 

T

Ω ΩW Ω ΩW

1

2
C  u K u  (3) 

Theoretically, there would be no elastic warping deformation but only rigid body movement under a 

perfect shape preserving design where the local strain energy is 0. But practically the perfect effect 

is unobtainable. The constraint is given by a minor upper bound above zero, i.e.  . The shape 

preserving design achieves a fairly well effect in permissible tolerance when the strain energy value 

satisfies 

ΩC   (4) 



3 

 

Artificial Week Elements 

However, the shape preserving design will degenerate into an all-domain shape preserving when the 

elastic strain energy of the local domain is directly defined as a constraint function, which is an over 

constraint issue compared with multi-point shape preserving design. In this paper, Artificial Weak 

Elements (AWE) is proposed and established with respect to the shape preserving control points. 

The AWE nodal Degrees of Freedom (DOFs) are coupled to those of the control points. By 

calculating the AWE strain energy, the warping deformation of these multiple points can be 

measured. 

Besides, to ensure the precision of structural analysis, the stiffness of additional AWE should be 

weak enough not to influence the structural mechanical properties. In this paper, the Poisson’s ratio 

is set to a general value 0.3, and the elastic modulus is set to 1 Pa, which is much smaller than 

regular material. 
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Figure 2. The definition of AWE  

For the shape preserving design illustrated in Figure 1, AWE can be established as shown in 

Figure 2. The outline boundaries contain 11 control points, i.e. points A to L. Then 6 additional 

weak elements are created with the 11 points respectively. When the total structure is loaded, the 

AWE deform along with the control points. At this point, the shape preserving constraint can be 

defined as AWE strain energy constraint, i.e.  

AWEC   (5) 

Therefore, the topology optimization with shape preserving design is formulated as 

find:  1= , i n    η  

(6) min:  
T1

2
C  u Ku  

s.t.:  =f Ku ; 0V V ; AWEC   

In the above formulations, η  is the vector of pseudo-density design variables, whose items’ values 

vary from 0 to 1 describing material distribution in design domain. SIMP interpolation model (see 

Bendsøe and Sigmund 1999, Rozvany 2001) is used here with the penalty factor equals to 3. The 

global strain energy C  is minimized as the object function. K  is the global stiffness matrix. V  is 
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the material volume and 0V  is its upper bound.   is a given minor upper bound, whose value is 

relevant to specific structure and problem. 

Sensitivity Analyses on Shape Preserving Constraint 

The design sensitivity of the object function, i.e. the global strain energy with respect to the pseudo-

densities is easily obtained and can be found in many references dealing with the topology 

optimization problems (e.g. Sigmund 2001), which will not be provided here. 

We mainly concern the sensitivity of the constrained AWE strain energy. It can be expressed as 

T

AWE AWE AWE AWE

1

2
C  u K u  (7) 

AWEu  is the displacement vector of control points, i.e. nodes of AWE. AWEK  is the stiffness matrix 

of AWE 

Derivative of the AWE strain energy is written as 

T TAWE AWE AWE
AWE AWE AWE AWE

T AWE
AWE AWE

1

2i i i

i

C

  



  
 

  






K u
u u u K

u
u K

 (8) 

where the stiffness matrix of AWE is independent from topology design variables i . 

Here we define AWE AWEu T u , where AWET  is a constant matrix which converts the global 

displacement vector u  to the local one AWEu . Following the derivative of the equilibrium equation, 

we further have 

1AWE
AWE AWE

i i i i   

     
   

    

u u f K
T T K u  (9) 

Substituting the above equation into equation (8), it turns into  

 

T 1AWE
AWE AWE AWE

T
* 1

i i i

i i

C

  

 





   
  

   

  
  

  

f K
u K T K u

f K
λ K u

 (10) 

where we formulated a new vector *
λ  calculated from the AWE displacements vector, stiffness 

matrix and the constant matrix, i.e. T

AWE AWE AWE

 λ u K T . 

It is informed that *
λ  is a column vector whose dimension is equal to total DOFs. After one 

additional finite element analysis by applying *
λ  as an artificial load vector on the structure, we 

have 

   

* *

T T
* 1 *





λ Ku

λ K u
 (11) 

Then the derivative of local elastic strain energy can be expressed as 

 
T

*AWE

i i i

C

  

   
  

   

f K
u u  (12) 
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The derivatives of the load vector and the stiffness matrix with respect to the pseudo-densities are 

easily obtained according to the SIMP interpolation model used in this paper. Typically, in the case 

of design independent loads, the derivative of the load vector will be zero, i.e. 0
i






f
. 

Numerical Examples of Shape Preserving Design 

L-shape Beam 

Here we optimize an L-shape beam aimed at preserving the cutout configuration as shown in 

Figure 3. The top boundary is fixed and a single-point force of 100N is applied on the right corner. 

A frame with a particular non-design width is assigned around the cutout. Shape preserving control 

points are the four corners of the frame and the corresponding AWE is one quadrangle weak 

element linked to the control points A to D. Under the constraint of 40% material volume fraction, 

standard topology optimization design merely maximizing the overall structural stiffness is shown 

in Figure 4(a). Afterwards, without any other conditions changed, shape preserving design is shown 

in Figure 4(b), where   equal to 2×10-15J. The optimized strain energies of global structure, shape 

preserving frame domain and the AWE are listed in Table 1. The strain energy of AWE is decreased 

from 8.58×10-15J to 2.00×10-15J under the effect of shape preserving constraint, while the loss of 

global structure stiffness is less than 6%. 

To have an obvious view of the shape preserving effect, a comparison of enlarged deformation of 

the frame is presented in Figure 5. The standard design generates a large warping deformation. On 

the contrary, the shape preserving design achieves a better deformation behavior where the frame 

corners’ displacements was coordinated.  
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Figure 3. An L-shape beam with a 

quadrate cutout and its AWE 

(a) Standard topology optimization 

(b) Shape preserving design 

Figure 4. Comparison of the L-shape beam designs 

Table 1. Comparisons of strain energies of the optimized L-shape beam 

Strain Energy Global structure Frame around the cutout AWE 

Standard topology optimization 1.17×10-4J 8.57×10-6J 8.58×10-15J 

Shape preserving design 1.24×10-4J 4.21×10-6J 2.00×10-15J 
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Original outline of the frame

Standard topology optimization

Shape preserving design 

 
Figure 5. Comparison of enlarged deformations of the frame around the hole in optimized 

designs (Amplification factor 1.5×107) 

Furthermore, the optimized results with different material volume are presented in Figure 6. C  and 

AWEC  represent the optimized strain energy of global structure and AWE in standard topology 

design. C  and 
AWEC  represent the optimized strain energy of global structure and AWE in shape 

preserving design.  

For the standard topology optimization, the structure material is always distributed on the optimal 

load carrying path as a result of seeking maximum stiffness of global structure. Consequently, the 

standard design results always have smaller global strain energies. In shape preserving design, the 

local strain energy of AWE is much lower than the standard one with a little sacrifice on its global 

stiffness to satisfy local shape preserving constraint. This paradox between shape preserving 

constraint and global strain energy indicates that the final optimized design will be a compromise 

between global stiffness and local deformation. 
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Figure 6. Optimized designs versus different volume fraction and their strain energy 
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Distortion of Load Carrying Path 

For in-depth understanding of the paradox, further discussions on the upper bound of shape 

preserving constraint and its influence on the structural optimization design are discussed here.  

Taking the L-shape beam design for example, we obtain optimized design in Figure 7 in turn via 

changing the value of   with the rest conditions keeping identical. The optimized configurations 

change gradually as the value of   decreases. When the shape preserving constraint is so strong, the 

structural load carrying path will be distortional (e.g. 11th and 12th result) with unsatisfied large 

sacrifice of global stiffness. In these cases, regular structural design cannot meet the requirement of 

shape preserving constraints. The topology optimization is forced to separate the shape preserving 

domain from the load carrying path to obtain an approximate rigid deformation. Such result is 

mathematically reasonable but loses actual physical significance and engineering value in 

optimization design. 
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Figure 7. The global strain energy and corresponding optimized design results versus 

different constraint values of ε 

Accordingly, the upper bound of shape preserving constraint should be appropriately chosen to 

avoid phenomena of load carrying path distortion. Meanwhile, researchers are not only to solve a 

mathematical model but also to account for more practical problems into consideration, which is 

one of the key difficulties in optimization design for engineering structures. 

Shape Preserving Design for Windshields  

Consider now an airframe shown in Figure 8. The front fuselage is connected to the center one at 

its rear side. The whole fuselage bears aerodynamic loads. Warping deformations of windshields 

need to be avoided not to cause the glasses fracture. Here, AWE is defined as illustrated in Figure 8. 

The control points of each windshield contain four corners and four midpoints of the boundaries as 

well. With the airframe’s layout as topology optimization design subject, two material distribution 

results of skin reinforcement from standard design and shape preserving design are presented in 

Figure 9. The value of the shape preserving constraint   is set as 0.02J. 
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Figure 8. Illustration of shape 

preserving design of 

windshields 

(a) Standard topology optimization design 

(b) Shape preserving design 

Figure 9. Comparison of material distributions of skin 

reinforcement 

Referring to the optimized designs with the same volume fractions in Figure 9, we can distinguish 

that the material distributed around the windshields increases in the shape preserving design. 

Therefore, the prescribed local domain is strengthened and the warping deformation is suppressed. 

Additionally in the weak loaded area between windshields and center fuselage, the shape preserving 

design modifies the load carrying path to offset the warping deformation in the windshields. The 

detailed data of shape preserving design and standard stiffness design is listed and compared in 

Table 2. Although there is a 5% sacrifice on the stiffness of global structure, the shape preserving 

design has improved the effect of shape preserving for 4 times better than the standard one. Thus, 

the effectiveness of shape preserving topology optimization design is further demonstrated, which 

possesses a good perspective in practical structure design applications. 

Table 2. Comparisons of strain energies of optimized designs 

Strain energy 
The whole 

fuselage 

The AWE of 

windshields 

Standard optimization design 6893 J 0.092 J 

Shape-preserving optimization 

design 
7263 J 0.020 J 

Conclusions 

We proposed an extended structural topology optimization method with multi-point shape 

preserving constraint in this paper. The shape preserving constraint of local domain is constructed 

by the strain energy of Artificial Weak Elements (AWE). Compared with the standard topology 

optimization design maximizing structural stiffness, this formulation have evidently shown that the 

coordination of multi-point displacements and the effect of shape preserving can be successfully 

achieved. Further numerical results are analyzed to show the influence of shape preserving 

constraint on the optimized design pattern and the entire performance of structure. Besides, the 

design distortion due to improper definition of the shape preserving constraint is revealed and 

studied in this paper.  
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