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Abstract

Coupled behaviors of fluid-flow and swimming-jellyfish are necessary for swimming movements and
the dynamics governing these coupled behaviors is difficult and complex. A lot of researches
investigated coupled behaviors of fluid-flow and jellyfish-swimming by using two-dimensional
axisymmetric numerical simulations. However, in order to simulate swimming jellyfish in an
asymmetric current, the three-dimensional simulation is necessary. On the other hand, in the
simulation of an unsteady flow caused by a moving wall boundary, the Geometric Conservation Law
(GCL) is important. In the computational method which does not strictly satisfy GCL, arbitrary grids
moving affects the flow field and the physical conservation law is destroyed. Moving-Grid Finite-
Volume Method (MGFVM) is suitable for such a flow because GCL is strictly satistied. In MGFVM,
GCL condition is automatically and strictly satisfied by the discretization performed using a four-
dimensional control volume in the space and time unified domain (x, y, z, ¢). In this paper, we perform
the three-dimensional coupled simulation of fluid-flow and jellyfish-swimming with six degrees of
freedom of motion by using MGFVM and investigate the influence of a current on swimming
jellyfish.
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Introduction

Coupled behaviors of fluid-flow and swimming-jellyfish are necessary for swimming movements and
the dynamics governing these behaviors is difficult and complex. Jellyfish were the earliest animals to
evolve muscle-powered swimming in the sea. A swimming of jellyfish consists of contraction,
relaxation and inertia. First swimming mechanism is a jet propulsion caused by the subumbrella
volume change that occurs during the contraction and the relaxation. In a jet motion, a first vortex ring,
which is called the ‘starting vortex’, occurs by the contraction and causes a strong jet propulsion.
Second swimming mechanism is a paddling motion on the bell margin and not as simple as jet
propulsion. In a paddling motion, a second vortex ring, which is called the ‘stopping vortex’, occurs
by the relaxation. The stopping vortex rotates in the direction opposite to the starting vortex and
influences the starting vortex. The stopping vortex plays an important role in swimming mechanisms
[Colin and Costello (2002); Mchenry and Jed (2003); Dabiri et al. (2005); Costello et al. (2008)].

A lot of researches investigated swimming jellyfish by using computational fluid dynamics (CFD).
The dynamics of swimming jellyfish was modeled by using the two-dimensional simulation using the
SIMPLE algorithm [Dular et al. (2009)]. The vortex structure caused by a swimming jellyfish was
investigated by using the two-dimensional simulation using the arbitrary Lagrangian—Eulerian (ALE)
method [Sahin and Mohseni (2009)]. The relationship between kinematics and swimming jellyfish
was investigated by using the two-dimensional axisymmetric simulation [Alben et al. (2013)]. The
three-dimensional geometry of swimming jellyfish was extrapolated from the two-dimensional
axisymmetric simulation [Rudolf and Mould (2010)]. Thus far, there are few investigations into three-
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dimensional simulations of swimming jellyfish. Moreover, in these investigations, it was assumed that
jellyfish is in stationary fluid. However, in the sea, a current may change the vortex structure caused
by swimming jellyfish and affect a swimming of jellyfish. The swimming jellyfish in the current
cannot be simulated by using a two-dimensional axisymmetric simulation because the current is not
axisymmetric. Thus, a three-dimensional simulation is necessary in order to investigate the influence
of the current on swimming jellyfish.

On the other hand, in the simulation of an unsteady flow caused by a moving wall boundary, the
computational grid moves and deforms time-dependently. As the computational method for such a
moving grid, the method applying discretization of the governing equation on a general body-
conforming curvilinear coordinate [ Vinokur (1974)], the arbitrary Lagrangian-Eulerian (ALE) method
in which the mesh point can be moved independently of fluid motion [Noh (1964)], the space-time
finite-element method [Tezduyar et al. (1992)] and so on were suggested. It is most important for the
computational method for moving grid that the Geometric Conservation Law (GCL) is satisfied
[Thomas and Lombard (1979)]. In the computational method which does not strictly satisfy GCL,
arbitrary grids moving may affect the flow field and physical conservation law may be destroyed.
Moving-Grid Finite-Volume Method (MGFVM) was suggested as the computational method which
strictly satisfy GCL [Mihara (1999)] and its performance was shown in various unsteady flows
[Matsuno (2010)]. The GCL condition is automatically and strictly satisfied by the discretization
performed using a four-dimensional control volume in the space and time unified domain (x, y, z, ).
In structured grids, the method was firstly applied to compressible flows [Matsuno (2001)] and
extended to incompressible flows [Inomoto (2004)]. In incompressible flows, the couple of pressure
and velocity was done by the fractional step method on the four-dimensional domain. In order to
apply to the object of complicated shape, Unstructured Moving-Grid Finite-Volume Method, which
was MGFVM extended to unstructured grids, was suggested [Yamakawa and Matsuno (2003)].
Moreover, in order to apply to a greatly moving wall boundary, Moving Computational Domain
(MCD) approach in which whole of computational region could move was suggested [Watanabe and
Matsuno (2009)].

In this paper, we perform the three-dimensional coupled simulation of fluid-flow and jellyfish-
swimming in a current with six degrees of freedom of motion by using Moving-Grid Finite-Volume
Method. The swimming jellyfish demonstrated and the influence of the current is shown.

Governing equations for fluid flow

Governing Equation
The governing equations of fluid-flow are the continuity equation,
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and the Navier-Stokes equations for incompressible flow,
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where q is the vector of conserved variables, E,, F, and G, are the convective flux vectors, E,, F, and
G, are the viscous flux vectors, u, v and w are the fluid velocity, p is the fluid pressure and Re is
Reynolds number. The equations are nondimensionalized by
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where overline shows the dimensional quantity, Lo is the characteristics length, Uo is the
characteristics velocity, p is the characteristics density and zio is the viscosity.

Discretization

In Moving-Grid Finite-Volume Method (MGFVM) is used for discretization. In MGFVM, the control
volume in the space-time unified four-dimensional (x, y, z, f) domain is used in order to assure both
physical and geometrical conservation laws simultaneously. Fig. 1 shows the Unstructured
computational cell on three-dimensional (x, y, z) domain at m time step and m+1 time step. R = (x, y,
z)", the subscript i shows the computational grid number and the superscript m shows time step. In
four-dimensional domain, the blue computational cell is the surface (/= 5) perpendicular to 7-axis at m
time step and the red computational cell is the surface (/ = 6) perpendicular to z-axis at m+1 time step.
The control volume Q is a volume on four-dimensional domain and formed between the lower surface
(I = 5) and the upper surface (/ = 6). The control surface is the surface of the control volume on a
unified four-dimensional space-time (x, y, z, f) domain and corresponds the volume on three-
dimensional domain. The control surface is formed by the surface at m time step and it at m+1 time
step (/ =1, 2, ---, 4), corresponds the computational cell at m time step (/ = 5) and corresponds the
computational cell at m+1 time step (/ = 6). For example, the control surface / = 4 corresponds the
volume on three-dimensional domain shown by the heavy line in Fig. 2.

Rm+l
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Figure 1. Computational cells Figure 2. Control surface / =4
at m time step and m+1 time step



Navier-Stokes equations for incompressible flows are discretized with Unstructured Moving-Grid
Finite-Volume Method. Eq.(2) is integrated over the control volume Q as
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Eq.(3) is shown in divergence as
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Gauss' divergence theorem is applied to four-dimensional domain and Eq.(4) becomes as follows:
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where the subscript / shows the control surface number as Fig. 2. In the control surface, (7., 7, n,,
7)) are the outward unit normal vectors, S is magnitude of the normal vector, 7S corresponds to

volume in (x, y, z) domain, 7S corresponds to volume in (y, z, ) domain, 7,8 corresponds to volume

in (z, ¢, x) domain, ﬁzS corresponds to volume in (z, x, y) domain. In the control surface / =5 and 6,

~

n = ﬁy =7n,=0 and 7S corresponds to the volume ¥ of the computational cell. E, F, G, q, Py, P,

and P; are evaluated at m+1/2 time step (/ =1, 2, -+ ,4), at m time step (/ = 5) and m+1 time step (/ =
6).
Therefore Eq.(5) becomes as follows:
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This equation is the fundamental equation of Unstructured Moving-Grid Finite-Volume Method.

Fractional Step Method
By fractional step method, Eq.(6) is divided as
Ist step:
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=1
2nd step:
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where * shows intermediate step.



The divergence of Eq.(8) on three-dimensional (x, y, z) domain at m+1 time step becomes as follows:
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Here, pay attention that this is the divergence on (x, y, z) domain at m+1 time step in order to correlate
to the continuity equation Eq.(1) at m+1 time step. Assuming that the continuity equation Eq.(1) is
satisfied at m+1 time step (D" = 0), Eq.(9) becomes the pressure equation including the normal
vectors on four-dimensional (x, y, z, f) domain as follows:
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where the differential of pressure on three-dimensional (x, y, z) domain at m+1 time step is solved
with finite-volume-method on the computational cell at m+1 time step.

The computational procedure is as follows:

1. g* is calculated from q” by Eq.(7).

2. p""? is calculated from q* by Eq.(10).

3. q""! is calculated from q* and p”*"* by Eq.(8).

Other Numerical Method

The convective flux vectors (E,, F,, G,) are evaluated with second order upwind difference scheme.
The viscous flux vectors (E,, F,, G,) and the pressure vectors (P, P,, P3) are evaluated with central
difference scheme. The iterative method of Eq.(7) is LU-SGS [Yoon and Jameson (1988)] and the
iterative method of Eq.(10) is Bi-CGSTAB [van der Vorst (1992)].

Numerical methods for body motion

Governing Equation
The governing equations of body-motion are Newton’s motion equation with six degrees of freedom
of motion including translation and rotation as follows:

J Mu,, F.
L, |=| F |, 11
dar| " Y (1
Mw, F - Mg
Xp Up
d
pARL {vg } (12)
Zp Wpg
L. (1.-1,)o.0,] [T
e [+ U -Lew. =T (13)
Lo.| |I,-1)oo, | |T



where M is the weight of the body, up, vz and wp are the body velocity, F, F, and F. are the forces to
be received by the fluid, g is gravity acceleration, /,, I, and I. are the moment of inertia of the body
about a center of x', y" and z' axis, w,, @, and w. are the body angle speed about a center of x, y"and z’
axis, T, T", and T". are the torques to be received by the fluid about a center of x', »" and z" axis and (x’,
y', z") is the cartesian coordinate fixed to the body. The equations are nondimensionalized by
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where overline shows the dimensional quantity. Quaternion [Yatabe (2007)] is used for the coordinate
transform.

The time derivative of Eq.(11) and (13) is discretized by forward Euler method and the time
derivative of Eq.(12) is discretized by Crank-Nicolson method as follows:
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Coupled Procedure of Fluid-Flow and Body-Motion

The computational procedure is as follows:

1. The force and the torque of the body at m time step are calculated from the pressure and the shear
stress of the fluid.

2. The velocity and the angle speed of the body at m+1 time step are calculated by Eq.(14) and
Eq.(16).

3. The translation and the rotation of the body at m+1 time step are calculated by Eq.(15) and
quaternion.

4. The computational grid at m+1 time step is formed.

5. The velocity and the pressure of the fluid at m+1 time step are calculated by Eq.(7), Eq.(8) and
Eq.(10).

Numerical simulation



Computational Condition

Fig. 3 shows the jellyfish which is the target of this simulation. The jellyfish is 16.8-24.0mm in
diameter DB, 8.64-12.48mm in height HB, Imm in thickness, 10g in weight and elliptical cross
section. The water is 1000kg/m’ in density and 1.0¥10”kg/ms in viscosity. Lo is 24.0mm, U is
24.0mm/s, p is 1000kg/m’, o is 1.0¥10°kg/ms, Re is 576, M is 10g and g is 0.0m/s* considering
buoyancy. Casel is condition without a current and Case2 is condition with a current. The jellyfish

velocity (up, va, wg) is (0.0, 0.0, 0.0) in the initial condition. The change of diameter DB and height
HB is decided as follows:

2
DB 1 0-03exp —Ln[[’m"dl'lz]j /0.15
L 0.44

i .
HB _36-0.16exp —Ln([tm‘)dl'lz]j /).15
I 0.44

Fig.4 shows time history of diameter DB and height HB, where Exp denotes the experimental data
[Mchenry and Jed (2003)].
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Fig. 5 shows the computational domain and the boundary conditions. The computational domain is a
sphere 240mm in diameter. In BC1 which is the wall boundary of the jellyfish, the velocity is fixed to
the velocity of the jellyfish and Neumann boundary condition applies to the pressure. In BC2 which is
the external boundary, the inflow velocity is fixed to (u, v, w) = (ui, vi, wi), the outflow velocity is
calculated by linear interpolation and Neumann boundary condition applies to the pressure. The whole
of computational grid moves together with the jellyfish by using Moving Computational Domain
(MCD) approach [Watanabe and Matsuno (2009)]. Simulations are performed in three conditions
Casel, Case2 and Case3 as shown in Table 1.
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Figure 5. Computational domain and boundary conditions

Table 1. Conditions of simulation

Casel Case2 Case3
Current Without With With
(ui, vi, wi) (0.0,0.0,0.0) | (0.5,0.0,0.0) (0.5, 0.0, 0.0)
Diameter DB Eq.(14) Eq.(14) Constant (24.0mm)
Height HB Eq.(14) Eq.(14) Constant (8.64mm)

Result of Simulation

As a result, Fig. 6, 7 and 8 each show velocity vectors, pressure contours and vorticity magnitude
contours in Casel at t = 0.40 (contraction) and t = 1.12 (relaxation). Colors denote magnitude
velocity in Fig. 6. The contour denotes 4.0 of vorticity magnitude in Fig. 8. The starting vortex occurs
outside the jellyfish at the contraction and the stopping vortex occurs inside the jellyfish at the
relaxation. The whole flow field is axisymmetric.

(a) (b)

Figure 6. Velocity vectors in Casel
at (a) t = 0.40 (contraction) and (b) t = 1.12 (relaxation)



(b)

b |

Figure 7. Pressure contours in Casel
at (a) t = 0.40 (contraction) and (b) t=1.12 (relaxation)

(b)

Figure 8. Vorticity magnitude contours in Casel
at (a) t = 0.40 (contraction) and (b) t =1.12 (relaxation)

Fig. 9 shows swimming speed w; of the jellyfish in Casel, where Exp denotes experimental result
[Mchenry and Jed (2003)]. The jellyfish accelerates at the contraction and decelerates at relaxation.
The present result gives good agreement with experimental result.
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Fig. 10, 11 and 12 each show velocity vectors, pressure contours and vorticity magnitude contours in
Case2 at t = 0.40 (contraction) and t = 1.12 (relaxation). Colors denote magnitude velocity in Fig. 10.
The contour denotes 4.0 of vorticity magnitude in Fig. 12. The flow field is not axisymmetric because
of the current. At relaxation, the stopping vortex is clear not vortex structure in the right side and
pressure in the jellyfish is higher in the right side. The asymmetry of the vortex structure inclines the
jellyfish to x-axis negative direction.

(a) (b)

Figure 10. Velocity vectors in Case2
at (a) t = 0.40 (contraction) and (b) t = 1.12 (relaxation)

(b)

Figure 11. Pressure contours in Case2
at (a) t = 0.40 (contraction) and (b) t = 1.12 (relaxation)

(b)

Figure 12. Vorticity magnitude contours in Case2
at (a) t = 0.40 (contraction) and (b) t=1.12 (relaxation)
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Figure 13. Time history of inclination angle of jellyfish in x-direction
in Casel (blue line), Case2 (red line) and Case3 (green line)

Fig. 13 shows time history of the inclination angle of the jellyfish in x-direction. In Casel without a
current and with the contraction motion, the jellyfish does not rotate because the whole flow field is
axisymmetric, and the inclination angle is almost zero. In Case3 with a current and without the
contraction motion, the current itself rotates the jellyfish to x-axis negative direction, and the
inclination angle decreases gradually. In Case2 with a current and the contraction motion, moreover
the vortex structure which becomes asymmetric by the current rotates the jellyfish to x-axis negative
direction, and the inclination angle decreases faster than Case3.

CONCLUTIONS

In this paper, we have performed three-dimensional coupled simulation of fluid-flow and jellyfish-
swimming in a current with six degrees of freedom of motion by using Moving-Grid Finite-Volume
Method. In the simulation without a current, the jellyfish accelerates at the contraction and decelerates
at relaxation. The swimming speed of the jellyfish gave good agreement with experimental result.
Moreover, in the simulation with a current, the current makes flow field asymmetric and changes the
vortex structure caused by swimming jellyfish. The vortex structure rotates swimming jellyfish.
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