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Abstract 
Coupled behaviors of fluid-flow and swimming-jellyfish are necessary for swimming movements and 
the dynamics governing these coupled behaviors is difficult and complex. A lot of researches 
investigated coupled behaviors of fluid-flow and jellyfish-swimming by using two-dimensional 
axisymmetric numerical simulations. However, in order to simulate swimming jellyfish in an 
asymmetric current, the three-dimensional simulation is necessary. On the other hand, in the 
simulation of an unsteady flow caused by a moving wall boundary, the Geometric Conservation Law 
(GCL) is important. In the computational method which does not strictly satisfy GCL, arbitrary grids 
moving affects the flow field and the physical conservation law is destroyed. Moving-Grid Finite-
Volume Method (MGFVM) is suitable for such a flow because GCL is strictly satisfied. In MGFVM, 
GCL condition is automatically and strictly satisfied by the discretization performed using a four-
dimensional control volume in the space and time unified domain (x, y, z, t). In this paper, we perform 
the three-dimensional coupled simulation of fluid-flow and jellyfish-swimming with six degrees of 
freedom of motion by using MGFVM and investigate the influence of a current on swimming 
jellyfish.  
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Introduction 

Coupled behaviors of fluid-flow and swimming-jellyfish are necessary for swimming movements and 
the dynamics governing these behaviors is difficult and complex. Jellyfish were the earliest animals to 
evolve muscle-powered swimming in the sea. A swimming of jellyfish consists of contraction, 
relaxation and inertia. First swimming mechanism is a jet propulsion caused by the subumbrella 
volume change that occurs during the contraction and the relaxation. In a jet motion, a first vortex ring, 
which is called the ‘starting vortex’, occurs by the contraction and causes a strong jet propulsion. 
Second swimming mechanism is a paddling motion on the bell margin and not as simple as jet 
propulsion. In a paddling motion, a second vortex ring, which is called the ‘stopping vortex’, occurs 
by the relaxation. The stopping vortex rotates in the direction opposite to the starting vortex and 
influences the starting vortex. The stopping vortex plays an important role in swimming mechanisms 
[Colin and Costello (2002); Mchenry and Jed (2003); Dabiri et al. (2005); Costello et al. (2008)]. 
 
A lot of researches investigated swimming jellyfish by using computational fluid dynamics (CFD). 
The dynamics of swimming jellyfish was modeled by using the two-dimensional simulation using the 
SIMPLE algorithm [Dular et al. (2009)]. The vortex structure caused by a swimming jellyfish was 
investigated by using the two-dimensional simulation using the arbitrary Lagrangian–Eulerian (ALE) 
method [Sahin and Mohseni (2009)]. The relationship between kinematics and swimming jellyfish 
was investigated by using the two-dimensional axisymmetric simulation [Alben et al. (2013)]. The 
three-dimensional geometry of swimming jellyfish was extrapolated from the two-dimensional 
axisymmetric simulation [Rudolf and Mould (2010)]. Thus far, there are few investigations into three-
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dimensional simulations of swimming jellyfish. Moreover, in these investigations, it was assumed that 
jellyfish is in stationary fluid. However, in the sea, a current may change the vortex structure caused 
by swimming jellyfish and affect a swimming of jellyfish. The swimming jellyfish in the current 
cannot be simulated by using a two-dimensional axisymmetric simulation because the current is not 
axisymmetric. Thus, a three-dimensional simulation is necessary in order to investigate the influence 
of the current on swimming jellyfish.  
 
On the other hand, in the simulation of an unsteady flow caused by a moving wall boundary, the 
computational grid moves and deforms time-dependently. As the computational method for such a 
moving grid, the method applying discretization of the governing equation on a general body-
conforming curvilinear coordinate [Vinokur (1974)], the arbitrary Lagrangian-Eulerian (ALE) method 
in which the mesh point can be moved independently of fluid motion [Noh (1964)], the space-time 
finite-element method [Tezduyar et al. (1992)] and so on were suggested. It is most important for the 
computational method for moving grid that the Geometric Conservation Law (GCL) is satisfied 
[Thomas and Lombard (1979)]. In the computational method which does not strictly satisfy GCL, 
arbitrary grids moving may affect the flow field and physical conservation law may be destroyed. 
Moving-Grid Finite-Volume Method (MGFVM) was suggested as the computational method which 
strictly satisfy GCL [Mihara (1999)] and its performance was shown in various unsteady flows 
[Matsuno (2010)]. The GCL condition is automatically and strictly satisfied by the discretization 
performed using a four-dimensional control volume in the space and time unified domain (x, y, z, t). 
In structured grids, the method was firstly applied to compressible flows [Matsuno (2001)] and 
extended to incompressible flows [Inomoto (2004)]. In incompressible flows, the couple of pressure 
and velocity was done by the fractional step method on the four-dimensional domain. In order to 
apply to the object of complicated shape, Unstructured Moving-Grid Finite-Volume Method, which 
was MGFVM extended to unstructured grids, was suggested [Yamakawa and Matsuno (2003)]. 
Moreover, in order to apply to a greatly moving wall boundary, Moving Computational Domain 
(MCD) approach in which whole of computational region could move was suggested [Watanabe and 
Matsuno (2009)].  
 
In this paper, we perform the three-dimensional coupled simulation of fluid-flow and jellyfish-
swimming in a current with six degrees of freedom of motion by using Moving-Grid Finite-Volume 
Method. The swimming jellyfish demonstrated and the influence of the current is shown.  

Governing equations for fluid flow 

Governing Equation 
The governing equations of fluid-flow are the continuity equation,  
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and the Navier-Stokes equations for incompressible flow, 
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where q is the vector of conserved variables, Ea, Fa and Ga are the convective flux vectors, Ev, Fv and 
Gv are the viscous flux vectors, u, v and w are the fluid velocity, p is the fluid pressure and Re is 
Reynolds number. The equations are nondimensionalized by 
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where overline shows the dimensional quantity, 0L  is the characteristics length, 0U  is the 
characteristics velocity, ρ  is the characteristics density and 0μ  is the viscosity. 
 
Discretization 
In Moving-Grid Finite-Volume Method (MGFVM) is used for discretization. In MGFVM, the control 
volume in the space-time unified four-dimensional (x, y, z, t) domain is used in order to assure both 
physical and geometrical conservation laws simultaneously. Fig. 1 shows the Unstructured 
computational cell on three-dimensional (x, y, z) domain at m time step and m+1 time step. R = (x, y, 
z)T, the subscript i shows the computational grid number and the superscript m shows time step. In 
four-dimensional domain, the blue computational cell is the surface (l = 5) perpendicular to t-axis at m 
time step and the red computational cell is the surface (l = 6) perpendicular to t-axis at m+1 time step. 
The control volume Ω is a volume on four-dimensional domain and formed between the lower surface 
(l = 5) and the upper surface (l = 6). The control surface is the surface of the control volume on a 
unified four-dimensional space-time (x, y, z, t) domain and corresponds the volume on three-
dimensional domain. The control surface is formed by the surface at m time step and it at m+1 time 
step (l = 1, 2, …, 4), corresponds the computational cell at m time step (l = 5) and corresponds the 
computational cell at m+1 time step (l = 6). For example, the control surface l = 4 corresponds the 
volume on three-dimensional domain shown by the heavy line in Fig. 2. 
 

 
Figure 1. Computational cells 

 at m time step and m+1 time step 

 
Figure 2. Control surface l = 4 
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Navier-Stokes equations for incompressible flows are discretized with Unstructured Moving-Grid 
Finite-Volume Method. Eq.(2) is integrated over the control volume Ω as 
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Eq.(3) is shown in divergence as 
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Gauss' divergence theorem is applied to four-dimensional domain and Eq.(4) becomes as follows: 
 

 ( ) ( ) ( ){ } ,~~~~6

1
321 0qPGPFPE =++++++∑

=
l

l
ltzyx Snnnn  (5) 

 
where the subscript l shows the control surface number as Fig. 2. In the control surface, ( xn~ , yn~ , zn~ , 

tn~ ) are the outward unit normal vectors, S is magnitude of the normal vector, Snt
~  corresponds to 

volume in (x, y, z) domain, Snx
~  corresponds to volume in (y, z, t) domain, Sny

~  corresponds to volume 
in (z, t, x) domain, Snz

~  corresponds to volume in (t, x, y) domain. In the control surface l = 5 and 6, 
0~~~ === zyx nnn  and Snt

~  corresponds to the volume V of the computational cell. E, F, G, q, P1, P2 
and P3 are evaluated at m+1/2 time step (l = 1, 2, … ,4), at m time step (l = 5) and m+1 time step (l = 
6).  
Therefore Eq.(5) becomes as follows:  
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This equation is the fundamental equation of Unstructured Moving-Grid Finite-Volume Method.  
 
Fractional Step Method 
By fractional step method, Eq.(6) is divided as 
1st step:  
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2nd step:  
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where * shows intermediate step.  
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The divergence of Eq.(8) on three-dimensional (x, y, z) domain at m+1 time step becomes as follows:  
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Here, pay attention that this is the divergence on (x, y, z) domain at m+1 time step in order to correlate 
to the continuity equation Eq.(1) at m+1 time step. Assuming that the continuity equation Eq.(1) is 
satisfied at m+1 time step (Dm+1 = 0), Eq.(9) becomes the pressure equation including the normal 
vectors on four-dimensional (x, y, z, t) domain as follows:  
 

 ,0~~~4

1
1

2/1

1

2/1

1

2/1
1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+− ∑
=

+

+

+

+

+

+
+∗

l
l l

zm

m

ym

m

xm

m
m Sn

z
pn

y
pn

x
pVD  (10) 

 
where the differential of pressure on three-dimensional (x, y, z) domain at m+1 time step is solved 
with finite-volume-method on the computational cell at m+1 time step.  
The computational procedure is as follows: 
1. q* is calculated from qm by Eq.(7).  
2. pm+1/2 is calculated from q* by Eq.(10).  
3. qm+1 is calculated from q* and pm+1/2 by Eq.(8). 
 
Other Numerical Method 
The convective flux vectors (Ea, Fa, Ga) are evaluated with second order upwind difference scheme. 
The viscous flux vectors (Ev, Fv, Gv) and the pressure vectors (P1, P2, P3) are evaluated with central 
difference scheme. The iterative method of Eq.(7) is LU-SGS [Yoon and Jameson (1988)] and the 
iterative method of Eq.(10) is Bi-CGSTAB [van der Vorst (1992)]. 

Numerical methods for body motion 

Governing Equation 
The governing equations of body-motion are Newton’s motion equation with six degrees of freedom 
of motion including translation and rotation as follows:  
 

 ,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

MgF
F
F

Mw
Mv
Mu

dt
d

z

y

x

B

B

B

 (11) 

 ,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

B

B

B

B

B

B

w
v
u

z
y
x

dt
d  (12) 

 
( )
( )
( )

,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′
′
′

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

y

x

xyxy

zxzx

yzyz

zz

yy

xx

T
T
T

II
II
II

I
I
I

dt
d

ωω
ωω
ωω

ω
ω
ω

 (13) 



6 
 

 
where M is the weight of the body, uB, vB and wB are the body velocity, Fx, Fy and Fz are the forces to 
be received by the fluid, g is gravity acceleration, Ix, Iy and Iz are the moment of inertia of the body 
about a center of x', y' and z' axis, ωx, ωy and ωz are the body angle speed about a center of x', y' and z' 
axis, T'x, T'y and T'z are the torques to be received by the fluid about a center of x', y' and z' axis and (x', 
y', z') is the cartesian coordinate fixed to the body. The equations are nondimensionalized by  
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where overline shows the dimensional quantity. Quaternion [Yatabe (2007)] is used for the coordinate 
transform.  
The time derivative of Eq.(11) and (13) is discretized by forward Euler method and the time 
derivative of Eq.(12) is discretized by Crank-Nicolson method as follows: 
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Coupled Procedure of Fluid-Flow and Body-Motion 
The computational procedure is as follows: 
1. The force and the torque of the body at m time step are calculated from the pressure and the shear 

stress of the fluid.  
2. The velocity and the angle speed of the body at m+1 time step are calculated by Eq.(14) and 

Eq.(16).  
3. The translation and the rotation of the body at m+1 time step are calculated by Eq.(15) and 

quaternion. 
4. The computational grid at m+1 time step is formed.  
5. The velocity and the pressure of the fluid at m+1 time step are calculated by Eq.(7), Eq.(8) and 

Eq.(10).  
 
Numerical simulation 
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Computational Condition 
Fig. 3 shows the jellyfish which is the target of this simulation. The jellyfish is 16.8-24.0mm in 
diameter DB, 8.64-12.48mm in height HB, 1mm in thickness, 10g in weight and elliptical cross 
section. The water is 1000kg/m3 in density and 1.0*10-3kg/ms in viscosity. 0L  is 24.0mm, 0U  is 
24.0mm/s, ρ  is 1000kg/m3, 0μ  is 1.0*10-3kg/ms, Re is 576, M is 10g and g is 0.0m/s2 considering 
buoyancy. Case1 is condition without a current and Case2 is condition with a current. The jellyfish 
velocity (uB, vB, wB) is (0.0, 0.0, 0.0) in the initial condition. The change of diameter DB and height 
HB is decided as follows: 
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Fig.4 shows time history of diameter DB and height HB, where Exp denotes the experimental data 
[Mchenry and Jed (2003)].  
 
 
 

 
Figure 3. Jellyfish 

 
Figure 4. Time history of diameter DB and 

height HB.  
 
Fig. 5 shows the computational domain and the boundary conditions. The computational domain is a 
sphere 240mm in diameter. In BC1 which is the wall boundary of the jellyfish, the velocity is fixed to 
the velocity of the jellyfish and Neumann boundary condition applies to the pressure. In BC2 which is 
the external boundary, the inflow velocity is fixed to (u, v, w) = (ui, vi, wi), the outflow velocity is 
calculated by linear interpolation and Neumann boundary condition applies to the pressure. The whole 
of computational grid moves together with the jellyfish by using Moving Computational Domain 
(MCD) approach [Watanabe and Matsuno (2009)]. Simulations are performed in three conditions 
Case1, Case2 and Case3 as shown in Table 1.  
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Figure 5. Computational domain and boundary conditions 

 
Table 1. Conditions of simulation 

 Case1 Case2 Case3 
Current Without With With 

(ui, vi, wi) (0.0, 0.0, 0.0) (0.5, 0.0, 0.0) (0.5, 0.0, 0.0) 
Diameter DB Eq.(14) Eq.(14) Constant (24.0mm) 
Height HB Eq.(14) Eq.(14) Constant (8.64mm) 

 
 
Result of Simulation 
As a result, Fig. 6, 7 and 8 each show velocity vectors, pressure contours and vorticity magnitude 
contours in Case1 at t = 0.40 (contraction) and  t = 1.12 (relaxation). Colors denote magnitude 
velocity in Fig. 6. The contour denotes 4.0 of vorticity magnitude in Fig. 8. The starting vortex occurs 
outside the jellyfish at the contraction and the stopping vortex occurs inside the jellyfish at the 
relaxation. The whole flow field is axisymmetric.  
 
(a) (b) 

Figure 6. Velocity vectors in Case1 
at (a) t = 0.40 (contraction) and (b) t = 1.12 (relaxation) 
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(a) (b) 

Figure 7. Pressure contours in Case1 
at (a) t = 0.40 (contraction) and (b) t = 1.12 (relaxation) 

 
(a) (b) 

Figure 8. Vorticity magnitude contours in Case1 
at (a) t = 0.40 (contraction) and (b) t = 1.12 (relaxation) 

 
Fig. 9 shows swimming speed wB of the jellyfish in Case1, where Exp denotes experimental result 
[Mchenry and Jed (2003)]. The jellyfish accelerates at the contraction and decelerates at relaxation. 
The present result gives good agreement with experimental result.  
 

 
Figure 9. Time history of swimming speed in Case1 and experimental result 
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Fig. 10, 11 and 12 each show velocity vectors, pressure contours and vorticity magnitude contours in 
Case2 at t = 0.40 (contraction) and  t = 1.12 (relaxation). Colors denote magnitude velocity in Fig. 10. 
The contour denotes 4.0 of vorticity magnitude in Fig. 12. The flow field is not axisymmetric because 
of the current. At relaxation, the stopping vortex is clear not vortex structure in the right side and 
pressure in the jellyfish is higher in the right side. The asymmetry of the vortex structure inclines the 
jellyfish to x-axis negative direction.  
 
 (a) (b) 

Figure 10. Velocity vectors in Case2 
at (a) t = 0.40 (contraction) and (b) t = 1.12 (relaxation) 

 
(a) (b) 

Figure 11. Pressure contours in Case2 
at (a) t = 0.40 (contraction) and (b) t = 1.12 (relaxation) 

 
(a) (b) 

Figure 12. Vorticity magnitude contours in Case2 
at (a) t = 0.40 (contraction) and (b) t = 1.12 (relaxation) 
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Figure 13. Time history of inclination angle of jellyfish in x-direction 
 in Case1 (blue line), Case2 (red line) and Case3 (green line) 

 
Fig. 13 shows time history of the inclination angle of the jellyfish in x-direction. In Case1 without a 
current and with the contraction motion, the jellyfish does not rotate because the whole flow field is 
axisymmetric, and the inclination angle is almost zero. In Case3 with a current and without the 
contraction motion, the current itself rotates the jellyfish to x-axis negative direction, and the 
inclination angle decreases gradually. In Case2 with a current and the contraction motion, moreover 
the vortex structure which becomes asymmetric by the current rotates the jellyfish to x-axis negative 
direction, and the inclination angle decreases faster than Case3.  
 
CONCLUTIONS 
In this paper, we have performed three-dimensional coupled simulation of fluid-flow and jellyfish-
swimming in a current with six degrees of freedom of motion by using Moving-Grid Finite-Volume 
Method. In the simulation without a current, the jellyfish accelerates at the contraction and decelerates 
at relaxation. The swimming speed of the jellyfish gave good agreement with experimental result. 
Moreover, in the simulation with a current, the current makes flow field asymmetric and changes the 
vortex structure caused by swimming jellyfish. The vortex structure rotates swimming jellyfish.  
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