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Abstract 

A new smoothed finite element method (S-FEM) with tetrahedral elements for finite strain analysis 
of nearly incompressible solids is proposed. The proposed method is basically a combination of the 
F-bar method and edge-based S-FEM with tetrahedral elements and is named “F-barES-FEM-T4”. 
The isovolumetric part of the deformation gradient (Fiso) is derived from the F of ES-FEM, whereas 
the volumetric part (Fvol) is derived from the cyclic smoothing of J (=det(F)) between elements and 
nodes. F-barES-FEM suppresses the pressure oscillation in nearly incompressible materials 
successfully with no increase in DOF. 

Keywords: F-bar method, Smoothed finite element method, Tetrahedral element, Finite strain, 

Nearly incompressible, Pressure oscillation. 

Introduction 

In the practical numerical simulation for solids, the use of tetrahedral elements are indispensable due 
to the complexity of body shapes. The edge-based smoothed finite element method with first-order 
tetrahedral elements (ES-FEM-T4) [Liu et al. (2010)] is one of the most accurate FE formulations 
that resolve the shear locking issue of the standard tetrahedral (i.e., constant strain) FE formulation. 
However, ES-FEM-T4 raises volumetric locking in the analysis of nearly incompressible materials 
such as rubber. Therefore, development of accurate FE formulations with T4 elements is still in a 
research stage. 
 
There are already several methods proposed for locking-free analysis with tetrahedral meshes, but 
they all have some sort of serious drawbacks as follows. 
 Hybrid (or mixed) second-order tetrahedral elements: 

significant increase in DOF; inevitable Lagrange multipliers; convergence problems in contact 
analysis; accuracy loss in severely large strain analysis. 

 F-bar-Patch method [Neto et al. (2005)]: 
difficulties in pre-definition of good-quality patches; shear locking. 

 Selective reduced integration hexahedral elements as the subdivision of tetrahedral elements 
(4 hexahedrons in a tetrahedron): 
significant increase in DOF; severe element distortion of initial mesh; pressure oscillation. 

 Selective edge/node-based S-FEM-T4 (ES/NS-FEM-T4) [Onishi and Amaya (2014)]: 
pressure oscillation; locking at corners. 

 Bubble-enhanced ES-FEM (bES-FEM-T4) [Ong et al. (2015)]: 
significant increase in DOF; quick pop out of bubble nodes; pressure oscillation. 

In addition, formulations with the selective integration have a drawback that they cannot treat 
materials with deviatoric/volumetric coupling terms. For these reasons, a new formulation without 
intermediate nodes, mixed variational principle, pre-defined patches, element subdivision, selective 
integration, nor bubble nodes is awaited. 
 
In this paper, we propose a new ES-FEM-T4 formulation combined with F-bar method [Neto et al. 

(1996)] named “F-barES-FEM-T4”. The smoothed deformation gradient and stress in the proposed 

method are defined at each edge, and the stress integration is performed over the smoothing domains 

of ES-FEM. The isovolumetric part of the deformation gradient (Fiso) is derived from F of ES-FEM, 

whereas the volumetric part (Fvol) is derived from the cyclic smoothing of J (=det(F)) between 

elements and nodes. Therefore, the proposed method can suppress the pressure oscillation without 

any unfavorable approaches listed above. 
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Method 

Mutli-Smoothed Deformation Gradient 

As is well known today, NS-FEM-T4 can avoid volumetric locking and gives solutions that have less 

pressure oscillation in nearly incompressible cases. It implies that the node-based smoothing of  𝐽 (≡
det(𝑭)) can be regarded as an operation to suppress pressure oscillation to some extent. Here we 

define the cyclic smoothing of J as the following operation: 

 

1) Calculate 𝐽 at each element, 𝐽elem, in the same way as the standard FEM-T4. 

2) Calculate smoothed 𝐽 at each node, 𝐽node, in the same way as NS-FEM-T4: 

𝐽node =
∑ 𝐽𝑖

elem 𝑉𝑖
elem

𝑖∈𝕀

∑ 𝑉𝑖
elem

𝑖∈𝕀

, (1) 

where 𝕀 is the set of elements attached to the each node and 𝑉 denotes the volume. 

3) Calculate smoothed 𝐽 at each element, 𝐽elem, as the average of 𝐽node: 

𝐽elem =
∑ 𝐽𝑗

node
𝑗∈𝕁

4
, (2) 

where 𝕁 is the set of four nodes comprising the each element. 

4) Repeat 2) and 3) as necessary to calculate multi-smoothed 𝐽 at each element, 𝐽e̅lem. 

(𝐽elem is considered as 𝐽elem in Eq. (1), and the last 𝐽elem in Eq. (2) is considered as 𝐽e̅lem.) 

5) Calculate multi-smoothed 𝐽 at each edge, 𝐽e̅dge, in the same way as ES-FEM-T4: 

𝐽e̅dge =
∑ 𝐽𝑘̅

elem 𝑉𝑘
elem

𝑘∈𝕂

∑ 𝑉𝑘
elem

𝑘∈𝕂

, (3) 

where 𝕂 is the set of elements attached to the each edge. 

 

In F-barES-FEM-T4, 𝐽e̅dge  is used to define the volumetric part of the deformation gradient as 

𝑭̅vol
edge

= (𝐽e̅dge)
1/3

 𝑰. 

 

Meanwhile, ES-FEM-T4 can avoid shear locking and gives accurate solutions in the analysis with 

compressible materials. The smoothed deformation gradient of ES-FEM-T4 is calculated as 

𝑭̃edge =
∑ 𝑭̃𝑘

elem 𝑉𝑘
elem

𝑘∈𝕂

∑ 𝑉𝑘
elem

𝑘∈𝕂

. (4) 

In F-barES-FEM-T4, 𝑭̃edge is used to define the isovolumetric part of the deformation gradient as 

𝑭̅iso
edge

= (𝐽edge)
−1/3

 𝑭̃edge, where  𝐽edge ≡ det (𝑭̃edge). 

 

Finally, the multi-smoothed deformation gradient at each edge, 𝑭̅edge, is defined in manner of the F-

bar method as 

𝑭̅edge = (
𝐽e̅dge

𝐽edge
)

1/3

𝑭̃edge. (5) 

 

Nodal Internal Force and Stiffness 

The Cauchy stress at each edge 𝑻edge is calculated in the standard way with 𝑭̅edge. In contrast to the 

methods based on the selective integration, F-barES-FEM-T4 has no difficulty in treating dev/vol 

coupled materials. 
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The contribution of each edge to the nodal internal force is then calculated in manner of the F-bar 

method as 

{𝑓int
edge

} = [𝐵̃edge]{𝑇edge}𝑉edge, (6) 

where [𝐵̃edge] is the smoothed B matrix of ES-FEM-T4 at each edge. In contrast to the methods based 

on mixed variational formulation, F-barES-FEM-T4 is purely a displacement-based formulation and 

thus eliminates the use of pressure or volumetric strain unknowns. 

 

The contribution of each edge to the tangent stiffness matrix, [𝐾edge], necessitates a little complicated 

way of derivation due to the cyclic smoothing, thereby omitting in this paper. As the number of the 

smoothing cycles is increased, the bandwidth of [𝐾] is also increased; however, there is no increase 

in DOF. 

Results 

Bending of Cantilever 

Figure 1 shows the pressure distributions of a small deformation cantilever bending analyses in 2D 

plane-strain condition. The analysis domain is a 10 m × 1 m rectangle discretized with a structural 

mesh of 500 triangular elements. Its left-hand side is perfectly constrained, and a concentrated 

bending load is assigned to the top-right node. The material is the neo-Hookean hyperelastic material 

with an initial Poisson’s ratio of 0.499. It is clearly shown that NS-FEM-T3 raises severe pressure 

oscillation (Fig. 1 (a)), whereas our method with k times cyclic smoothing, F-barES-FEM-T3(k), 

suppresses pressure oscillation to some extent (Fig. 1 (b)-(d)). Our heuristic diagnostics suggest that 

νini < 0.48 ⟹ 𝑘 = 0  (i.e., ES-FEM is recommended), 0.48 ≤ νini < 0.49 ⟹ 𝑘 = 1 , 0.49 ≤
νini < 0.499 ⟹ 𝑘 = 2, 0.499 ≤ νini < 0.4999 ⟹ 𝑘 = 3 and so on. 

 

 
(a) NS-FEM-T3                                                  (b) F-barES-FEM-T3(1) 

 
                   (c)  F-barES-FEM-T3(2)                                           (d) F-barES-FEM-T3(3) 

Figure 1. Pressure distributions of the plane-strain small deformation cantilever bending 

analysis. The contour range is adjusted to the result of (d). Increase in the number of cyclic 

smoothing helps suppressing the pressure oscillation in the nearly incompressible material.  

 

Partial Compression of Block 

Figure 2 shows the pressure distributions of a finite strain block compression analyses in 3D. The 

analysis domain is a 1 m cube discretized with an unstructured mesh of 55821 tetrahedral elements. 

Its –x, –y and –z faces are constrained in the normal direction of each face, its +z face is constrained 

in x and y directions, and a pressure is applied to 1/4 of +z face. The material is the Arruda-Boyce 

hyperelastic material with an initial Poisson’s ratio of 0.499.  As noted in Introduction, ES/NS-FEM-

T4 suffers from pressure oscillation (Fig. 2 (a)). In contrast, our F-barES-FEM-T3(2) and F-barES-

FEM-T3(3)  suppress pressure oscillation to some extent (Fig. 2 (b), (c)). 
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(a)ES/NS-FEM-T4                   (b) F-barES-FEM-T4(2)                (c) F-barES-FEM-T4(3) 

Figure 2. Pressure distributions of the finite strain block compression analysis. The contour 

range is adjusted to the result of (c). Our method with three-time cyclic smoothing, F-barES-

FEM-T4(3), successfully suppresses the pressure oscillation in finite strain analysis of nearly 

incompressible materials.  

Conclusions 

A novel S-FEM called F-barES-FEM-T4 was proposed. The cyclic smoothing of 𝐽 (≡ det(𝑭)) 

between elements and nodes was introduced to combine the idea of F-bar method and ES-FEM-T4 

efficiently. Accordingly, F-barES-FEM-T4 suppressed the pressure oscillation in nearly 

incompressible materials with no increase in DOF. 

 

Meanwhile, the relations among the Poisson’s ratio, the number of smoothing cycles, underestimation 

of stress concentrations, etc. are still unclear. The impact of the increase in the matrix bandwidth on 

the computational efficiency is also unclear. Further investigation about them is our future work. 
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