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Abstract

A new version of the Method of Fundamental Solutions is proposed. Instead of
locating external point sources, an external boundary should be defined, and an
extension of the original solution is created by enforcing the original boundary
conditions for the extended problem. This leads to a better conditioned problem than
the traditional Method of Fundamental Solutions. To numerically solve the extended
problem, a c%uadtree-based multi-level finite volume method is used, which is quite
economical from the computational points of view. In addition to it, the problem of
large, dense and ill-conditioned systems is completely avoided.
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Introduction

Due to its simplicity and accuracy, the Method of Fundamental Solutions (MFS, see
e.g. [Alves et al. 2002]) has become quite popular among the meshless methods. This
approach can be applied easily, if the fundamental solution of the original partial
differential equation is known (or the original problem can be converted to such a
problem). In its traditional form, the approximate solution is sought as a linear
combination of the fundamental solution shifted to some external source points:

N
u(x) = Yo d(x-Xj), 1)

j=1
where X;,X5,..., Xy are predefined source points located in the exterior of the domain

Q of the original partial differential equation, @ denotes the fundamental solution.
In case of the familiar second-order partial differential equations, ® has a (weak)
singularity at the origin, so that the approximate solution (1) has singularities at the
source points but remains smooth inside the domain. The a priori unknown co-
efficients o, a,,...,0p Can be computed by enforcing the boundary conditions at

some boundary collocation points X;, X, ..., Xy :
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Here I'y and I'y denote the Dirichlet part (and the Neumann part, respectively) of
the boundary of the domain Q; n, is the outward normal unit vector at the point X, ;



Uy, Vv are the Dirichlet and Neumann boundary conditions at the boundary colloca-
tion points.

Generally speaking, the MFS has excellent convergence properties (see [Li (2005)]);
however, it is well known that the matrix of the system (2) is fully populated, non-
selfadjoint and severely ill-conditioned, especially when the sources are located far
from the boundary. On the other hand, if they are located too close to the boundary,
numerical singularities are generated. In addition to it, the proper definition of the
location of the sources can hardly be automatized. Therefore it is popular to allow the
source points and the boundary collocation points to coincide, which needs special
tricks to handle the problem of appearing singularities.

To circumvent these difficulties, a lot of approaches have been developed. In the
boundary knot method [Chen (2002)], [Chen et al. (2005)], nonsingular general solu-
tions are used instead of fundamental solutions. It is also possible to use fundamental
solutions concentrated to lines rather than discrete points, see [Gaspar (2013b)]. In
both approaches, the solution is approximated by nonsingular functions, thus, the
problem of singularity is avoided. However, though they have especially good
accuracy, the resulting linear system is severely ill-conditioned, which can cause
serious computational difficulties. The problem is more difficult, if the original
fundamental solution is used. Utilizing some boundary mesh structure, the appearing
singular integrals can be evaluated analytically, see [Young et al. (2005)]. The
desingularization can also be carried out by solving some auxiliary Dirichlet
subproblem, as in the Modified Method of Fundamental Solutions (MMFS, see
[Sarler (2008; 2009)]), or in the Boundary Distributed Source method (BDS, see [Liu
(2010)]). It is also possible to combine the above approach with the use of approxi-
mate fundamental solutions which have no singularity at the origin; such an
approximate fundamental solution may be the fundamental solution of the fourth-

order Laplace-Helmholtz operator A(A—c?l) with a sufficiently large scaling

parameter c, (the Regularized Method of Fundamental Solutions, see [Gaspar (2013a;
2013b)]). A further possibility is that, in contrast to Eq. (1), the approximate solution
is sought as a linear combination of the normal derivatives of ® (dipole
formulation), which can be considered a discretization of an indirect boundary
integral equation based on a double layer potential and so forth.

Most of the above methods are indirect in the sense that they convert the original
problem to the determination of some coefficients of the linear combination (i.e. the
strengths of the point sources in the original MFS-formulation). These coefficients
control the values (and their derivatives) at the collocation points, thus control the
whole approximate solution inside the domain.

In this paper, we present a technique in which the values at the collocation points are
controlled by the values at some external boundaries. In another words, an extension
(continuation) of the solution is computed directly by prescribing certain, a priori
unknown ‘external boundary conditions’. If the external boundary is located
sufficiently close to the original boundary, this results in much better conditioned
problem. The external conditions are updated iteratively. During the iteration
procedure, the original problem should be solved in a larger domain, which can
economically be performed by using quadtree-based multi-level tools. In addition to



this, the problem of large, fully populated and ill-conditioned matrices is completely
avoided.

Approximation of the solution by external boundary conditions

To illustrate the above outlined idea, consider the 2D model problem with pure
Dirichlet boundary conditions:

AU =0 inQ, Ulp=u (3)

defined on a circle Q=Qp ={x e R2: | x|l < R} with boundary I'g =0QRg. Let us
express the function u in terms of (complex) Fourier series:

u(t) = Yoy €', (4)
k

where, for the sake of simplicity, we used polar coordinated. Then the solution of (3)
IS expressed as:
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Now consider a larger circle ﬁ:=QR+5 with boundary T := 0Qg.s, Where §>0.
Then Eg. (5) defines a harmonic continuation of U to Q. On the boundary this yields:
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WUzZah@+§j-€W (6)
K R
provided that the series is convergent in a proper function space. (This is sometimes
kI
not the case due to the exponentially increasing factor (1+ Ej )

Conversely, if U is prescribed along the external boundary I:
AU =0 inQ, Ule=10, (7
where u(t) => By -e™ then the restriction of U to " defines a (much more smooth)
k

function:

AN
u(t) => P '(Hﬁj € (8)
K

The operator A: Hl/z(f) - Hl’z(l“) is always bounded and || Z\||<1, but it is not
regular, since the inverse operator is not bounded. However, the discretized operators
might have uniformly bounded inverses, if the distance 6 itself depends on the
discretization. Let us discretize the above problems by cutting the Fourier series (6)
and (8) at a maximal index N. Define the distance & of the original and the external

boundary to be inversely proportional to N, i.e. =93 % Then Egs. (4), (6) are

rewritten as:
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Since 13(1+ Noj s(lJrTOj <e’™ | the operators Ayl defined by

AUy =uy are uniformly bounded, moreover, the condition numbers are also

bounded: cond(Ay ) <e?™ , independently of N. Therefore the “discrete’ problem:
e find Uy insuch a way that the solution of the Dirichlet problem

AU =0 inQ, Ule=0y, (10)

satisfies the original ‘inner’ boundary condition U |=uy;

is now a well-conditioned problem, independently on N (which characterizes the
fineness of the discretization).

Based on the above considerations, in order to solve the Dirichlet problem (3), it is
sufficient to solve the extended problem

AU =0 inQ, Ule=0, (12)

where the boundary condition U should be chosen in such a way that the original
boundary condition

Ulr=u, (12)

is satisfied. That is, the approximate solution of the original boundary value problem
is controlled by the external boundary condition U rather than external sources as in
the case of the traditional method of fundamental solutions. It is expected that, in
order to enforce the boundary condition (12), the simple, traditional iterative methods
e.g. the Seidel iteration or the simplest Richardson iteration

Upyg = Up _w'(Un Ir _u) (13)

can be applied, where > 0 is a predefined iteration parameter. In the above model
problem, this remains the case.

The external boundary T' can be defined in a flexible way. The approach can easily
be generalized for mixed boundary conditions and 3D problems as well.

Solution of the extended problem

In principle, the extended problem (11) can be solved by an arbitrary method. Since
the external boundaries are not predefined, it is worth defining them in such a way
that the extended problem (11) could easily be handled. In the next examples, the
extended problem is solved by the regularized method of fundamental solutions
[Gaspar (2013a)], which does not result in an optimal technique from a computational
point of view, however, it demonstrates well the main idea of the approach.

Example 1. Let Q be the unit circle and discretize the boundary I' by the boundary
collocation points X;,X,,...,Xy €I in an equidistant way. Let the external boundary



I be a concentric circle with radius 1+8, where & =3, % (8¢ Is a constant of

proportionality). That is, the distance of the original and the external boundary is pro-
portional to the characteristic distance of the boundary collocation points. Consider
the pure Dirichlet problem (3) with the simple test solution

Uxy)=y (13)
(using the more familiar notations X, y for the space variables). The extended problem
(11) is (approximately) solved by the regularized method of fundamental solution
(see [Gaspar (2013a)]), using the truncated fundamental solution:
1 .
S 19l if x>
T
d(x) = (14)

iIogz—: if || x||<e
271

In this example, the truncation parameter ¢ was set to the value ¢ = %w

The collocation points on the external boundary X;,X,....,Xy €I were defined from
the original collocation points Xq, X,,..., X by shifting them in the outward normal
direction. The extended solution is sought in the form:

N
U(X) =2 ajd(x-Xj), (15)
j=1
where the coefficients &j are determined by the system of equations:
N N _ o~
ZO(J'(D(Xk —Xj)Z:Z(XJ‘Akj = Uy (k =1,2,...,N) (16)
j=1 j=1
In short:
AG =i 17)
(where the matrix A and the column vectors &,3 are assembled from the entries

defined in Eq. (16)).

At the original boundary collocation points:
N _ N
ZOLj(D(Xk—Xj)Z:ZOLJ‘Akj = Uy (k =1,2,...,N), (18)
j=1 j=1
In short:
Ad = U (19)

Eliminating the vector of coefficients a., we have:

~

AA T =u (20)



Remark: In the traditional method of fundamental solutions, the coefficients a are
determined by enforcing the original boundary conditions at the original boundary
collocation points, i.e. by solving Eq. (19) only. However, the matrix A is generally

much more ill-conditioned than AA~L. That is, the original boundary conditions are
more easily controllable by the external boundary conditions than by the strengths of

the external sources. If the distance & is small enough, then the matrix AA s
diagonally dominant, and the Richardson iteration

iy =0, — o (AA 1T, —u) 1)

is convergent for a sufficiently small iteration parameter o > 0.

In this example, the iteration parameter was set to »:=1. Table 1 shows the condition
numbers of the matrices A and AA™* as well as the relative L, -errors of the
approximate solution (in %, after 5 Richardson iterations (21)) at the boundary
collocation points with different numbers of boundary collocation points (N). The
constant of proportionality 3, was set to 5y :=2. The results demonstrate that the
system (20) is really much better conditioned than the system (19) obtained by the
classical method of fundamental solutions.

Table 1. Results of Example 1

N 16 32 64 128 256 512
cond(A) 478 1.1E+3 4.1E+3 1.1E+4 2.8E+4  6.2E+4
cond( AA‘l) 46 89 139 180 207 226

Rel. L,-error (after 5 0.4528 0.0317 0.0012 3.25E-5 154E-5 2.44E-5
Richardson iterations)

Example 2. The difference between the test problems of Example 1 and Example 2 is
that now a mixed boundary condition is prescribed:

ou
Ul =u, o Iy = Vs (22)

A half of the boundary was considered to be the Dirichlet part 'y, and the remaining
part was treated as a Neumann boundary I'y . The boundary conditions were defined

to be consistent with the test solution (13). In principle, it is possible to use the same
strategy as earlier, i.e. to control the original mixed boundary by pure Dirichlet condi-
tion on the external boundary, but this seemed to result in slow convergence. Instead,
let us control the original mixed boundary by a similar mixed boundary condition on
the external boundary as shown in the followings.

The extended problem:

AU =0 inQ, Ul =0, —|= =V (23)



is solved again by a version of the regularized method of fundamental solutions,
assuming the approximate solution in the following form

N
U(X) =2 a;®(x-X;), (24)
j=1

where @ denotes again the truncated fundamental solution (14). The Dirichlet
boundary condition is treated as earlier, but the proper treatment of the Neumann
condition needs a desingularization procedure [Sarler (2008; 2009)], [Liu (2010)],
[Gaspar (2013a; 2013b).] The normal derivatives of U are expressed as:

oU N_ oD, -
—(x)= i — (X=X 24
8n() J_Z:loc,an( i) (24)
Consequently, the boundary values of the external boundary satisfy
N N_ o~ -
ZOLJ'(D(Xk—Xj)::ZOLJ‘Akj = Uy (Xk EFD)
= = (25)
N - 0D _ N o~ - - -
o) — (X —Xj) = 2ot jByj =V (X €I'y)
=R i

Note that the diagonal entries I§kk should be defined in a special way (by solving a
pure Dirichlet subproblem in the extended domain) due to the desingularization
procedure, see [Liu (2010)], [Gaspar (2013a)] for details.

The original boundary conditions can be enforced by the following system of
equations:

N N
ZOqu)(Xk—Xj)=ZZOLJ—Akj = Uy (Xk EFD)
j=1 j=1
i j (26)
N_ oD - N _
20— (X = X)) = DBy = vy (X €T'y)
i ong =i
Let us build up the following matrices and vectors:
ij = Akj ) ij = Akj ) Wk = Jk’ Wy = Uy (Xk S FD) (26)
ij = Bkj , ij = Bkj ) Wk = \7k, Wy =V (Xk € FN)
Then we have:
Ca=W, Ca=w (27)
Eliminating the vector of coefficients a., we have:
cCW=w, (28)

Once the external boundary conditions w have been computed, the coefficients can

also be computed by a = CX\W. Thus, the approximate solution on the original
boundary Aa =u, which makes it possible to directly compute the L, -error of
approximation at the boundary collocation points (referred to as ‘direct solution’ in

7



Table 2). The iteration parameter was set again to @ :=1. Table 2 shows the condition

numbers of the matrices C and CC™* as well as the relative L, -errors of the
approximate solution (in %, after 5 Richardson iterations) at the boundary collocation
points with different numbers of boundary collocation points (N). The constant J
was set to 5y :=2. The results show that the method still works in case of mixed
boundary conditions.

Finally note that the extended solution can be computed also in a quite economical

way based on a non-uniform cell system and multi-level tools. This is outlined in the
next section.

Table 2. Results of Example 2

N 16 32 64 128 256 512
cond(C) 322 1.1E+3 4.1E+3 1.2E+4 29E+4 6.5E+4
cond(CE:‘l) 65 218 1.0E+3 53E+3 2.4E+3 1.0E+5

Rel. L,-error (direct ~ 0.0407  0.0077  0.0026  0.0014 0.0010  0.0008
solution)

Rel.L,-error (after 5 0.8515  0.2100  0.0526  0.0137 0.0036 0.0012
Richardson iterations)

Multi-level solution using quadtree-based cell systems

From a computational point of view, the realization of the above methods is far from
being optimal. However, if the extended problem (11) - (12) or (23) is handled direct-
ly, this makes it possible to use the much more economical multi-level techniques.
Here a quadtree- (QT-) based finite volume method is used (see [Gaspar (2000)]).
(The natural 3D generalization is based on the octtree cell system.) Strictly speaking,
this is a domain type method; however, the generation of the cell system is performed
entirely on the basis of the boundary collocation points in a completely automatic
way, so that it can be considered a meshless method. The computational cost as well
as the memory requirement is typically ¢(N -log N) only.

Thus, the solution algorithm is as follows.

e Generate a quadtree cell system by the boundary collocation points x;, X, ,...,
XN - This results in a nested cell system with automatically created local
refinements at the boundary collocation points. By additional subdivisions, it
is possible to assure that the ratio of the sizes of the neighbouring cells is at
most 2, i.e. no abrupt changes occur in cell sizes (regularization of the QT-cell
system).

e Shift the points x;, X,,..., Xy In the outward normal direction with the

distance & . Determine the leaf cells of the QT-cell system which contain these
points. (These cells have typically larger sizes than the finest cells containing

8



the boundary collocation points.) Define the external boundary points X;, X,,
..., X) to be these cell centers.

e Using simple cell-centered finite volume schemes, solve the extended problem
and update the external boundary condition by e.g. a Richardson iteration.
Repeat this step until convergence.

The solution procedure can be embedded in a natural multi-level context (see [Gaspar
(2000; 2004)] for details).

Example 3. Let Q be a circle contained in the unit square [0,1]x[0,1] centered at the
point [0.5,0.5] with radius R:=0.30. Discretize the boundary I by the boundary
collocation points X;,X,,...,Xy € In an equidistant way. A regular QT-cell system

was generated by recursively subdividing the unit square based on the boundary
collocation points. The maximal subdivision level was 8, i.e. the finest cell size was

1/256. The collocation points of the external boundary X;,%y,..., Xy €I were defined
as the cell centers of the boundary collocation points shifted in the outward normal

direction with distance 6:=2Nﬁ. Figure 1. illustrates the QT-cell system and the

external boundary points generated by 32 boundary collocation points.
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Figure 1. Quadtree cell system and external boundary points generated by
32 boundary collocation points

The test solution was as follows:
U(x,y)=—x+2y+% (29)

(using the more familiar notations x, y for the space variables). Mixed boundary
conditions were prescribed: on a half of the boundary, Dirichlet boundary condition
was supposed, while the remaining part of the boundary was considered as Neumann
boundary. Along the boundary of the initial unit square, a separate boundary
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condition can be prescribed independently of the original boundary conditions; in this
example, a homogeneous Dirichlet boundary condition was imposed. The method
gives the approximate solutions in the interior and the exterior of the original domain
at the same time. The Dirichlet data at the external boundary points were updated by
Richardson iteration (13).

Another variant of the method was also tested. Here mixed boundary conditions were
prescribed also along the external boundary. That is, the original Neumann boundary
condition was controlled by an external Neumann boundary condition, which was
updated by Richardson iteration as well:

- - oU
Vi = Vp —(0-( ann Ir _Vj (30)

At the Neumann part, the external boundary was supposed to be the union of circles
centered at the external Neumann points; the radii were defined to be proportional to
the characteristic distance of the external Neumann boundary points. This boundary
condition was implemented on the (coarser) QT-cells containing the external
Neumann points only. (The role of external boundaries is only to control the original
boundary conditions at the original boundary collocation points, therefore the solution
at the external boundaries is allowed to be less exact than at the original boundary.)
Table 3 shows the relative L,-errors (in %) at the original boundary collocation

points in both cases. Here ‘Method 1’ refers to the method which controls the mixed
boundary conditions via external Dirichlet boundary condition, while ‘Method 2’
corresponds to the external mixed boundary conditions. It can be clearly seen that the
exactness of the two variants is the essentially the same: however, the second variant
has proved faster.

Table 3. Relative L,-errors using QT-cell system, Example 3

N 16 32 64 128 256

Rel. L, -error (Method 1) 0.7035 0.1606  0.0918 0.0338 0.005
Rel. L, -error (Method 2) 0.7036  0.1606  0.0913 0.0337 0.004

For illustration, Figure 2 shows the approximate solution on the QT-cell system with
32 boundary collocation points. Along the boundary of the initial rectangle of the QT-
subdivision, a homogeneous Dirichlet boundary condition was prescribed. In the
vicinity of the external boundary, the solution is less smooth than the interior of the
original domain, similarly to the case of the traditional method of fundamental
solutions. However, the irregularity is much less, due to the fact that the solution is
controlled by external boundary condition rather than the strengths of the external
singularities; moreover, the cell system is allowed to be coarser here than in the
vicinity of boundary collocation points.

10



Figure 2. Approximate test solution on a quadtree cell system generated by
32 boundary collocation points

Conclusions

In this paper, the original idea of the Method of Fundamental Solution has been
extended in the sense that the approximate solution was sought as a solution of an
extended problem with an external boundary. This often results in a well-conditioned
problem provided that the external boundary is located sufficiently close to the
original boundary (depending also on the discretization). The method controls the
values along the original boundary via the external boundary conditions. These
external boundary conditions are adjusted iteratively using familiar, simple iterative
techniques. The external boundary can be defined in a flexible way. In the vicinity of
the external boundary, the approximate solution is allowed to be less exact than along
the original boundary, which makes it possible to apply a coarser discretization at the
external boundaries. The numerical benefit of the approach is that the extended
problem can be handled by the quite economical quadtree-based multi-level method.
Moreover, the problem of large, dense and ill-conditioned systems of equations is
also avoided.
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