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Abstract 

A new version of the Method of Fundamental Solutions is proposed. Instead of 
locating external point sources, an external boundary should be defined, and an 
extension of the original solution is created by enforcing the original boundary 
conditions for the extended problem. This leads to a better conditioned problem than 
the traditional Method of Fundamental Solutions. To numerically solve the extended 
problem, a quadtree-based multi-level finite volume method is used, which is quite 
economical from the computational points of view. In addition to it, the problem of 
large, dense and ill-conditioned systems is completely avoided. 

Keywords: Meshless Methods, Method of Fundamental Solutions, Multi-level 

Methods, Quadtrees 

Introduction 

Due to its simplicity and accuracy, the Method of Fundamental Solutions (MFS, see 

e.g. [Alves et al. 2002]) has become quite popular among the meshless methods. This 

approach can be applied easily, if the fundamental solution of the original partial 

differential equation is known (or the original problem can be converted to such a 

problem). In its traditional form, the approximate solution is sought as a linear 

combination of the fundamental solution shifted to some external source points: 
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where Nxxx ~,...,~,~
21  are predefined source points located in the exterior of the domain 

  of the original partial differential equation,   denotes the fundamental solution. 

In case of the familiar second-order partial differential equations,   has a (weak) 

singularity at the origin, so that the approximate solution (1) has singularities at the 

source points but remains smooth inside the domain. The a priori unknown co-

efficients N ,...,, 21  can be computed by enforcing the boundary conditions at 

some boundary collocation points Nxxx ,...,, 21 : 
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Here D  and N  denote the Dirichlet part (and the Neumann part, respectively) of 

the boundary of the domain  ; kn  is the outward normal unit vector at the point kx ; 
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ku , kv  are the Dirichlet and Neumann boundary conditions at the boundary colloca-

tion points. 

 

Generally speaking, the MFS has excellent convergence properties (see [Li (2005)]); 

however, it is well known that the matrix of the system (2) is fully populated, non-

selfadjoint and severely ill-conditioned, especially when the sources are located far 

from the boundary. On the other hand, if they are located too close to the boundary, 

numerical singularities are generated. In addition to it, the proper definition of the 

location of the sources can hardly be automatized. Therefore it is popular to allow the 

source points and the boundary collocation points to coincide, which needs special 

tricks to handle the problem of appearing singularities.  

 

To circumvent these difficulties, a lot of approaches have been developed. In the 

boundary knot method [Chen (2002)], [Chen et al. (2005)], nonsingular general solu-

tions are used instead of fundamental solutions. It is also possible to use fundamental 

solutions concentrated to lines rather than discrete points, see [Gáspár (2013b)]. In 

both approaches, the solution is approximated by nonsingular functions, thus, the 

problem of singularity is avoided. However, though they have especially good 

accuracy, the resulting linear system is severely ill-conditioned, which can cause 

serious computational difficulties. The problem is more difficult, if the original 

fundamental solution is used. Utilizing some boundary mesh structure, the appearing 

singular integrals can be evaluated analytically, see [Young et al. (2005)]. The 

desingularization can also be carried out by solving some auxiliary Dirichlet 

subproblem, as in the Modified Method of Fundamental Solutions (MMFS, see 

[Šarler (2008; 2009)]), or in the Boundary Distributed Source method (BDS, see [Liu 

(2010)]). It is also possible to combine the above approach with the use of approxi-

mate fundamental solutions which have no singularity at the origin; such an 

approximate fundamental solution may be the fundamental solution of the fourth-

order Laplace-Helmholtz operator )( 2Ic  with a sufficiently large scaling 

parameter c, (the Regularized Method of Fundamental Solutions, see [Gáspár (2013a; 

2013b)]). A further possibility is that, in contrast to Eq. (1), the approximate solution 

is sought as a linear combination of the normal derivatives of   (dipole 

formulation), which can be considered a discretization of an indirect boundary 

integral equation based on a double layer potential and so forth. 

 

Most of the above methods are indirect in the sense that they convert the original 

problem to the determination of some coefficients of the linear combination (i.e. the 

strengths of the point sources in the original MFS-formulation). These coefficients 

control the values (and their derivatives) at the collocation points, thus control the 

whole approximate solution inside the domain. 

 

In this paper, we present a technique in which the values at the collocation points are 

controlled by the values at some external boundaries. In another words, an extension 

(continuation) of the solution is computed directly by prescribing certain, a priori 

unknown ‘external boundary conditions’. If the external boundary is located 

sufficiently close to the original boundary, this results in much better conditioned 

problem. The external conditions are updated iteratively. During the iteration 

procedure, the original problem should be solved in a larger domain, which can 

economically be performed by using quadtree-based multi-level tools. In addition to 



3 

 

this, the problem of large, fully populated and ill-conditioned matrices is completely 

avoided. 

Approximation of the solution by external boundary conditions 

To illustrate the above outlined idea, consider the 2D model problem with pure 

Dirichlet boundary conditions: 

     uUU  |,in 0     (3) 

defined on a circle }||||:{:: 2 RxxR  R  with boundary RR  : . Let us 

express the function u in terms of (complex) Fourier series: 
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where, for the sake of simplicity, we used polar coordinated. Then the solution of (3) 

is expressed as: 
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Now consider a larger circle  R:
~

 with boundary  R:
~

, where 0 . 

Then Eq. (5) defines a harmonic continuation of U to 
~

. On the boundary this yields: 
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provided that the series is convergent in a proper function space. (This is sometimes 

not the case due to the exponentially increasing factor 
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Conversely, if U is prescribed along the external boundary 
~

: 
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where 
ikt

k
k etu  )(~ , then the restriction of U to   defines a (much more smooth) 

function: 
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The operator )()
~

(:
~ 2/12/1  HHA  is always bounded and 1||

~
|| A , but it is not 

regular, since the inverse operator is not bounded. However, the discretized operators 

might have uniformly bounded inverses, if the distance   itself depends on the 

discretization. Let us discretize the above problems by cutting the Fourier series (6) 

and (8) at a maximal index N. Define the distance   of the original and the external 

boundary to be inversely proportional to N, i.e. 
N

R

2

: 0 . Then Eqs. (4), (6) are 

rewritten as: 
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, the operators 1~
NA  defined by 

NNN uuA ~~
 are uniformly bounded, moreover, the condition numbers are also 

bounded: 02
)
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(cond
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 eAN , independently of N. Therefore the ‘discrete’ problem: 

 find Nu~  in such a way that the solution of the Dirichlet problem 

NuUU ~|,
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in 0 ~ 

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satisfies the original ‘inner’ boundary condition NuU | ; 

is now a well-conditioned problem, independently on N (which characterizes the 

fineness of the discretization). 

 

Based on the above considerations, in order to solve the Dirichlet problem (3), it is 

sufficient to solve the extended problem 

uUU ~|,
~

in 0 ~ 


,    (11) 

where the boundary condition u~  should be chosen in such a way that the original 

boundary condition 

uU | ,      (12) 

is satisfied. That is, the approximate solution of the original boundary value problem 

is controlled by the external boundary condition u~  rather than external sources as in 

the case of the traditional method of fundamental solutions. It is expected that, in 

order to enforce the boundary condition (12), the simple, traditional iterative methods 

e.g. the Seidel iteration or the simplest Richardson iteration 

 uUuu nnn   |~:~
1     (13) 

can be applied, where 0  is a predefined iteration parameter. In the above model 

problem, this remains the case. 

The external boundary 
~

 can be defined in a flexible way. The approach can easily 

be generalized for mixed boundary conditions and 3D problems as well. 

Solution of the extended problem 

In principle, the extended problem (11) can be solved by an arbitrary method. Since 

the external boundaries are not predefined, it is worth defining them in such a way 

that the extended problem (11) could easily be handled. In the next examples, the 

extended problem is solved by the regularized method of fundamental solutions 

[Gáspár (2013a)], which does not result in an optimal technique from a computational 

point of view, however, it demonstrates well the main idea of the approach. 

Example 1. Let   be the unit circle and discretize the boundary   by the boundary 

collocation points Nxxx ,...,, 21  in an equidistant way. Let the external boundary 



5 

 


~

 be a concentric circle with radius 1 , where 
N



2

: 0  ( 0  is a constant of 

proportionality). That is, the distance of the original and the external boundary is pro-

portional to the characteristic distance of the boundary collocation points. Consider 

the pure Dirichlet problem (3) with the simple test solution 

yyxU ),(       (13) 

(using the more familiar notations x, y for the space variables). The extended problem 

(11) is (approximately) solved by the regularized method of fundamental solution 

(see [Gáspár (2013a)]), using the truncated fundamental solution: 
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In this example, the truncation parameter   was set to the value 
N

)1(2

4

1
:


 . 

The collocation points on the external boundary 
~~,...,~,~

21 Nxxx  were defined from 

the original collocation points Nxxx ,...,, 21  by shifting them in the outward normal 

direction. The extended solution is sought in the form: 
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where the coefficients j~  are determined by the system of equations: 
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In short:  

uA ~~~
       (17) 

(where the matrix A
~

 and the column vectors u~,~  are assembled from the entries 

defined in Eq. (16)). 

 

At the original boundary collocation points: 


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In short: 

uA ~       (19) 

Eliminating the vector of coefficients ~ , we have: 

                                            uuAA  ~~ 1       (20) 
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Remark: In the traditional method of fundamental solutions, the coefficients ~  are 

determined by enforcing the original boundary conditions at the original boundary 

collocation points, i.e. by solving Eq. (19) only. However, the matrix A is generally 

much more ill-conditioned than 1~ 
AA . That is, the original boundary conditions are 

more easily controllable by the external boundary conditions than by the strengths of 

the external sources. If the distance   is small enough, then the matrix 1~ 
AA  is 

diagonally dominant, and the Richardson iteration  

 uuAAuu  
 nnn

~~~:~ 1
1     (21) 

is convergent for a sufficiently small iteration parameter 0 .  

 

In this example, the iteration parameter was set to 1: . Table 1 shows the condition 

numbers of the matrices A and 1~ 
AA  as well as the relative 2L -errors of the 

approximate solution (in %, after 5 Richardson iterations (21)) at the boundary 

collocation points with different numbers of boundary collocation points (N). The 

constant of proportionality 0  was set to 2:0  . The results demonstrate that the 

system (20) is really much better conditioned than the system (19) obtained by the 

classical method of fundamental solutions. 

 

Table 1. Results of Example 1 

N 16 32 64 128 256 512 

)(cond A  478 1.1E+3 4.1E+3 1.1E+4 2.8E+4 6.2E+4 

)
~

(cond 1
AA  46 89 139 180 207 226 

Rel. 2L -error (after 5 

Richardson iterations) 

0.4528 0.0317 0.0012 3.25E–5 1.54E–5 2.44E-5 

 

Example 2. The difference between the test problems of Example 1 and Example 2 is 

that now a mixed boundary condition is prescribed: 

,|,| v
n

U
uU

ND
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
       (22) 

A half of the boundary was considered to be the Dirichlet part D , and the remaining 

part was treated as a Neumann boundary N . The boundary conditions were defined 

to be consistent with the test solution (13). In principle, it is possible to use the same 

strategy as earlier, i.e. to control the original mixed boundary by pure Dirichlet condi-

tion on the external boundary, but this seemed to result in slow convergence. Instead, 

let us control the original mixed boundary by a similar mixed boundary condition on 

the external boundary as shown in the followings. 

The extended problem: 

v
n

U
uUU
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~|,~|,
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in 0 ~~ 
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
   (23) 
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is solved again by a version of the regularized method of fundamental solutions, 

assuming the approximate solution in the following form 


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where   denotes again the truncated fundamental solution (14). The Dirichlet 

boundary condition is treated as earlier, but the proper treatment of the Neumann 

condition needs a desingularization procedure [Šarler (2008; 2009)], [Liu (2010)], 

[Gáspár (2013a; 2013b).] The normal derivatives of U are expressed as: 
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Consequently, the boundary values of the external boundary satisfy 
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Note that the diagonal entries kkB
~

 should be defined in a special way (by solving a 

pure Dirichlet subproblem in the extended domain) due to the desingularization 

procedure, see [Liu (2010)], [Gáspár (2013a)] for details. 

The original boundary conditions can be enforced by the following system of 

equations: 
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Let us build up the following matrices and vectors: 

)(:,~:~,:,
~

:
~

)(:,~:~,:,
~

:
~

Nkkkkkkjkjkjkj

Dkkkkkkjkjkjkj

xvwvwBCBC

xuwuwACAC




 (26) 

Then we have: 

wCwC  ~,~~~
      (27) 

Eliminating the vector of coefficients ~ , we have: 

                                            wwCC  ~~ 1 ,      (28) 

Once the external boundary conditions w~ have been computed, the coefficients can 

also be computed by wC ~~
:~ 1 . Thus, the approximate solution on the original 

boundary uA ~ , which makes it possible to directly compute the 2L -error of 

approximation at the boundary collocation points (referred to as ‘direct solution’ in 



8 

 

Table 2). The iteration parameter was set again to 1: . Table 2 shows the condition 

numbers of the matrices C and 1~ 
CC  as well as the relative 2L -errors of the 

approximate solution (in %, after 5 Richardson iterations) at the boundary collocation 

points with different numbers of boundary collocation points (N). The constant 0  

was set to 2:0  . The results show that the method still works in case of mixed 

boundary conditions. 

 

Finally note that the extended solution can be computed also in a quite economical 

way based on a non-uniform cell system and multi-level tools. This is outlined in the 

next section. 

 

Table 2. Results of Example 2 

N 16 32 64 128 256 512 

)(cond C  322 1.1E+3 4.1E+3 1.2E+4 2.9E+4 6.5E+4 

)
~

(cond 1
CC  65 218 1.0E+3 5.3E+3 2.4E+3 1.0E+5 

Rel. 2L -error (direct 

solution) 

0.0407 0.0077 0.0026 0.0014 0.0010 0.0008 

Rel. 2L -error (after 5 

Richardson iterations) 

0.8515 0.2100 0.0526 0.0137 0.0036 0.0012 

 

Multi-level solution using quadtree-based cell systems 

From a computational point of view, the realization of the above methods is far from 

being optimal. However, if the extended problem (11) - (12) or (23) is handled direct-

ly, this makes it possible to use the much more economical multi-level techniques. 

Here a quadtree- (QT-) based finite volume method is used (see [Gáspár (2000)]). 

(The natural 3D generalization is based on the octtree cell system.) Strictly speaking, 

this is a domain type method; however, the generation of the cell system is performed 

entirely on the basis of the boundary collocation points in a completely automatic 

way, so that it can be considered a meshless method. The computational cost as well 

as the memory requirement is typically )log( NN O only.  

 

Thus, the solution algorithm is as follows. 

 Generate a quadtree cell system by the boundary collocation points 1x , 2x ,…, 

Nx . This results in a nested cell system with automatically created local 

refinements at the boundary collocation points. By additional subdivisions, it 

is possible to assure that the ratio of the sizes of the neighbouring cells is at 

most 2, i.e. no abrupt changes occur in cell sizes (regularization of the QT-cell 

system). 

 Shift the points 1x , 2x ,…, Nx  in the outward normal direction with the 

distance  . Determine the leaf cells of the QT-cell system which contain these 

points. (These cells have typically larger sizes than the finest cells containing 
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the boundary collocation points.) Define the external boundary points ,~
1x ,~

2x

…, Nx~  to be these cell centers. 

 Using simple cell-centered finite volume schemes, solve the extended problem 

and update the external boundary condition by e.g. a Richardson iteration. 

Repeat this step until convergence. 

 

The solution procedure can be embedded in a natural multi-level context (see [Gáspár 

(2000; 2004)] for details). 

Example 3. Let   be a circle contained in the unit square ]1,0[]1,0[   centered at the 

point ]5.0,5.0[  with radius 30.0:R . Discretize the boundary   by the boundary 

collocation points Nxxx ,...,, 21  in an equidistant way. A regular QT-cell system 

was generated by recursively subdividing the unit square based on the boundary 

collocation points. The maximal subdivision level was 8, i.e. the finest cell size was 

1/256. The collocation points of the external boundary 
~~,...,~,~

21 Nxxx  were defined 

as the cell centers of the boundary collocation points shifted in the outward normal 

direction with distance 
N

R


2
: . Figure 1. illustrates the QT-cell system and the 

external boundary points generated by 32 boundary collocation points. 

 

 

 

Figure 1.  Quadtree cell system and external boundary points generated by  

32 boundary collocation points 

 

The test solution was as follows: 

2

1
2),(  yxyxU       (29) 

(using the more familiar notations x, y for the space variables). Mixed boundary 

conditions were prescribed: on a half of the boundary, Dirichlet boundary condition 

was supposed, while the remaining part of the boundary was considered as Neumann 

boundary. Along the boundary of the initial unit square, a separate boundary 
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condition can be prescribed independently of the original boundary conditions; in this 

example, a homogeneous Dirichlet boundary condition was imposed. The method 

gives the approximate solutions in the interior and the exterior of the original domain 

at the same time. The Dirichlet data at the external boundary points were updated by 

Richardson iteration (13).  

 

Another variant of the method was also tested. Here mixed boundary conditions were 

prescribed also along the external boundary. That is, the original Neumann boundary 

condition was controlled by an external Neumann boundary condition, which was 

updated by Richardson iteration as well: 














  v

n

U
vv n

nn |~:~
1     (30) 

At the Neumann part, the external boundary was supposed to be the union of circles 

centered at the external Neumann points; the radii were defined to be proportional to 

the characteristic distance of the external Neumann boundary points. This boundary 

condition was implemented on the (coarser) QT-cells containing the external 

Neumann points only. (The role of external boundaries is only to control the original 

boundary conditions at the original boundary collocation points, therefore the solution 

at the external boundaries is allowed to be less exact than at the original boundary.)  

Table 3 shows the relative 2L -errors (in %) at the original boundary collocation 

points in both cases. Here ‘Method 1’ refers to the method which controls the mixed 

boundary conditions via external Dirichlet boundary condition, while ‘Method 2’ 

corresponds to the external mixed boundary conditions. It can be clearly seen that the 

exactness of the two variants is the essentially the same: however, the second variant 

has proved faster. 

 

Table 3. Relative 2L -errors using QT-cell system, Example 3 

N 16 32 64 128 256 

Rel. 2L -error (Method 1) 0.7035 0.1606 0.0918 0.0338 0.005 

Rel. 2L -error (Method 2) 0.7036 0.1606 0.0913 0.0337 0.004 

 

 

For illustration, Figure 2 shows the approximate solution on the QT-cell system with 

32 boundary collocation points. Along the boundary of the initial rectangle of the QT-

subdivision, a homogeneous Dirichlet boundary condition was prescribed. In the 

vicinity of the external boundary, the solution is less smooth than the interior of the 

original domain, similarly to the case of the traditional method of fundamental 

solutions. However, the irregularity is much less, due to the fact that the solution is 

controlled by external boundary condition rather than the strengths of the external 

singularities; moreover, the cell system is allowed to be coarser here than in the 

vicinity of boundary collocation points. 
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Figure 2.  Approximate test solution on a quadtree cell system generated by  

32 boundary collocation points 

 

 

Conclusions 

In this paper, the original idea of the Method of Fundamental Solution has been 

extended in the sense that the approximate solution was sought as a solution of an 

extended problem with an external boundary. This often results in a well-conditioned 

problem provided that the external boundary is located sufficiently close to the 

original boundary (depending also on the discretization). The method controls the 

values along the original boundary via the external boundary conditions. These 

external boundary conditions are adjusted iteratively using familiar, simple iterative 

techniques. The external boundary can be defined in a flexible way. In the vicinity of 

the external boundary, the approximate solution is allowed to be less exact than along 

the original boundary, which makes it possible to apply a coarser discretization at the 

external boundaries. The numerical benefit of the approach is that the extended 

problem can be handled by the quite economical quadtree-based multi-level method. 

Moreover, the problem of large, dense and ill-conditioned systems of equations is 

also avoided. 
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