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Abstract

The topology optimization design of structures with anisotropic constrained damping layers (ACDL)
is investigated in present paper. The evolutionary structural optimization (ESO) method is
employed to find the optimal layout of ACDL with aim to maximum the modal damping loss factor
of the sandwich structure. Modal strain energy (MSE) method is used to calculate the damping loss
factor of whole sandwich structure, and the sensitivity is analyzed. Optimization topology
configuration of ACDL is obtained under the constraint of total amount of ACLD materials in terms
of percentage added weight to the base structure. The merit of constrained damping treatment is
evaluated quantitatively by damping efficiency formula introduced.
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Introduction

Passive constrained damping layer (CDL) treatment is one of the common and effective means to
reduce vibration and noise of thin-walled structures. However, aero structures require strictly for
additional mass quality. On one hand, optimizing the layout of the CDL parts is needed to reduce
the amount of material, and obtain a better suppression damping effect; on the other hand, we
suppose to employ anisotropic constrained damping layer (ACDL), whose density is smaller and
damping loss factor may not be neglected.

Lall'*#lused analytical methods to study the structural characteristics of fragmentation damping
structure for beams and plates respectively. Zheng'®has studied the structural characteristics of
fragmentation damping structure for cylindrical shell by same methods and explored the
fragmentation arrangement of constraint damping layout optimization problem. From their work,
we learn that better vibration control effect with less structural mass increment could be achieved
by arranging damping structure appropriately without full coverage, which leads to the topology
optimization problem of constrained damping structure.

Several topology optimization methods are commonly used, such as homogenization method
(Bendsge and Kikuchi™), variable density method (Bendsgel; Sigmund!®), evolutionary structural
optimization method (Xie and Stevenl™), level set method (Wang et al.!®’; Allaire et al.!!) and so on.
Guo%optimized a square plate with CDL based on ESO method, and obtained a clear topological
structure by remove the inefficient damping materials gradually; Zheng!*"! used SIMP interpolation
model and MMA solution algorithm to optimized the layout of constraint damping structure with a
target to maximize the modal loss factor. The research of optimization for anisotropic constrained
damping layers (ACDL) is rare.

This paper introduces damping efficiency formula to evaluate the merit of constrained damping
treatment results quantitatively and then anisotropic material is employed as constraint sheet and the
topology optimization problem of structures with ACDL is investigated based on ESO method.
Finally, a numerical example is presented to show the superiority of ACDL in lightweight design
concept.
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Damping efficiency

The damping loss factor of structure will increase after an additional constrained damping layer
treatment. We always want to attach additional mass as little as possible to get a bigger damping
loss factor. In other word, a larger ‘damping efficiency’ after damping treatment is expected. To
compare the results of damping treatments quantitatively, formula (1) is introduced to calculate the
damping efficiency:
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In this formula, Ar denotes the increment of the structure’s damping loss factor, and Am denotes
the mass of the damping layers, which is also additional mass.

Topology optimization model

The topology optimization problem of given thickness of both constraint layer and damping core,
aiming at the maximum of damping loss factor, under the constraint of additional mass quantity,
using element existence state as design variables, is formulated as:

Max 7
find  x=[x,%,X,]
st. W=W,+W_<W’
X ={0,1}
Where 7 is the damping loss factor of the sandwich structure; n denotes the number of viscoelastic
damping core elements; x; is design variable with O denoting element deleted and 1 denoting
element reserved; W, and W, denote the mass quantity of the viscoelastic damping core and the

()

constraint sheet respectively. W™ is the constraint mass quantity.

Finite element model

In a thin-walled structure with anisotropic constraint damping layer, energy consumption comes
from both damping layer and constraint layer. The damping layer dissipates energy by shear
deformation and the constraint layer dissipates energy by tensile/compressive and bending
deformation. Thus, a finite element model reference to Johnson’s 2! method is employed using the
commercial program package ABAQUS, as shown in figure 1. The constraint sheet and bottom
sheet are modeled with quadrilateral shell elements called S4R producing stiffness at two rotational
and three translational degrees of freedom per node. The viscoelastic damping core is modeled with
solid elements called C3D8R producing stiffness at three translational degrees of freedom per node.
All nodes are at element corners. A key feature of this kind of element in the present application is
its ability to account for coupling between stretching and bending deformations. This feature allows
the plate nodes to be offset to one surface of the plate, coincident with the corner nodes of the
adjoining solid elements. In this way, a three-layer plate can be modeled with only two layers of
nodes, and finite element analysis will not take too much time.
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Figure 1. Finite element modeling of structure with ACDL

Sensitivity analysis of modal damping loss factor

According to modal strain energy (MSE) method, the k-th modal damping loss factor of the
sandwich structure is calculated as follows:
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where 7, , 1, and n, are damping loss factors of damping material, constraint sheet material and
bass structure material respectively; E, , E, , E, denote the k-th modal strain energy of damping
core, constraint sheet and bass structure respectively, andE, =E, + E, +E,,.

In a difference method way, when the damping core element i and the corresponding constraint
layer element are deleted, small change of the whole sandwich structure's damping loss factor can
be approximately expressed as:
An, = nAE, +1,AEy (77\/ Eu +77.Eq + 77, Ewi )AEtk 4)
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In each iteration of the ESO method, the whole structure changes very little when an element i is
deleted, so the following approximation can be adopted:

AE, ~—E
AEy ~-Ey; (5)
AEy = —E, —Eqy
Where E always denotes model strain energy. From (3), (4) and (5), A, can be calculated as
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Formula (6) denotes the change amount of the k —th modal damping loss factor after the damping

core’s element i and its corresponding constraint element are deleted. Thus formula (7) can be
defined as the design sensitivity of elementi .
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If maximization of the formerm —th model damping loss factors is required, the design sensitivity
of element i is formulated as

S= Z @, Sy; (8)
k=1

where o, denotes the weight coefficients of each model.



Mesh-independent filtering

Discrete mesh-independent filtering method is employed during the optimization process to avoid
checkerboard phenomenon. Referring to Sigmund's work, the new sensitivity of element i after
filtering is:
1 N
S = D H xS,
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Where x; is design variable (0 or 1). The weight factor H; is written as
H, = max(0,r —dist(i, j)) (10)
In formula (10) the operator dist(i, j) is defined as the distance between center of element i and

center of element j and operator max( ) is defined to take larger one of two values; r denotes
filtering radius.

Optimization process

The initial idea of ESO topology optimization method is the ‘survival of the fittest’, which will not
change when the traditional ESO method is applied to ACDL topology optimization, but its form
varies. Design sensitivities of elements could be negative or positive, or they could all be positive.
In the former case, elements with maximum positive sensitivities should be removed in each
iteration so that the loss factor of whole structure may increase, and in the latter case, elements with
minimum absolute sensitivity value should be deleted so that the loss factor may decrease slowly.
The optimization process aiming at the maximization of the modal damping loss factor of
constrained damping structure with assigned material properties, boundary conditions, and the
single iteration delete ratio R is shown in figure 2.The specific steps are as follows:

1. Generate the finite element model of the sandwich structure.

2. Execute structural modal analysis and calculate model strain energy.

3. Calculate the sensitivities of elements and filter them.

4. Find the maximum sensitivity.

5. If the maximum value is negative, remove N. =N*R (N denotes the total number of
original damping core elements) damping core elements with maximum sensitivities and
corresponding constraint sheet elements; If the maximum value is positive, remove damping
core elements with maximum value and corresponding constraint layer elements.

6. Judge whether the amount of material constraint conditions is reached, if not, repeat steps 1-
5, otherwise finish the result.
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Figure 2. Topology optimization process based on ESO method

However, it should be noted that, if the original structure is symmetrical, the number of elements
removed will not necessarily equal to N * R in step 6 to obtain a reasonable symmetrical topology
result. The reason may be that the elements in symmetrical positions share equal sensitivities. The
deleted method now is to obtain a sensitivity threshold using N * R and then remove the elements
with sensitivities below (or above) the threshold value.

Numerical examples

Consider a square aluminum plate fully covered with ACDL and four edges clamped, which finite
element model is shown in figure 3. Resin-based carbon fiber composite unidirectional laminates is
adopted as the constrained sheet and C fiber direction parallels to the x-axis. The viscoelastic
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material 3M112D is employed as the damping core. Properties of each material are shown in table 1
and table 2.
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Figure 3. Initial design model

Table 1. Material properties

Properties Bass shell Damping core Constraint sheet
Elastic modulus, E(GPa) 70 — —
Density, p (kg/m°) 2.7x10° 0.98x10° 1.64x10°
Thickness, h (m) 0.002 0.003 0.001
Shear modulus, G (MPa) — 10 —
Poisson ratio, u 0.33 0.49 —

Loss factor, # 0.0001 1 0.01

Table 2. Modulus of the constraint sheet

E1/GPa E2/GPa W12 G12/Gpa G13/GPa G23/GPa
125 10.3 0.29 4.3 4.3 4.3

Taking 50% amount of ACDL material as constraint and aiming at the maximization of the first
modal damping loss factor, optimization result is shown in figure 4:
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Figure 4. Topology optimization design of ACDL

Isotropic material can be treated as a special anisotropic material. The method used here are equally
applicable to optimize structure with isotropic constrained damping layers (ICDL). Replace
constraint layer material with aluminum in the same finite element model, we can get an optimal
result of square plate with traditional ICDL, which is shown in figure 5.
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Figure 5. Topology optimization design of ICDL

Figure 6 shows damping loss factor's variation history with delete ratio. Loss factors of both model
decline slowly when more and more damping elements are deleted. After eliminating 50%
constraint damping layer material, structure with ACLD dropped from an initial 0.41 to 0.36,
decreased by 12.2%; structure with ICLD dropped from an initial 0.43 to 0.37, decreased by
14.0%.The optimization results are satisfactory.
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Figure 6. History of damping loss factor



Calculate damping efficiency using formula (1), and damping efficiency was increased greatly after
optimization, as shown in table 3. We can also find that ACDL has higher damping efficiency than
traditional ICDL.

Table 3. Damping efficiency of the plates with CDL (kg™)

Before optimization After optimization
ACDL 0.56 0.98
ICDL 0.48 0.82

Conclusions

The topology optimization problem of thin-walled structure attached ACDL with given thickness is
investigated based on ESO method in present paper. The numerical example shows that the
damping efficiency increases after optimization, and damping efficiency of ACDL with assigned
materials is higher than traditional ICDL due to the non-negligible damping loss factor of
composites. The advantage of ACDL is shown in lightweight design of vibration suppression and
the approach presented has a strong engineering practicability.
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