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Abstract 

In this paper, an interface-tracking method combined with the Moving-Grid Finite-Volume method 
is presented for simulating free surface flows. In the interface-tracking method, the calculation grid 
is moved and deformed according to the movement of the free surface. For tracking free surface, 
surface height equation for the free surface shape was solved. We applied this method to some flow 
cases with free surface. Numerical results show that the present new flows simulation method using 
Moving-Grid Finite-Volume method is very accurate and have a promising feature for free surface 
flows. 
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Introduction 

Free surface flows are important from a point of view of engineering. For example, sloshing flow in 
tanks, mixing in vessels, jet from nozzle and injection molding are free surface flows. 
Many numerical methods are presented for free surface flows [Scardovelli and Zaleski (1999)]. 
These method can be classified to two approaches, interface-capturing method and interface-tracking 
method. 
In the interface-capturing method, fixed grid is used. For free surface capturing, particle movement 
or some function is solved. MAC method [Harlow and Welch (1965)], VOF method [Hirt and Nichols 
(1981)] and level set method [Sussman at al. (1994)]) are used in this approach. These method can 
solve bubble flow and breaking waves. However, these method often have interface smearing. 
On the other hand, in the interface-tracking method, moving grid is used. For free surface tracking, 
computational grids are moved and deformed according to movement of free surface. ALE [Okamoto 
and Kawahara (1990); Lo and Young (2004); Ushijima (1998)] and Finite Volume method [Apsley 
and Hu (2003); Muzaferija and Peric (1997)] are used in this approach. This approach is very simple 
and can track free surface with sharp interface. However, computational grids are usually large 
deformed. 
 
Free surface flow can be interpreted as a moving boundary problem. For moving boundary problems, 
Moving-Grid Finite-Volume Method was suggested [Mihara and (1999)]. This method can solve flow 
with moving grids with satisfying physical and geometrical conservation laws. The method has been 
applied to various flows [Mihara et al. (1999); Watanabe and Matsuno (2009); Matsuno (2010)]. 
However, these applications have been limited to single phase flows.  
 
The purpose of this paper is to extend the Moving-Grid Finite-Volume Method to free surface flows.  
The main advantages of this method is simple treatment with free surface and satisfying physical and 
geometrical conservation laws. 
In some test cases with free surface, comparison with analytical solution or experimental data are 
presented.  
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Governing Equations 

The governing equations are the continuity equation and the nondimensionalized incompressible 

Navier-Stokes equations. These equation are written as follows: 
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where yx, and z are coordinates, t  is time. vu, and w are velocities in yx, and z directions, 

respectively. q is the velocity vector,  Twvu ,,q . FE, andG are flux vectors in yx, and z

directions, respectively. H is the body force term including gravity. 

Flux vectors are written as follows: 
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where FE ˆ,ˆ and Ĝ are the advection flux vectors, vv FE , and vG are the viscous flux vectors, and

pp FE , and pG are pressure flux vectors in yx, and z directions, respectively. The elements of flux 

vectors and body force term are: 
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where p is the pressure, Re is the Reynolds number and Fr is the Froude number.  

The subscripts yx, and z indicate derivatives with respect to yx, and z respectively. X is the body 

force in x direction. Reynolds number and Froude number are: 
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where 0L is the characteristics length, 0U is the characteristics velocity,  is the kinematic viscosity 

and  g is the gravitational acceleration. Over bar shows the dimensional quality.  

Discretization method and numerical method 

Discretization method 

In discretization for these equations, we use Moving-Grid Finite-Volume Method. This 

discretization method is based on cell-centered Finite-Volume Method in space-time unified 
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domain. In three-dimensional case, four-dimensional polyhedron in the ),,,( tzyx control volume is 

used. 

 

 
Figure 1.  Schematic drawing of control volume 

 

Fig. 1 shows schematic drawing of structured control volume in ),,,( tzyx unified domain. R  is grid 

position vector,  Tzyx ,,R , where superscript n shows time step and subscript kji ,, show 

structured grid point indexes. The purple region is n  time step computational cell, green region is 

1n  step computational cell. The control volume is four-dimensional polyhedron . Eq. (2) is 

integrated with the control volume as 
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where V is a four-dimensional volume ( 


  dV ). Eq. (6) is divergence form in ),,,( tzyx

dimension. By using Gaussian divergence theorem, Eq. (6) is written as, 
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where n is the vector normal to control volume surface.   is the surface of the control volume. 

The zyx nnn ,, and tn are components of n in zyx ,, and t directions, respectively.  

From Eq. (7), we can write as,  
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The subscript l  in Eq. (8) denotes the surface of the control volume in four dimension ),,,( tzyx . 

The 7l surface normal vector is the computational cell at n time step , 8l surface normal vector 

is the computational cell at 1n time step. For example, Fig. 2 shows the control volume surface at 

2l . 
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Figure 2.  Schematic drawing of control volume surface 

 

Control volume surfaces at 7l , 8l are perpendicular to the t axis. Eq. (8) becomes as follows: 
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This Eq. (10) is discretized equation. 

 

Numerical method 

To solve Eq. (10) , we use SMAC method [Amsden and Harlow (1970)]. Intermediate velocity is 

solved iteratively using LU-SGS method [Yoon and Jameson (1988)]. The inviscid termΦ  and 

moving grid term tnq are evaluated using QUICK method [Leonard (1979)]. The viscid term Ψ and 

pressure gradient termΠ are evaluated using central difference scheme. The Poisson equation about 

pressure correction is solved iteratively using Bi-CGSTAB [van der Vorst (1992)]. 

 

Interface-Tracking method 

In present method, a surface height equation [Apsley and Hu (2003)] is solved for free surface 

height. Fig. 3 shows free surface shape.  

 
Figure 3. Free surface height 

 

In Fig. 3,  tyxff ,,  is the surface height function. The surface height equation is as follows: 
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Eq. (11) can be discretized as follows: 
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where t is time step size, superscript n shows time step and subscript kji ,, shows grid point 

indexes. The xuf and yvf in Eq. (12) are evaluated using 1st order upwind differencing scheme. Once 

the free surface height is solved, computational grids moved and deformed according to the 

movement of the free surface. In the present study, the surface tension is neglected. The pressure on 

the free surface is fixed by 0p . 

Numerical Results 

Sloshing flow case 

To check the present method, sloshing flow case is solved. A comparison was made with the 

experimental result [Okamoto and Kawahara (1990)]. The geometry of the domain is shown in Fig. 

4.  

 
Figure 4.  Geometry of sloshing flow case 

 

The size of the initial domain is 11.02  . The calculation domain is nondimensionalized by initial 

free surface height.  

In our case, fluid flow with oscillating body force is solved. The body force is as follows: 

    tAX  sin2 ,     (13) 

where 00186.0A and 20.1 are the amplitude and frequency of the oscillation, respectively.  

The numerical grid used for calculation had 511161  grid points. The time step size is 0.001. The 

Reynolds number is 
6101.1   and the Froude number is 1. 

The initial condition of the velocity is given by 0 wvu . The initial condition of the pressure is 

given by 0p . The boundary conditions is as follows. In the wall boundary, the velocity is slip 

condition and the pressure is Neumann boundary condition. In the free surface, the velocity is 0th 

extrapolated and the pressure is fixed by 0p . 

 

Fig. 5 shows numerical simulation results. In these figures, the left column show the free surface 

shape and the right column show pressure distributions at t=2.6, 5.2, 7.9 and 10.5. From the free 

surface shape, nonlinear surface movement is appeared. 
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(a) t=2.6 

 

 
(b) t=5.2 

 

   
(c) t=7.9 

 

 
 

(d) t=10.5 

Figure 5.  Results of sloshing flow case (left : surface shape, right : pressure distributions) 
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Figure 6.  Time history of the free surface elevation at the left wall and the right wall 

 

Fig. 6 shows the time history of the free surface elevation at the left wall and right wall. The initial 

free surface height is 0.5 m. Points are experimental results [Okamoto and Kawahara (1990)], green 

lines is present result at the left wall and red line is present result at the right wall. As shown in Fig. 

6, surface height at the left wall and the right wall increase alternately, and present results agree 

reasonably with experimental one. From these results, the present method can apply sloshing 

analysis. 

 

Ramp flow case 

In inviscid case, flow over a ramp [Apsley and Hu (2003); Muzaferija and Peric (1997)] is solved. 

This case is basic test case with free surface flow. The geometry of the domain is shown in Fig. 7. 

Four Froude number condition cases were solved: subcritical flow at Fr=0.3, 0.32 and supercritical 

flow at Fr=1.92, 2. These conditions are same as references Fr=0.3, 2.0 [Apsley and Hu (2003)] and 

Fr=0.32, 1.92 [Muzaferija and Peric (1997)]. 

 

 
Figure 7.  Geometry of ramp flow case 

 

The calculation domain is nondimensionalized by initial free surface height. The numerical grid 

used for calculation had 311161  grid points. The time step size is 0.005. In this case, inviscid 

flow is assumed. The Froude number is 0.3, 0.32, 1.92 and 2.0.  

The initial condition of velocity is given by 0,1  wvu . The initial condition of pressure is 

given by hydrostatic pressure. The boundary conditions as follows. In the inlet boundary, the 

velocity is fixed by 0,1  wvu , and the pressure is Neumann boundary condition. In the outlet 

boundary, the velocity is 0th extrapolated and the pressure is 0th extrapolated. In the bottom wall 

boundary, the velocity is slip condition and the pressure is Neumann boundary condition. In the 
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front and back boundary, the velocity is slip condition and the pressure is Neumann boundary 

condition. In the free surface, the velocity is 0th extrapolated and the pressure is fixed by 0p . 

Fig .8 shows the free surface shape of Fr=0.3 case at t=200. Fig. 9 shows the free surface shape of 

Fr=2.0 case at t=200. 

 

 
Figure 8.  Surface shape of ramp flow case (Fr=0.3) 

 

 
Figure 9.  Surface shape of ramp flow case (Fr=2.0) 

 

As shown in Fig. 8, the free surface height at the outlet boundary decrease from the inlet boundary. 

On the other hand, as shown in Fig. 9, the free surface height at the outlet boundary increase from 

the inlet boundary. These results are caused by subcritical (Fr=0.3) or supercritical (Fr=2.0) 

conditions. 

 

Table 1 shows the free surface height from the bottom wall at the outlet boundary. In Table 1, 1-d 

theory shows analytical results using 1-d theory [Apsley and Hu (2003)]. Present shows present 

results. Error shows our results error from 1-d theory. As shown in Table 1, our results are agree 

with reference solutions and 1-d theory solutions. 

 

Table 1. Free surface height of ramp flow case 

                                Froude number 

0.3  0.32  1.92   2 

1-d theory   0.7689  0.7635  1.0897  1.0776 

Present    0.7949  0.7940  1.0910  1.0794 

Error [%]   3.39  3.98  0.12  0.17 

Apsley and Hu (2003)  0.7687      1.0792 

Muzaferija and Peric (1997)   0.7752  1.0992                                                             

 

Conclusions 

In this paper, new flow simulation method with free surface is presented. This method is based on 

the Moving-Grid Finite-Volume Method and coupled with the interface-tracking method. We 

applied present new method to some flow cases. From the comparison with experimental or 

numerical data, present method using the Moving-Grid Finite-Volume method is very accurate and 

have a promising feature for free surface flows. 
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