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Abstract

In this paper, an interface-tracking method combined with the Moving-Grid Finite-Volume method

is presented for simulating free surface flows. In the interface-tracking method, the calculation grid

is moved and deformed according to the movement of the free surface. For tracking free surface,

surface hei?ht equation for the free surface shape was solved. We applied this method to some flow

cases with free surface. Numerical results show that the present new flows simulation method using

:c\l/loving-Grid Finite-Volume method is very accurate and have a promising feature for free surface
ows.
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Introduction

Free surface flows are important from a point of view of engineering. For example, sloshing flow in
tanks, mixing in vessels, jet from nozzle and injection molding are free surface flows.
Many numerical methods are presented for free surface flows [Scardovelli and Zaleski (1999)].
Thers]e crjnethod can be classified to two approaches, interface-capturing method and interface-tracking
method.
In the interface-capturing method, fixed grid is used. For free surface capturing, particle movement
or some function is solved. MAC method [Harlow and Welch (1965)], VOF method [Hirt and Nichols
(1981)] and level set method [Sussman at al. (1994)]) are used in this approach. These method can
solve bubble flow and breaking waves. However, these method often have interface smearing.
On the other hand, in the interface-tracking method, moving grid is used. For free surface tracking,
computational grids are moved and deformed according to movement of free surface. ALE [Okamoto
and Kawahara (1990); Lo and Young (2004?; Ushijima (1998)] and Finite Volume method [Apsley
and Hu (2003); Muzaferija and Peric (1997)] are used in this approach. This approach is very simple
gn]g candtrack free surface with sharp interface. However, computational grids are usually large
eformed.

Free surface flow can be interpreted as a moving boundary problem. For moving boundary problems,
Moving-Grid Finite-VVolume Method was suggested [Mihara and (1999)]. This method can solve flow
with moving grids with satisfying physical and geometrical conservation laws. The method has been
applied to various flows [Mihara et al. (1999); Watanabe and Matsuno (2009); Matsuno (2010)].
However, these applications have been limited to single phase flows.

The purpose of this paper is to extend the Moving-Grid Finite-Volume Method to free surface flows.
The main advantages of this method is simple treatment with free surface and satisfying physical and
geometrical conservation laws.

In some CItest cases with free surface, comparison with analytical solution or experimental data are
presented.



Governing Equations

The governing equations are the continuity equation and the nondimensionalized incompressible
Navier-Stokes equations. These equation are written as follows:
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where X, yand z are coordinates, t is time. u,vandware velocities in X, y and z directions,

respectively. qis the velocity vector, q=[u,v,w] . E,F andG are flux vectors in x,yandz

directions, respectively. H is the body force term including gravity.
Flux vectors are written as follows:

E=E-E,+E, F=F-F,+F,,G=G-G,+G,, (3)

where E,F andG are the advection flux vectors, E, ,F, andG, are the viscous flux vectors, and
E,,F,and G, are pressure flux vectors in X, y and z directions, respectively. The elements of flux
vectors and body force term are:
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where p is the pressure, Re is the Reynolds number and Fr is the Froude number.
The subscripts X, y and z indicate derivatives with respect to X, y and z respectively. X is the body
force in x direction. Reynolds number and Froude number are:

Re= ok pro Yo (5)
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where L, is the characteristics length, U, is the characteristics velocity, ¥ is the kinematic viscosity
and @ is the gravitational acceleration. Over bar shows the dimensional quality.

Discretization method and numerical method

Discretization method
In discretization for these equations, we use Moving-Grid Finite-Volume Method. This
discretization method is based on cell-centered Finite-VVolume Method in space-time unified



domain. In three-dimensional case, four-dimensional polyhedron in the (x, y, z,t) control volume is
used.

Figure 1. Schematic drawing of control volume

Fig. 1 shows schematic drawing of structured control volume in (X, y, z,t) unified domain. R is grid

position vector, R = [x, Y, z]T , Where superscript nshows time step and subscript i, j,k show
structured grid point indexes. The purple region is n time step computational cell, green region is
n+1 step computational cell. The control volume is four-dimensional polyhedron 2. Eq. (2) is
integrated with the control volume 2 as
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where V,, is a four-dimensional volume (V,, = J'd.Q). Eq. (6) is divergence form in (x,y,z,t)
0

dimension. By using Gaussian divergence theorem, Eq. (6) is written as,
I[(—,—,—,—j-(E,F,G,q)}d_@: §l(E.F.G,q)-n]d(@2) =V, H, @
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where nis the vector normal to control volume surface. 0£2 is the surface of the control volume.
Then,,n ,n,andn are components of nin X, y,zandtdirections, respectively.
From Eq. (7), we can write as,
8
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The subscript | in Eg. (8) denotes the surface of the control volume in four dimension (x,y, z,t) .
The | =7 surface normal vector is the computational cell at ntime step , | = 8surface normal vector
is the computational cell at n +1time step. For example, Fig. 2 shows the control volume surface at
I=2.
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Figure 2. Schematic drawing of control volume surface

Control volume surfaces at | =7, | =8are perpendicular to the taxis. Eq. (8) becomes as follows:
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This Eq. (10) is discretized equation.

Numerical method

To solve Eg. (10) , we use SMAC method [Amsden and Harlow (1970)]. Intermediate velocity is
solved iteratively using LU-SGS method [Yoon and Jameson (1988)]. The inviscid term & and
moving grid term gn, are evaluated using QUICK method [Leonard (1979)]. The viscid term ¥ and

pressure gradient term I7 are evaluated using central difference scheme. The Poisson equation about
pressure correction is solved iteratively using Bi-CGSTAB [van der Vorst (1992)].

Interface-Tracking method

In present method, a surface height equation [Apsley and Hu (2003)] is solved for free surface
height. Fig. 3 shows free surface shape.
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Figure 3. Free surface height

InFig. 3, f = f(x, y,t) Is the surface height function. The surface height equation is as follows:
—4+U—+V—=W. (11)

Eq. (11) can be discretized as follows:

£t = £0 — At(uf, + v, —w], (12)



where At is time step size, superscript nshows time step and subscript i, j,k shows grid point
indexes. The uf, andvf, in Eq. (12) are evaluated using 1st order upwind differencing scheme. Once
the free surface height is solved, computational grids moved and deformed according to the

movement of the free surface. In the present study, the surface tension is neglected. The pressure on
the free surface is fixed by p=0.

Numerical Results

Sloshing flow case

To check the present method, sloshing flow case is solved. A comparison was made with the
experimental result [Okamoto and Kawahara (1990)]. The geometry of the domain is shown in Fig.
4,
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Figure 4. Geometry of sloshing flow case

The size of the initial domain is2x0.1x1. The calculation domain is nondimensionalized by initial
free surface height.
In our case, fluid flow with oscillating body force is solved. The body force is as follows:

X =—A@’sinat, (13)

where A=0.00186and @ =1.20 are the amplitude and frequency of the oscillation, respectively.
The numerical grid used for calculation had 61x11x51grid points. The time step size is 0.001. The
Reynolds number is 1.1x10° and the Froude number is 1.

The initial condition of the velocity is given byu =v =w=0. The initial condition of the pressure is
given by p =0. The boundary conditions is as follows. In the wall boundary, the velocity is slip
condition and the pressure is Neumann boundary condition. In the free surface, the velocity is Oth
extrapolated and the pressure is fixed by p=0.

Fig. 5 shows numerical simulation results. In these figures, the left column show the free surface
shape and the right column show pressure distributions at t=2.6, 5.2, 7.9 and 10.5. From the free
surface shape, nonlinear surface movement is appeared.
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Figure 5. Results of sloshing flow case (left : surface shape, right : pressure distributions)



Experiment [Okamoto and Kawahara { 1990)] [
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Figure 6. Time history of the free surface elevation at the left wall and the right wall

Fig. 6 shows the time history of the free surface elevation at the left wall and right wall. The initial
free surface height is 0.5 m. Points are experimental results [Okamoto and Kawahara (1990)], green
lines is present result at the left wall and red line is present result at the right wall. As shown in Fig.
6, surface height at the left wall and the right wall increase alternately, and present results agree
reasonably with experimental one. From these results, the present method can apply sloshing
analysis.

Ramp flow case

In inviscid case, flow over a ramp [Apsley and Hu (2003); Muzaferija and Peric (1997)] is solved.
This case is basic test case with free surface flow. The geometry of the domain is shown in Fig. 7.
Four Froude number condition cases were solved: subcritical flow at Fr=0.3, 0.32 and supercritical
flow at Fr=1.92, 2. These conditions are same as references Fr=0.3, 2.0 [Apsley and Hu (2003)] and
Fr=0.32, 1.92 [Muzaferija and Peric (1997)].
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Figure 7. Geometry of ramp flow case

The calculation domain is nondimensionalized by initial free surface height. The numerical grid
used for calculation had 61x11x31grid points. The time step size is 0.005. In this case, inviscid
flow is assumed. The Froude number is 0.3, 0.32, 1.92 and 2.0.

The initial condition of velocity is given byu =1,v=w=0. The initial condition of pressure is
given by hydrostatic pressure. The boundary conditions as follows. In the inlet boundary, the
velocity is fixed byu =1,v=w=0, and the pressure is Neumann boundary condition. In the outlet
boundary, the velocity is Oth extrapolated and the pressure is Oth extrapolated. In the bottom wall
boundary, the velocity is slip condition and the pressure is Neumann boundary condition. In the



front and back boundary, the velocity is slip condition and the pressure is Neumann boundary
condition. In the free surface, the velocity is Oth extrapolated and the pressure is fixed by p=0.

Fig .8 shows the free surface shape of Fr=0.3 case at t=200. Fig. 9 shows the free surface shape of
Fr=2.0 case at t=200.

Figure 8. Surface shape of ramp flow case (Fr=0.3)

Figure 9. Surface shape of ramp flow case (Fr=2.0)

As shown in Fig. 8, the free surface height at the outlet boundary decrease from the inlet boundary.
On the other hand, as shown in Fig. 9, the free surface height at the outlet boundary increase from
the inlet boundary. These results are caused by subcritical (Fr=0.3) or supercritical (Fr=2.0)
conditions.

Table 1 shows the free surface height from the bottom wall at the outlet boundary. In Table 1, 1-d
theory shows analytical results using 1-d theory [Apsley and Hu (2003)]. Present shows present
results. Error shows our results error from 1-d theory. As shown in Table 1, our results are agree
with reference solutions and 1-d theory solutions.

Table 1. Free surface height of ramp flow case

Froude number
0.3 0.32 1.92 2
1-d theory 0.7689 0.7635 1.0897 1.0776
Present 0.7949 0.7940 1.0910 1.0794
Error [%] 3.39 3.98 0.12 0.17
Apsley and Hu (2003) 0.7687 — — 1.0792
Muzaferija and Peric (1997)| — 0.7752 1.0992 —

Conclusions

In this paper, new flow simulation method with free surface is presented. This method is based on
the Moving-Grid Finite-Volume Method and coupled with the interface-tracking method. We
applied present new method to some flow cases. From the comparison with experimental or
numerical data, present method using the Moving-Grid Finite-Volume method is very accurate and
have a promising feature for free surface flows.
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