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Abstract：Finite Particle Method (FPM) is a significant improvement to the 

traditional SPH method, which can greatly improve the computational accuracy for 

boundary particles. However, in the iteration process, long computing time and 

potential numerical instability are the key factors restricting the application of FPM. 

By conducting matrix decomposition and structural analysis on the basic equations of 

FPM, an improved FPM method (IFPM) is proposed, which can not only maintain the 

high computational accuracy of FPM for boundary particles, but also avoid the 

restriction on the invertibility of the coefficient matrix in traditional FPM and greatly 

reduce the computing time. Finally, some simulation results show that IFPM is an 

effective improvement for traditional FPM. 
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Traditional Smoothed Particle Hydrodynamics method (SPH) is the most important 

meshfree particle methods [Lucy. (1997); Gingold and Monaghan. (1997); Liu and 

Liu (2003)], which has been widely applied in Fluid Dynamics [Yang et al. 

(2014) ;Feng et al. (2013)], Continuum Elasticity
 
[Liu et al. (2011)], Solid Mechanics 

[Libersky et al. (1993)] and so on. However, there are still some inherent defects for 

SPH, in which the low accuracy near the boundary or the interface is most 

remarkable.  

In 2005, M B Liu, G R Liu and G M Zhang, R C Batra proposed a new-type SPH 

method based on Taylor series expansion respectively[Liu et al. (2005); Zhang and 

Batra (2004)], named Finite Particle Method (FPM). Compared with SPH, FPM has 

the advantages of free selection on the basis function, high accuracy near the 

boundary, and it is also not sensitive to the smooth length and the irregular 

distribution of particles. In addition, FPM could get the function value and derivative 

value simultaneously, which avoids the error propagation when the low-order 

derivative is used in the calculation of the high-order derivative in SPH. 

However, there are still two disadvantages for FPM, which are the long 

computation time and computational instability. The former is caused by the large 

amount of calculation on solving the linear equations for each particle in the 

computational domain, and the latter is because the invertibility of the coefficient 

matrix in the linear equations cannot be well satisfied all the time. Therefore, in this 

paper, an improved algorithm for FPM is proposed, which is abbreviated to IFPM and 

is proven to cover the shortage in FPM effectively.  



1. Original FPM 

  In 1D case, considering a Taylor series expansion at ix up to the first-order 

derivative,  

( ) ( ) ( ) ( )i i x if x f x x x f x                          (1) 

  Multiplying both sides of (1) with the basis function 1( )x and 2 ( )x respectively, 

and integrating in the computational domain, 
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  Expression (2) could be seemed as linear equations, and expressed as the following 

matrix form, 
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Further, the particle form of the above equations (3) can be obtained as follows, 
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where jd is the particle size. Equation (4) is the basic expression of FPM in 1D case. 

  Similarly, the basic expression of FPM in 2D case could be derived as follows, 
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where jS is the particle size. 



2. IFPM 

2.1 1D case 

In 1D case, IFPM could be derived based on the matrix decomposition on the 

coefficient matrix and the constant term in the basic FPM equation (4). 

  First, the coefficient matrix decomposition: 
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  Second, the constant term decomposition: 
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  Based on (6) and (7), the basic FPM equation (4) could be expressed as follows, 

KDCf KDF                             (8) 

where  ( ) ( )
T

i x if f x f x ,  N is the number of the particles in the support of ix . 

  Solving equations (8) is equivalent to solve the following equations, 

( ) 0KD Cf F                              (9) 

Since FPM is free on the selection of the basis function, we could just consider the 

case rank(K) = 2, i.e. K is a row full-rank matrix. Specially, as shown in Figure 1, if 

just two nearest particles to ix in its support (i.e. N = 2) are chosen and introduced into 

the approximate calculation equations (9) of ix , the matrix K , C and F have the 

following reduced forms, 
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  Here, the matrices K and D are invertible, and thus the equations (8) is equivalent 

to the following reduced equations (11), 

0Cf F                              (11) 

  Equations (11) are the basic equations in IFPM. It can be clearly found that the 

coefficient matrix of equations (11) is always invertible, and thus 1D-IFPM is always 

stable.  

 

Figure 1. The schema on the selection of computational particles in 1D-IFPM 

 

2.2 2D case 

  Similar to section 2.1, 2D-IFPM equation could be obtained after the 

decomposition and deformation to equation (5). The difference is that, as shown in 

Figure 2, three nearest particles to ix  in its support (i.e. N = 3) should be chosen and 

introduced into the approximate calculation equations in order to keep the matrix K is 

a square matrix. The basic equation of 2D-IFPM are shown as follows (12), 
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Figure 2. The schema on the selection of computational particles in 2D-IFPM 



It can be also clearly found that the coefficient matrix of equations (12) is always 

invertible, and thus 2D-IFPM is always stable.  

Meanwhile, it must be mentioned that the uniform distribution of particles is 

actually a special case of random distribution, thus the above IFPM method is also 

suitable for uniformly distributed particles. 

 

3. Numerical tests and analysis 

3.1 Particle approximation accuracy 

Generally speaking, if one method could reproduce a k-order polynomial, this 

method could be called with C
k
 continuity. In order to verify the accuracy of IFPM, 

the following examples are tested. For 1D case, considering the function ( ) 1f x  and

( )f x x  in [0,10] respectively, 11 particles are randomly distributed and their 

coordinates are shown as follows, 

(R): 0.3770, 2.3160, 3.9550, 4.8890, 6.2410, 6.7910, 7.9620, 8.8520, 9.1330, 9.8800 

 The smooth length h=1, and the cubic B-spline function and its derivative 

function are chosen as the kernel function for SPH and the basic functions for FPM
 

[Monaghan. (1992)]. The numerical results are shown in the Table 1~2, where Error 

is defined as the difference between the reproduced value and the exact value, i.e. 

ˆError f f  . It can be seen that both IFPM and FPM have distinct accuracy compared 

with SPH method. They could reproduce both the interior particles and the particles 

near the boundary accurately, which means they could be called with C
1
 continuity. 

Table 1. Reproduced results for ( ) 1f x   

Exact 

f  

Reproduced results and error 

SPH FPM IFPM 

f̂  Error f̂  Error/×10
-15

 f̂  Error/×10
-15

 

1 0.8977 -0.1023 1.0000 0 1.0000 -0.2220 

1 1.2028 0.2028 1.0000 0 1.0000 0 

1 1.1022 0.1022 1.0000 0 1.0000 0 

1 1.0648 0.0648 1.0000 -0.1110 1.0000 0 

1 1.0745 0.0745 1.0000 -0.2220 1.0000 0 

1 1.0971 0.0971 1.0000 0 1.0000 0 

1 0.9539 -0.0461 1.0000 0 1.0000 0 

1 1.0076 0.0076 1.0000 0 1.0000 0 

1 0.9476 -0.0524 1.0000 -0.1110 1.0000 0 

1 0.5817 -0.4183 1.0000 0 1.0000 0 

1 0.8977 -0.1023 1.0000 0 1.0000 -0.2220 

 



Table 2. Reproduced results for ( )f x x  

Exact 

f  

Reproduced results and error 

SPH FPM IFPM 

f̂  Error f̂  Error/×10
-14

 f̂  Error/×10
-15

 

0.3770 0.3386 -0.0384 0.3770 -0.0056 0.3770 -0.2220 

2.3160 2.8021 0.4861 2.3160 0 2.3160 0 

3.9550 4.5517 0.5967 3.9550 0.0888 3.9550 0 

4.8890 5.0218 0.1328 4.8890 -0.0888 4.8890 0 

6.2410 6.8541 0.6131 6.2410 -0.0888 6.2410 0 

6.7910 7.3309 0.5399 6.7910 0 6.7910 0 

7.9620 7.6692 -0.2928 7.9620 0 7.9620 0 

8.8520 8.8754 0.0234 8.8520 0 8.8520 0 

9.1330 8.5581 -0.5749 9.1330 -0.1776 9.1330 0 

9.8800 5.5330 -4.3470 9.8800 0 9.8800 0 

0.3770 0.3386 -0.0384 0.3770 -0.0056 0.3770 -0.2220 

For 2D case, considering the function ( , ) 1f x y   and ( , )f x y x y  in 

[0,100]×[0,100] respectively, 5664 particles are randomly distributed. The numerical 

results are shown in the Table 3, where MSE represents the Mean Square Error. It can 

be seen that IFPM could also keep C
1
 continuity in 2D case. 

Table 3. Reproduced results in 2D case 

Function type 
MSE 

SPH FPM IFPM 

( , ) 1f x y   0.0357 1.5834×10
-32

 7.4650×10
-31

 

( , )f x y x y   427.7285 3.8521×10
-28

 2.1792×10
-27

 

3.2 Computation time analysis 

  In order to compare the computation time among the SPH, FPM and IFPM, we 

consider the function ( )f x x in the interval [0, 100]. The computation time of three 

methods with increasing of the number of particles in the computational domain from 

11 to 10001 are shown in Figure 3. 

  It is shown that with increasing of the particle number, the computation time of 

FPM increases rapidly, and SPH method increases steadily. While the computation 

time of IFPM proposed in this paper has no obvious change. When the number of 

particles increases from 11 to 10001, the computation time just increases from 

0.0002s to 0.1176s. Therefore, IFPM method can greatly reduce the computation time 

compared with FPM. 

 



 

Figure 3. Comparison on the computation time among the three methods 

3.3 Calculation of high-order functions 

  Table 4 shows the MSE among the SPH, FPM and IFPM for the function ( ) 1f x  ,

( )f x x  and 2( )f x x  in the interval [0, 100] with the number of particles 11 and 

10001. It can be found that the accuracy of IFPM clearly decreases when the function 

order is bigger than 1.  

Table 4. MSE of reproduced results by using different methods 

Particle number Function SPH FPM IFPM 

11 

( ) 1f x   0.0089 2.2411×10
-33

 0 

( )f x x  54.6845 9.7532×10
-29

 9.9513×10
-33

 

2( )f x x  6.3848×10
5
 1.8257×10

3
 1.5455×10

4
 

10001 

( ) 1f x   1.3038×10
-5

 4.9299×10
-36

 0 

( )f x x  0.0598 1.3449×10
-28

 3.7050×10
-30

 

2( )f x x  554.8744 2.2677×10
-9

 1.0068×10
-8

 

However, it is also shown in Table 4 that the accuracy of IFPM could be improved 

by increasing the total number of particles in the computational domain. Figure 4 

shows the MSE of reproduced results for 2( )f x x  with increasing of the number of 

particles by using IFPM, where the data in Figure 4 is the denary logarithm of 

original results. It is shown that the MSE will keep linear decrease with the increased 

particle number, which means the accuracy of IFPM is controllable. 

 

4. Conclusions 

  Based on the numerical tests above, it can be found that the proposed IFPM 



method could not only keep the high accuracy of FPM in both the interior area and 

the boundary area for the constant function and the linear function, but also modify 

the deficiencies of the long computation time and computational instability in 

traditional FPM. For the high-order functions, the accuracy of IFPM could be 

improved by increasing the number of particles. Therefore, IFPM is an effective 

improvement for traditional FPM. 

 

Figure 4. MSE of reproduced results with the number of particles 
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