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An effective improved algorithm for Finite Particle Method
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Abstract: Finite Particle Method (FPM) is a significant improvement to the
traditional SPH method, which can greatly improve the computational accuracy for
boundary particles. However, in the iteration process, long computing time and
potential numerical instability are the key factors restricting the application of FPM.
By conducting matrix decomposition and structural analysis on the basic equations of
FPM, an improved FPM method (IFPM) is proposed, which can not only maintain the
high computational accuracy of FPM for boundary particles, but also avoid the
restriction on the invertibility of the coefficient matrix in traditional FPM and greatly
reduce the computing time. Finally, some simulation results show that IFPM is an
effective improvement for traditional FPM.
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Traditional Smoothed Particle Hydrodynamics method (SPH) is the most important
meshfree particle methods [Lucy. (1997); Gingold and Monaghan. (1997); Liu and
Liu (2003)], which has been widely applied in Fluid Dynamics [Yang et al.
(2014) ;Feng et al. (2013)], Continuum Elasticity [Liu et al. (2011)], Solid Mechanics
[Libersky et al. (1993)] and so on. However, there are still some inherent defects for
SPH, in which the low accuracy near the boundary or the interface is most
remarkable.

In 2005, M B Liu, G R Liu and G M Zhang, R C Batra proposed a new-type SPH
method based on Taylor series expansion respectively[Liu et al. (2005); Zhang and
Batra (2004)], named Finite Particle Method (FPM). Compared with SPH, FPM has
the advantages of free selection on the basis function, high accuracy near the
boundary, and it is also not sensitive to the smooth length and the irregular
distribution of particles. In addition, FPM could get the function value and derivative
value simultaneously, which avoids the error propagation when the low-order
derivative is used in the calculation of the high-order derivative in SPH.

However, there are still two disadvantages for FPM, which are the long
computation time and computational instability. The former is caused by the large
amount of calculation on solving the linear equations for each particle in the
computational domain, and the latter is because the invertibility of the coefficient
matrix in the linear equations cannot be well satisfied all the time. Therefore, in this
paper, an improved algorithm for FPM is proposed, which is abbreviated to IFPM and
is proven to cover the shortage in FPM effectively.



1. Original FPM
In 1D case, considering a Taylor series expansion atx up to the first-order
derivative,
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Multiplying both sides of (1) with the basis function ¢, (x)and ¢, (x) respectively,
and integrating in the computational domain,
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Expression (2) could be seemed as linear equations, and expressed as the following
matrix form,
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Further, the particle form of the above equations (3) can be obtained as follows,
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where Ad; is the particle size. Equation (4) is the basic expression of FPM in 1D case.

Similarly, the basic expression of FPM in 2D case could be derived as follows,
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where AS; is the particle size.



2. IFPM

2.1 1D case

In 1D case, IFPM could be derived based on the matrix decomposition on the
coefficient matrix and the constant term in the basic FPM equation (4).

First, the coefficient matrix decomposition:
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Second, the constant term decomposition:
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Based on (6) and (7), the basic FPM equation (4) could be expressed as follows,

KDCf = KDF (8)

where f =[f(x) f, (xi)]T, N is the number of the particles in the support of x;.

Solving equations (8) is equivalent to solve the following equations,
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Since FPM is free on the selection of the basis function, we could just consider the
case rank(K) = 2, i.e. K is a row full-rank matrix. Specially, as shown in Figure 1, if
just two nearest particles to x; in its support (i.e. N = 2) are chosen and introduced into
the approximate calculation equations (9) of x;, the matrix K ,C and F have the
following reduced forms,
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Here, the matrices K and D are invertible, and thus the equations (8) is equivalent
to the following reduced equations (11),

Cf —F=0 (11)

Equations (11) are the basic equations in IFPM. It can be clearly found that the
coefficient matrix of equations (11) is always invertible, and thus 1D-IFPM is always
stable.
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Figure 1. The schema on the selection of computational particles in 1D-IFPM

2.2 2D case

Similar to section 2.1, 2D-IFPM equation could be obtained after the
decomposition and deformation to equation (5). The difference is that, as shown in
Figure 2, three nearest particles to x; in its support (i.e. N = 3) should be chosen and
introduced into the approximate calculation equations in order to keep the matrix K is
a square matrix. The basic equation of 2D-IFPM are shown as follows (12),
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Figure 2. The schema on the selection of computational particles in 2D-1IFPM



It can be also clearly found that the coefficient matrix of equations (12) is always
invertible, and thus 2D-IFPM is always stable.

Meanwhile, it must be mentioned that the uniform distribution of particles is
actually a special case of random distribution, thus the above IFPM method is also
suitable for uniformly distributed particles.

3. Numerical tests and analysis

3.1 Particle approximation accuracy

Generally speaking, if one method could reproduce a k-order polynomial, this
method could be called with C* continuity. In order to verify the accuracy of IFPM,
the following examples are tested. For 1D case, considering the function f (x) =1and
f(x)=x in [0,10] respectively, 11 particles are randomly distributed and their
coordinates are shown as follows,

(R): 0.3770, 2.3160, 3.9550, 4.8890, 6.2410, 6.7910, 7.9620, 8.8520, 9.1330, 9.8800

The smooth length h=1, and the cubic B-spline function and its derivative
function are chosen as the kernel function for SPH and the basic functions for FPM
[Monaghan. (1992)]. The numerical results are shown in the Table 1~2, where Error
is defined as the difference between the reproduced value and the exact value, i.e.
Error= f - f . It can be seen that both IFPM and FPM have distinct accuracy compared
with SPH method. They could reproduce both the interior particles and the particles
near the boundary accurately, which means they could be called with C* continuity.

Table 1. Reproduced results for f(x) =1

Reproduced results and error

Exact
; SPH FPM IFPM
f Error f Error/x<10%°  f Error/<10™

1 0.8977 -0.1023 1.0000 0 1.0000 -0.2220
1 1.2028 0.2028 1.0000 0 1.0000 0

1 1.1022 0.1022 1.0000 0 1.0000 0

1 1.0648 0.0648 1.0000 -0.1110 1.0000 0

1 1.0745 0.0745 1.0000 -0.2220 1.0000 0

1 1.0971 0.0971 1.0000 0 1.0000 0

1 0.9539 -0.0461 1.0000 0 1.0000 0

1 1.0076 0.0076 1.0000 0 1.0000 0

1 0.9476 -0.0524 1.0000 -0.1110 1.0000 0

1 0.5817 -0.4183 1.0000 0 1.0000 0

1 0.8977 -0.1023 1.0000 0 1.0000 -0.2220




Table 2. Reproduced results for f (x) = x

Reproduced results and error

Exact
f SPH FPM IFPM
f Error f Error/<10** Error/><10™

0.3770 0.3386 -0.0384  0.3770 -0.0056 0.3770 -0.2220
2.3160 2.8021 0.4861 2.3160 0 2.3160 0
3.9550 45517 0.5967 3.9550 0.0888 3.9550 0
4.8890 5.0218 0.1328 4.8890 -0.0888 4.8890 0
6.2410 6.8541 0.6131 6.2410 -0.0888 6.2410 0
6.7910 7.3309 0.5399 6.7910 0 6.7910 0
7.9620 7.6692 -0.2928 7.9620 0 7.9620 0
8.8520 8.8754 0.0234 8.8520 0 8.8520 0
9.1330 8.5581 -0.5749 9.1330 -0.1776 9.1330 0
9.8800 5.5330 -4.3470 9.8800 0 9.8800 0
0.3770 0.3386 -0.0384  0.3770 -0.0056 0.3770 -0.2220
For 2D case, considering the function f(x,y)=1 and f(x,y)=x+y in

[0,100]>40,100] respectively, 5664 particles are randomly distributed. The numerical
results are shown in the Table 3, where MSE represents the Mean Square Error. It can
be seen that IFPM could also keep C* continuity in 2D case.

Table 3. Reproduced results in 2D case

Function type MSE
P SPH FPM IFPM
f(x,y)=1 0.0357 1.5834 X107 7.4650 X 107!
f(X,y)=X+Yy 427.7285 3.8521 X 10?8 2.1792x10%

3.2 Computation time analysis

In order to compare the computation time among the SPH, FPM and IFPM, we
consider the function f (x) =xin the interval [0, 100]. The computation time of three
methods with increasing of the number of particles in the computational domain from
11 to 10001 are shown in Figure 3.

It is shown that with increasing of the particle number, the computation time of
FPM increases rapidly, and SPH method increases steadily. While the computation
time of IFPM proposed in this paper has no obvious change. When the number of
particles increases from 11 to 10001, the computation time just increases from

0.0002s to 0.1176s. Therefore, IFPM method can greatly reduce the computation time
compared with FPM.
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Figure 3. Comparison on the computation time among the three methods

3.3 Calculation of high-order functions

Table 4 shows the MSE among the SPH, FPM and IFPM for the function f (x) =1,
f(x)=x and f(x)=x* in the interval [0, 100] with the number of particles 11 and
10001. It can be found that the accuracy of IFPM clearly decreases when the function
order is bigger than 1.

Table 4. MSE of reproduced results by using different methods

Particle number Function SPH FPM IFPM
f(x)=1 0.0089 2.2411X10°% 0
11 f(x)=x 54.6845 9.7532X10%°  9.9513x 10
f(x)=x*  6.3848X10°  1.8257X10°  1.5455Xx 10"
f(x)=1 1.3038X10°  4.9299x107% 0
10001 f(x)=x 0.0598 1.3449X10%  3.7050x 10
f(x) =X 554.8744 2.2677X10°  1.0068x10®

However, it is also shown in Table 4 that the accuracy of IFPM could be improved
by increasing the total number of particles in the computational domain. Figure 4
shows the MSE of reproduced results for f(x)=x* with increasing of the number of
particles by using IFPM, where the data in Figure 4 is the denary logarithm of
original results. It is shown that the MSE will keep linear decrease with the increased
particle number, which means the accuracy of IFPM is controllable.

4. Conclusions
Based on the numerical tests above, it can be found that the proposed IFPM



method could not only keep the high accuracy of FPM in both the interior area and
the boundary area for the constant function and the linear function, but also modify
the deficiencies of the long computation time and computational instability in
traditional FPM. For the high-order functions, the accuracy of IFPM could be
improved by increasing the number of particles. Therefore, IFPM is an effective
improvement for traditional FPM.
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Figure 4. MSE of reproduced results with the number of particles
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