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Abstract 

Global sensitivity indices based on variance can effectively apportion the output 

uncertainty to the inputs. How to efficiently and accurately perform the global 

sensitivity analysis is of great concern for researchers. In this work, the employment 

of sparse grid integration to the estimate of global sensitivity indices is discussed. The 

new method can be used for sensitivity analysis of the structural models involving 

independent variables or correlated variables, and can further decompose the variance 

contribution in the correlation cases. Advantage of the sparse grid integration in 

estimating integrals is well inherited by the new method, to ensure the accuracy while 

keeping the computational burden controllable. Numerical and engineering examples 

have been studied to test the applicability of the proposed method. 
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1. Introduction 

Global sensitivity indices are playing an important role in identifying and 

representing uncertainties in engineering, and many researchers have proposed their 

own indices, as well as corresponding computing techniques [Borgonovo (2007); 

Sobol (2001)]. Among these different indices, the variance based ones have attracted 

increasing interests as they are able to capture the influence of the full range of 

variation of each input factor, and reflect the interaction effects among input factors. 

Variance based sensitivity analysis has been acknowledged as a versatile and effective 

tool in the uncertainty analysis. 

 

In the real world, input factors of a model are often correlated to each other, and 

sometimes the correlation may have significant impacts on the sensitivity results 

[Borgonovo and Tarantola (2008); Kucherenko et al. (2012); Mara (2009)]. Xu and 

Gertner (2008) pointed out that the contribution of uncertainty to the output by an 

individual input factor should be decomposed into two parts: the uncorrelated part, 

which means this part is completely immune from the other input factors and is 

produced by this input factor “individually and independently”, and the correlated 

part, which means this part is produced by the correlation of this input variable with 

the others. Mara and Tarantola (2012) proposed a set of variance-based sensitivity 

indices to perform sensitivity analysis of models with correlated inputs, which can 

distinguish between the mutual dependent contribution and the independent 

contribution of an input to the model response variance. 

 

An important task in the sensitivity analysis is to improve the computational 

efficiency, especially in engineering cases where the models involved usually take a 

long processing time [Saltelli et al. (2010)]. It is found that the variance based 

sensitivity indices can be viewed as nested expressions of expectation operator and 

variance operator. Enlightened by this feature, in this work a new method is 
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developed for global sensitivity analysis by using the sparse grid integration (SGI) 

technique. The sparse grid technique, which is based on one-dimensional formulae 

and then extended to higher dimensions, has been extensively utilized for highly 

dimensional multivariate integration, as well as interpolation [Barthelmann et al. 

(2000); Gerstner and Griebel (2003); Gerstner and Griebel (1998); Smolyak (1963)]. 

To a certain extent, this technique avoids the “curse of dimension” of conventional 

integration algorithms, which means the computational cost grows exponentially with 

the dimension of the problem. In the SGI technique, multivariate quadrature formulae 

are constructed with combinations of tensor products of suitable one-dimensional 

formulae, thus the function evaluations needed and the numerical accuracy become 

independent of the dimension of the problem up to logarithmic factors. Existing 

literature has reported the high efficiency and accuracy of sparse grid applications.  

 

2. Review on variance based sensitivity indices 

2.1 Sensitivity analysis of model output with independent inputs 

Let ( )Y g X  be the performance function of the model under investigation, with Y  

the output, T

1 2( , , , )nX X X X  the vector of independent input variables, where iX  

is the ith variable. Sobol (2001) proposed that the performance function can always 

be decomposed into summands of different dimensions, that is 

 0 , 1,2,..., 1 2

1

( ) ( ) ( , ) ( , ,..., )
n n

i i i j i j n n

i i j

g g g X g X X g X X X
 

       X  (1) 

 

Sensitivity analysis based on variance is to quantify the contribution of an individual 

input variable to the output variance, and Sobol proposed the variance decomposition 

equation based on Eq.(1), 

 1,2, ,

1 1,

( )
n n

i ij n

i i j i

V Y V V V 

  

         (2) 

iV  is the first order variance contribution of iX , and can be formulated as 

 ( ( | ))
i ii X iV V E Y X


 X  (3) 

where iX  denotes the vector of all input variables except iX , i.e. 
T

1 1 1( , , , , , )i i i nX X X X    X . ijV  and higher order variance terms in Eq.(2) denote 

the contribution to the output variance of variable interaction brought by the form of 

the performance function. When only the first order variance contribution is 

considered, the variance decomposition can be reformulated as 

 
1

( )
n

i

i

V Y V


  (4) 

 

The first order variance contribution iV  is also referred to as the main effect of iX  

on the output variance, and it measures the first order effect of iX  on the output, 

ignoring the interactions between iX  and the other variables. When taking the 

interactions into consideration, the total contribution of iX  is measured by 

( ( | ))
i iX iE V Y

 X X . According to the known identity: 

 ( ( | )) ( ( | )) ( )
i i i iX i X iV E Y E V Y V Y

   X XX X  (5) 

( ( | ))
i iX iV E Y

 X X  can be seen as the first order effect of iX , thus ( )V Y  minus 

( ( | ))
i iX iV E Y

 X X  should give the contribution of all terms in the variance 
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decomposition which includes iX .  

 

To normalize the variance contribution, the main effect index is defined as [Saltelli et 

al. (2010)] 

 
( ( | ))

( )

i iX iM

i

V E Y X
S

V Y


X

  (6) 

and the total effect index is defined as 

 
( ( | ))

( )

i iX iT

i

E V Y
S

V Y

 


X
X

  (7) 

2.2 Sensitivity analysis of model output with correlated inputs 

The variance decomposition in Eq.(2) is proposed under the assumption of input 

independence, which thus means it may not hold when the input variables are 

correlated. For correlated variables, the main effect index and total effect index still 

reflect the variance contribution of variables, yet the difference from the 

independence case lies in that both indices are now composed by two parts. Take iV  

for example, according to Xu and Gertner (2008), it can be divided into two parts, i.e. 

the variance contribution of the uncorrelated part of iX , denoted by U

iV , and the 

variance contribution of the correlated part with the other variables, denoted by C

iV . 

It should be pointed out that the variance contribution of the correlated part of iX  is 

way different from the interaction contribution of iX  to the output variance. These 

two are absolutely different concepts, as the former comes from the correlation 

among the input variables, and the latter is produced by variable interactions in the 

performance function. 

 

Thus, the main effect index, M

iS , can be decomposed in the following way, 

 M MC MU

i i iS S S    (8) 

where MC

iS  denotes the correlated main contribution of iX  to the output variance, 

and MU

iS  denotes the uncorrelated main contribution. Similarly, the total effect index, 
T

iS , can be decomposed as  

 T TC TU

i i iS S S    (9) 

where TC

iS  denotes the correlated total contribution of iX  to the output variance, 

and TU

iS  denotes the uncorrelated total contribution.  

 

In fact, in the existing literature measuring the contributions of inputs to the output 

variance for cases involving correlated inputs is still a tricky issue. Researchers have 

proposed different variance based sensitivity indices based on different considerations, 

and it is difficult to judge which one is better. Agreement is highly needed to give an 

exact and unambiguous definition of the ANOVA for correlated inputs just as the one 

provided by Sobol decomposition when the inputs are independent. In this work, the 

sensitivity indices talked about are related to those in the work of Mara and Tarantola 

(2012).  

 

3. Variance based sensitivity analysis with SGI 

The SGI technique has been proven to be an effective tool in the uncertainty analysis, 

and it will be employed to perform the variance based sensitivity in this section. It 



4 
 

should be pointed out that normally the SGI procedure is carried out in the 

independent space, which means it cannot be directly used when input variables are 

correlated. In this section, the procedure using SGI for sensitivity analysis of models 

with independent variables is first introduced. Afterwards, the use of SGI for variance 

based sensitivity analysis with correlated variables is discussed, which is partly based 

on the work of Mara and Tarantola (2012). 

3.1 Algorithm based on SGI for sensitivity analysis of independent variables 

For the performance function ( )Y g X  with independent variables, the expectation 

and variance of the output can be estimated by SGI according to the following 

formulae, 

      
1

( ) d
p

j j

j

E Y g f w g


   X
x x x x   (10) 

 
2 2

1

( ) ( ( ) ( )) ( ) d ( ( ) ( ))
p

j j

j

V Y g E Y f w g E Y


     X
x x x x   (11) 

where the n-dimension quadrature point jx  and the associated weight jw  

( 1,2,...,j p ) are obtained by the Smolyak algorithm [Gerstner and Griebel (2003); 

Gerstner and Griebel (1998)].  

 

With the output variance obtained, ( ( | ))
i iX iV E Y X

X  and ( ( | ))
i iX iE V Y

 X X , both of 

which can be seen as nested expressions of expectation operator and variance 

operator, need to be estimated to get the indices M

iS  and T

iS . 

 

Consider ( ( | ))
i iX iV E Y X

X  first. Keep iX  fixed, and treat iX  as variables, then Y  

can be seen as the function of iX . The inner expectation can be estimated by SGI as 

follows, 

      
1

( | ) , d ,
i i

m
j

i i i i i j i i

j

E Y X g x f w g x
    



  X X
x x x x   (12) 

where j

ix  denotes the j-th value of iX . Apparently ( | )
i iE Y X

X  can be seen as a 

univariate function of iX , and is redefined as 

 ( ) ( | )
ii iX E Y X


 X   (13) 

Thus, 

 ( ( | )) ( ( ))
i iX i iV E Y X V X


X   (14) 

The variance of the univariate function ( )iX  can be estimated by SGI as follows, 

 
2 2

1

( ( )) ( ( ) ( ( ))) ( ) d ( ( ) ( ( )))
i

m
j

i i i X i i j i i

j

V X x E x f x x w g x E X   


       (15) 

where 

 
1

( ( )) ( ) ( ) d ( )
i

m
j

i i X i i j i

j

E X x f x x w g x 


     (16) 

Finally, the main effect index can be obtained as 

 
( ( | )) ( ( ))

( ) ( )

i iX iM i

i

V E Y X V X
S

V Y V Y


 

X
  (17) 

The total effect index T

iS  can be obtained in the similar manner.  

3.2 Algorithm based on SGI for sensitivity analysis of correlated variables 

When the input variables are correlated, the algorithm based on SGI in Section 3.1 is 
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no longer applicable. In this section, the SGI technique is extended to the case of 

correlated variables to perform the variance based sensitivity analysis. In this work, 

the correlation matrix, which is a symmetric matrix composed of Pearson correlation 

coefficients, is adopted to measure the correlation between random variables.  

3.2.1 Estimate of the response variance 

Eq.(10) and Eq.(11) in Section 3.1 can be used to estimate the expectation and 

variance of the model output only when the variables are independent. Thus, for 

correlated variables there has to be a transformation from correlation space to 

independence space. In this work, we only consider the problems with normal 

distributions, i.e. 
2~ ( , )

i ii X XX N   . 

 

The covariance matrix of T

1 2( , , , )nX X X X  is denoted as 

 

1

2

2

1 2 1

2

2 1 2

2

1 2

( , ) ( , )

( , ) ( , )

( , ) ( , )
n

X n

X n

n n X

Cov X X Cov X X

Cov X X Cov X X

Cov X X Cov X X







 
 
 

  
 
 
 

X
C  (18) 

where    , ,
i ji j j i ij X XCov X X Cov X X     , as ij  is the Pearson correlation 

coefficient of iX  and jX . The joint PDF of X  is 

        
1

T 1
22

1
2 exp

2

n

f 
  

    
 

X X X X
X C X μ C X μ  (19) 

where 
1 2

T( , , , )
nX X X   

X
μ  is the vector of input expectations, X

C  and 1

X
C  are 

the determinant value and reverse matrix of XC  respectively. 

 

An orthogonal matrix A  exists which would introduce random variable vector 
T

1 2( , , , )nU U U U  by the following formula [Shi et al. (2009)]: 

  
1 2

22
1 2

1

1
( ) 2 ( ) exp( )

2

nn
i

n

i i

U
f    







      X
AU μ  (20) 

where 1 2, n    is the latent roots of XC . 

 

Thus the n-dimension correlated input variables T

1 2( , , , )nX X X X  can be 

transformed to independent normal variables T

1 2( , , , )nU U U U  by 

 ( )T 
X

U A X μ  (21) 

where the column vectors of A  are the latent root vectors of XC , and the 

probability distribution of the independent normal variables can be obtained as 

~ (0, )i iU N  . 

 

By Eq.(21), we further get 

   XX AU μ  (22) 

Substitute Eq.(22) into ( )Y g X , the performance function in the independence 

space can be obtained as follows, 

 ( ) ( )Y g  X U  (23) 

where ( )   denotes the mapping relationship between U  and the output. Because 

distribution parameters of U  in the dependence space have been obtained, the 

expectation and variance of the model output can be readily estimated by Eq.(10) and 
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Eq.(11). 

3.2.2 Orthogonalization of correlated variables 

For two normal variables, iX  and jX , ( | )i jE X X  can be used to define the 

marginal relationship between them. The value of ( | )i jE X X  measures how much 

iX  is correlated to jX , and equals ( )iE X  when the two variables are independent. 

In the same manner, ( | , )i j kE X X X  defines the correlation of iX  to jX  and kX . 

Mara and Tarantola declared that for non-normal random variables, higher conditional 

moments are needed to characterize the correlation between the variables. Issues 

concerning correlated non-normal variables would become much complicated in most 

cases. In this work, the scope of research is confined to problems only involving 

normally distributed variables. 

 

For a vector of correlated normal variables, T

1 2( , , , )nX X X X , the following 

relationship holds, 

 1 2 1 2 1 1 2 1( , ,..., ) ( ) ( | ) ( | , ,..., )n n nf X X X f X f X X f X X X X    (24) 

where 1 2( , ,..., )nf X X X  is the joint PDF, 1( )f X  is the marginal PDF of 1X , 

2 1( | )f X X  is the marginal PDF of 2X  conditioned on 1X , 1 2 1( | , ,..., )n nf X X X X   is 

the marginal PDF of nX  conditioned on T

1 2 1( , ,..., )nX X X  . As we have talked about, 

( | )i jE X X  can quantify the marginal relationship between two correlated normal 

variables, thus the following equations hold, 

 

1 1

2 2 1 2 2 1

3 3 12 3 3 1 2

12...( 1) 1 2 1

( | )

( | , )

( | , ,..., )n n n n n n

X X

X X X E X X

X X X E X X X

X X X E X X X X





  



  

  

  

  

 (25) 

 

Mara and Tarantola (2012) pointed out that the above transformation is one of 

Rosenblatt’s for normal variables. A new set of variables T

1 2( , ,..., )nX X X  can be 

generated by the above transformation. In fact, these new variables are obtained by 

subtracting the correlation part from the original correlated variables, thus the new 

variables are independent from each other. 

 

Besides, the orthogonalization from correlated variables to independent ones is not 

unique. This can be seen from the transformation in Eq.(25), which clearly depends 

on the ordering of variables. If we reorder the original input variables as 

2 1( , , , )nX X X X , which is valid except the corresponding correlation matrix needs 

to be modified accordingly, and apply the orthogonalization, a new set of independent 

variables will be obtained and denoted as 2 1( ,..., , )nX X X . It should be reminded that 

2 1( ,..., , )nX X X  is different from 1 2( , ,..., )nX X X  initially obtained by orthogonalizing 

1 2( , , , )nX X X . In fact, through changing the ordering of the original correlated 

variables in sequence, a total of n  sets of independent variables can be generated 

by the orthogonalization. However, among all these sets, only a total of n sets 

generated by cycling the orthogonalization are used in this work, i.e. 1 2( , , , )nX X X , 

2 1( , , , )nX X X ,…, 2 1( , , , )n n nX X X  . 

3.2.3 Interpretations on sensitivity indices of the newly independent variables 
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It is necessary to find out the relationship between the sensitivity indices of the 

independent variables and those of correlated ones. Let us focus on the main effect 

index first, which is denoted as  

 

1 1

2 2

3 3

[ ( | )] / ( )

[ ( | )] / ( )

[ ( | )] / ( )

...

[ ( | )] / ( )

M

M

M

M

n n

S V E Y X V Y

S V E Y X V Y

S V E Y X V Y

S V E Y X V Y









 (26) 

 

Now consider the explanation of the sensitivity indices. Because 1 1X X , 1

MS  is the 

full marginal contribution of 1X  to the response variance, which means 1 1

M MS S . 

2

MS  is the marginal contribution of 2X  to the response variance without its 

correlative contribution with 1X , as 2X  is uncorrelated with 1X . In the same 

manner, 3

MS  is the marginal contribution of 3X  to the response variance without its 

correlative contribution with T

1 2( , )X X . For the last new variable nX , M

nS  is the 

uncorrelated marginal contribution to the response variance, which means M MU

n nS S . 

1X  keeps all the information concerning 1X  including its correlated part with the 

other variables while nX  only keeps the independent part of nX  excluding all of its 

correlated part.  

 

Clearly, by the variance based sensitivity analysis on T

1 2( , ,..., )nX X X , the main effect 

index of 1X , i.e. 1

MS , as well as the uncorrelated main effect index of nX , i.e. MU

nS , 

can be obtained. Remember that a total of n sets of independent variables can be 

generated by orthogonalizing the original correlated variables in cycle. In the same 

way of obtaining 1

MS  and MU

nS , the indices 2

MS  and 1

MUS  can be obtained by the 

sensitivity analysis on 2 1( ,..., , )nX X X . Change the order of the original correlated 

variables, and perform orthogonalization to get the corresponding independent 

variables, which is further analyzed to get the sensitivity indices, the full and 

uncorrelated contributions of each correlated variable can be obtained. Similarly, the 

total effect index T

iS  of the correlated inputs can be thus estimated and decomposed. 

3.2.4 Computational issues 

In this section, the computational issues involved in the procedure of sensitivity 

analysis are addressed. Still, we take the analysis on T

1 2( , ,..., )nX X X  as an example. 

To analyze the sensitivity indices on T

1 2( , ,..., )nX X X , firstly the statistical 

characteristics have to be known. 

 

By Eq.(25) we know the mean value and standard deviation of 1X  are equal to those 

of 1X . For the ith ( i >1) variable, the following equation holds according to Eq.(25), 

 1 2 1( | , ,..., )i i i iX X E X X X X    (27) 

Only the first i variables are involved in Eq.(27), i.e. T

1~ 1 2( , ,..., )i iX X XX , of which 

the mean vector is 
1~ 1 2

T( , , , )
i iX X X   

X
μ , and the corresponding covariance matrix 

can be taken from Eq.(18) as 
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1

2

1~

2

1 2 1

2

2 1 2

2

1 2

( , ) ( , )

( , ) ( , )

( , ) ( , )

i

i

X i

X i

i i X

Cov X X Cov X X

Cov X X Cov X X

Cov X X Cov X X







 
 
 

  
 
 
 

X
C  (28) 

 

Now consider the conditional mean value in Eq.(27), 1 2 1( | , ,..., )i iE X X X X  . The mean 

vector and covariance matrix for 1~iX  can be rewritten as 
1~

1~( 1)

i

i

i

X



 
  
  

X

X

μ
μ

 and 

1~( 1)

1~

1~( 1) 1~( 1) 1~( 1)

i i i i

i

i i i i

X X X

X



  

 
  

  

X

X

X X X

C C
C

C C
, where 

 
2

i i iX X XC  (29) 

  
1~( 1) 1~( 1) 1 2 1( , ) ( , ) ( , )

i i i i

T

X X i i i iCov X X Cov X X Cov X X
      

X X
C C  (30) 

 

1

2

1~( 1) 1~( 1)

1

2

1 2 1 1

2

2 1 2 1

2

1 1 1 2

( , ) ( , )

( , ) ( , )

( , ) ( , )

i i

i

X i

X i

i i X

Cov X X Cov X X

Cov X X Cov X X

Cov X X Cov X X







 







 

 
 
 

  
 
 
 

X X
C  (31) 

 

The conditional distribution of iX  conditioned on T

1 2 1( , ,..., )iX X X   is still a normal 

distribution, and its mean value can be calculated in the following way [Shi et al. 

(2009)], 

 
1~( 1) 1~( 1) 1~( 1) 1~( 1)

1

1 2 1 1~( 1)( | , ,..., ) ( )
i i i i i ii i X X iE X X X X 

   



   
X X X X

C C X μ  (32) 

 

From the above equation, it can be seen that 1 2 1( | , ,..., )i iE X X X X   is in fact an 

expression containing the first (i–1) variables. Substitute Eq.(32) into Eq.(27), we can 

get an expression containing the first i variables. In other words, iX  can be viewed 

as a function of the first i correlated variables, of which the expression can be 

explicitly obtained. In the same way in Section 3.2.1, the mean value and standard 

deviation of iX  can be conveniently obtained using the SGI technique, which are 

denoted as 
1X

  and 
iX

 , respectively. After obtaining the mean and standard 

deviation of the independent variables, the sensitivity analysis still cannot be 

performed immediately, as the original performance function is a mapping of the 

output response with the original correlated variables, not with the new independent 

ones. Thus the performance function has to be rebuilt to describe the relationship 

between the output response and the new independent variables. 

 

From Eq.(25), the following relationship holds, 

 

1 1

2 2 2 1

3 3 3 1 2

1 2 1

( | )

( | , )

( | , ,..., )n n n n

X X

X X E X X

X X E X X X

X X E X X X X 



 

 

  

 

 (33) 
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As discussed above, 2 1( | )E X X  is an expression only containing 1X . Now substitute 

1 1X X  into 2 1( | )E X X , then 2X  can be transformed into an expression only 

containing 1X  and 2X . Similarly, substitute the expression of 1X  and 2X  into 

3 1 2( | , )E X X X , then 3X  can be transformed into an expression only containing 1X , 

2X  and 3X . Repeat this process, the expression for nX  can be finally obtained, 

which should only involve T

1 2( , ,..., )nX X X . This process can be denoted as 

 

1 1 1

2 2 2

3 2 1 2 3

2 1 2

( )

( )

( , , )

( , ,..., )n n

X X

X X

X X X X

X X X X















  



 (34) 

in which i  denotes a mapping relationship. 

 

Substitute Eq.(34) into the original performance function, a new performance 

function between the output response and the new independent variables can be 

obtained, which is denoted as 

 1 2( , ,..., )nY g X X X  (35) 

 

According to the previous discussions, variance based sensitivity analysis can be 

easily performed for the performance function in Eq.(35). The sensitivity indices thus 

obtained are then used to interpret the main effect index, total effect index, as well as 

the decompositions, for the original correlated variables according to Section 3.2.3. 

 

4. An automobile front axle 

In the automobile engineering, the front axle is an important component that bears 

heavy loads. Due to the rigid requirements for its strength, stiffness and fatigue life, 

mechanical property of the front axle must be strictly tested before the mass 

production [Lu et al. (2012)]. Variance can act as an important index to measure the 

robustness of the front axle, considering the uncertainty existing in the structure. The 

I-beam structure is widely used in the design of front axle due to its high bending 

strength and light weight. Consider the I-beam structure shown in Figure 1. The 

maximum normal stress and shear stress are / xM W   and /T W   respectively, 

where M is the bending moment, T is the torque, xW  and W  are the sectional 

factor and polar sectional factor given as 

 
3

3 3( 2 )
( 2 )

6 6
x

a h t b
W h h t

h h


        (36) 

 2 30.8 0.4 ( 2 ) /W bt a h t t
       (37) 

 

Consider the static strength of the front axle, the performance function can be thus 

established as 

 2 23sg        (38) 

where s  is the yielding stress, and s =460 MPa according to the material property. 

In the real engineering, uncertainty is unavoidable in the manufacture process, and 

randomness exists in the external loads. In this example, the geometry parameters of 

the I-beam, i.e. a, b, t, m, and the loads M and T are taken as random variables. The 
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probability distribution information is given in Table 1.  

 

  
a

b

t

h

 

Figure 1. Sketch of the automobile front axle 

 

Table 1. Distribution information of the inputs for the I-beam 

Input (unit) Distribution type Mean Standard deviation 

a (mm) Normal  12 0.06 

b (mm) Normal 65 0.325 

t (mm) Normal 14 0.07 

h (mm) Normal  85 0.425 

M (N·mm) Normal 3.5×106 1.75×104 

T (N·mm) Normal 3.1×106 1.55×104 

 

By the above illustration, we may get the impression that the nonlinearity of the 

performance function is high, thus the interaction effect on the output variance should 

be noticeable. However, conclusions might be different if we perform the quantitative 

sensitivity analysis. First, consider the contribution of the inputs to the output 

variance under the assumption that the inputs are independent from each other. The 

results obtained by the proposed method and MCS are reported in Table 2. 

 

When the inputs are independent, a total of 451 runs of the performance function are 

needed by the proposed method, and comparison with MCS shows the accuracy of 

the proposed method is acceptable. Another important feature in the sensitivity results 

is that, for each input, the main effect index is very close to the total effect index. It 

indicates the effect of interactions between inputs on the output variance is negligible, 

despite of the nonlinearity of the performance function. The independent inputs can 

be ranked as {t, T, b, a, h, M} in the descending order according to their contributions 

to the output variance.  

 

Table 2 Sensitivity indices of the independent inputs for the I-beam 

  a b t h M T 

M

iS  
Proposed method 0.112 0.171 0.418 0.033 0.0001 0.265 

MCS 0.115 0.172 0.410 0.032 0.0004 0.262 

T

iS  
Proposed method 0.113 0.171 0.418 0.033 0.0001 0.265 

MCS 0.117 0.171 0.417 0.033 0.0001 0.269 

 

As a matter of fact, in the real engineering it is inappropriate to assume the 

independence among the inputs. In most cases, one input is probably correlated to 

another, and such correlation may have notable effect on the output performance. 

Now consider the sensitivity analysis on the I-beam structure under the assumption of 
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input correlation. Assume 0.3ab   , 0.3th   , and 0.4MT  . Since interactions 

between the inputs have little effect on the output variance, thus only the main effect 

index is estimated and decomposed by the proposed method, and shown in Figure 2. 

 

The sensitivity analysis results in Figure 2 can provide helpful interpretations of the 

model. Still, the input t and T contribute the most to the output variance, as is the case 

when the inputs are independent. Thus, these two inputs should be carefully 

controlled if we want to reduce the output variation, especially the former one. 

Besides, M becomes more important than h after the correlation is introduced. It can 

also be noticed that the contributions of the correlated part by the first four inputs are 

negative, which is caused by the negative correlation coefficient. In this example, the 

inputs can be seen as independent pairs of dependent variables, e.g. the input a is only 

correlated to b and independent from the rest. As a result, the correlated contributions 

of two correlated inputs are equal, e.g. MC MC

a bS S . From Figure 2 it can be clearly 

seen that correlated part of the inputs plays an important role in contributing to the 

output variance, sometimes even more significant than the uncorrelated part. With the 

proposed method, more information has been explored, which can be referred to by 

analysts to improve the model performance.  
M

iS

MC

iS

MU

iS

a b t h M T

 

Figure 2 Sensitivity indices of the correlated inputs for the I-beam 

 

5. Conclusions 

In this work, application of the SGI technique to the global sensitivity analysis is 

discussed. Sensitivity analysis under the case of independent variables is much 

different from that of correlated variables, as in the latter case both the computation 

and interpretation are more complicated. When the variables are independent, both 

the main effect index and total effect index can be estimated by the two-stage use of 

the SGI technique. The whole procedure is considerably clear and simple. When it 

comes to the correlated variables, necessary steps need to be taken before the 

sensitivity results can be obtained. The whole procedure can be generalized as 

follows: (1) estimate the output variance with the SGI technique, (2) orthogonalize 

the correlated variables to independent variables, (3) estimate the statistical 

information of the independent variables by SGI, as well as the mapping between 

these new variables and the output, and (4) perform the sensitivity analysis with the 

SGI technique for the new performance function and independent variables. The 

sensitivity results are then used to interpret the contributions of the original correlated 
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variables to the output variance. The proposed method inherits the merits of the SGI 

technique, and can estimate the integrals involved in the sensitivity analysis with 

acceptable accuracy, while keeping the computational burden under control. 

Applications to the examples have shown that the proposed method can be seen as a 

viable choice for sensitivity analysis of engineering models.  
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