ICCM2015, 14-17" July, Auckland, NZ

Global sensitivity analysis for structural models by
sparse grid integration

tZhou Changcong, Zhang Feng, and Wang Wenxuan
School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University,
Xi’an, China

tCorresponding author: zccput@163.com

Abstract

Global sensitivity indices based on variance can effectively apportion the output
uncertainty to the inputs. How to efficiently and accurately perform the global
sensitivity analysis is of great concern for researchers. In this work, the employment
of sparse grid integration to the estimate of global sensitivity indices is discussed. The
new method can be used for sensitivity analysis of the structural models involving
independent variables or correlated variables, and can further decompose the variance
contribution in the correlation cases. Advantage of the sparse grid integration in
estimating integrals is well inherited by the new method, to ensure the accuracy while
keeping the computational burden controllable. Numerical and engineering examples
have been studied to test the applicability of the proposed method.
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1. Introduction

Global sensitivity indices are playing an important role in identifying and
representing uncertainties in engineering, and many researchers have proposed their
own indices, as well as corresponding computing techniques [Borgonovo (2007);
Sobol (2001)]. Among these different indices, the variance based ones have attracted
increasing interests as they are able to capture the influence of the full range of
variation of each input factor, and reflect the interaction effects among input factors.
Variance based sensitivity analysis has been acknowledged as a versatile and effective
tool in the uncertainty analysis.

In the real world, input factors of a model are often correlated to each other, and
sometimes the correlation may have significant impacts on the sensitivity results
[Borgonovo and Tarantola (2008); Kucherenko et al. (2012); Mara (2009)]. Xu and
Gertner (2008) pointed out that the contribution of uncertainty to the output by an
individual input factor should be decomposed into two parts: the uncorrelated part,
which means this part is completely immune from the other input factors and is
produced by this input factor “individually and independently”, and the correlated
part, which means this part is produced by the correlation of this input variable with
the others. Mara and Tarantola (2012) proposed a set of variance-based sensitivity
indices to perform sensitivity analysis of models with correlated inputs, which can
distinguish between the mutual dependent contribution and the independent
contribution of an input to the model response variance.

An important task in the sensitivity analysis is to improve the computational
efficiency, especially in engineering cases where the models involved usually take a
long processing time [Saltelli et al. (2010)]. It is found that the variance based
sensitivity indices can be viewed as nested expressions of expectation operator and
variance operator. Enlightened by this feature, in this work a new method is



developed for global sensitivity analysis by using the sparse grid integration (SGI)
technique. The sparse grid technique, which is based on one-dimensional formulae
and then extended to higher dimensions, has been extensively utilized for highly
dimensional multivariate integration, as well as interpolation [Barthelmann et al.
(2000); Gerstner and Griebel (2003); Gerstner and Griebel (1998); Smolyak (1963)].
To a certain extent, this technique avoids the “curse of dimension” of conventional
integration algorithms, which means the computational cost grows exponentially with
the dimension of the problem. In the SGI technique, multivariate quadrature formulae
are constructed with combinations of tensor products of suitable one-dimensional
formulae, thus the function evaluations needed and the numerical accuracy become
independent of the dimension of the problem up to logarithmic factors. Existing
literature has reported the high efficiency and accuracy of sparse grid applications.

2. Review on variance based sensitivity indices
2.1 Sensitivity analysis of model output with independent inputs

Let Y =9(X) be the performance function of the model under investigation, with Y
the output, X =(X,,X,,...,X,)" the vector of independent input variables, where X,

is the ith variable. Sobol (2001) proposed that the performance function can always
be decomposed into summands of different dimensions, that is

g(X)=g, +zn:gi(xi)+zn:gi'j(xi,Xj)+m+ Oro n (X X0 X)) (1)

i1 oy

Sensitivity analysis based on variance is to quantify the contribution of an individual
input variable to the output variance, and Sobol proposed the variance decomposition
equation based on Eq.(1),

VIY)=DVi+ D V4V, ()
i=1 i=1, j>i
V; is the first order variance contribution of X, and can be formulated as
Vi =V, (Ex (Y [X,)) (3)
where X, denotes the wvector of all input variables except X, , i.e.

X=Xy X1y Xiir-- 5 X,)'. Vi and higher order variance terms in Eq.(2) denote
the contribution to the output variance of variable interaction brought by the form of
the performance function. When only the first order variance contribution is
considered, the variance decomposition can be reformulated as

V=3V, @)

The first order variance contribution V, is also referred to as the main effect of X,
on the output variance, and it measures the first order effect of X, on the output,
ignoring the interactions between X; and the other variables. When taking the
interactions into consideration, the total contribution of X; is measured by
E., V(Y[ X)) . According to the known identity:

Vi, (B, (Y I XS) + By (Vg (Y [ X)) =V(Y) (5)
Vi (Ex (Y1 X)) can be seen as the first order effect of X, thus V(Y) minus
Vi (B, (YIX3)) should give the contribution of all terms in the variance



decomposition which includes X;.

To normalize the variance contribution, the main effect index is defined as [Saltelli et
al. (2010)]

v Vx (Ex (Y]X)

' V(Y)
and the total effect index is defined as

ST Ex, Vi, (Y X))

' V(Y)

2.2 Sensitivity analysis of model output with correlated inputs

(6)

()

The variance decomposition in Eq.(2) is proposed under the assumption of input
independence, which thus means it may not hold when the input variables are
correlated. For correlated variables, the main effect index and total effect index still
reflect the variance contribution of variables, yet the difference from the
independence case lies in that both indices are now composed by two parts. Take V,
for example, according to Xu and Gertner (2008), it can be divided into two parts, i.e.
the variance contribution of the uncorrelated part of X;, denoted by V,”, and the

variance contribution of the correlated part with the other variables, denoted by V,°.
It should be pointed out that the variance contribution of the correlated part of X, is

way different from the interaction contribution of X; to the output variance. These
two are absolutely different concepts, as the former comes from the correlation
among the input variables, and the latter is produced by variable interactions in the
performance function.

Thus, the main effect index, S, can be decomposed in the following way,

SiM :SiMC +SiMU (8)
where S“¢ denotes the correlated main contribution of X; to the output variance,
and S™ denotes the uncorrelated main contribution. Similarly, the total effect index,
S, can be decomposed as

ST =S/ +5" 9)
where S/ denotes the correlated total contribution of X, to the output variance,
and S™ denotes the uncorrelated total contribution.

In fact, in the existing literature measuring the contributions of inputs to the output
variance for cases involving correlated inputs is still a tricky issue. Researchers have
proposed different variance based sensitivity indices based on different considerations,
and it is difficult to judge which one is better. Agreement is highly needed to give an
exact and unambiguous definition of the ANOVA for correlated inputs just as the one
provided by Sobol decomposition when the inputs are independent. In this work, the
sensitivity indices talked about are related to those in the work of Mara and Tarantola
(2012).

3. Variance based sensitivity analysis with SGI

The SGI technique has been proven to be an effective tool in the uncertainty analysis,
and it will be employed to perform the variance based sensitivity in this section. It



should be pointed out that normally the SGI procedure is carried out in the
independent space, which means it cannot be directly used when input variables are
correlated. In this section, the procedure using SGI for sensitivity analysis of models
with independent variables is first introduced. Afterwards, the use of SGI for variance
based sensitivity analysis with correlated variables is discussed, which is partly based
on the work of Mara and Tarantola (2012).

3.1 Algorithm based on SGI for sensitivity analysis of independent variables

For the performance function Y =9(X) with independent variables, the expectation
and variance of the output can be estimated by SGI according to the following

formulae,
P

E(Y)=J'g(x)fx(x)dXzZng(Xj) (10)
V(Y) :j(g(x)— E(Y))* fy (x) dx ~ in(g(Xj)— E(Y))’ (11)

where the n-dimension quadrature point X; and the associated weight W;

(J=12,...,p) are obtained by the Smolyak algorithm [Gerstner and Griebel (2003);
Gerstner and Griebel (1998)].

With the output variance obtained, Vy (Ex (Y|X)) and Ex, (V« (Y|X.)), both of
which can be seen as nested expressions of expectation operator and variance
operator, need to be estimated to get the indices S" and S/.

Consider Vx (Ex (Y |X;)) first. Keep X, fixed, and treat X_; as variables, then Y

can be seen as the function of X_;. The inner expectation can be estimated by SGI as
follows,

e 01X) =006, %) b ()0, ~ S wig (), x) (12)

where x' denotes the j-th value of X_,. Apparently E, (Y |X;) can be seen as a
univariate function of X, , and is redefined as

(X)) = Ex,i Y X)) (13)
Thus,
Vi (Ex_ (Y1 X)) =V (o(X))) (14)
The variance of the univariate function ¢(X;) can be estimated by SGI as follows,
V(@(X,) = [ (@(%) — E(@(x)* fy, () dx = iw,— (9(x) — E(@(X,)))? (15)
where
Ep(X)) = [p00) T, (x) d = Y g () (16)

Finally, the main effect index can be obtained as
oM _ Vi B (VTXD) _ V((X)
' V(Y) V(Y)
The total effect index S| can be obtained in the similar manner.

(17)

3.2 Algorithm based on SGI for sensitivity analysis of correlated variables

When the input variables are correlated, the algorithm based on SGI in Section 3.1 is
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no longer applicable. In this section, the SGI technique is extended to the case of
correlated variables to perform the variance based sensitivity analysis. In this work,
the correlation matrix, which is a symmetric matrix composed of Pearson correlation
coefficients, is adopted to measure the correlation between random variables.

3.2.1 Estimate of the response variance

Eq.(10) and Eq.(11) in Section 3.1 can be used to estimate the expectation and
variance of the model output only when the variables are independent. Thus, for
correlated variables there has to be a transformation from correlation space to
independence space. In this work, we only consider the problems with normal

distributions, i.e. X; ~N(uy 0% ).

The covariance matrix of X =(X,,X,,...,X,)" is denoted as

oy, Cov(X,, X,) - Cov(Xy,X,)
Cov(X,, X,) o o Cov(X,,X,)
= S (18)
Cov(X,,X,) Cov(X,,X,) - oy

where Cov(X;,X;)=Cov(X;,X;)=pjox0x , as p; is the Pearson correlation
coefficient of X; and X;.The joint PDF of X is

£(X)=(27) 2 [cy| 2 exp{—%(x — i) CH(X — )} (19)

where #y =(uy 1y, 11 )" is the vector of input expectations, [Cx| and C;' are
the determinant value and reverse matrix of C, respectively.

An orthogonal matrix A exists which would introduce random variable vector
U=U,U,,...,U)" by the following formula [Shi et al. (2009)]:

n

F(AU + ) = (27) 2 (By - ) 2 eXp(—%Zli—‘) (20)

where A4.,4,,...,4, isthe latent roots of C, .

Thus the n-dimension correlated input variables X =(X,X,,....,X,)" can be
transformed to independent normal variables U =(U,,U,,...,U,)" by

U=A"(X-puy) (21)
where the column vectors of A are the latent root vectors of C, , and the

probability distribution of the independent normal variables can be obtained as
U, ~N(0,4).

By Eq.(21), we further get

X =AU + p, (22)
Substitute Eq.(22) into Y =9(X), the performance function in the independence
space can be obtained as follows,

Y =g(X)=¢(U) (23)
where ¢(e) denotes the mapping relationship between U and the output. Because
distribution parameters of U in the dependence space have been obtained, the
expectation and variance of the model output can be readily estimated by Eq.(10) and



Eq.(11).

3.2.2 Orthogonalization of correlated variables

For two normal variables, X, and X;, E(X;|X;) can be used to define the
marginal relationship between them. The value of E(X;[X;) measures how much
X, is correlated to X;, and equals E(X;) when the two variables are independent.

In the same manner, E(X;|X;,X,) defines the correlation of X, to X; and X,.

Mara and Tarantola declared that for non-normal random variables, higher conditional
moments are needed to characterize the correlation between the variables. Issues
concerning correlated non-normal variables would become much complicated in most
cases. In this work, the scope of research is confined to problems only involving
normally distributed variables.

For a vector of correlated normal variables, X =(X,,X,,...,X,)", the following
relationship holds,

£ (X Xy X )= F X)) F (K, | X)) F (K| Xy Xy X ) (24)
where f(X,,X,,...X,) is the joint PDF, f(X,) is the marginal PDF of X,
f(X,|X,) is the marginal PDF of X, conditioned on X,, f(X,|X,X,,..X ) is
the marginal PDF of X, conditioned on (X, X,,...X,,)". As we have talked about,
E(X;1X;) can quantify the marginal relationship between two correlated normal
variables, thus the following equations hold,

X, =X,

>Z2 =X, =X, - E(Xz | xl)

X3:X3-12 =X3—E(X3|X1,X2) (25)
>Zn = Xn—lz...(n—l) = ><n - E(Xn | Xl' XZ""' anl)

Mara and Tarantola (2012) pointed out that the above transformation is one of
Rosenblatt’s for normal variables. A new set of variables (X,,X,,..,X,)" can be

generated by the above transformation. In fact, these new variables are obtained by
subtracting the correlation part from the original correlated variables, thus the new
variables are independent from each other.

Besides, the orthogonalization from correlated variables to independent ones is not
unique. This can be seen from the transformation in Eq.(25), which clearly depends
on the ordering of variables. If we reorder the original input variables as
X =(X,,....X,,X,), which is valid except the corresponding correlation matrix needs
to be modified accordingly, and apply the orthogonalization, a new set of independent
variables will be obtained and denoted as (X,,..., X,,X,). It should be reminded that
(X5, X,, X,) is different from (X, X,,..., X,) initially obtained by orthogonalizing
(X1, X5,....X,). In fact, through changing the ordering of the original correlated

variables in sequence, a total of n! sets of independent variables can be generated
by the orthogonalization. However, among all these sets, only a total of n sets

generated by cycling the orthogonalization are used in this work, i.e. (X, X,,...,X,),
(Koo Xy X)) ey (Koo X 50 X ).
3.2.3 Interpretations on sensitivity indices of the newly independent variables



It is necessary to find out the relationship between the sensitivity indices of the
independent variables and those of correlated ones. Let us focus on the main effect
index first, which is denoted as

SM =VIE(Y [ X)I/V(Y)
S =VIE(Y | X,)I/V(Y)
S;" =VIE(Y [ X)]/V(Y) (26)
S =VIE(Y | X)1/V(Y)

n

Now consider the explanation of the sensitivity indices. Because X,=X,, S is the
full marginal contribution of X, to the response variance, which means S =S".
S is the marginal contribution of X, to the response variance without its
correlative contribution with X,, as X, is uncorrelated with X,. In the same
manner, S)* is the marginal contribution of X, to the response variance without its
correlative contribution with (X, X,)". For the last new variable X, , SM is the
uncorrelated marginal contribution to the response variance, which means S =S .
X, keeps all the information concerning X, including its correlated part with the

other variables while X, only keeps the independent part of X, excluding all of its
correlated part.

Clearly, by the variance based sensitivity analysis on (X,,X,,..,X,)", the main effect

index of X, i.e. S, as well as the uncorrelated main effect index of X,,i.e. S,

can be obtained. Remember that a total of n sets of independent variables can be
generated by orthogonalizing the original correlated variables in cycle. In the same

way of obtaining S and S, the indices S)' and S* can be obtained by the
sensitivity analysis on (X,,..,X,,X,). Change the order of the original correlated

variables, and perform orthogonalization to get the corresponding independent
variables, which is further analyzed to get the sensitivity indices, the full and
uncorrelated contributions of each correlated variable can be obtained. Similarly, the

total effect index S/ of the correlated inputs can be thus estimated and decomposed.

3.2.4 Computational issues
In this section, the computational issues involved in the procedure of sensitivity

analysis are addressed. Still, we take the analysis on (X,,X,,..,X,)" as an example.
To analyze the sensitivity indices on (X, X,,..,X,)" , firstly the statistical
characteristics have to be known.

By Eq.(25) we know the mean value and standard deviation of X, are equal to those
of X,.For the ith (i>1) variable, the following equation holds according to Eq.(25),

>zi =X - E(Xi | Xis Kgreens Xi—l) (27)
Only the first i variables are involved in Eq.(27), i.e. X, =(X;,X,,..,X;)", of which
the mean vector is sy, = (s 4,4 )", and the corresponding covariance matrix
can be taken from Eq.(18) as



oy, Cov(X,, X,) -+ Cov(X,,X,)

| Cov(X,, X,) oy, o Cov(X,, X,) (28)

X

Cov(X;,X,) Cov(X;,X,) - oL

Now consider the conditional mean value in EQ.(27), E(X;|X.,X,,...X;;). The mean

) . . Hy,
vector and covariance matrix for X_; can be rewritten as 4y { :l and
Xi(i-1)

Cxixi Cxixum)
Cy., = c , Where

Xi~(i-1) X X1~ (i-1) X1~(i-1)

C><i><i :O->2<i (29)
C;HH)XI =Coxern =[Cov(X;,X,) Cov(X;,X,) --- Cov(X;, X;,)] (30)
oy, Cov(X,, X,) = Cov(X,,X;,)
Cov(X,, X,) oy, o Cov(X,, X, y)
X1~(i71)><1~(|71) = (31)
Cov(X; 4, X;) Cov(X;,,X,) - O_>2<,,1

The conditional distribution of X; conditioned on (X,,X,,... X; ;)" is still a normal
distribution, and its mean value can be calculated in the following way [Shi et al.
(2009)],

E(Xi [ Xy, Xp0e, X)) = Hy, + Cxixl.(i,l)C;é_(i,l)xl_“,l) (X1~(i—1) - /‘xHH)) (32)

From the above equation, it can be seen that E(X;|X,,X,,..,X,;) is in fact an
expression containing the first (i-1) variables. Substitute Eq.(32) into Eq.(27), we can
get an expression containing the first i variables. In other words, X, can be viewed
as a function of the first i correlated variables, of which the expression can be
explicitly obtained. In the same way in Section 3.2.1, the mean value and standard
deviation of X, can be conveniently obtained using the SGI technique, which are

denoted as 4y and ox , respectively. After obtaining the mean and standard
deviation of the independent variables, the sensitivity analysis still cannot be
performed immediately, as the original performance function is a mapping of the
output response with the original correlated variables, not with the new independent
ones. Thus the performance function has to be rebuilt to describe the relationship
between the output response and the new independent variables.

From Eq.(25), the following relationship holds,
X, =X,

+E(X; [ Xy)
+E(X, | X;, X,) (33)

XZ >Z2
X, Xa

X, =X, +E(X, | Xy, Xy X, )



As discussed above, E(X,|X,) isan expression only containing X,. Now substitute
X, =X, into E(X,|X,), then X, can be transformed into an expression only
containing X, and X,. Similarly, substitute the expression of X, and X, into
E(X;| X, X,), then X, can be transformed into an expression only containing X,
X, and X,. Repeat this process, the expression for X, can be finally obtained,
which should only involve (X, X,,..., X,)". This process can be denoted as

X, = B(X,)

X, = B,(X,)

X, =B, (X, X5, X5) (34)

in which g denotes a mapping relationship.

Substitute EQ.(34) into the original performance function, a new performance
function between the output response and the new independent variables can be
obtained, which is denoted as

Y =g(X,, X,,0, X)) (35)

According to the previous discussions, variance based sensitivity analysis can be
easily performed for the performance function in Eq.(35). The sensitivity indices thus
obtained are then used to interpret the main effect index, total effect index, as well as
the decompositions, for the original correlated variables according to Section 3.2.3.

4. An automobile front axle
In the automobile engineering, the front axle is an important component that bears
heavy loads. Due to the rigid requirements for its strength, stiffness and fatigue life,
mechanical property of the front axle must be strictly tested before the mass
production [Lu et al. (2012)]. Variance can act as an important index to measure the
robustness of the front axle, considering the uncertainty existing in the structure. The
I-beam structure is widely used in the design of front axle due to its high bending
strength and light weight. Consider the I-beam structure shown in Figure 1. The
maximum normal stress and shear stress are o=M /W, and 7=T/W, respectively,
where M is the bending moment, T is the torque, W, and W, are the sectional
factor and polar sectional factor given as
a(h_zt)3 b 3 3
W =" — | h—(h-2t 36
= el (207 (36)

W, =0.80t* +0.4[ a’(h—2t) /] (37)

Consider the static strength of the front axle, the performance function can be thus

established as
g=0,—\o’ +37° (38)

where o, is the yielding stress, and o,=460 MPa according to the material property.
In the real engineering, uncertainty is unavoidable in the manufacture process, and
randomness exists in the external loads. In this example, the geometry parameters of
the I-beam, i.e. a, b, t, m, and the loads M and T are taken as random variables. The



probability distribution information is given in Table 1.

b

d

A

Figure 1. Sketch of the automobile front axle

Table 1. Distribution information of the inputs for the I-beam
Input (unit) Distribution type Mean  Standard deviation

a (mm) Normal 12 0.06

b (mm) Normal 65 0.325

t (mm) Normal 14 0.07

h (mm) Normal 85 0.425

M (N-mm) Normal 3.5%10° 1.75x10*
T(Nmm) Normal 3.1x10° 1.55x10*

By the above illustration, we may get the impression that the nonlinearity of the
performance function is high, thus the interaction effect on the output variance should
be noticeable. However, conclusions might be different if we perform the quantitative
sensitivity analysis. First, consider the contribution of the inputs to the output
variance under the assumption that the inputs are independent from each other. The
results obtained by the proposed method and MCS are reported in Table 2.

When the inputs are independent, a total of 451 runs of the performance function are
needed by the proposed method, and comparison with MCS shows the accuracy of
the proposed method is acceptable. Another important feature in the sensitivity results
is that, for each input, the main effect index is very close to the total effect index. It
indicates the effect of interactions between inputs on the output variance is negligible,
despite of the nonlinearity of the performance function. The independent inputs can
be ranked as {t, T, b, a, h, M} in the descending order according to their contributions
to the output variance.

Table 2 Sensitivity indices of the independent inputs for the I1-beam

a b t h M T
oM Proposed method 0.112 0.171 0.418 0.033 0.0001 0.265
' MCS 0.115 0.172 0.410 0.032 0.0004 0.262
g7 Proposed method 0.113 0.171 0.418 0.033 0.0001 0.265
' MCS 0.117 0.171 0.417 0.033 0.0001 0.269

As a matter of fact, in the real engineering it is inappropriate to assume the
independence among the inputs. In most cases, one input is probably correlated to
another, and such correlation may have notable effect on the output performance.
Now consider the sensitivity analysis on the I-beam structure under the assumption of
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input correlation. Assume p,, =-03, p,=-03, and p,; =04. Since interactions
between the inputs have little effect on the output variance, thus only the main effect
index is estimated and decomposed by the proposed method, and shown in Figure 2.

The sensitivity analysis results in Figure 2 can provide helpful interpretations of the
model. Still, the input t and T contribute the most to the output variance, as is the case
when the inputs are independent. Thus, these two inputs should be carefully
controlled if we want to reduce the output variation, especially the former one.
Besides, M becomes more important than h after the correlation is introduced. It can
also be noticed that the contributions of the correlated part by the first four inputs are
negative, which is caused by the negative correlation coefficient. In this example, the
inputs can be seen as independent pairs of dependent variables, e.g. the input a is only
correlated to b and independent from the rest. As a result, the correlated contributions

of two correlated inputs are equal, e.g. SM =SM. From Figure 2 it can be clearly

seen that correlated part of the inputs plays an important role in contributing to the
output variance, sometimes even more significant than the uncorrelated part. With the
proposed method, more information has been explored, which can be referred to by
analysts to improve the model performance.

05 = SiM

— S<MU

n S-MC

-‘hl_lI-L

Figure 2 Sensitivity indices of the correlated inputs for the 1-beam
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5. Conclusions

In this work, application of the SGI technique to the global sensitivity analysis is
discussed. Sensitivity analysis under the case of independent variables is much
different from that of correlated variables, as in the latter case both the computation
and interpretation are more complicated. When the variables are independent, both
the main effect index and total effect index can be estimated by the two-stage use of
the SGI technique. The whole procedure is considerably clear and simple. When it
comes to the correlated variables, necessary steps need to be taken before the
sensitivity results can be obtained. The whole procedure can be generalized as
follows: (1) estimate the output variance with the SGI technique, (2) orthogonalize
the correlated variables to independent variables, (3) estimate the statistical
information of the independent variables by SGI, as well as the mapping between
these new variables and the output, and (4) perform the sensitivity analysis with the
SGI technique for the new performance function and independent variables. The
sensitivity results are then used to interpret the contributions of the original correlated
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variables to the output variance. The proposed method inherits the merits of the SGI
technique, and can estimate the integrals involved in the sensitivity analysis with
acceptable accuracy, while keeping the computational burden under control.
Applications to the examples have shown that the proposed method can be seen as a
viable choice for sensitivity analysis of engineering models.
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