Finite element modeling of the AFM indentation response of two-dimensional material with a soft substrate

*Guoxin Cao¹ and Lixin Zhou²

¹Department of Mechanics & Engineering Science, Peking University, Beijing, 100871, China

²School of Physics, Peking University, Beijing, 100871, China

*Presenting author: caogx@pku.edu.cn

Abstract

Based on finite element modeling (FEM), the indentation response of graphene with

soft substrate is investigated. The effects of the electric modulus ratio between

graphene sheet and substrate (E_f/E_s) , the thickness of graphene sheet and the indenter

tip size on the indentation response are considered. Both substrate and graphene sheet

are firstly simplified as linear elastic materials, the contribution of the graphene sheet

to the overall indentation modulus of graphene/substrate is identified, and then the

relationship between the overall modulus (E_{tot}) , the substrate modulus (E_s) and the

elastic modulus (E_f) of graphene is built, based on which the elastic modulus of

graphene can be determined. In addition, after considering the viscoelastic model for

the substrate and the nonlinear elastic model for the graphene sheet, the indentation

response of graphene/substrate is reanalyzed and the contribution of E_f to the E_{tot} is

reevaluated. The present work can provide a useful guideline to understand the

mechanical property of graphene.

Key Words: Finite element modelling, indentation, mechanical properties of

graphene