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Abstract

A Kriging based genetic algorithm (GA) was employed to optimize
the parameters of the operating conditions of plasma actuators (PAs).
In this study, the multi-objective problem around a circular cylinder
was considered. The objective functions are the lift maximization and
the drag minimization. Two PAs were installed on the upper and the
lower side of the cylinder. This problem was similar to the airfoil de-
sign, because the circular has potential to work as airfoil due to the
control of flow circulation by the PAs with four design parameters.
The aerodynamic performance was assessed by wind tunnel testing to
overcome the disadvantages of time-consuming numerical simulations.
The developed optimization system explores the optimum waveform of
parameters for AC voltage by changing the waveform automatically.
Based on these results, optimum designs and global design information
were obtained while drastically reducing the number of experiments re-
quired compared to a full factorial experiment. An analysis of variance
and a scatter plot matrix were introduced for design knowledge discov-
ery. According to the discovered design knowledge, it was found that
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duty ratios for two PAs are an important parameter to create lift while
reducing drag.

Keyword: Plasma actuator; Genetic algorithm; Efficient global optimization;
Experimental evaluation.

1 Introduction

Plasma actuators (PAs, shown in Fig. 1) are flow control devices that utilize
atmospheric pressure discharge [7][8]; they have gained attention in recent
years, because their advantages of being fully electronically driven with no
moving parts and having a simple structure and a fast response are poten-
tially ideal for application to subsonic flow control.

Such active flow control devices have potential to control of the circula-
tion around arbitrary objects and produce the lift-creating object even if it
is not airfoil geometry.

In this study, the design problem is defined as the optimization of lift
creation and drag reduction via flow circulation controlled by the PAs. A
circular cylinder model is used as a model and two PAs are installed. Thus,
the objective functions considered in this paper are the maximizing lift and
the minimizing drag around the circular cylinder. A multi-objective ge-
netic algorithm (MOGA )-based efficient design technique was employed with
wind tunnel testing to efficiently find the optimum designs. Through the
design case, the applicability of the present wind tunnel testing to the multi-
objective/ multi-parameter design problem was also investigated.

Design problems are often solved by GAs based on numerical simulation,
such as computational fluid dynamics (CFD) [5]. However, there are several
difficulties with solving the flow field around PAs. First, the accuracy of
existing simulation methods is still insufficient. Second, the computational
cost is very high for design techniques such as GAs. Several days are needed
to acquire the results for each case, whereas the actual flow physics finishes
in a few seconds.

In MOGA based efficient design technique, Kriging surrogate model was
applied to represent the input/output relationship in the experimental data
to reduce the experimental cost. This optimization technique, which is called
efficient global optimization (EGO) [1][3|[4], enables the optimization of
global parameters in a small number of experiments while simultaneously
obtaining information on the design space. The EGO based on Kriging sur-
rogate model can find efficiently near-global optimum. In this study, Krig-
ing surrogate model based GA performs optimization during a wind tunnel



experiment in real time. The design system is automated developing the
interface between the optimization and the wind tunnel testing.
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Figure 1: Schematic of plasma actuator.

2 Overview of Active Flow Control by Means of
Plasma Actuator

In this research, a PA consisting of an exposed electrode and insulated elec-
trode was used. A nonconductor was placed between the two electrodes, and
AC voltage was applied. Fig. 1 shows the setup; this type of PA is called a
single dielectric barrier discharge (SDBA) PA. The flow around the PA can
be controlled by changing the number and location of PAs and the wave-
form of the AC voltage. Thus, the optimal technique for solving the design
problem has to handle many parameters to acquire the best flow control.
Generic home-style AC voltage has a waveform with a constant frequency.
However, several studies have reported that pulse width modulation (PWM)
is effective for flow control of PAs. PWM is a drive system that turns the AC
voltage on or off, as shown in Fig. 2. The frequency of on/off is defined as
the "modulation frequency" (fmoq) and is expressed by following equation:

fod = 7= H2 )
where T7 is the time of one cycle and T5 is the time the AC voltage is on.
The ratio of T5 to 17 is defined as the duty ratio, which is an important
parameter for PWM. The duty ratio (Dcycle) is expressed by the following
equation:

Dcycle =100+ [%] (2)
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Figure 2: Power supply by means of pulse width modulation (PWM).

3 Design Method: Efficient Global Optimization

3.1 Efficient Global Optimization (EGO)

The optimization procedure (Fig. 4) for PA design consists of the following
steps. First, N design samples are selected by Latin hypercube sampling
(LHS) [1]]3][4][6], which is a space filling method, and then assessed for the
construction of an initial Kriging surrogate model. Second, an additional
design sample is added, and the design accuracy is improved by constructing
a Kriging model based on all N +1 samples. Note that the additional sample
is selected by using expected improvement (EI) maximization [1][3][4]|6]. GA
is applied to solve this maximization problem. This process is iterated until
the improvement of the objective functions becomes negligible. Through
the design procedure proposed in this paper, all samples are evaluated by
the wind tunnel testing. Each technique of the optimization procedure is
described in detail in the following sections.

3.1.1 Kriging Model

The Kriging models express the value y(x;) at the unknown design point x;
as

y(x) =p+e(x;) (1=1,2,...,m) (3)

where m is the number of design variables, p is a constant of the global
model, and e(z;) represents a local deviation from the global model. The
correlation between e(x;) and €(x;) is strongly related to the distance be-
tween the corresponding points, x; and z;. In the Kriging models, the local
deviation at an unknown point z is expressed using stochastic processes.
Specifically, a number of design points are calculated as sample points and



then interpolated using a Gaussian random function as the correlation func-
tion to estimate the trend of the stochastic process.

3.1.2 Expected Improvement

Once the models are constructed, the optimum point can be explored using
an arbitrary optimizer. However, it is possible to miss the global optimum
design, because the approximate model includes uncertainty. Therefore, this
study introduced EI values as the criterion. This study solve the lift max-
imization problem, then EI for maximization problem can be calculated as
follows:

EI(@)] = (fnax — ) ® (fm—y> L s (fm—y> "
EI for maximization problem can be calculated as follows:
B[I(x)] = (§ = fmin) ® <y_jm> + s <y—jmn> )

where fiax and fuin are the maximum and the minimum values among
sample points, respectively. s is root mean square error (RMSE) and g is
the value predicted by Eq. 3 at an unknown point x. ® and ¢ are the
standard distribution and normal density, respectively. EI considers the
predicted function value and its uncertainty, simultaneously. Therefore, by
selecting the point where EI takes the maximum value, as the additional
sample point, robust exploration of the global optimum and improvement
of the model can be achieved simultaneously as shown in Fig. 4 because
this point has a somewhat large probability to become the global optimum.
In this study, the maximization of EI is carried out using GA expressed as
following section.

3.1.3 Genetic Algorithm

GAs (Fig. 5(a)) was first proposed by Holland in the early 1970s [2] and
are based on the evolution of living organisms with regard to adaptation
to the environment and the passing on of genetic information to the next
generation. GAs can find a global optimum because they do not use function
gradients, which often lead to an exact local optimum. Thus, GA is a robust
and effective method that can handle highly nonlinear optimization problems
involving nondifferentiable objective functions. Owing to this advantage,
GAs were applied to this experimental system. The GA used in this study [5]



utilizes a real-coded representation, the blended crossover (BLX-«), and the
uniform mutation. The selection probability of individuals for the crossover
and mutation is expressed as follows:

prob = ¢(1 — ¢)rankl — 1.0 (6)

where rank is the value of fitness ranking among the population.

In BLX-q, children are generated in a range defined by the two parents
as shown in Fig. 5(b). The range is often extended equally on both sides as
determined by the parameter «.

3.2 Knowledge Discovery Techniques

3.2.1 Analysis of Variance (ANOVA)

In this study, Kriging model based ANOVA [4][1][3][6] is employed to inves-
tigate the effect of the design variables to objective functions. Varinace of
an surrogate model can be calaulated as,

:U’Z(xz) E//Q(!Tla 7$n)dxla"' 7dxi—17dxi+17"' 7dxn_u (7)

where the total mean p is calculated as

ME/"'/ﬁ(xh“-,fvn)dﬂch-'-,dxn (8)

The proportion of the variance attributed to the design variable x; to the
total variance of the model can be expressed as:

p= [ lpi(i))?de
e g - my) — p)?day - day,

The value obtained by Eq. (9) indicates the sensitivity of an objective func-
tion to the variance of a design variable.

9)

3.3 Scatter Plot Matrix (SPM)

The solution and the design space of the multivariable design problem ob-
tained by EGO are observed by the SPM [9] which is one of the data mining,
because the Kriging model cannot be visualized directly when the design
problem has over four attribute values. SPM arranges two-dimensional scat-
ter plots like a matrix among the objective functions and the design variables
and facilitates the investigation of the design problem investigation. Each of



the rows and columns is assigned attribute values such as design variables,
objective functions, and constraint values. The diagonal elements show mu-
tual same plots. Therefore, it can be said that the SPM shows scatter plots
on the upper triangular part of the matrix and the correlation coefficients
on the lower triangular part as additional information. modeFrontier™ver.
4. 4. 2 is employed in this study.
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4 Experimental Setup
4.1 Wind Tunnel and Model

The wind tunnel experiments were conducted in the subsonic closed-return
wind tunnel of the Aerodynamics Laboratory at Tottori University. The wind
tunnel has a closed test section with a 0.70 m x 1.0 m cross-section and 2.0 m
length (Fig. 6). A two-dimensional circular model (105 mm in diameter) was
used as shown in Fig. 7. Model was placed on a flat plate and mounted to
a support connected to a six-component external balance for measurement
of the aerodynamic forces and moments. The output of the balance was
amplified and acquired with a data acquisition board (National Instruments
PXI-8106). The output signal contains noise from the atmospheric discharge
of the plasma actuators. To eliminate this effect, the clean portion of the
signal, during which the discharge did not appear, was extracted and used
as a “clean” portion of the data.

4.2 PA and Its Power Supply

In this study, two PAs were installed on the surface of the model. PA#1
and PA#2 were installed with mount angles of #1 = 85.0° and 62 = —85.0°,
respectively, as shown in Fig. 7. The reference waveform of a high-voltage
AC input was amplified by a solid-state high-power amplifier; the input
power was increased up to 400.0 W with amplitude of 70.0 Vpp. A high-
voltage transformer was used to achieve an AC input with amplitude of up
to 30 kV at a frequency of 5.0-15.0 kHz. The voltage and current of the AC
input were monitored by an oscilloscope along with the reference waveform.

4.3 Integration of Experiment System

Figure 8 shows the schematic illustration of the developed system. EGO is
executed in the workstation and receives the experimental data via LabVIEW®)
from the balance in the wind tunnel. The condition of the AC voltage can
be automatically set during the optimization process based on balance mea-
surements.

5 Formulation

In this study, multi-objective/ multi-parameter design problem which has
four design variables was considered and the lift creation and drag reduction
effect due to circulation control by PAs was investigated. The objective



Figure 6: Test section of the wind tunnel.
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function was maximization of the lift coefficient (C1) and the minimization
of the drag coefficient (Cq)around the circular cylinder model. This design
problem can be expressed as follows:

Minimize Cy (10)

{ Maximize C)

The flow velocity was set to 10.0 m/s. Eq. 10 can be written for the present
design problem as follows:

Maximize Elc; = (Clypax — 3) ® (me—y) + s¢ (Lma"_y)

S S

Minimize FElog = (§ — Cdpin) (%) + s¢ (m

S

(11)
)

where Clyax and Cdyin are respectively the maximum C) and the minimum
C4q among sample point, respectively.

The design problem expressed in Eq. (10) was solved by changing four
parameters (fmod, Deyclel, Deycle2, @) related to the AC voltage waveform.
In this case, two PAs are applied different Dcyce; Deycler and Deyele2, for
each design and the difference between Dcycle1 and Deyele2 is decided by a
phase difference ¢. The design space is defined as follows:

30.0 < fimoa < 200.0 [H 2]
0.0 < Deyeter < 50.0 [%]
0.0 < Deyete2 < 50.0 [%]
—90.0 < ¢ < 90.0 [deg.]

(12)

¢ is the phase difference between PA#1 and PA#2. Consequently, the time
lag can be expressed as ¢/ fiod-

6 Results

6.1 Design Exploration Result

In this section, the design problem expressed by Eq. (10) is discussed. To
construct the initial Kriging model, 15 samples were obtained by LHS. To
acquire additional samples, the island GA was executed with the following
specifications: BLX-0.5 (a = 0.5), four subpopulations, 16 individuals for
each subpopulations(64 individuals generated in total) and 64 generations.
The EGO process will be stopped after ten or more additional samples show
better function value than that of initial samples [6].
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After the objective function was converted, seven additional samples were
obtained, for a total of 22 sample designs. Figure 9 shows the history of C}
values for the sampling process. According to the history, the objective
function converged well with a small number of samples. Without EGO, a
full factorial design of over 1000 samples would be needed to find the global
optimum. The proposed system reduces the cost of the wind tunnel testing
by over 99

6.2 Design Knowledge by Analysis of Variance

Figure 10(a) shows the main effects and the two-way interaction of the de-
sign variables for objective function for C). According to Fig. 10(a), fimod
and Dgycle2, Which defines the driving condition of PA on the lower side of
the cylinder, has a predominant influence on Cj. In addition, two-way in-
teraction of fiod — Deyele2 is also effective to C). These results suggest that
the circulation which creates aerodynamic lift around the model is decided
by duty ratio PA on the lower side.

Figure 10(b) the main effects and the two-way interaction of the design
variables for objective function for Cy. According to Fig. 10(a), fimod which
defines the driving condition of eaxh PA on the cylinder, has a predominant
influence on Cy. It is reasonable result because higher fy,oq create higher
volume force which can reduce the flow separation. As this result, the drag
is affected by fiod.

6.3 Visualization of Design Problem by SPM

Figure 11 shows the visualization results obtained by SPM, which shows the
scatter plot for all parameter combinations. Plots colored by red represent
designes which achive higher aerodynamic performance. According to Fig.
11, higher fi0q and Deycle2 are always required for higher ¢ and lower Cy.
In addition, Cq and foq shows the high correlation (-0.882.) This result
suggests that the lower Cyq can be carried out with the higher fi0q.

11
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7 Conclusions

Aerodynamic control performance of plasma actuators was optimized using
wind tunnel test-based EGO. In this study, the lift-creating cylinder using
plasma actuators was considered. This problem was that the circulation
around a circular cylinder model was controlled to maximize the lift around
the model. In addition, this study also considered the drag minimization
around the cylinder, thus the design problem was formulated as the multi-
objective problem. The optimization technique is firstly integrated in the
operating system of the wind tunnel experiment to enable automation of the
data-acquisition/optimization process. Using the developed system, multi-
objective design problem (lift maximization,/ drag minimization) was solved.
After several additional samples are obtained, the analysis of variance and
the scatterplot matrix is employed for the knowledge discovery. Using these
techniques, it is found that duty ratio and modulation frequency for the
plasma actuators installed on the lower surface have the dominant effect
for this problem. It is also found that the higher modulation frequency is
required for the plasma actuator to minimize the drag.
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