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Abstract

In this paper, a probabilistic approach is adopted to determine material parameters. The proposed
algorithm is tested to estimate material parameters of tubular materials subjected to a spherical
punch test. We assume the measured Force-Deflection (F-D) data, Major Strain-Deflection (MS-D)
and anisotropy parameters are corrupted with a Gausian noise 0=1% and 0=4% and zero mean at
the all data points. Then we employ a Markov chain Monte Carlo (MCMC) method in a Bayesian
framework to solve the inverse material parameter identification problem. The results show how
uncertainty of the measurement values influence the uncertainty of the estimated material
parameters. This approach can be adopted to study stability of the inverse problem in the presence
of the experimental noise.
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Introduction

The accuracy of Finite Element Analysis (FEA) depends heavily on the use of well-evaluated
material parameters during the simulation process. To identify the mechanical parameters of the
materials, experiments are conducted that impose loads on an instrumented specimen, and
subsequently the measured data, such as load-displacement data, is converted to the material
parameters, e.g. stress-strain relationship.

One popular approach to identify the material parameters from the experimental measurements is to
solve an inverse problem using either a forward or backward inverse identification method. In the
forward approach, the material parameters are identified by solving an optimization problem, where
the material parameters in the FEA are adjusted to minimize discrepancies between the measured
experimental data and the simulation results [Zribi et al. (2013)]. An alternative is a backward
inverse identification method, or inverse map, which is based on mapping the experimentally
measured response to the parameters of a material model directly [Asaadi et al. (2014)]. These
approaches for material parameter identification are mostly deterministic; however uncertainty of
the obtained parameters must be evaluated against the uncertainty of the experimental
measurements. To address this limitation, this study demonstrates material parameter identification
using a MCMC method for Bayesian inference. We intend to identify how uncertainty in the
measured force, strain and anisotropy parameters influences the obtained material parameters. We
present a Bayesian inference approach, like the work done by [Karandikar et al. (2014)], for the
solution of the inverse material parameter identification problem. The system is defined as a
constrained half tube subjected to the sphericaLpunch test, Fig. 1.
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Fig. 1. Schematic representation of the FE model. 1/4 of the pipe is simulated
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The system parameters are the material hardening parameters, and the coefficient of friction
between the specimen and the indenter. The system responses are F-D data, MS-D and anisotropy
coefficients, obtained in uniaxial tensile tests. We conduct our study in a virtual environment where
FEA simulations of the tube punch test replace the experimental data. We opt for the virtual
experiments since experimental data for the large number of tube punch test of different materials
are not available. In addition, we can control the errors present in the virtual experiment to obtain a
proper understanding of how these errors influence the identified material parameters. For our
numerical experiments we use FEA of the tube punch test for a known set of the material
parameters and the MS-D on the dome and F-D responses are then computed. Afterwards, Bayesian
inference is adopted to predict the material parameters used for the punch test simulation, while we
added artificial 1%-4% normally distributed stochastic noise to the responses of the FEA. In
contrast with the deterministic inverse parameter identification problems, the estimated parameters
are not single values and the range of their probable values is determined by the uncertainty in the
measured experimental (virtual in this case) information.

Bayesian Inference

Bayesian inference is a statistical tool for updating the probability of a hypothesis as new evidence
becomes available. Bayesian inference is based on Bayes formula which is given by

P(H|E) « P(E|H)P(H) (1)

in which H represents the hypothesis, e.g material parameters, E is the observation related to this
hypothesis, e.g experimental measurements of the test such as F-D, MS-D and anisotropy
responses, P(H|E) is the posterior probability density function, P(E|H) is the likelihood function and
P(H) is the prior probability density function. We use the posterior probability density function for
estimating the material parameters when it is explored by Metropolis—Hastings algorithm.

Metropolis—Hastings (MH) algorithm

MH algorithm is one of the most popular MCMC methods for obtaining samples from a probability
distribution for which direct sampling is difficult. In the algorithm, a candidate sample is selected
given current value of the chain, e.g current estimated material parameter. It can be rejected or
accepted according to the acceptance ratio, obtained from the posterior probability density function.
The chain moves to the candidate point if it is accepted or remains at the current value if it is
rejected. Calculating the posterior in each iteration needs FEA, which is computationally expensive.
Therefore, we suggest using a cheap-to-evaluate surrogate model of the FEA.

In order to construct the surrogate model of the FEM, we trained two separate Artificial Neural
Networks (ANNSs) to map material parameter sets to the F-D and MS-D responses of the FEA. The
training set is constructed based on FEA of 100 material parameter sets. The Voce hardening law
with three parameters, k, n and y, and Hill48 yield model with two parameters, R1 and R2,
determine the material behavior. Ranges of the parameters are represented in Tab. 1.

Tab. 1 Selected range of the material parameters for constructing the surrogate model of the

FEM
Material parameter k(MPa) n y(MPa) R1 R2 f
Parameter range 1200-1800 1-2.5 290-360 0.95-1.05 1-1.2 0.03-.07
Parameters of the virtual Exp. 1650 2.5 290 1.02 1.1 0.03
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Results and discussion

In this section, the MCMC method for Bayesian updating of material parameters is demonstrated
using a virtual experiment. The parameters selected in the Tab.1 are used to simulate the F-D and
MS-D responses of the punch test simulation. Then, results of the simulation are used as the target
for constructing the likelihood density function, while we assume normal stochastic noise with the
standard deviation of 1% and 4% for the mean value of FEA results at each data point. The prior
distributions of the parameters are assumed to be joint uniform distribution in the selected range.
The MCMC converged after 500 iterations. Results of the chain for estimating the parameters are
shown in Fig. 2(a-b). Fig.2 (a) indicates that the estimated parameters for 1% noisy responses tend
to be very close to the mean of the parameters, which is also very close to the nominal values
represented in the Tab.1. Fig 2(b) also demonstrates that increasing the assumed noise in the
responses of the system from 1% to 4% ( 300% increase) , causes 380%, 1000%, 800% and 500%
increases in the standard deviations of the estimated k, n ,y and coefficient of friction. This example
illustrates how Bayesian inference can be employed for tackling a probabilistic inverse problem to
study how the quality of the experimental measurements affects the estimated parameters in an
inverse problem. This approach can be employed as a tool in the decision-making process where
comparison between different measurements of the responses of the system is necessary to build a
robust inverse problem.
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Fig. 2. Variation of the estimated parameters when assuming 1% normally distributed
stochastic noise for the measured responses, (a), and 4% normally distributed stochastic noise
for the measured responses of the virtual experiment, (b).
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Conclusion

In this study we employed Bayesian inference for solving a probabilistic inverse material parameter
identification problem. The proposed approach can be used to determine how uncertainty in the
measurement data influences the identified material parameters. Therefore, the proposed algorithm
can be used as a tool for studying ill-posedness of an inverse problem, stability type, and comparing
the effect of quality of different measurements for identifying material parameters.
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