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Abstract 
In this paper, a probabilistic approach is adopted to determine material parameters. The proposed 
algorithm is tested to estimate material parameters of tubular materials subjected to a spherical 
punch test. We assume the measured Force-Deflection (F-D) data, Major Strain-Deflection (MS-D) 
and anisotropy parameters are corrupted with a Gausian noise σ=1% and σ=4% and zero mean at 
the all data points. Then we employ a Markov chain Monte Carlo (MCMC) method in a Bayesian 
framework to solve the inverse material parameter identification problem. The results show how 
uncertainty of the measurement values influence the uncertainty of the estimated material 
parameters. This approach can be adopted to study stability of the inverse problem in the presence 
of the experimental noise.  

Keywords: Material parameter identification, Bayesian inference, Markov chain Monte Carlo, 
Inverse identification, Probabilistic inverse method. 

Introduction 
The accuracy of Finite Element Analysis (FEA) depends heavily on the use of well-evaluated 
material parameters during the simulation process. To identify the mechanical parameters of the 
materials, experiments are conducted that impose loads on an instrumented specimen, and 
subsequently the measured data, such as load-displacement data, is converted to the material 
parameters, e.g. stress-strain relationship.  
One popular approach to identify the material parameters from the experimental measurements is to 
solve an inverse problem using either a forward or backward inverse identification method. In the 
forward approach, the material parameters are identified by solving an optimization problem, where 
the material parameters in the FEA are adjusted to minimize discrepancies between the measured 
experimental data and the simulation results [Zribi et al. (2013)]. An alternative is a backward 
inverse identification method, or inverse map, which is based on mapping the experimentally 
measured response to the parameters of a material model directly [Asaadi et al. (2014)]. These 
approaches for material parameter identification are mostly deterministic; however uncertainty of 
the obtained parameters must be evaluated against the uncertainty of the experimental 
measurements. To address this limitation, this study demonstrates material parameter identification 
using a MCMC method for Bayesian inference. We intend to identify how uncertainty in the 
measured force, strain and anisotropy parameters influences the obtained material parameters. We 
present a Bayesian inference approach, like the work done by [Karandikar et al. (2014)], for the 
solution of the inverse material parameter identification problem. The system is defined as a 
constrained half tube subjected to the spherical punch test, Fig. 1.  

 
Fig. 1.  Schematic representation of the FE model. 1/4 of the pipe is simulated 
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The system parameters are the material hardening parameters, and the coefficient of friction 
between the specimen and the indenter. The system responses are F-D data, MS-D and anisotropy 
coefficients, obtained in uniaxial tensile tests. We conduct our study in a virtual environment where 
FEA simulations of the tube punch test replace the experimental data. We opt for the virtual 
experiments since experimental data for the large number of tube punch test of different materials 
are not available. In addition, we can control the errors present in the virtual experiment to obtain a 
proper understanding of how these errors influence the identified material parameters. For our 
numerical experiments we use FEA of the tube punch test for a known set of the material 
parameters and the MS-D on the dome and F-D responses are then computed. Afterwards, Bayesian 
inference is adopted to predict the material parameters used for the punch test simulation, while we 
added artificial 1%-4% normally distributed stochastic noise to the responses of the FEA. In 
contrast with the deterministic inverse parameter identification problems, the estimated parameters 
are not single values and the range of their probable values is determined by the uncertainty in the 
measured experimental (virtual in this case) information.  

Bayesian Inference 
Bayesian inference is a statistical tool for updating the probability of a hypothesis as new evidence 
becomes available. Bayesian inference is based on Bayes formula which is given by 
 

𝑃(𝐻|𝐸) ∝ 𝑃(𝐸|𝐻)𝑃(𝐻) (1) 
  

in which H represents the hypothesis, e.g material parameters, E is the observation related to this 
hypothesis, e.g experimental measurements of the test such as F-D,  MS-D and anisotropy 
responses, P(H|E) is the posterior probability density function, P(E|H) is the likelihood function and 
P(H) is the prior probability density function. We use the posterior probability density function for 
estimating the material parameters when it is explored by Metropolis–Hastings algorithm. 

Metropolis–Hastings (MH) algorithm 

MH algorithm is one of the most popular MCMC methods for obtaining samples from a probability 
distribution for which direct sampling is difficult. In the algorithm, a candidate sample is selected 
given current value of the chain, e.g current estimated material parameter. It can be rejected or 
accepted according to the acceptance ratio, obtained from the posterior probability density function.  
The chain moves to the candidate point if it is accepted or remains at the current value if it is 
rejected. Calculating the posterior in each iteration needs FEA, which is computationally expensive. 
Therefore, we suggest using a cheap-to-evaluate surrogate model of the FEA. 
In order to construct the surrogate model of the FEM, we trained two separate Artificial Neural 
Networks (ANNs) to map material parameter sets to the F-D and MS-D responses of the FEA. The 
training set is constructed based on FEA of 100 material parameter sets. The Voce hardening law 
with three parameters, k, n and y, and Hill48 yield model with two parameters, R1 and R2, 
determine the material behavior. Ranges of the parameters are represented in Tab. 1. 
 
Tab. 1 Selected range of the material parameters for constructing the surrogate model of the 

FEM 

Material parameter k(MPa) n y(MPa) R1 R2 f 
Parameter range 1200-1800 1-2.5 290-360 0.95-1.05 1-1.2 0.03-.07 
Parameters of the virtual Exp. 1650 2.5 290 1.02 1.1 0.03 
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Results and discussion 
In this section, the MCMC method for Bayesian updating of material parameters is demonstrated 
using a virtual experiment. The parameters selected in the Tab.1 are used to simulate the F-D and 
MS-D responses of the punch test simulation. Then, results of the simulation are used as the target 
for constructing the likelihood density function, while we assume normal stochastic noise with the 
standard deviation of 1% and 4% for the mean value of FEA results at each data point. The prior 
distributions of the parameters are assumed to be joint uniform distribution in the selected range. 
The MCMC converged after 500 iterations. Results of the chain for estimating the parameters are 
shown in Fig. 2(a-b). Fig.2 (a) indicates that the estimated parameters for 1% noisy responses tend 
to be very close to the mean of the parameters, which is also very close to the nominal values 
represented in the Tab.1. Fig 2(b) also demonstrates that increasing the assumed noise in the 
responses of the system from 1% to 4% ( 300% increase) , causes 380%, 1000%, 800% and 500% 
increases in the standard deviations of the estimated k, n ,y and coefficient of friction. This example 
illustrates how Bayesian inference can be employed for tackling a probabilistic inverse problem to 
study how the quality of the experimental measurements affects the estimated parameters in an 
inverse problem. This approach can be employed as a tool in the decision-making process where 
comparison between different measurements of the responses of the system is necessary to build a 
robust inverse problem. 

 
Fig. 2. Variation of the estimated parameters when assuming 1% normally distributed 

stochastic noise for the measured responses, (a), and 4% normally distributed stochastic noise 
for the measured responses of the virtual experiment, (b). 

Conclusion 
In this study we employed Bayesian inference for solving a probabilistic inverse material parameter 
identification problem. The proposed approach can be used to determine how uncertainty in the 
measurement data influences the identified material parameters. Therefore, the proposed algorithm 
can be used as a tool for studying ill-posedness of an inverse problem, stability type, and comparing 
the effect of quality of different measurements for identifying material parameters. 
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