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Abstract

The purpose of this paper is to investigate the general deformation pattern and stress
field of a thin rectangular FGM plate for different property gradient directions, i.e.
perpendicular and parallel to the loading direction, both analytically and numerically.
The relevant governing equations of elasticity are solved with static analysis with
power law distribution of volume fraction of constituents, and the analytical solutions
for the displacements and stresses are derived. The resultant solutions are verified
against numerical solutions obtained using the finite element method (FEM). The
finite element (FE) solution is obtained using solid elements with spatially graded
property distribution (at different gauss points), which is implemented by a user
material subroutine (UMAT) in the ABAQUS FE software. The obtained results
demonstrate that the direction of material property gradient and the nature of its
variation have significant effects on the mechanical behavior of FGM plates.
Moreover, the comparison between the exact solution and numerical simulation

shows the efficiency of graded solid elements in modelling of thin FGM plate.
Keywords: FGM, stress field, power-law distribution, finite element method, elasticity, graded
solid elements.

Introduction

Functionally Graded Materials (FGMSs) are advanced engineered materials whereby
material composition and properties vary spatially in macroscopic length scales,
which are created by specialized manufacturing processes. The main advantage of
FGMs is the elimination of stress concentration and discontinuity in the interface due
to the monotonous variation of volume fraction of the constituents. There are various
mathematical models to describe distribution of volume fraction of constituents, i.e.
power- law and exponential law. Some researchers used exponential function for
defining material property variation (Guo & Noda, 2014; Z. Wang, Guo, & Zhang,
2013). Another form of mathematical model using a power-law distribution has been
widely used in a number of studies, especially for the mechanical engineering field
(Cheng & Batra, 2000; Navazi, Haddadpour, & Rasekh, 2006; Sun & Luo, 2011).
There are a significant growth in literatures corresponding to FGMs in the mechanics
of FGMs (Chi & Chung, 2006; Thai & Choi, 2013; C. Wang & Xu, 2014),
manufacture process (EIl-Desouky, Kassegneb, Moonb, McKittrickc, & Morsib, 2013,;
Kieback, Neubrand, & Riedel, 2003), crack growth and damage (Bocciarelli, Bolzon,
& Maier, 2008; Eghtesad, Shafiei, & Mahzoon, 2012; Torshizian & Kargarnovin,
2014) in last 10 years.

One of the wide applications of FGM is in plate structures as thermal barriers.
Therefore, understanding the mechanical behavior of an FGM plate is vital for
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effective design of structures employing FGMs to meet desired and safety criteria. An
exact solution for exponentially graded FGM plates with simply-supported boundary
condition under a surface load was expanded by Pan (Pan, 2003). Further, Chi (Chi &
Chung, 2006) derived an analytical formulation for three types of distribution
function namely power-law, sigmoid and exponential based on classical plate theory
(CPT) for rectangle simply supported FGM plate with transverse loading. They
evaluated the exact solution with numerical simulation by MARC FE program with
16 layers of different material properties in thickness direction. Recently,
(Akbarzadeh, Hosseini zad, Eslami, & Sadighi, 2010) used the first-order shear
deformation theory (FSDT) and the third-order shear deformation theory (TSDT) for
FGM plate with the power- law distribution of the volume fraction. They obtained the
natural frequencies and dynamic responses of the FGM plate analytically. All the
mentioned studies have been carried out with regards to variation of material
constituents through the thickness. However, no studies are known on distribution of
volume fraction through the length of the plate.

During manufacturing process of FGMs, the reliability requirements for the product
should be considered to meet desired or application-specific performance criteria.
One approach to produce FGMs is use of additive manufacturing (3D printing),
which can control local composition and microstructure. Furthermore, the gradient
distribution and its relationship with the loading direction will affect the macro
stiffness and mechanical behavior.

This paper presents the behavior of the thin rectangular FGM plate with CPT
assumptions under transverse loading. The close forms solutions based on Fourier
series expression for power- law distributions in two different gradient directions (the
thickness direction and length direction) are obtained. Moreover, the analytical
solutions are proved by the numerical simulation of the finite element method using
ABAQUS. In numerical modelling, the graded solid elements are implemented in the
user material subroutine (UMAT). These results will possibly enable us to understand
the behavior of new materials with controlled macro properties.

Analytical Solutions

State I- Gradient distribution in thickness direction
Let us consider an elastic rectangular plate. As shown in Fig. 1a, coordinates x and y
define the plane of the plate, whereas the z-axis originated at the middle surface of
the plate is in the thickness direction. The Poisson ratio is assumed to be constant.
However, the Young’s moduli in thickness direction vary with Eq. (1) and the elastic
modulus can be determined by the rule of mixture:

1 z,,
Vi(2) = (§+F) (1)
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Where n is the power-law index, h is the thickness of the plate, E and E, are the
Young’s moduli of inclusion and matrix, respectively.
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Figure 1. a) The Geometry of FGM Plate. b) The distribution of volume fraction in Z
direction : V,(z) = (%-i—%)n
It is assumed that the deformations and the stresses of the thin FGM plate are based

upon classical plate theory. So, the strain and stress fields are:
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In this work, the thickness of thin plate is assumed to be in the range 1/20 ~1/100 of
its length. So, the transverse shear deformations should be eliminated.
The matrix formation of axial forces and momentum are:
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The coefficients of above equations are depending on the material properties of FGM
plate. So, for the above rectangular FGM plate we have:
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With definition of the uniform distributed transverse loading by Fourier series, the
equilibrium equation can be written as:
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the middle surface are expressed in terms of the stress function and the deflection:

With definition of stress function o(x,y) andn, =
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In order to find the relation between stress function and deflection, we substitute the
Egs. (7a) and (7b) in Eq. (6):
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A compatibility equatlon Is then used to provide another governing equation. By
using Eq. (7a), the compatibility equation
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The stress function and deflectlon can be obtained by simultaneous solutlon of Eqgs.
(9) and (11). With definition of Fourier serious for o(x,y) and w alongside



simultaneous solution of Egs. (9) and (11), the stress function and deflection can be
obtained.
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So, the stress and strain fields for the rectangular FGM plate with the material
gradation in thickness direction are:
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State I1- Gradient distribution in length direction
Consider the rectangular FGM plate-Fig. 2- similar to state 1 while the Young’s
moduli vary in length direction based on Eq. (14).
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Figure 2. The distribution of volume fraction X direction : V,(x) = (g)n

For this case, the coefficients become:
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It can be seen that the axial forces and bending momentum are uncoupled. This
phenomenon is different from the state 1. The equilibrium Eqg. (6) becomes:
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In order to satisfy the equilibrium equation and boundary conditions, the deflection
function w of FGM plate should be the form of:
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By substituting in the equilibrium equation we can findw__
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Finite Element Models

In the numerical simulation, a square FGM plate with a=50 cm, h=2 cm and material
properties of metal and ceramic constituents-Table 1- is considered.

Table 1. material properties

Metal (Ti-6Al-4V)  Ceramic (Zr0,)
E, =66.2GPa E, =117.0GPa

v =0.33 v =0.33
By applying the n=3, F,=1N/cm? and Fourier series coefficient (m= n =20), the
theoretical results can be evaluated with numerical modelling. Graded solid elements
are implemented by means of direct sampling properties at the Gauss points of the
elements. The user material subroutine (UMAT) for modelling of FGM plate with
graded elements is provided in ABAUQS.

Results

Fig.3 compares the deflection of the plate with different gradient variation
(homogenous plate without variation and variation in Z and X direction, respectively).
It can be seen that by applying the higher stiffness material (ceramic) as an inclusion
in the metal matrix, the deflection of plate decrease significantly. Moreover, the FGM
plate with variation of material constituents in thickness direction has the least
maximum deflection with the symmetry parabolic shape. While the maximum
deflection for FGM plate with X variation does not occur in the middle of the length.
It happens in 0.4 times length.
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Figure 3. The deflection of the plate

Fig. 4 shows the theoretical and FE (both Shell and Solid elements) results for a
square homogenous plate without variation. As revealed in Fig. 4, a good agreement
Is obtained in using solid elements with mesh size 0.25 with shell elements. So, the



solid elements can be used for modelling of
elements.

a thin FGM plate instead of shell
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Figure 4. The deflection of the homogenous plate

Figs. 5 and 6 represent the deflection of FGM plate for Z and X gradient variation
analytically and numerically, respectively. The analytical and numerical results agree
very well in Z and X variation with the maximum error less than 10%. As can be seen
from the comparison of two graphs in Fig. 6, the changes between analytical and
numerical solution after critical point-maximum deflection- is much pronounced
compared to the ones before that. It could be caused by power-law index (n) effect. It
can be observed from Fig. 7 that the jump of E occurs at the critical point for n=3 —
approximately 0.4 times of plate length-. Indeed, before this point there is a little bit
variation in Young modulus and after that the considerable growth of E is obtained.
Moreover, as n is raised the jump of E occurs in near the end of the plate (x=a).
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Figure 5. The deflection of the FGM plate with variation of material properties through the
thickness
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Figure 7. The effect of power-law index in E(X)

The variation of the stress in x direction at the center of the FGM plate along the
thickness for state | and 11 is depicted in Figs. 8 and 9. The stress for FGM plate with
Z gradient variation is a function of Z of order 4. This phenomenon coincides with
the analytical formulation in Eq. (13d), in which the stresses are proportional
toz.E(z). While for X gradient variation, the linear function of Z is presented (based
on Eqg. (20a)).The maximum tensile and compressive stress in the center of the FGM
plate is at the bottom and top edge, respectively. In addition, the good agreement is
obtained between analytical and numerical results with the maximum error less than
15%.
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Conclusions

In this study, the theoretical formulation of the simply- supported thin square FGM
plate with power-law distribution of volume fraction through the thickness (state 1)
and length (state Il) under transverse loading is derived. The analytical results are
also validated by finite element analysis. The FE solution is obtained using solid
elements with spatially graded property distribution, which is implemented by a user
material subroutine (UMAT) in ABAQUS. The results lead to the following
conclusions:

1. Strain at middle surface and deflection for state | are coupled while this
phenomenon is different from State Il. There is extra coefficient in strain
equations in state Il that is due to gradient variation in X direction and
differentiation of deflection with respect to X.
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2. Under the assumption of thin plate the theoretical results agree very well with
those of FE simulation with solid graded element.

3. There is not a linearly proportion between stress and thickness direction in
state |. because the Young’s moduli of this state are functions of z of order n-
power law index-, so the stress indicates a function of z of order n+1.

4. The maximum deflection occurs in the middle plate for sate | while it happens
before that in state 11-at nearby 0.4 times of length-.

The approach outlined in this paper would be beneficial for the ideal FGM plate
which variation of volume fraction of constituents is controlled and obey a specific
function of distribution. This aim could be achieve with aid of 3D printing that can
control local composition and microstructure.
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