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Abstract 

The purpose of this paper is to investigate the general deformation pattern and stress 
field of a thin rectangular FGM plate for different property gradient directions, i.e. 
perpendicular and parallel to the loading direction, both analytically and numerically. 
The relevant governing equations of elasticity are solved with static analysis with 
power law distribution of volume fraction of constituents, and the analytical solutions 
for the displacements and stresses are derived. The resultant solutions are verified 
against numerical solutions obtained using the finite element method (FEM). The 
finite element (FE) solution is obtained using solid elements with spatially graded 
property distribution (at different gauss points), which is implemented by a user 
material subroutine (UMAT) in the ABAQUS FE software. The obtained results 
demonstrate that the direction of material property gradient and the nature of its 
variation have significant effects on the mechanical behavior of FGM plates. 
Moreover, the comparison between the exact solution and numerical simulation 
shows the efficiency of graded solid elements in modelling of thin FGM plate. 
Keywords: FGM, stress field, power-law distribution, finite element method, elasticity, graded 
solid elements. 

Introduction 

Functionally Graded Materials (FGMs) are advanced engineered materials whereby 
material composition and properties vary spatially in macroscopic length scales, 
which are created by specialized manufacturing processes. The main advantage of 
FGMs is the elimination of stress concentration and discontinuity in the interface due 
to the monotonous variation of volume fraction of the constituents. There are various 
mathematical models to describe distribution of volume fraction of constituents, i.e. 
power- law and exponential law. Some researchers used exponential function for 
defining material property variation (Guo & Noda, 2014; Z. Wang, Guo, & Zhang, 
2013). Another form of mathematical model using a power-law distribution has been 
widely used in a number of studies, especially for the mechanical engineering field 
(Cheng & Batra, 2000; Navazi, Haddadpour, & Rasekh, 2006; Sun & Luo, 2011). 
There are a significant growth in literatures corresponding to FGMs in the mechanics 
of FGMs (Chi & Chung, 2006; Thai & Choi, 2013; C. Wang & Xu, 2014), 
manufacture process (El-Desouky, Kassegneb, Moonb, McKittrickc, & Morsib, 2013; 
Kieback, Neubrand, & Riedel, 2003), crack growth and damage (Bocciarelli, Bolzon, 
& Maier, 2008; Eghtesad, Shafiei, & Mahzoon, 2012; Torshizian & Kargarnovin, 
2014) in last 10 years. 

One of the wide applications of FGM is in plate structures as thermal barriers. 
Therefore, understanding the mechanical behavior of an FGM plate is vital for 
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effective design of structures employing FGMs to meet desired and safety criteria. An 
exact solution for exponentially graded FGM plates with simply-supported boundary 
condition under a surface load was expanded by Pan (Pan, 2003). Further, Chi (Chi & 
Chung, 2006) derived an analytical formulation for three types of distribution 
function namely power-law, sigmoid and exponential based on classical plate theory 
(CPT) for rectangle simply supported FGM plate with transverse loading. They 
evaluated the exact solution with numerical simulation by MARC FE program with 
16 layers of different material properties in thickness direction. Recently, 
(Akbarzadeh, Hosseini zad, Eslami, & Sadighi, 2010) used the first-order shear 
deformation theory (FSDT) and the third-order shear deformation theory (TSDT) for 
FGM plate with the power- law distribution of the volume fraction. They obtained the 
natural frequencies and dynamic responses of the FGM plate analytically. All the 
mentioned studies have been carried out with regards to variation of material 
constituents through the thickness. However, no studies are known on distribution of 
volume fraction through the length of the plate. 
During manufacturing process of FGMs, the reliability requirements for the product 
should be considered to meet desired or application-specific performance criteria. 
One approach to produce FGMs is use of additive manufacturing (3D printing), 
which can control local composition and microstructure. Furthermore, the gradient 
distribution and its relationship with the loading direction will affect the macro 
stiffness and mechanical behavior.  
This paper presents the behavior of the thin rectangular FGM plate with CPT 
assumptions under transverse loading. The close forms solutions based on Fourier 
series expression for power- law distributions in two different gradient directions (the 
thickness direction and length direction) are obtained. Moreover, the analytical 
solutions are proved by the numerical simulation of the finite element method using 
ABAQUS. In numerical modelling, the graded solid elements are implemented in the 
user material subroutine (UMAT). These results will possibly enable us to understand 
the behavior of new materials with controlled macro properties. 

Analytical Solutions 

State I- Gradient distribution in thickness direction 
Let us consider an elastic rectangular plate. As shown in Fig. 1a, coordinates x and y 
define the plane of the plate, whereas the z-axis originated at the middle surface of 
the plate is in the thickness direction.  The Poisson ratio is assumed to be constant. 
However, the Young’s moduli in thickness direction vary with Eq. (1) and the elastic 
modulus can be determined by the rule of mixture: 
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Where n is the power-law index, h is the thickness of the plate, iE  and mE  are the 
Young’s moduli of inclusion and matrix, respectively. 
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Figure 1. a) The Geometry of FGM Plate. b) The distribution of volume fraction in Z 

direction : 
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It is assumed that the deformations and the stresses of the thin FGM plate are based 
upon classical plate theory. So, the strain and stress fields are: 
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In this work, the thickness of thin plate is assumed to be in the range 1/ 20 1/100 of 
its length. So, the transverse shear deformations should be eliminated.   
The matrix formation of axial forces and momentum are: 
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The coefficients of above equations are depending on the material properties of FGM 
plate. So, for the above rectangular FGM plate we have: 
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With definition of the uniform distributed transverse loading by Fourier series, the 
equilibrium equation can be written as: 
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With definition of stress function ( , )x y  and
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, the strains at 

the middle surface are expressed in terms of the stress function and the deflection: 
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where:  
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In order to find the relation between stress function and deflection, we substitute the 
Eqs. (7a) and (7b) in Eq. (6): 
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A compatibility equation is then used to provide another governing equation. By 
using Eq. (7a), the compatibility equation 
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Can be expressed as: 
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The stress function and deflection can be obtained by simultaneous solution of Eqs. 
(9) and (11). With definition of Fourier serious for ( , )x y and w  alongside 
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simultaneous solution of Eqs. (9) and (11), the stress function and deflection can be 
obtained. 
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So, the stress and strain fields for the rectangular FGM plate with the material 
gradation in thickness direction are: 
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State II- Gradient distribution in length direction 
Consider the rectangular FGM plate-Fig. 2- similar to state 1 while the Young’s 
moduli vary in length direction based on Eq. (14).  
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For this case, the coefficients become: 
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It can be seen that the axial forces and bending momentum are uncoupled. This 
phenomenon is different from the state 1. The equilibrium Eq. (6) becomes: 

 
24 4 4 3 3 2 2

11 11
11 4 4 2 2 2 3 2 2 2

2 2 2
C Cw w w w w w w

C F
x y x y x x y x x x y


            

                          
   (16)   

In order to satisfy the equilibrium equation and boundary conditions, the deflection 
function w of FGM plate should be the form of: 

                    ( , ) sin sinmn

m x m y
w x y w

a a

 
                                                            (17) 

X 

Z 
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By substituting in the equilibrium equation we can find mnw : 
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So, the stress and strain become: 
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Finite Element Models 

In the numerical simulation, a square FGM plate with a=50 cm, h=2 cm and material 
properties of metal and ceramic constituents-Table 1- is considered.  
 

Table 1. material properties 

Metal (Ti–6Al–4V) Ceramic ( 2ZrO ) 

66.2mE GPa 117.0iE GPa

0.33  0.33 
By applying the n=3, 2

0 1 /F N cm  and Fourier series coefficient (m= n =20), the 
theoretical results can be evaluated with numerical modelling. Graded solid elements 
are implemented by means of direct sampling properties at the Gauss points of the 
elements. The user material subroutine (UMAT) for modelling of FGM plate with 
graded elements is provided in ABAUQS. 
 

Results 

Fig.3 compares the deflection of the plate with different gradient variation 
(homogenous plate without variation and variation in Z and X direction, respectively). 
It can be seen that by applying the higher stiffness material (ceramic) as an inclusion 
in the metal matrix, the deflection of plate decrease significantly. Moreover, the FGM 
plate with variation of material constituents in thickness direction has the least 
maximum deflection with the symmetry parabolic shape. While the maximum 
deflection for FGM plate with X variation does not occur in the middle of the length. 
It happens in 0.4 times length. 
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Homogenous Plate Without Variation
Variation of material properties through the thickness
Variation of material properties through the length

 
Figure 3. The deflection of the plate 

Fig. 4 shows the theoretical and FE (both Shell and Solid elements) results for a 
square homogenous plate without variation. As revealed in Fig. 4, a good agreement 
is obtained in using solid elements with mesh size 0.25 with shell elements. So, the 
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solid elements can be used for modelling of a thin FGM plate instead of shell 
elements. 
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Figure 4. The deflection of the homogenous plate 

Figs. 5 and 6 represent the deflection of FGM plate for Z and X gradient variation 
analytically and numerically, respectively. The analytical and numerical results agree 
very well in Z and X variation with the maximum error less than 10%. As can be seen 
from the comparison of two graphs in Fig. 6, the changes between analytical and 
numerical solution after critical point-maximum deflection- is much pronounced 
compared to the ones before that. It could be caused by power-law index (n) effect. It 
can be observed from Fig. 7 that the jump of E occurs at the critical point for n=3 –
approximately 0.4 times of plate length-. Indeed, before this point there is a little bit 
variation in Young modulus and after that the considerable growth of E is obtained. 
Moreover, as n is raised the jump of E occurs in near the end of the plate (x=a). 
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Figure 5. The deflection of the FGM plate with variation of material properties through the 

thickness 
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Figure 6. The deflection of the FGM plate with variation of material properties through the 

length 
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Figure 7. The effect of power-law index in E(x) 

The variation of the stress in x direction at the center of the FGM plate along the 
thickness for state I and II is depicted in Figs. 8 and 9. The stress for FGM plate with 
Z gradient variation is a function of Z of order 4. This phenomenon coincides with 
the analytical formulation in Eq. (13d), in which the stresses are proportional 
to . ( )z E z . While for X gradient variation, the linear function of Z is presented (based 
on Eq. (20a)).The maximum tensile and compressive stress in the center of the FGM 
plate is at the bottom and top edge, respectively. In addition, the good agreement is 
obtained between analytical and numerical results with the maximum error less than 
15%.  
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Figure 8. The stress x  at the center of FGM plate for variation of material properties 

through the thickness 
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Figure 9. The stress x  at the center of FGM plate for variation of material properties 

through the length 

Conclusions 

In this study, the theoretical formulation of the simply- supported thin square FGM 
plate with power-law distribution of volume fraction through the thickness (state I) 
and length (state II) under transverse loading is derived. The analytical results are 
also validated by finite element analysis. The FE solution is obtained using solid 
elements with spatially graded property distribution, which is implemented by a user 
material subroutine (UMAT) in ABAQUS. The results lead to the following 
conclusions: 

1. Strain at middle surface and deflection for state I are coupled while this 
phenomenon is different from State II.  There is extra coefficient in strain 
equations in state II that is due to gradient variation in X direction and 
differentiation of deflection with respect to X. 
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2. Under the assumption of thin plate the theoretical results agree very well with 
those of FE simulation with solid graded element. 

3. There is not a linearly proportion between stress and thickness direction in 
state I. because the Young’s moduli of this state are functions of z of order n-
power law index-, so the stress indicates a function of z of order n+1. 

4. The maximum deflection occurs in the middle plate for sate I while it happens 
before that in state II-at nearby 0.4 times of length-. 

The approach outlined in this paper would be beneficial for the ideal FGM plate 
which variation of volume fraction of constituents is controlled and obey a specific 
function of distribution. This aim could be achieve with aid of 3D printing that can 
control local composition and microstructure.  
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