Microdynamics modeling for kink deformation and delamination

in multilayered solid

Xiao-Wen Lei¹ and *†Akihiro Nakatani¹

¹Department of Adaptive Machine Systems, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan *†Presenting and corresponding author: nakatani@ams.eng.osaka-u.ac.jp

Abstract

Multi-layered solids show strong anisotropy in mechanical properties that originate in intrinsic structures along stacking and transversal directions. Mostly, both the interlayer glide and interlayler delamination easily occur. However, such anisotropy sometimes yields surprising ability for deformation. For example, the material group in ceramics named MAX phases invented by [Barsoum and El-Raghy (1996)] shows superior mechanical properties that are closely related to the interlayer deformation [Barsoum and El-Raghy (2001); Eklund et al. (2010); Tromas et al.(2011)]. The interlayer deformation mechanisms divided into two classes. One is kink deformation and the other is delamination. Both are commonly observed in some multi-layered solids, e.g. hexagonal close-packed metals [Hagihara et al.(2014)]. From viewpoints of damage and fracture mechanics, the strength of materials with debonding decreases. However, the micro cracking which is related to relaxation process of strain energy sometimes improve the toughness.

In this paper, we focus on the interlayer deformation of multilayered solids. First, we assume the full compatibility of displacement and we establish the concept of lattice defect model. With considering the geometrical nonlinearity of deformation, kinking and delamination are related to lattice rotation and debonding, respectively. The former corresponds to the component of disclination dipole proposed by Volterra [Das et al. (1973)], and the latter corresponds to the misfit perpendicular to slip-plane, i.e., the component of in-plane edge Somigliana dislocations. A boundary-value problem of hyperelastic-plastic material is also studied in the context.

The microdynamics simulation of compression parallel to basal planes in Mg alloy with long period stacking ordered structure is carried out using spring-mass model. According to the parametric studies with stiffness of pair term and angular dependent term, both ridge-shaped kink structure and ortho-shaped kink deformation [Gilman (1954)] have been observed. The result agrees well with experimental studies [Hagihara et al. (2014)]. The delamination also have been observed. The deformation process is related to energy release and it is expected that we obtain knowledges for the improvement of toughness in the further study.

Keywords: Computation, Auckland, Warm Winter-in-July, Natural Beauty, Natural comfort

Acknowledgments: This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas, "Synchronized Long-Period Stacking Ordered Structure", from the Ministry of Education, Science, Sport and Culture, Japan.

References

- Barsoum, M. W. and El-Raghy, T. (1996) Synthesis and characterization of a remarkable ceramic: Ti₃SiC₂, *Journal of American Ceramic Society* **79**, 1953-1956.
- Barsoum, M. W. and El-Raghy, T. (2001) The MAX phases: Unique new carbide and nitride materials, *American Science* 89, 336-345.
- Das, E. S. P., Marcinkowski, M. J., Armstrong, R. W. and DeWit, R. (1973) The movement of Volterra disclinations and the associated mechanical forces, *Philosophical Magazine* 27, 369-391.
- Eklund, P., Beckers, M., Jansson, U., Högberg, H. and Hultman, L. (2010) The $M_{n+1}AX_n$ phases: Materials science and thin-film processing, *Thin Solid Films* **518**, 1851-1878.
- Gilman, J. J. (1954) Mechanism of ortho kink-band formation in compressed zinc monocrystals, *Journal of metals* **6**, 621-629.
- Hagihara, K., Yamasaki, M., Honnami, M., Izuno, H., Tane, M., Nakano, T. and Kawamura, Y. (2015) Crystallographic nature of deformation bands shown in Zn and Mg-based long-period stacking ordered (LPSO) phase, *Philosophical Magazine* **95**, 132-157.
- Tromas, C., Villechaise, P., Gauthier-Brunet V. and Dubois, S. (2011) Slip line analysis around nanoindentation imprints in Ti3SnC2: a new insight into plasticity of MAX-phase materials, *Philosophical Magazine* **91**, 1265-1275.