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Abstract

This paper presents a description of a 3D adaptive combined DE/FE algorithm which
can automatically convert the distorted finite elements into the spherical discrete
elements during simulating the impact fracture of laminated glass. In this method a
system is completely discretized into the finite elements at the initial moment without
any discrete element existing until part of the finite elements becoming severely
deformed. Subsequently each finite element, whose maximum tensile stress exceeds a
user-specified conversion criterion, is converted into eight spherical discrete elements.
At the same time the system is fragmented into two subdomains, the finite element
(FE) and the discrete element (DE) subdomains. The impact fracture of a glass beam
is simulated by the adaptive algorithm and the discrete element method, respectively.
A satisfactory agreement of the simulation results is observed which validates the
feasibility of such an adaptive algorithm; however, the computational efficiency of
the adaptive algorithm is much higher than that of latter.
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Introduction

Laminated glass generally consists of two or more layers of glass sheets combined by
the elastomeric interlayers of Polyvinyl Butyral (PVB) under heat treatment and has
been wildly used in automobile windshields, modern buildings, etc. thanks to its
security and durability performance. The mechanical properties of laminated glass are
more complicated than those of single glass due to the brittleness of glass, the
hyper-elasticity of PVB interlayer and the coupled influence of both formers.

The fracture behavior and the flexural strength of laminated glass were not only
influenced by the flexural stiffness of each layer but also by their interfacial bonding
strength. A parametric study was carried out by Hidallana-Gamage et al. to investigate
the influence of structural sealant joints on the mechanical properties of laminated
glass panels under blast loading, the information in which might be employed to
complement the guidance in the existing design standards [Hidallana-Gamage et al
(2014)]. Foraboschi implemented the sacrificial ply design concept to design
laminated glass in which the outer glass as a sacrificial ply was permitted to damage
under small impact while the inner was designed to remain unbroken [Foraboschi
(2007; 2013)]. The fracture behaviors of laminated glass windows subjected to
impulsive and blast loadings were experimentally studied with the laboratory airbag
pendulum impact tests and the full-scale field blast tests, respectively [Zhang et al
(2015)]. The responses of laminated glass in the lab and field tests, such as failure
process, applied pressure and deflections, were used to validate the accuracy of the
design standards predictions.

Most of numerical studies mentioned above were preceded in the framework of the
finite element method (FEM). The contact problem over the crack surfaces and the
fragments dispersion might be present, which were of great importance for the
fracture of laminated glass. The essence of material fracture was a complicated transi-



tion from continuum to non-continuum. However, it was very difficult to calculate the
contact force over the crack surfaces and capture the dispersing fragments in the FEM
framework. Fortunately, it was very simple to deal with the transition process by
changing the joint types between the DEs in the framewark of the discrete element
method (DEM). The DEM proposed by Cundall [Cundall (1971)] had been employed
to simulate the fracture behavior of brittle materials [Oda and Yasuda (2007);
Griffiths and Mustoe (2001); Zang et al (2007); Shan et al (2009)].

To take full advantages of the both numerical methods mentioned above, a 3D
adaptive combined DE/FE algorithm has been developed, which can automatically
convert the distorted finite elements into the spherical discrete elements during the
impact fracture simulations. The detailed description about the 3D adaptive algorithm
is presented in Section 2. The corresponding numerical code has been developed in
Fortran 90/95 programming language. In Section 3, the fracture simulation is
performed on a three-point bending glass beam and the feasibility of the 3D adaptive
algorithm is validated by comparing the fracture procedures simulated by the
proposed algorithm and the DEM.

Adaptive combined DE/FE algorithm

Introduction of the combined DE/FE method

A continuous elastic solid (solution domain) is considered with the volume Q and
the surface S as shown in Figure 1. It is fragmented into two subdomains, , and
Q, with the surfaces S;,, Syq and Sy, Sup, respectively, which are to be joined
together along an interface S,;,. Here S,, and S,, are the surfaces prescribed the
external forces, S,, and S,;, are the surfaces prescribed displacements [Lei and
Zang (2010)]. In this work the solution domain is divided into the DE and the FE
subregions. The constraint condition between both subregions is enforced on the
interface S,;, by using the penalty method.
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Figure 1. Solution domain divided into two subdomains

The adaptive procedure

Figure 2(a) illustrates a finite element grid with four 8-node cubic FEs (A, B, C and
D) on the surface designated as the candidates for conversion into the spherical DEs.
In the grid only the nodes 1, 2, 3,--- 32 are numbered for simplicity. The full
integration is employed in the FE model. If the maximum tensile stress of a FE, such
as the finite element B, exceeds a user-specified criterion, named the conversion
stress, the following five steps are taken to convert it into eight spherical DEs. The
conversion keeps the mass, the momentum and the energy conservation laws
approximately. The deformation of the FE is approximatively mirrored by the
separation or penetration (the relative displacement in the local coordinate) between
the DEs; the stress state of the FE by the internal force between the DEs. The internal
force is calculated by the spring constants and the relative displacement between the
DEs.
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Figure 2. Conversion of the distorted finite elements into the spherical discrete ele-
ments. a The finite elements before conversion, b The finite and discrete elements
after conversion

(1) The discrete element B; (i = 1, 2, 3, --- 8) is generated at the integration point
calculated by the interpolation of the nodal positions of the finite element B,

P = > N3P’ (1)
I

where p' is the position of the discrete element B;; p' is the nodal position of the
finite element B; N,(&;,n;,¢;) is the value of the shape function, here (&;,n;, ;) is
the natural coordinate of the center of the discrete element B;. The radius of each DE
is r = 1/4, here | is the original edge length of the finite element B.

(2) The mass of the discrete element Bi is set to be m¢/8, in which mx is the mass of
the finite element B; the translational displacement and velocity of the discrete
element B; are calculated by the interpolations of the nodal displacements and
velocities of the finite element B, respectively:

u = Z N, (&imi G (2)
7

ul = Z NI(Ei' ni'(i)ul (3)
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in which u' and 4! are the translational displacement and velocity of the discrete
element B;, respectively; u! and 4 are the nodal displacement and velocity of the
finite element B, respectively.

(3) The finite element B is removed from the model grid and the nodal mass of the
finite element B is also reduced from the FE model. The reduced nodal mass is m/8.
If a node does not belong to any finite element, it should be removed from the nodal



list.

(4) If the surfaces 13-14-15-16 and 10-11-15-14 of the finite element B contacts
with the other parts, they are not effective now and should be removed from the
contact surface segments. The contact force calculation is replaced by the contact
between the discrete elements Bs-Bg-B7-Bg and B,-B3-B7-Bg and the other parts. The
discrete elements Bj, B,, Bg and Bs are combined with the surface 9-10-14-13; By, By,
Bs and Bs with the surface 9-12-16-13; Bj;, B4, Bsg and B; with the surface
11-12-16-17; By, By, B3 and B4 with the surface 9-10-11-12. The interface force
calculation will be introduced in the following subsection.

(5) The connective joint type between the DEs is guaranteed at the moment when
the DEs are generated by setting the conversion stress to be about (0.90-0.95)a;,
slightly smaller than the tensile strength of the brittle material. As shown in Flgure 3
the translational displacements of the discrete elements B; and B; are u‘andu/,
respectively. The vectors d' and d’/ are employed to record the rotations of the
discrete elements B; and B;, respectively. The normal and the tangential springs
between the DEs are connected by the two points c¢; and c; on the discrete elements B;
and By, respectively. Since the rotation of the DE is neglected for the small
deformation problems, the two vector d‘ = d”and d’ = d’’. Finally the relative
dlsplacement Au' between the discrete elements B; and B; in the local coordinate
X'y'z" is calculated by the following formula:

Au = N(w — ut) 4)

in which N is the transform matrix from the global coordinate xyz to the local
coordinate x'y'z'

Figure 3. Relative displacement between the discrete elements B; and B;

For the conversion of the finite element A, C, and D, most of the steps are similar
to those adopted for the finite element B. The final elements configuration after
conversion is illustrated in Figure 2(b).

Numerical simulation

In this part, the impact fracture simulations are performed on a three-point bending
glass beam by using the 3D adaptive algorithm and the DEM, respectively. The
resulting fracture behaviors are compared with each other to validate the feasibility of



the 3D adaptive algorithm whose computational time is compared with that of the
DEM to verify the former's higher computational efficiency.

The geometry of the three-point bending glass beam is illustrated in Figure 4. The
dimension of the glass is taken to be 200 mm in span, 20 mm in depth and 10 mm in
width. The size of each support is 10 mmX4 mmX10 mm. The impactor is just on
the top of the glass beam, whose initial velocity is vy = -3.13 m/s, size 4 mm X4 mm
X10 mm and mass 1.0 kg. For the adaptive model the glass is discretized into 4950
8-node cubic FEs with a size of 2 mm and 100 hexahedral FEs with a size of 1 mm X
2 mm X2 mm; each support 50 cubic FEs with a size of 2 mm; the impactor 20 cubic
FEs with a size of 2 mm which are the rigid body elements. For the DE model, the
glass is discretized into 40000 spherical DEs with a radius of 0.5 mm.

Unit: mm
Yy Glass Impactor Support
L.
i
_ ol
. 4T
o' 200

Figure 4. Impact fracture model of the three-point bending beam

The material properties of the three-point bending glass beam model are listed in
Table 1. In the numerical simulations the conversion stress is assumed to be 56.0 MPa
to guarantee the connective joint type in the DE subregion at the moment when the
DEs are generated.

Table 1. Material properties used in the simulation

Material Glass Support Impactor
Density p (kg/m®) 2500.0 2400.0 -
Young’s modulus E (GPa) 74.09 5.0 210.0
Poisson’s ratio v 0.2 0.4 0.269
Tensile strength o, (MPa) 60.0 - -

10.0 - -

Energy release rate Gy (N/m)
Shear stress factor 8 0.10 - -

Based on the theory mentioned above, a numerical code is developed in Fortran
90/95 programming language. The impact fracture procedure of the glass beam is
simulated by using the numerical code on a Dell Precision T5810 Workstation. The
time step A, is 6X 10°ms small enough to ensure calculation stability for both of the
DE and the adaptive models. The physical time is about 100us. The computational
time of the 3D adaptive algorithm is about 67s while that of the DEM about 660s.
The computational efficiency of the 3D adaptive algorithm is much higher than that
of the DEM. Furthermore, almost the same crack patterns are captured as illustrated
in Figures 5 and 6.

Figure 5 illustrates the fracture procedure of the glass beam with the DE model. In
order to illustrate the damage of the glass the DEs’ color is set to be red if the joint
model between the DEs is changed from the connective model to the cohesive or the
contact models and the main crack is marked by green lines. As shown in Figure 5(a),
the glass beam begins to damage at the bottom at about 25us. Subsequently, one main
crack progresses upwards in a very short period of time (about 45us) to the upper of
the glass beam as shown in Figures 5(b) and 5(c) and the crack reaches the opposite



side at about 70us. Figure 5(d) is the oblique view of the final crack pattern at about
100us, in which the main crack is surrounded by microcracks and the cohesive zone
located in the red region.
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(b)

(c)

(d)
Figure 5. Fracture procedure with the DE model. a-c The crack patterns of the middle
section by the xy plane: at = 25us, b t = 50us, ¢ t = 70us; d The oblique view of the
final crack pattern at about 100us

Figure 6 illustrates the fracture procedure of the glass beam with the adaptive
model. Five finite elements are converted into forty spherical DEs. Following the
conversion procedure, the glass beam begins to fracture at the bottom at about 26us
as shown in Figure 6(a). Subsequently, the conversion procedure progresses upwards
in a very short period of time (about 44us) to the upper of the glass beam and one
main crack propagates only in the DE subdomain as shown in Figures 6(b) and 6(c)
and the crack reaches the opposite side at about 70us. Figure 6(d) is the oblique view
of the final crack pattern at about 100us, in which only the main crack is captured in
the adaptive model.
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Figure 6. Fracture procedure with the adaptive model. a-c The crack patterns of the
middle section by the xy plane: at = 26pus, bt =50us, ¢ t = 70us; d The oblique view
of the final crack pattern at about 100us

From the above investigations, we notice that the crack paths and the moment of
crack occurrence of the adaptive model in Figure 6 are almost unanimous as those of



the DE model in Figure 5. The differences are small; however, one more important
characteristic of the 3D adaptive algorithm is the higher computational efficiency.

Conclusion

(1) A 3D adaptive combined DE/FE algorithm is proposed to analyze the impact
fracture problem with a higher computational efficiency.

(2) The impact fracture of a glass beam is simulated with a higher efficiency by the
3D adaptive algorithm than the DEM. Furthermore, almost the same crack patterns
are captured with both numerical methods.

In this work, the same time step is adopted in the FE and the DE subregions and only
the cubic FEs can be converted into the spherical DEs. In the future we will overcome
these obstacles for more efficiently analyzing the impact fracture of laminated glass
with an irregular geometry.
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