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Abstract 

This paper presents a description of a 3D adaptive combined DE/FE algorithm which 
can automatically convert the distorted finite elements into the spherical discrete 
elements during simulating the impact fracture of laminated glass. In this method a 
system is completely discretized into the finite elements at the initial moment without 
any discrete element existing until part of the finite elements becoming severely 
deformed. Subsequently each finite element, whose maximum tensile stress exceeds a 
user-specified conversion criterion, is converted into eight spherical discrete elements. 
At the same time the system is fragmented into two subdomains, the finite element 
(FE) and the discrete element (DE) subdomains. The impact fracture of a glass beam 
is simulated by the adaptive algorithm and the discrete element method, respectively. 
A satisfactory agreement of the simulation results is observed which validates the 
feasibility of such an adaptive algorithm; however, the computational efficiency of 
the adaptive algorithm is much higher than that of latter.  
 
Keywords: Combined algorithm; Brittle fracture; Cohesive model; Discrete element 
method; Laminated glass 

Introduction 

Laminated glass generally consists of two or more layers of glass sheets combined by 
the elastomeric interlayers of Polyvinyl Butyral (PVB) under heat treatment and has 
been wildly used in automobile windshields, modern buildings, etc. thanks to its 
security and durability performance. The mechanical properties of laminated glass are 
more complicated than those of single glass due to the brittleness of glass, the 
hyper-elasticity of PVB interlayer and the coupled influence of both formers. 
 
The fracture behavior and the flexural strength of laminated glass were not only 
influenced by the flexural stiffness of each layer but also by their interfacial bonding 
strength. A parametric study was carried out by Hidallana-Gamage et al. to investigate 
the influence of structural sealant joints on the mechanical properties of laminated 
glass panels under blast loading, the information in which might be employed to 
complement the guidance in the existing design standards [Hidallana-Gamage et al 
(2014)]. Foraboschi implemented the sacrificial ply design concept to design 
laminated glass in which the outer glass as a sacrificial ply was permitted to damage 
under small impact while the inner was designed to remain unbroken [Foraboschi 
(2007; 2013)]. The fracture behaviors of laminated glass windows subjected to 
impulsive and blast loadings were experimentally studied with the laboratory airbag 
pendulum impact tests and the full-scale field blast tests, respectively [Zhang et al 
(2015)]. The responses of laminated glass in the lab and field tests, such as failure 
process, applied pressure and deflections, were used to validate the accuracy of the 
design standards predictions. 
 
Most of numerical studies mentioned above were preceded in the framework of the 
finite element method (FEM). The contact problem over the crack surfaces and the 
fragments dispersion might be present, which were of great importance for the 
fracture of laminated glass. The essence of material fracture was a complicated transi-
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the DE model in Figure 5. The differences are small; however, one more important 
characteristic of the 3D adaptive algorithm is the higher computational efficiency. 

Conclusion 

(1) A 3D adaptive combined DE/FE algorithm is proposed to analyze the impact 
fracture problem with a higher computational efficiency. 
 
(2) The impact fracture of a glass beam is simulated with a higher efficiency by the 
3D adaptive algorithm than the DEM. Furthermore, almost the same crack patterns 
are captured with both numerical methods. 
 
In this work, the same time step is adopted in the FE and the DE subregions and only 
the cubic FEs can be converted into the spherical DEs. In the future we will overcome 
these obstacles for more efficiently analyzing the impact fracture of laminated glass 
with an irregular geometry. 
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