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Abstract 
Laminate structures composed of fibre-reinforced plies typically are prone to the formation of inter-
fiber cracks because of the given strongly anisotropic stiffness and strength properties. These inter-
fiber cracks commonly run through complete plies but are stopped at the ply interfaces. Equally, 
such laminate structures are prone to the formation of delaminations, e.g. due to the free-edge 
effect. An inter-fiber crack meeting a delamination forms a non-standard three-dimensional crack 
configuration with a locally singular stress field that should be investigated in regard of its 
criticality.  
For that purpose, the Scaled Boundary Finite Element Method turns out to be an appropriate and 
effective analysis method that permits solving linear elastic mechanical problems including stress 
singularities with comparably little effort. Only the boundary is discretized by two-dimensional 
finite elements while the problem is considered analytically in the direction of the dimensionless 
radial coordinate ξ. A corresponding separation of variables representation for the displacement 
field employed in the virtual work equation leads to a system of differential equations of Cauchy-
Euler type. This differential equation system can be converted into an eigenvalue problem and 
solved by standard eigenvalue solvers for non-symmetric matrices. 
By this kind of analysis, it is revealed that the considered three-dimensional crack configurations 
may go along with various unexpected non-standard stress singularities, namely singularities that 
are weaker than the well-known square root stress singularity in linear elastic fracture mechanics, 
but also singularities that are stronger and which may be called hypersingularities.  
Keywords: Scaled Boundary Finite Element Method, laminate, inter-fiber crack, delamination, 

stress singularity 

Introduction 
Unidirectionally fiber-reinforced materials as they are used in structural components, exhibit a 
strongly anisotropic material behavior. They offer very high stiffness and strength properties in the 
fiber direction but low values in the transverse directions. This makes them prone to the formation 
of matrix cracks between the fibers, so-called inter-fiber cracks. In a laminated structure of 
unidirectionally fiber-reinforced plies, these inter-fiber cracks, at first, only lead to some stiffness 
degradation but also to locally new structural situations with a highly complex failure evolution (see 
e.g. [Leguillon and Martin (2012)]). Because of this complexity and moreover the lack of 
predictability of the failure evolution, it is still common practice in industrial composite design to 
assume laminate failure when the so-called First-Ply-Failure occurs, i.e. when the first inter-fiber 
cracks emerge. Especially for quasi-isotropic carbon fiber reinforced plastic (CFRP) laminates with 
a ply lay-up of the kind [ 45 / 0 / 90 ]S° ° °±  as they are almost exclusively used in the aircraft industry, 
this assumption dramatically underestimates the true load bearing capacity of such a composite 
laminate. To achieve further progress in this field, it is crucial to gain a proper understanding of 
these structural situations and their possible interactions with other defects. Such other defects are 
e.g. delaminations which commonly occur due to impact loads or also as a consequence of the 
laminate free-edge effect. A delamination meeting a transverse inter-fiber crack is, thus, a possible 
crack configuration that needs closer investigation.  
 
A special challenge of such structural situations within the framework of linear elasticity theory is 
the occurrence of theoretically infinite stresses. Stress singularities typically occur at discontinuities 
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of geometry and material. The near-field solution at a singular point for the displacements and 
stresses respectively is usually represented by a power law function series of the kind 
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given in spherical coordinates , ,r ϕ ϑ . Here, jλ  are complex numbers and ujΦ



 and jσΦ  are vector and 
tensor functions of the angle coordinates ϕ  and ϑ . For Re( ) 1 0jλ − <  and 0r → the stress tensor 
becomes singular and the quantities Re( ) 1jλ −   are called stress singularity exponents. The free 
constants ujc and jcσ are not independent of each other and need to be determined from the boundary 
conditions. However, this means that it depends on the boundary conditions whether a stress 
singularity actually occurs. The exponent k  depends on the geometrical multiplicity of jλ  and is 
zero in most cases. 
 
Stress singularities can be classified into weak and strong singularities between which the classical 
crack singularity of Re( ) 1 0.5jλ − = −  constitutes the threshold value. [Leguillon and Sanchez-
Palencia (1999)] showed that for 2D as well as 3D situations, weak singularities yield a differential 
energy release rate of 0= .This means that crack configurations evolving towards a structural 
situation with a weak stress singularity tend to a crack arrest. This, for example, is the case for a 
crack under mode I loading growing perpendicularly towards an interface with a stiffer material 
(e.g. [Leguillon and Martin (2012; 2013)]). On the contrary, strong singularities, which also may be 
called hypersingularities, are characterized by a differential energy release rate which tends to 
infinity → ∞ . This means that structural situations under a loading producing a hypersingularity, 
but also neighboring crack configurations evolving towards such a structural situation, tend to a 
further, instable crack growth. This, for example, is the case for a crack under mode I loading 
growing perpendicularly towards an interface with a less stiff material. In conclusion, weak 
singularities can be classified as less critical and hypersingularities as more critical than the 
classical crack singularity. 
 
An appropriate method for linear elastostatic problems, which is capable of both resolving the 
singularities in 3D structural situations and taking into account different anisotropic materials and 
interfaces, is the Scaled Boundary Finite Element Method (SBFEM). Its suitability for 2D problems 
has been demonstrated e.g. by [Song (2006)] and for 3D problems e.g. by [Mittelstedt and Becker 
(2005)] and [Goswami and Becker (2012)]. In a former work, the SBFEM has furthermore been 
successfully used by [Hell and Becker (2014)] for the analysis of two meeting transverse inter-fiber 
cracks in a composite laminate. A very similar method based on an FEM eigenanalysis has also 
proven to be adequate: [Bažant and Estenssoro (1979)], [Somaratna and Ting (1986)], [Gharemani 
(1991)], [Dimitrov et al. (2001)], [Koguchi and da Costa (2010)], [Korepanova et al. (2013)] are 
only a few authors who employed that method.  
 
In the following, a brief description of the SBFEM is given before it will be employed for the 
analysis of a delamination meeting a transverse inter-fiber crack. 

The Scaled Boundary Finite Element Method 

The Scaled Boundary Finite Element Method (SBFEM) ([Deeks and Wolf (2002)], [Song and Wolf 
(1997)], [Wolf (2003)] is a semi-analytical method which combines the advantages of the Boundary 
Element Method (BEM) and the Finite Element Method (FEM). Comparable to the BEM, only the 
boundary, or in some cases even only parts of the boundary, need to be discretized. At the same 
time, the problem of strongly singular integrands, present in the BEM-approach, does not exist in 
the SBFEM. This is because the SBFEM is based on a variational principle and does not need any 
fundamental solutions. As a further consequence of this, arbitrary linear elastic material behavior in 
three dimensions can be taken into account in a Scaled Boundary Finite Element. This makes the 
SBFEM a powerful tool for a variety of linear elasticity problems, which has lately also been 
extended to nonlinear analyses (e.g. [Behnke et al. (2014), Ooi et al. (2014)]).  
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The geometrical scalability is a fundamental requirement of the SBFEM. It requires that the 
connection of any point on the boundary with the scaling center by a straight line must be possible 
without any further intersections. Accordingly, a scaled boundary coordinate system is defined 
having its origin at the scaling center with the coordinates 0 0 0( , , )x y z in a Cartesian coordinate 
system. The scaling coordinate ξ  runs from the scaling center 0ξ =  to the boundary 1ξ = . In case 
of a 2D problem, a boundary coordinate η  runs along the boundary. In case of a 3D problem, two 
boundary coordinates 1η  and 2η  describe the surface of the body. Figure 1 illustrates this procedure 
for the example of an arbitrarily shaped 2D domain and how it can be extended to 3D domains. The 
Cartesian coordinates are expressed in terms of the scaled boundary coordinates: 
 
 0 1 2 0 1 2 0 1 2· ( , ) , · ( , ) , · ( , ).x x x y y y z z zη η ηx η η x η η x η η= + = + = +   (2) 
  
The partial differential operators are calculated by the use of the Jacobian matrix J : 
 

 1 1 1

2 2 2

, , ,
1 1 1 1 , , ,

2 2 2 2

x y z
x x xx y zx y z x y z
y y yx y z

x y z
z z z

η η η
η η η η η η
η η η η η η

xxxx  

x η x η x η x η

x η x η x η x η

   ∂ ∂ ∂ ∂    ∂ ∂ ∂
       ∂ ∂ ∂ ∂ ∂ ∂ ∂        ∂ ∂ ∂ ∂ ∂ ∂ ∂   = = =    
∂ ∂ ∂ ∂ ∂ ∂ ∂         ∂ ∂ ∂ ∂ ∂ ∂ ∂       

       ∂ ∂ ∂ ∂ ∂ ∂ ∂      

J .

 
 
 
 
 
 
  

  (3) 

 
The notation 1,(·)η is to be read as the partial derivative 1(·) / η∂ ∂ . Please note that in this notation the 
Jacobian 1 2( , )η ηJ  is only a function of the boundary coordinates so that the volumetric differential 
can be written as  
 2

1 2 1 2d || ( , ) || d d d .V η η ξ ξ η η= J   (4) 
 
A separation of variables ansatz is made for the displacements and separates dependences of the 
boundary coordinates 1 2,η η  from dependences of the scaling coordinate ξ . However, the resulting 
equations still cannot be solved analytically so that an approximative approach is needed. Only the 
boundaries Sξ  where ξ = const, are discretized using isoparametric finite elements and shape 
functions 1 2( , )jN η η . This sub-divides the body into a number of wedge-shaped domains which are 
denoted Scaled Boundary Finite Elements (Figure 1). The problem is still considered analytically in 
the scaling coordinateξ . Thus, vector functions ( ) ( )e

ju ξ
  are introduced for the displacements on rays 

pointing from the scaling center to the finite element nodes on the boundary. The superscript ( )(·) e  

Figure 1: Scaled Boundary Coordinate System and discretization scheme in a (a) 2D and a (b) 3D example. 
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denotes the formulation within a Scaled Boundary Finite Element e  where the shape functions are 
combined to the matrix 1 2( , )η ηN and the vector functions ( ) ( )e

ju ξ
  to ( ) ( )$.eU ξ



 A similar approximative 
approach is chosen for the virtual displacements: 
 
 ( ) ( ) ( ) ( )

1 2 1 2 1 2 1 2( , , ) ( , ) ( ) , ( , , ) ( , ) ( ).e e e eu U u Uξ η η η η ξ δ ξ η η η η δ ξ= =N N
δδ

δδ

    (5) 
 
Like the FEM, the SBFEM is based on the principle of virtual work 
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where *, , , ,f u tδ δσ ε

δ δ

δ  are the stress tensor, the virtual strain tensor, body forces, virtual displacements 
and prescribed boundary tractions respectively. iWδ  is the internal and aWδ  the external virtual 
work. V is the volume of the considered domain and tS the part of the domain surface with 
prescribed traction boundary conditions. 
 
We use the vector notation for stresses and strains and introduce a differential operator L   
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which is used in the equilibrium equations and strain-displacement relations. This differential 
operator L  is then transformed into scaled boundary coordinates. To this end, L  is decomposed into 
three matrices , ,x y zL L L  each associated to one partial differential operator in the Cartesian 
coordinate system. Then, each partial differential operator can be replaced by its respective 
counterpart in the scaled boundary coordinate system which yields 
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Employment of the differential operator L (7) and the separation of variables ansatz (5) in the strain-
displacement relations in vector notation yields: 
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Additionally, Hooke's law [ ] [ ]σ ε= C  (linear elastic material behavior) with the elasticity matrix C  is 
used in the virtual work balance (6). Assuming that the relations for the real quantities are also valid 
for the virtual ones leads to the virtual work balance in terms of the displacements and virtual 
displacements in scaled boundary coordinates. 
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Expansion of the product and integration by parts over ξ  in the internal virtual work term iWδ  
yields an arithmetic expression containing factors which are either dependent of the scaling variable 
ξ  or of the boundary coordinates 1 2,η η . Hence, the integration can be performed separately. The 
dependence of 1η  and 2η  actually is one of the introduced shape functions 1 2( , )η ηN  so that numerical 
integration over the boundary coordinates can be used. This yields the following matrices within 
one Scaled Boundary Finite Element e : 
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In numerical integration, attention must be paid to the Jacobian determinant when the discretized 
body surface is curved. Then, the numerical integration error needs to be monitored.  
 
The matrices ( ) ( ) ( )

0 1 2E ,E ,Ee e e are similarly assembled like in the standard Finite Element Method. This 
yields the following form of the virtual work balance for the case of a 3D bounded domain 0...1ξ =  : 
 

 
[ ] [ ]1

2
0 , 0 1 , 21 10

!1
2

0 , 1 0

( ) ( ) 2 ( ) ( ) d

( ) ( ) ( ) .

T TT
i

TT
a

W U U U U

U U U W

ξξ ξ
ξ

ξ
ξ

dd  ξ ξ ξ ξ ξ ξ ξ

d ξ ξ ξ ξ ξ d
=

=

 = − + + − + − + 
 + = 

∫ E E E E E E

E E

dddd  

ddd 

  (12) 

 
This equation contains one integral term and two boundary terms ( 0,1ξ = ). The boundary terms 
represent the forces which the continuum exerts on the boundary Sξ . Assuming the absence of side 
face loads, i.e. tractions at the side faces Sη  where either 1η  or 2η  are constant, and that body forces 
are negligible, the virtual external work can be reduced to 1(1)T

aW U pξδ δ ==
δ

δ . The assembled nodal 
loads vector 1pξ =

  gives a contribution to the boundary term in eq. (12). The resulting virtual work 
balance is valid for arbitrary virtual displacements if and only if the integrand in eq. (12) and the 
boundary terms are zero each. This yields a homogeneous system of differential equations of 
Cauchy-Euler type and a linear equation system. A solution fulfilling the homogeneous differential 
equation system is only approximated over the body surface but analytic inξ . The system of linear 
equations serves for enforcing the boundary conditions on the discretized body surface Sξ . 

Solution of the homogeneous differential equation system 

By application of a variable transformation lnt ξ= , a differential equation system of Cauchy-Euler 
type can be transformed into an ordinary one with constant coefficients. The introduction of the 
vector function ,( ) ( ) tV t U t=

 

 then allows the further transformation of the differential equation system 
of second order into one of first order but at the cost of doubling the number of degrees of freedom. 
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The fundamental solution solving this type of differential equations converts the differential 
equation system into an eigenvalue problem. 
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By application of established numerical algorithms, even non-symmetric and rather large 
eigenvalue problems can be solved. Unfortunately, these algorithms suffer from numerical errors, 
which are not negligible any more if the magnitudes of neighboring eigenvalues move closer 
together. Nevertheless, small eigenvalues close to zero and associated eigenvectors generally are of 
good quality and converge appropriately with a discretization refinement. 
 
The backtransformation of the fundamental solution ( : ( ) jj jt W λξ ξ ξ→ = Φ




) reveals that the eigen-
vectors can be interpreted as deformation modes and that the eigenvalues are their associated decay 
(Re( ) 0)jλ <  or growth rates (Re( ) 0)jλ > . In fact, only the lower half of the eigenvector ujΦ



 
represents a deformation mode while the upper half is simply given by vj uj jλΦ = Φ

 

. The eigenvalue 
spectrum in the 3D case is symmetric to 0.5− , which also marks the value of a bounded domain for 
which the strain energy density tends to infinity. Complex eigenvalues always appear as conjugate 
pairs iλ α β= ± . In the case of geometric multiplicity, i.e. for a given number of equal eigenvalues, 
not the same number of linearly independent eigenvectors exists, additional generalized 
eigenvectors have to be generated resulting in logarithmic deformation modes to complete the 
solution. Hence, the general solution of the differential equation system with N different eigenpairs 
of geometric multiplicity jn is 
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Here, 1jkc  and 2jkc  are free constants. In sum, they are of the number of twice the number of degrees 
of freedom of the approximated boundary value problem. These free constants are determined from 
regularity and boundary conditions.  

Delamination Meeting a Transverse Inter-Fiber Crack in a Composite Laminate 

The 3D structural situation of a delamination meeting a transverse inter-fiber crack which runs 
through the complete ply can more generally be described as two plane cracks with straight crack 
fronts meeting each other at an interface. But in contrast to the structural situation studied in [Hell 
and Becker (2014)], where the mode I crack growth directions of the two cracks point towards each 
other representing the situation of two meeting transverse inter-fiber cracks, the mode I crack 
growth directions here are assumed to be perpendicular to each other. This also implies that the 
transverse inter-fiber crack can, in a way, be seen as dividing the delamination crack in two parts. 
Configurations with angles between the crack fronts 15 90ϑ° °< <  and concurrent ply lay-ups 
[(90 )/90 ]ϑ° °−  are considered (cf. Figure 2). The stress singularity exponents ( ) 1jRe λ −  and their 
associated deformation modes 1 2( , )uj η ηΦ



 are calculated by means of the SBFEM using a spherical 
boundary mesh for a minimum numerical effort. Between 931 and 1406 bilinear isoparametric 
SBFEs for the angles 60ϑ °= and 35ϑ °= , respectively, are used for the boundary mesh, which is in 
each case appropriately refined at the crack fronts. The results for the absolute values of the stress 
singularity exponents 1 ( )jRe λ−  are presented in Figure 3 and Figure 4. 
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Figure 3 gives the results for a T800/epoxy (a carbon fiber reinforced plastic) laminate revealing 6 
stress singularities. The 6 associated deformation modes are shown in Figure 2 for the example 
of 90ϑ °= . For an easier identification, they are presented for a cubic boundary mesh where the 
cracks implemented as double nodes are marked in red. The upper half (dark shading) represents the 
upper ply with a 0°-orientation and contains the correspondingly aligned transverse inter-fiber 
crack. The lower half (light shading) represents the lower ply with 90°-orientation. The 
delamination crack is located at the interface, which obviously coincides with the plane defined by 
the present crack fronts. The deformation mode co1 corresponds to a simultaneous crack opening of 
the delamination and the inter-fiber crack. On the other hand, deformation mode co2 corresponds to 
a crack opening of only one of the cracks and a crack closing of the other. The deformation mode 
cs1 corresponds to a crack shearing of the inter-fiber crack, which implies a simultaneous crack 
opening respectively closing of the delamination crack faces. A crack shearing of the delamination 
crack can be identified for deformation mode cs2. The deformation mode ct1 corresponds to a crack 
twisting of the inter-fiber crack, which implies a simultaneous counter-directional crack shearing of 
the delamination crack. A kind of crack twisting of the delamination crack can be identified for the 
deformation mode ct2. Although these deformation modes actually only correspond to the particular 
case of 90ϑ °= , the wording is kept for all configurations studied. Other crack configurations with 
different angles ϑ  between the crack fronts produce different deformation modes for which the 
individual crack deformations cannot be assigned equally clearly to the classical single-crack 
deformation modes any more. Please note that deformation mode cs2 is an exception and 
constitutes the only deformation mode remaining widely unchanged for all configurations presented 
in this work. At the same time, cs2 is the deformation mode most closely related to a pure single-
crack deformation mode, namely mode II of the delamination crack. This makes, indeed, perfectly 
sense as a corresponding mode II delamination crack loading does not require an exchange of forces 
through the inter-fiber crack faces. In fact, its corresponding stress singularity exponent remains 
close to the classical crack singularity exponent of 1 ( ) 0.5Re λ− =  for all angles ϑ  and material 
combinations considered.  

 
 

Figure 2: Delamination crack meeting transverse inter-fiber crack in a fiber-reinforced composite laminate with 
angle ϑ between the crack fronts and used boundary mesh. 6 singular deformation modes for ϑ=90°: crack 

opening (co1/2), shearing (cs1/2) and twisting (ct1/2). 
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The classical crack singularity 
value, marked by a red line in 
Figure 3 and Figure 4, separates 
weak singularities from strong 
singularities, which we also call 
hypersingularities. It is again 
emphasized that weak singularities 
can be classified as less critical than 
the classical crack singularities, as 
they yield a differential energy 
release rate of 0=  and, therefore, 
favor a crack arrest. On the other 
hand, hypersingularities yield a 
differential energy release rate of 
→ ∞ , which obviously favors 

crack growth. For all crack 
configurations studied, only two 
stress singularities are weak, which 
are the ones associated to 
deformation modes co2 and ct2. In 

contrast, always three hypersingularities are present, namely those associated to deformation modes 
co1, cs1 and ct1. Moreover, it can be stated that strong singularities become even stronger with 
decreasing angle ϑ  while the weak singularities decline or at least remain weak. Please also note 
that the real part of the stress singularity exponents associated to the deformation modes cs1 and ct1 
are the same for angles 60ϑ °  . This is because they constitute a pair of complex conjugated stress 
singularity exponents which makes them occur strongly interconnected (cf. eq. (15)). However, all 
other stress singularities found for the considered T800/epoxy laminate configurations are not 
complex. 
 
For comparison, configurations with less anisotropic ply materials were studied: a delamination 
meeting a transverse inter-fiber crack in a typical [(90 )/90 ]ϑ° °− glass fiber reinforced plastics 
(GFRP) laminate and the same geometrical setup but in a homogeneous isotropic body (Figure 4). 
The material data are given in the figures while the stress singularities present in a homogeneous 
isotropic body only depend on Poisson's ratio but not on Young's modulus. Here again, all 

 

 

 

 

Figure 4: Stress singularity exponents for two meeting cracks with perpendicular mode I crack growth 
directions in a (a) typical GFRP laminate with ply-layups [(90°-ϑ)/90°] and a (b) homogeneous isotropic body. 

 

Figure 3: Stress singularity exponents for a delamination crack 
meeting a transverse inter-fiber crack in a T800/epoxy CFRP 

laminate with ply-layups [(90°-ϑ)/90°]. 
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configurations considered go along with 3 hypersingularities, 2 weak singularities and one 
singularity approximately matching the classical crack singularity. From Figure 3 and Figure 4 it 
can be seen that the material properties mainly affect deformation mode co1. Its dependence on the 
elastic contrast between the upper and the lower ply is expected as it also plays a major role for the 
stress singularity exponent of the crack opening mode of a single crack impinging an interface (e.g. 
[Bogy (1971); Ting and Hoang (1984)]). The other deformation modes seem to be hardly or only 
moderately affected by the material properties. Finally, complex singularities can also be found for 
GFRP laminates and homogeneous isotropic materials. The considered GFRP laminate exhibits 
complex singularities for angles between the crack fronts of 50 65ϑ° °   and the homogeneous 
isotropic configuration with a Poisson's ratio of 0.3ν =  for angles 60ϑ ° . Although the magnitude 
of the imaginary part of the stress singularity exponent is always rather small with 
| Im( ) 1| 0.045λ − < , it is remarkable that, here, a complex singularity can also occur in the 
homogeneous isotropic case. 

Conclusion  

The SBFEM has been used to solve boundary value problems of linear elasticity which contain 
singular points. Even 3D anisotropic structural situations involving interfaces are treated accurately 
and efficiently. Such a structural situation is the one of a delamination crack meeting a transverse 
inter-fiber crack, which has been treated in this contribution. It has been shown that this is a highly 
critical structural situation involving up to 3 hypersingularities. This strongly motivates a further 
investigation. It is worth pointing out that the hypersingularities found can be complex singularities 
- even in the simplified homogeneous isotropic case of this geometrical setup. 
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