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Abstract

Laminate structures comﬁosed of fibre-reinforced plies typically are prone to the formation of inter-
fiber cracks because of the given strongly anisotropic stiffness and strength properties. These inter-
fiber cracks commonly run through complete plies but are stopped at the ply interfaces. Equally,
such laminate structures are prone to the formation of delaminations, e.g. due to the free-edge
effect. An inter-fiber crack meeting a delamination forms a non-standard three-dimensional crack
configluration with a locally singular stress field that should be investigated in regard of its
criticality.

For that purpose, the Scaled Boundary Finite Element Method turns out to be an appropriate and
effective analysis method that ?ermits solving linear elastic mechanical problems including stress
singularities with comﬁarably ittle effort. OnIg the boundary is discretized by two-dimensional
finite elements while the problem is considered analytically in the direction of the dimensionless
radial coordinate £. A corresponding separation of variables representation for the displacement
field employed in the virtual work equation leads to a system of differential equations of Cauchy-
Euler type. This differential equation system can be converted into an eigenvalue problem and
solved by standard eigenvalue solvers for non-symmetric matrices.

By this kind of analysis, it is revealed that the considered three-dimensional crack configurations
may go along with various unexpected non-standard stress singularities, namely singularities that
are weaker than the well-known square root stress singularity in linear elastic fracture mechanics,
but also singularities that are stronger and which may be called hypersingularities.
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Introduction

Unidirectionally fiber-reinforced materials as they are used in structural components, exhibit a
strongly anisotropic material behavior. They offer very high stiffness and strength properties in the
fiber direction but low values in the transverse directions. This makes them prone to the formation
of matrix cracks between the fibers, so-called inter-fiber cracks. In a laminated structure of
unidirectionally fiber-reinforced plies, these inter-fiber cracks, at first, only lead to some stiffness
degradation but also to locally new structural situations with a highly complex failure evolution (see
e.g. [Leguillon and Martin (2012)]). Because of this complexity and moreover the lack of
predictability of the failure evolution, it is still common practice in industrial composite design to
assume laminate failure when the so-called First-Ply-Failure occurs, i.e. when the first inter-fiber
cracks emerge. Especially for quasi-isotropic carbon fiber reinforced plastic (CFRP) laminates with
a ply lay-up of the kind [+45° /0" /90°s as they are almost exclusively used in the aircraft industry,
this_assumption dramatically underestimates the true load bearing capacity of such a composite
laminate. To achieve further progress in this field, it is crucial to gain a proper understanding of
these structural situations and their possible interactions with other defects. Such other defects are
e.g. delaminations which commonly occur due to impact loads or also as a consequence of the
laminate free-edge effect. A delamination meeting a transverse inter-fiber crack is, thus, a possible
crack configuration that needs closer investigation.

A special challenge of such structural situations within the framework of linear elasticity theory is
the occurrence of theoretically infinite stresses. Stress singularities typically occur at discontinuities
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of geometry and material. The near-field solution at a singular point for the displacements and
stresses respectively is usually represented by a power law function series of the kind

G(r.0.9) = Yt N0y (9.9) . 0(1,p.8)= D, HInr Y By (0, 8) (1)

i=1

given in spherical coordinates r,p, 4. Here, 4; are complex numbers and &, and ®,; are vector and
tensor functions of the angle coordinates ¢ and 9. For Re(4)-1<0 and r — 0 the stress tensor
becomes singular and the quantities Re(1;)-1 are called stress singularity exponents. The free
constants c,; and c,; are not independent of each other and need to be determined from the boundary
conditions. However, this means that it depends on the boundary conditions whether a stress
singularity actually occurs. The exponent k depends on the geometrical multiplicity of 4, and is
zero in most cases.

Stress singularities can be classified into weak and strong singularities between which the classical
crack singularity of Re(1,)-1=-0.5 constitutes the threshold value. {Leguillon and Sanchez-
Palencia (1999)] showed that for 2D as well as 3D situations, weak singularities yield a differential
energy release rate of g=0.This means that crack configurations evolving towards a structural
situation with a weak stress singularity tend to a crack arrest. This, for example, is the case for a
crack under mode | loading growing perpendicularly towards an interface with a stiffer material
(e.g. [Leguillon and Martin (2012; 2013)]). On the contrary, strong singularities, which also may be
called hypersingularities, are characterized by a differential energy release rate which tends to
infinity ¢ — «. This means that structural situations under a loading producing a hypersingularity,
but also neighboring crack configurations evolving towards such a structural situation, tend to a
further, instable crack growth. This, for example, is the case for a crack under mode | loading
growing perpendicularly towards an interface with a less stiff material. In conclusion, weak
singularities can be classified as less critical and hypersingularities as more critical than the
classical crack singularity.

An appropriate method for linear elastostatic problems, which is capable of both resolving the
singularities in 3D structural situations and taking into account different anisotropic materials and
interfaces, is the Scaled Boundary Finite Element Method (SBFEM). Its suitability for 2D problems
has been demonstrated e.g. by [Song (2006)] and for 3D problems e.g. by [Mittelstedt and Becker
(2005)] and [Goswami and Becker (2012)]. In a former work, the SBFEM has furthermore been
successfully used by [Hell and Becker (2014)% for the analysis of two meeting transverse inter-fiber
cracks in a composite laminate. A very similar method based on an FEM eigenanalysis has also
proven to be adequate: FBaiant and Estenssoro (1979)], [Somaratna and Ting ?1986)], [Gharemani
(1991)], [Dimitrov et al. (2001)], [Koguchi and da Costa (2010)], [Korepanova et al. (2013)] are
only a few authors who employed that method.

In the following, a brief description of the SBFEM is given before it will be employed for the
analysis of a delamination meeting a transverse inter-fiber crack.

The Scaled Boundary Finite Element Method

The Scaled Boundary Finite Element Method (SBFEM) ([Deeks and Wolf (2002)], [Song and Wolf
(1997)], [Wolf (2003)] is a semi-analytical method which combines the advantages of the Boundary
Element Method (BEM) and the Finite Element Method (FEM). Comparable to the BEM, only the
boundary, or in some cases even only parts of the boundary, need to be discretized. At the same
time, the problem of strongly singular integrands, present in the BEM-approach, does not exist in
the SBFEM. This is because the SBFEM is based on a variational principle and does not need any
fundamental solutions. As a further consequence of this, arbitrary linear elastic material behavior in
three dimensions can be taken into account in a Scaled Boundary Finite Element. This makes the
SBFEM a powerful tool for a variety of linear elasticity problems, which has lately also been
extended to nonlinear analyses (e.g. [Behnke et al. (2014), Ooi et al. (2014)]).
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Figure 1: Scaled Boundary Coordinate System and discretization scheme in a (a) 2D and a (b) 3D example.

The geometrical scalability is a fundamental requirement of the SBFEM. It requires that the
connection of any point on the boundary with the scaling center by a straight line must be possible
without any further intersections. Accordingly, a scaled boundary coordinate system is defined
having its origin at the scaling center with the coordinates (xo,yo,z,) in a Cartesian coordinate

system. The scaling coordinate & runs from the scaling center £ =0 to the boundary £=1. In case
of a 2D problem, a boundary coordinate » runs along the boundary. In case of a 3D problem, two
boundary coordinates », and 7, describe the surface of the body. Figure 1 illustrates this procedure

for the example of an arbitrarily shaped 2D domain and how it can be extended to 3D domains. The
Cartesian coordinates are expressed in terms of the scaled boundary coordinates:

X=Xo+&X,(Mum2) Y =Yo+&Y,(mm2) o Z=20+E2,(m,m2). (2)

The partial differential operators are calculated by the use of the Jacobian matrix J:
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The notation (-),, is to be read as the partial derivative o(-)/ 6x,. Please note that in this notation the
Jacobian J(m,7.) is only a function of the boundary coordinates so that the volumetric differential

can be written as
dV =[] Iz, 72) || E2dEdmd .. (4)

A separation of variables ansatz is made for the displacements and separates dependences of the
boundary coordinates 7,7, from dependences of the scaling coordinate £. However, the resulting

equations still cannot be solved analytically so that an approximative approach is needed. Only the
boundaries S, where &= const, are discretized using isoparametric finite elements and shape

functions N;(.,7.). This sub-divides the body into a number of wedge-shaped domains which are

denoted Scaled Boundary Finite Elements (Figure 1). The problem is still considered analytically in
the scaling coordinate &£. Thus, vector functions G{®(¢) are introduced for the displacements on rays

pointing from the scaling center to the finite element nodes on the boundary. The superscript (-)®
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denotes the formulation within a Scaled Boundary Finite Element e where the shape functions are
combined to the matrix N(r.,77.) and the vector functions G(® (&) to U (£)s$. A similar approximative

approach is chosen for the virtual displacements:
UO(E ) =NOm) UO(E) 80O (Emm) =Npm2) U (E). ()

Like the FEM, the SBFEM is based on the principle of virtual work

SW, :jvo:aadv!:jvf-(sadv +J.&f*-5JdA:éWa (6)

where o,5¢,f,50,t" are the stress tensor, the virtual strain tensor, body forces, virtual displacements
and prescribed boundary tractions respectively. sw; is the internal and sw, the external virtual
work. Vv is the volume of the considered domain and S the part of the domain surface with
prescribed traction boundary conditions.

We use the vector notation for stresses and strains and introduce a differential operator L
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which is used in the equilibrium equations and strain-displacement relations. This differential
operator L is then transformed into scaled boundary coordinates. To this end, L is decomposed into
three matrices L,,L,,L, each associated to one partial differential operator in the Cartesian
coordinate system. Then, each partial differential operator can be replaced by its respective
counterpart in the scaled boundary coordinate system which yields

L=in+Lyi+in=b§i+bmli+ Wli. (8)
x oy oz o0& & om g on

Employment of the differential operator L (7) and the separation of variables ansatz (5) in the strain-
displacement relations in vector notation yields:

[e] =L N(72) U(&) = %L\I 8%(5) +[D Ny + D, Ny, ue) 9)
Bs (mrz) By (m.72) d

Additionally, Hooke's law [o] = C[¢] (linear elastic material behavior) with the elasticity matrix C is

used in the virtual work balance (6). Assuming that the relations for the real quantities are also valid
for the virtual ones leads to the virtual work balance in terms of the displacements and virtual
displacements in scaled boundary coordinates.

jv{aug BI +6UT B, ﬂ 0{350,5 +B,,Uﬂ dv=[ UTNf dv +L‘ SUTNT " dA (10)



Expansion of the product and integration by parts over & in the internal virtual work term sw;

yields an arithmetic expression containing factors which are either dependent of the scaling variable
£ or of the boundary coordinates 7,7,. Hence, the integration can be performed separately. The

dependence of 7 and 7, actually is one of the introduced shape functions N(;.,7.) so that numerical

integration over the boundary coordinates can be used. This yields the following matrices within
one Scaled Boundary Finite Element e:

ES) = JS(;) BL (71,772) C B (m1,172) || I® (171,1m2) || Az,
EE = [y BT 0m172) CB(ma) 1 3€) (o r2) Il dradl e, (11)
ES) = Jsge) B, (71,772) C B, (111,172) || I®) (1p1,172) || dpud 7z

In numerical integration, attention must be paid to the Jacobian determinant when the discretized
body surface is curved. Then, the numerical integration error needs to be monitored.

The matrices EY ,E® EY are similarly assembled like in the standard Finite Element Method. This
yields the following form of the virtual work balance for the case of a 3D bounded domain¢& =0...1 :

W, =~ 807 (&) Eo2U(&) s +[260 +E] ~E:]EU(E), +[E] ~E-]U(¢) |dé +

) , o (12)

oUT (&) Eo5?U(8); +EIU()] | = oWa.
This equation contains one integral term and two boundary terms (&=0,1). The boundary terms
represent the forces which the continuum exerts on the boundary S.. Assuming the absence of side
face loads, i.e. tractions at the side faces S, where either 7 or 7, are constant, and that body forces
are negligible, the virtual external work can be reduced to sw, = sUT (1) p..,. The assembled nodal
loads vector p.., gives a contribution to the boundary term in eq. (12). The resulting virtual work

balance is valid for arbitrary virtual displacements if and only if the integrand in eq. (12) and the
boundary terms are zero each. This yields a homogeneous system of differential equations of
Cauchy-Euler type and a linear equation system. A solution fulfilling the homogeneous differential
equation system is only approximated over the body surface but analytic in&. The system of linear

equations serves for enforcing the boundary conditions on the discretized body surfaces. .

Solution of the homogeneous differential equation system

By application of a variable transformation t =In¢&, a differential equation system of Cauchy-Euler
type can be transformed into an ordinary one with constant coefficients. The introduction of the
vector function Vv (t) =U(t), then allows the further transformation of the differential equation system
of second order into one of first order but at the cost of doubling the number of degrees of freedom.

7 —E-ET —E, =1 -E=1[ET —E /)
e g g
W (1) K W (t)

The fundamental solution solving this type of differential equations converts the differential
equation system into an eigenvalue problem.
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By application of established numerical algorithms, even non-symmetric and rather large
eigenvalue problems can be solved. Unfortunately, these algorithms suffer from numerical errors,
which are not negligible any more if the magnitudes of neighboring eigenvalues move closer
together. Nevertheless, small eigenvalues close to zero and associated eigenvectors generally are of
good quality and converge appropriately with a discretization refinement.

The backtransformation of the fundamental solution (t — &:W, (&) = ®,&4) reveals that the eigen-
vectors can be interpreted as deformation modes and that the eigenvalues are their associated decay
(Re(4;) <0) or growth rates (Re(4;)>0). In fact, only the lower half of the eigenvector @,
represents a deformation mode while the upper half is simply given by @, = ®,4,. The eigenvalue
spectrum in the 3D case is symmetric to-0.5, which also marks the value of a bounded domain for
which the strain energy density tends to infinity. Complex eigenvalues always appear as conjugate
pairsi=a +ip. In the case of geometric multiplicity, i.e. for a given number of equal eigenvalues,
not the same number of linearly independent eigenvectors exists, additional generalized
eigenvectors have to be generated resulting in logarithmic deformation modes to complete the
solution. Hence, the general solution of the differential equation system with N different eigenpairs
of geometric multiplicity n;is

[N

nj—.

\/\7 (§) = i z [Re((i)jkeim Ini)Cjkl + Irn(&ijeiﬂJ Ing )Cjkg :|§a, (ln g)k . (15)

=1 k=0

Here, c;, and cy, are free constants. In sum, they are of the number of twice the number of degrees

of freedom of the approximated boundary value problem. These free constants are determined from
regularity and boundary conditions.

Delamination Meeting a Transverse Inter-Fiber Crack in a Composite Laminate

The 3D structural situation of a delamination meeting a transverse inter-fiber crack which runs
through the complete ply can more generally be described as two plane cracks with straight crack
fronts meeting each other at an interface. But in contrast to the structural situation studied in [Hell
and Becker (2014)], where the mode I crack growth directions of the two cracks point towards each
other representing the situation of two meeting transverse inter-fiber cracks, the mode | crack
growth directions here are assumed to be perpendicular to each other. This also implies that the
transverse inter-fiber crack can, in a way, be seen as dividing the delamination crack in two parts.
Configurations with angles between the crack fronts 15" <9<90° and concurrent ply lay-ups
[(90° - 9)/90°] are considered (cf. Figure 2). The stress singularity exponents Re(4;)-1 and their
associated deformation modes @, (r,7.) are calculated by means of the SBFEM using a spherical
boundary mesh for a minimum numerical effort. Between 931 and 1406 bilinear isoparametric
SBFEs for the angles $=60"and 9 =235, respectively, are used for the boundary mesh, which is in
each case appropriately refined at the crack fronts. The results for the absolute values of the stress
singularity exponents 1-Re(4,;) are presented in Figure 3 and Figure 4.



csl ctl

]

4
114

5

oy
e

cs2 ct2

Figure 2: Delamination crack meeting transverse inter-fiber crack in a fiber-reinforced composite laminate with
angle 8 between the crack fronts and used boundary mesh. 6 singular deformation modes for 9=90°: crack
opening (col/2), shearing (cs1/2) and twisting (ct1/2).

Figure 3 gives the results for a T800/epoxy (a carbon fiber reinforced plastic) laminate revealing 6
stress singularities. The 6 associated deformation modes are shown in Figure 2 for the example
of $=90°. For an easier identification, they are presented for a cubic boundary mesh where the
cracks implemented as double nodes are marked in red. The upper half (dark shading) represents the
upper ply with a 0°-orientation and contains the correspondingly aligned transverse inter-fiber
crack. The lower half (light shading) represents the lower ply with 90°-orientation. The
delamination crack is located at the interface, which obviously coincides with the plane defined by
the present crack fronts. The deformation mode col corresponds to a simultaneous crack opening of
the delamination and the inter-fiber crack. On the other hand, deformation mode co2 corresponds to
a crack opening of only one of the cracks and a crack closing of the other. The deformation mode
csl corresponds to a crack shearing of the inter-fiber crack, which implies a simultaneous crack
opening respectively closing of the delamination crack faces. A crack shearing of the delamination
crack can be identified for deformation mode cs2. The deformation mode ctl corresponds to a crack
twisting of the inter-fiber crack, which implies a simultaneous counter-directional crack shearing of
the delamination crack. A kind of crack twisting of the delamination crack can be identified for the
deformation mode ct2. Although these deformation modes actually only correspond to the particular
case of $=90", the wording is kept for all configurations studied. Other crack configurations with
different angles 9 between the crack fronts produce different deformation modes for which the
individual crack deformations cannot be assigned equally clearly to the classical single-crack
deformation modes any more. Please note that deformation mode cs2 is an exception and
constitutes the only deformation mode remaining widely unchanged for all configurations presented
in this work. At the same time, cs2 is the deformation mode most closely related to a pure single-
crack deformation mode, namely mode Il of the delamination crack. This makes, indeed, perfectly
sense as a corresponding mode 11 delamination crack loading does not require an exchange of forces
through the inter-fiber crack faces. In fact, its corresponding stress singularity exponent remains
close to the classical crack singularity exponent of 1-Re(1)=0.5 for all angles ¢ and material

combinations considered.
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Figure 3: Stress singularity exponents for a delamination crack stress singularities are weak, which
meeting a transverse inter-fiber crack in a T800/epoxy CFRP are the ones associated to

laminate with ply-layups [(90°-8)/90°] deformation modes co2 and ct2. In
contrast, always three hypersingularities are present, namely those associated to deformation modes
col, csl and ctl. Moreover, it can be stated that strong singularities become even stronger with
decreasing angle ¢ while the weak singularities decline or at least remain weak. Please also note
that the real part of the stress singularity exponents associated to the deformation modes cs1 and ctl
are the same for angles $ 2 60° . This is because they constitute a pair of complex conjugated stress
singularity exponents which makes them occur strongly interconnected (cf. eq. (15)). However, all
other stress singularities found for the considered T800/epoxy laminate configurations are not
complex.

stress singularity exponent 1-Re(A) [-]

For comparison, configurations with less anisotropic ply materials were studied: a delamination
meeting a transverse inter-fiber crack in a typical [(90° —$)/90°] glass fiber reinforced plastics
(GFRP) laminate and the same geometrical setup but in a homogeneous isotropic body (Figure 4).
The material data are given in the figures while the stress singularities present in a homogeneous
isotropic body only depend on Poisson's ratio but not on Young's modulus. Here again, all
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Figure 4: Stress singularity exponents for two meeting cracks with perpendicular mode I crack growth
directions in a (a) typical GFRP laminate with ply-layups [(90°-8)/90°] and a (b) homogeneous isotropic body.
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configurations considered go along with 3 hypersingularities, 2 weak singularities and one
singularity approximately matching the classical crack singularity. From Figure 3 and Figure 4 it
can be seen that the material properties mainly affect deformation mode col. Its dependence on the
elastic contrast between the upper and the lower ply is expected as it also plays a major role for the
stress singularity exponent of the crack opening mode of a single crack impinging an interface (e.g.
[Bogy (1971); Ting and Hoang (1984)]). The other deformation modes seem to be hardly or only
moderately affected by the material properties. Finally, complex singularities can also be found for
GFRP laminates and homogeneous isotropic materials. The considered GFRP laminate exhibits
complex singularities for angles between the crack fronts of 50° 3 ¢ 2 65° and the homogeneous

isotropic configuration with a Poisson's ratio of v =0.3 for angles 9 z 60°. Although the magnitude

of the imaginary part of the stress singularity exponent is always rather small with
|[Im(1)-1]< 0.045 , it is remarkable that, here, a complex singularity can also occur in the
homogeneous isotropic case.

Conclusion

The SBFEM has been used to solve boundary value problems of linear elasticity which contain
singular points. Even 3D anisotropic structural situations involving interfaces are treated accurately
and efficiently. Such a structural situation is the one of a delamination crack meeting a transverse
inter-fiber crack, which has been treated in this contribution. It has been shown that this is a highly
critical structural situation involving up to 3 hypersingularities. This strongly motivates a further
investigation. It is worth pointing out that the hypersingularities found can be complex singularities
- even in the simplified homogeneous isotropic case of this geometrical setup.
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