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Abstract

Reducing the failure probability is an important task in the design of engineering
structures. In this paper, a reliability sensitivity analysis technique, called failure
probability ratio function, is firstly developed for providing the analysts quantitative
information on failure probability reduction while one or a set of distribution
parameters of model inputs are changed. The proposed failure probability ratio
function can be especially useful for failure probability reduction, reliability-based
optimization and reduction of the epistemic uncertainty of parameters. The Monte
Carlo simulation (MCS), Importance sampling (IS) and Truncated Importance
Sampling (TIS) procedures, which need only a set of samples for implementing them,
are introduced for efficiently computing the proposed sensitivity indices. A numerical
example is introduced for illustrating the engineering significance of the proposed
sensitivity indices and verifying the efficiency and accuracy of the MCS, IS and TIS
procedures.

Keywords: Sensitivity analysis; Failure probability ratio function; Importance
sampling

1. Introduction

In design of engineering structure, the analysts often build a lot of computational
models (e.g. finite element model, FEM) for simulating the behavior of real structures.
However, due the extensively existing uncertainty (aleatory or epistemic), the
performance of the structure turn out to be unsteady, which often prevents the
analysts from understanding the behavior of structure. In the probabilistic framework,
the model inputs are often treated as random variables and represented by probability
density function (PDF). The distribution parameters are either fixed at constant value
(only aleatory uncertainty is presented) or characterized by confidence interval (due
to epistemic uncertainty). Under these assumptions, the analysts' two main concerns
are reliability analysis and safety improvement.

The reliability analysis aims at assessing the failure probability of existing structure.
During the past several decades, many methods have been developed by researchers
for this purpose such as the Monte Carlo Simulation (MCS), First-order
Second-moment (FOSM) method [Hasofer and Lind (1974)], Importance Sampling
(IS) [Au and Beck (2002); Harbitz(1986); Melchers(1989); Melchers(1990);], Subset
Simulation (SS) [Au and Beck (2001)], Line Sampling (LS) [Schuéller et al. (2004)],
directional sampling [Ditlevsen et al. (1990)] response surface method [Faravelli
(1989)]. However, analysts still find it difficult to employ these methods especially
when the epistemic uncertainty is presented in model inputs.

Safety improvement focuses on reducing the failure probability of existing structure
via selecting optimal values for distribution parameters (if possible). This is often
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dealt with in two ways: reliability-based optimization (RBO) and sensitivity analysis.
Up to now, three groups of methods are available for RBO: double-loop method
[Enevoldsen and Sorensen (1994); Tu et al. (1999)], single-loop method [Chen et al.
(1997); Kuschel and Rackwitz (1997)], decoupling method [Au (2005); Royset et
al.(2001); Zou and Mahadevan (2006)]. Compared with the methods for reliability
analysis, these RBO methods are generally more time-consuming. One can refer to
Schueller and Jensen (2008) and Valdebenito and Schuéller (2010) for overviews of
the RBO methods. Sensitivity analysis techniques for safety improvement can be
divided into three groups: local, global and regional sensitivity analysis.

Local reliability sensitivity analysis indices are generally defined as the partial
derivatives of failure probability or reliability index with respect to distribution
parameters [Bjerager and Krenk (1989); Lu et al. (2008); Melchers and Ahammed
(2004); Wu and Mohanty (2006)]. These indices measure the change on failure
probability while the parameters are perturbed at one given point. If the sensitivity
index of one parameter is positive, then the failure probability tends to decrease if one
reduces this parameter at the given point, otherwise, if the index is negative, then the
failure probability tends to increase. The higher the absolute value of the local
sensitivity index is, the more dramatically the failure probability will change.
Theoretically, a parameter has significant effect on failure probability at one point
doesn't mean that it is influential at each point, similarly, although the index of one
parameter is close to zero at one point, one cannot think that this parameter is
non-influential anywhere. Therefore, the local reliability sensitivity indices cannot tell
the analysts the global sensitivity information of the distribution parameters of model
inputs to the failure probability.

The global reliability sensitivity indices, which aims at measuring the contribution of
individual or a set of inputs to the failure probability by investigating their full
distribution ranges, are developed by Wei et al. (2012) based on Sobol's indices
[Homma and Saltelli (1996) and Sobol’ (1993) ]. The higher the main effect index of
one inputs is, the more reduction of failure probability can be obtained while one
reduce the uncertainty of this input, otherwise, as the total effect index is close to zero,
the failure probability will not change obviously while one reducing the uncertainty
of this input. The global reliability sensitivity indices can be estimated by the methods
developed for Sobol's indices such as MCS [Saltelli (2002); Saltelli et al. (2010);
Sobol’ (2001)], Fourier Amplitude sensitivity Test (FAST) [Xu and Gertner (2008)]
and meta-modelling method [Ratto (2007)], thus can be easily implemented. The
global reliability sensitivity indices can only tell the analysts which inputs to focus on
so that the failure probability can be reduced efficiently and cheaply, but cannot tell
the analysts the amount of failure probability reduction due to specific reduced
uncertainty of model inputs.

In this paper, the failure probability ratio function is introduced for measuring the
change on failure probability while the distribution parameters of model inputs vary
in intervals. The proposed sensitivity index is similar to the function of failure
probability developed by Au (2005) to some extent. The failure probability ratio
function has important significance in many engineering application. Firstly, it can
tell the analysts the amount of failure probability reduction while one change the
distribution parameters of inputs to any specific ones, thus can help the analysts
reducing the failure probability efficiently and quantitatively. Second, it can provide



plenty of information for RBO. After the failure probability ratio function been
obtained, the RBO problem can be transformed to a deterministic one. Third, for
model with epistemic uncertainty (due to lack of information (data), the distribution
parameters of model inputs are represented by an confidence interval), it is helpful for
selecting the inputs distribution parameters which are most valuable for collecting
more information.

For numerically estimating the failure probability ratio function, the MCS procedure,
which needs only a set of samples for implementing it, is firstly introduced. For
problem with relatively large failure probability, the MCS procedure is accurate and
efficient. For problem with small failure probability, we suggest using the Importance
Sampling (1S) and Truncated Importance Sampling (T1S) procedures for reducing the
computational burden.

2. Failure probability ratio function

Let Y=g(X) denote the limit state function of the structure under investigation,
where X =(X,,X,,...,X,) is the n-dimensional inputs vector. The joint PDF of the
input vector X is given as f,(x), and the marginal PDF of the input X; is
denoted by f,(x ). In this paper, we assume that the failure of structure happens when
the model output Y is less than zero, thus the failure domain F is defined as:

F={x:g(x)<0} (1)
and the failure probability P, of the structure can be derived as:
P, =P(F)= _[ X)dx = [1 (%) fy (x)dx =E, (1 (X)) 2)

where P(-) denotes the probablllty measure, Ef (-) indicates the expectation with
respect to the joint PDF f, (x) and I_(x) stands for the indictor function of the
failure domain, which is given as:

IF(X):{I xeF 3)
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Generally, the failure probability is related with the distribution parameters of model
inputs such as the mean, variance and correlation of multivariate normal distribution.
If one of these distribution parameters is changed, then the failure probability will
also be changed. Let p denote one of these parameters, e.g., variance. Suppose now

the parameter p varies in the interval [p“),p(“)], then let p:(p(“)—p('))q+ p®

where ¢ is a variable. While the parameter p varies in the interval [p('), p(“)], q
varies in the unit interval [0,1]. If we keeps all the other parameters of model inputs
constant, then denote the updated joint PDF of model inputs due to changed p as
f, (x;q). For example, suppose the n-dimensional inputs vector follows independent
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normal distribution, i.e., f, (x)=]T},f(x;), where f( /.lz;ra Let p
denote the variance o2 of X, and p varies in the mterval [o,ai ], then the joint
PDF f,(x) can be updated as:




_em) ()

1 e 1, qgefo]] (@)

fo(X;q)=———e P
< (x9) \27qo? HJ:LM 2707}

The failure probability with respect to the updated joint PDF f, (x;q) is computed
as:

a)=[1: () fx (xa)dx, qe[01] (5)
The univariate failure probablllty ratio functlon RPF, (q) is defined as:
b
RPF, (q):# (6)

f

By definition, RPF, (q) measures the ratio between residual and total failure
probabilities while the parameter p is changed to (p(“)—p('>)q+ p" . where
qe[O,l].

Similarly, we can develop the multivariate failure probability ratio function for
measuring the reduction of failure probability while multiple distribution parameters
of model inputs are changed. Suppose now we have m distribution parameters p,

(k=1,2,...,m) of model inputs, each of which varies in a interval [pl(('),pﬁ“)] Let
P =(p£”> - pﬁ'))qk +p!, where g, €[0,1]. Then, similarly, we can obtain the updated
joint PDF  f, (x;q,,0,,...,q, ), and define the failure probability P/ (q,,q,,...,q,) with
respect to f*(X'ql,qz, .0,) as:

(OG- G II (X041, s Gy )AX, O, 0pse.., Oy €[0,1] (7)
The m-dlmensmnal failure probablllty ratio function RPF, , (9,,Qy,...,q,) IS

defined as
_ Pf (qllqz """ qm) (8)

The local reliability sensitivity index s, of the parameter p is defined as the
derivative of the failure probability with respectto p [Wu and Mohanty (2006)]:
p_a?/Pf _p.oP ©)

p/P p=p" P p p=p
where p” is a constant value (often chosen as the true value of the parameter p).
The partial derivative oP, /6p|p:p* indicates the change of failure probability while

one perturbing the parameter p at point p". p/P; is a normalization factor that
makes the sensitivity index dimensionless.

Then it can be proved that (see Appendix for proof):
ORPF, (q)]  p" - p S
oq | . pr T’

q9=q

(10)

where p’ :(p(“) - p('))q* +p" is a constant. Eq. (10) indicates that the derivative of
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the probability ratio function with respect to the parameter p is proportional to the
local reliability sensitivity index of p. The local sensitivity index S, only reflect

the sensitivity information of the parameter p at one given point p°, whereas, the
failure probability ratio function RPF (q) measures the reduction of failure

probability when the parameter p is fixed at any point, thus it provides much more
information on failure probability reduction than the local sensitivity index.

3. Estimators for Failure probability ratio function
3.1 Monte Carlo simulation

By definition

Eg. (13) indicates that P;(q,,q,,...,q,) can be expressed as the expectation with
respect the original joint PDF f, (x), thus can be estimated by MCS procedure using
one set of samples. The Monte Carlo estimator is given as:

. e (xW; .

P:(qlqu ~~~~~ qm)=%ZT:1|F(X(J)) X( fX(X(j)) ] ) (12)
where x (j=12,...,N) stands for the jth sample of model inputs generated by
using the original joint PDF f, (x).

Apparently, P;(q,d,,...,q,) iS an unbiased estimator of P/(q,q,,...,q,). In this

paper, we use the mean square error (MSE) for quantifying the error of the estimate.
Take the univariate failure probability ratio function RPF (q) as an example, the

MSE of the estimate RPF,(q) is given as:

_— 2
MSE, :\/j:(RPFp(q)—RPFp(q)) dq (13)
where RPF (q) is the reference result. In this paper, the MSE is estimated via
bootstrap, thus the reference result RPF,(q) is computed by averaging the repeated

estimates.

The samples can be generated using many methods such as simple random
sampling, Latin-hypercube sampling [Helton and Davis (2003); Loh (1996)] and
Sobol's sequence [Sobol’ (1976)]. In this paper, the Sobol's sequence is recommended
since it leads to better convergence rate and lower discrepancy of estimates especially
for input dimension less than a few hundred [Sobol’ (1976); Varet et al. (2012)].

The above MCS procedure needs only a set of sample for estimating the failure
probability ratio function. For structure with relative large failure probability, it is
efficient and accurate. However, for small failure probability (<107), the MCS
procedure need more samples for promising some of them dropping in the failure
domain so that the failure probability can be correctly estimated, thus the
computational cost increases heavily.

3.2 Importance Sampling

To reduce the computational burden of simulation method for computing the small
failure probability, many researchers have suggested using the IS procedure [Harbitz
(1986); Melchers (1989); Melchers (1990)]. The basic idea of the IS procedure is
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choosing an importance sampling density (ISD) for generating samples so that more
samples drop into the failure domain.

Denote the ISD as h, (x), then Eq. (13) can be written as:

o (0on) =1 00 SO0 (01, 0 B )|

where E, () Is the expectation operator taken with respect to the ISD h, (x). Eq
(16) indicates that P/ (g, q,,...,q,) can be expressed as an expectation with respect to
h, (x), thus can be estimated by using the sample mean, i.e.,

fy (x(k);

P (G, Gy - qm)=%2:1[|p (X(k)) hxq(l),(?f),)-..,qm)] (15)

Similarly, one can verify that Eq. (17) provides an unbiased estimator for the failure
probability ratio function Pf(q,q,.....q,). The efficiency of the IS procedure is

greatly affected by the choice of the ISD h, (x). Theoretically, the optimal ISD can
be identified by minimizing the variance of the estimator in Eq. (17), i.e.,

qmwpam”“iﬁy“q (16)
where the subscript in v, (+) indicates that the variance is computed with respect to
h, (x). It can be proved that the solution of the optimization problem is Eq. (18) is
[Au and Beck (2002)]:

Ie(x )f (X;0. ..., Gy ) _ Ie (%) fy (X0, 00,0 (17)
Pon j' (X0, 0,5+, 0y ) X P (000 On)
By using the optimal ISD in Eq. (19), the variance of the estimates in Eq. (17) can be

derived as:
A fe(X:0,,0,,..., N 1 .
Vhom(Pf (ql'qz """ qm)):_vhom[l':(x) (X Lk X) ! )]:WVhopt(Pf (ql'qz """ qm))=0(18)

Although the optimal ISD h, ,, (x) can be derived by Eqgs. (18) and (19), it is not
available in practical application. One reason is that the identification of h, . (x)
involves the information of the failure probability P/(q,,q,,...,q,), Which is what to

be estimated from the simulation. Another reason is due to the fact that the indicator
function 1_(x) is unknown in advance. Even though the optimal ISD h, . (x) can

be constructed via some numerical method, it is often a complicated and
time-consuming task to generate samples from the constructed ISD especially for
high dimensional ISD [Au and Beck (2002)].

In practical application, researchers often attempt to construct the approximate
optimal ISD under some assumptions. One of the most common used methods is
assuming the ISD belongs to one family of distribution, and then choosing the
optimal ISD via optimizing the distribution parameters. Au and Beck (2002) use the
cross-entropy for searching the optimal distribution parameters of ISD belongs to
assumed distribution family. Others suggested generating the ISD by shifting the
center of the original joint PDF f, (x) to the design point x* with the highest

probability density in the failure region [Harbitz (1986); Melchers (1989)]. In the



examples of this paper, for simplicity, the later method is used. For problem with
multiple failure modes, the ISD can be constructed by mixing multiple PDFs, each of
which is centered at one design point. The design points can be identified by using
many optimization algorithms such as FOSM [Hasofer and Lind (1974)] and genetic
algorithm [Obadage and Harnpornchai (2006)].

Compared with the MCS procedure, the above IS procedure is more suitable for
problem with small failure probability since the ISD h, (x) allows more sample
drop into the failure domain. One note that, as the distribution parameters vary, the
failure domain will not change since the limit state function remains unchanged.
Those samples within the failure domain will always stay in the failure domain no
matter how the distribution parameters change. Therefore, one need only one set of
samples generated by one pre-identified ISD h,(x) for computing the failure

probability ratio function RPF, (q,,0,....,q,) atany points.

The main drawback of the above IS procedure is that it may not always be suitable for
high-dimensional (up to a few hundred) nonlinear problems since that the
identification of an approximate fixed ISD is practically impossible [Katafygiotis and
Zuev (2008)].

3.3 Truncated Importance Sampling

In subsection 3.2, the introduction of the ISD constructed using the design point has
substantially reduced the computational burden for computing the failure probability
ratio function. In fact, the computational cost can be further reduced by using the TIS
procedure [Grooteman (2008)].

In a standard Gaussian space, the reliability index g is in fact the distance from the

from the design point x" to the origin of coordinate, as shown by Figure 1. Then a
hypersphere with radius g can be obtained. We denote this hypersphere as g

-sphere. Define the indictor function 1,(x) of the g -sphere as:

s
! )‘{o < s )

It is shown in Fig. 1 that the failure region outsides the g -sphere, and there is no
failure point drop in the region of g -sphere, then the failure probability
P/ (0,.d,.....q,) can be further derived as:

(20)

Then P(q,q,.....q,) can be estimated by:
. 1 < . BN E A
Pr (0,0, qm)=ﬁzj_1[lF (x“))lﬂ(x(l)) ( - (X(j)) )J (21)

In Eq. (23), if the sample point x drop into the s -sphere, then 1,(x”)=0,

further 1 (x?)1, (x") £5 (x"; 0,05, qm)/hX (x”)=0, thus one needs not to compute

the value of limit state function at the point x'”. By this way, the computational
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burden is further reduced.

The above TIS procedure can further reduce the computational cost by introducing
the p-sphere. However, since the design point x" is computed numerically, as

some computational error exists, the g -sphere may include some non-negligible part

of the failure region. This will further leads to computational error of the estimate of
P/ (0, 0,.-.-,q,) [Wei etal. (2012)].

N

N

Figure 1. Schematic illustration of the S -sphere.

4. Numerical test case

In this section, we use a numerical example for illustrating the engineering
significance of the failure probability ratio function, and verifying the efficiency and
accuracy of the proposed numerical methods. The limit state function of the structure
is represented by

ng(x)=4_xl_xz_xlx3 (22)
where X =(X,,X,,X;) is a vector including three inputs, which are assumed to
follow standard normal distribution, i.e., X, ~N(0,1) for i=123.

In this test case, we consider the sensitivity of the mean and variance of the model
inputs to the failure probability. We assume that the means and variances of the three
inputs vary in the interval [-0.1,0.1] and [0,1] respectively. Then the mappings from

g to the mean x and variance o° are given as x=02q+0.1 and o’=q, where
qe[O,l].

The univariate failure probability ratio functions with respect to the means and
variances of the three inputs are computed by MCS, IS and TIS procedures using one
set of sample, and the estimates are plotted in Figures 2-4. The total number of
function evaluations of the MCS, IS and TIS procedure are 10°%, 1022 and 719, thus
the estimates of the MCS procedure can be regarded as the exact solution. It is shown
that the estimates of the IS and TIS procedures are in good agreement with their exact
solutions. Compared with the MCS procedure, the computation burden of the IS
procedure is sufficiently reduced, and due to the introduction of the g -sphere, the

computational cost is further reduced without affecting the accuracy of estimates. For
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further investigating the convergence of the IS procedure, we plot the MSEs of the
estimates with respect to the sample size in Figure.5. It can be seen that the MSE of
each estimate tends to zero as the sample size increases.

It is shown by Fig.2(a) that, the failure probability increases monotonically and
linearly with respect to the means of the three inputs. As one decrease the means of
the model inputs, the failure probability tends to reduce linearly, and the slopes of the
failure probability ratio functions in Fig.2(a) indicate the rate of reduction. As can
been, as reducing the same amount of means, X, leads to the most reduction of

failure probability, followed by X., and then Xx,.
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Figure 2. Univariate failure probability ratio functions computed by MCS
procedure: (a) with respect to means of inputs; (b) with respect to variances of
inputs.
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Figure 3. Univariate failure probability ratio functions computed by IS
procedure: (a) with respect to means of inputs; (b) with respect to variances of
inputs.
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Figure 5. Convergence plots of the univariate failure probability ratio functions
with respect to (a): mean of inputs; (b) variance of inputs.

In many engineering application, the failure probability is reduced via decreasing the
dispersion (variance) of model inputs. Suppose now our target is to reduce the failure
probability by 80%. As one can see in Figure.2(b), the failure probability tends to
decrease as the variances of inputs are reduced. It can be read from Figure.2(b) that,
to achieve our targeted reduction of failure probability, one need to reduce the
variance of X, by 63% or that of X, by 94% individually. It is possible to achieve

our target by reducing the variance of X, .

In most cases, it is difficult to reduce the variance of one input by 63%. For reducing
the failure probability by 80%, one needs to use the bivariate failure probability ratio
function. Since that reducing the variances of x, and X, leads to more failure

probability reduction that reducing the variance of X,, we plot the bivariate failure

probability ratio function (computed by MCS procedure) with respect to the variances
of X, and X, in Figure.6. The diagonal line of this bivariate failure probability
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ratio function measures the ratio between the residual and total failure probability
while both the variances of x, and X, arereducedto g, thus we plotitin Figure 7.

As can be seen that, by reducing the variances of X, and X, by 48%
simultaneously, we can achieve our targeted reduction of failure probability.
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Figure 6. 3D plots of the bivariate failure probability ratio function with respect
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