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Abstract 
Reducing the failure probability is an important task in the design of engineering 
structures. In this paper, a reliability sensitivity analysis technique, called failure 
probability ratio function, is firstly developed for providing the analysts quantitative 
information on failure probability reduction while one or a set of distribution 
parameters of model inputs are changed. The proposed failure probability ratio 
function can be especially useful for failure probability reduction, reliability-based 
optimization and reduction of the epistemic uncertainty of parameters. The Monte 
Carlo simulation (MCS), Importance sampling (IS) and Truncated Importance 
Sampling (TIS) procedures, which need only a set of samples for implementing them, 
are introduced for efficiently computing the proposed sensitivity indices. A numerical 
example is introduced for illustrating the engineering significance of the proposed 
sensitivity indices and verifying the efficiency and accuracy of the MCS, IS and TIS 
procedures.  
Keywords: Sensitivity analysis; Failure probability ratio function; Importance 
sampling 
 
1. Introduction 
In design of engineering structure, the analysts often build a lot of computational 
models (e.g. finite element model, FEM) for simulating the behavior of real structures. 
However, due the extensively existing uncertainty (aleatory or epistemic), the 
performance of the structure turn out to be unsteady, which often prevents the 
analysts from understanding the behavior of structure. In the probabilistic framework, 
the model inputs are often treated as random variables and represented by probability 
density function (PDF). The distribution parameters are either fixed at constant value 
(only aleatory uncertainty is presented) or characterized by confidence interval (due 
to epistemic uncertainty). Under these assumptions, the analysts' two main concerns 
are reliability analysis and safety improvement. 
 
The reliability analysis aims at assessing the failure probability of existing structure. 
During the past several decades, many methods have been developed by researchers 
for this purpose such as the Monte Carlo Simulation (MCS), First-order 
Second-moment (FOSM) method [Hasofer and Lind (1974)], Importance Sampling 
(IS) [Au and Beck (2002); Harbitz(1986); Melchers(1989); Melchers(1990);], Subset 
Simulation (SS) [Au and Beck (2001)], Line Sampling (LS) [Schuëller et al. (2004)], 
directional sampling [Ditlevsen et al. (1990)] response surface method [Faravelli 
(1989)]. However, analysts still find it difficult to employ these methods especially 
when the epistemic uncertainty is presented in model inputs. 
 
Safety improvement focuses on reducing the failure probability of existing structure 
via selecting optimal values for distribution parameters (if possible). This is often 
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dealt with in two ways: reliability-based optimization (RBO) and sensitivity analysis. 
Up to now, three groups of methods are available for RBO: double-loop method 
[Enevoldsen and Sorensen (1994); Tu et al. (1999)], single-loop method [Chen et al. 
(1997); Kuschel and Rackwitz (1997)], decoupling method [Au (2005); Royset et 
al.(2001); Zou and Mahadevan (2006)]. Compared with the methods for reliability 
analysis, these RBO methods are generally more time-consuming. One can refer to 
Schueller and Jensen (2008) and Valdebenito and Schuëller (2010) for overviews of 
the RBO methods. Sensitivity analysis techniques for safety improvement can be 
divided into three groups: local, global and regional sensitivity analysis. 
 
Local reliability sensitivity analysis indices are generally defined as the partial 
derivatives of failure probability or reliability index with respect to distribution 
parameters [Bjerager and Krenk (1989); Lu et al. (2008); Melchers and Ahammed 
(2004); Wu and Mohanty (2006)]. These indices measure the change on failure 
probability while the parameters are perturbed at one given point. If the sensitivity 
index of one parameter is positive, then the failure probability tends to decrease if one 
reduces this parameter at the given point, otherwise, if the index is negative, then the 
failure probability tends to increase. The higher the absolute value of the local 
sensitivity index is, the more dramatically the failure probability will change. 
Theoretically, a parameter has significant effect on failure probability at one point 
doesn't mean that it is influential at each point, similarly, although the index of one 
parameter is close to zero at one point, one cannot think that this parameter is 
non-influential anywhere. Therefore, the local reliability sensitivity indices cannot tell 
the analysts the global sensitivity information of the distribution parameters of model 
inputs to the failure probability. 
 
The global reliability sensitivity indices, which aims at measuring the contribution of 
individual or a set of inputs to the failure probability by investigating their full 
distribution ranges, are developed by Wei et al. (2012) based on Sobol's indices 
[Homma and Saltelli (1996) and Sobol’ (1993) ]. The higher the main effect index of 
one inputs is, the more reduction of failure probability can be obtained while one 
reduce the uncertainty of this input, otherwise, as the total effect index is close to zero, 
the failure probability will not change obviously while one reducing the uncertainty 
of this input. The global reliability sensitivity indices can be estimated by the methods 
developed for Sobol's indices such as MCS [Saltelli (2002); Saltelli et al. (2010); 
Sobol’ (2001)], Fourier Amplitude sensitivity Test (FAST) [Xu and Gertner (2008)] 
and meta-modelling method [Ratto (2007)], thus can be easily implemented. The 
global reliability sensitivity indices can only tell the analysts which inputs to focus on 
so that the failure probability can be reduced efficiently and cheaply, but cannot tell 
the analysts the amount of failure probability reduction due to specific reduced 
uncertainty of model inputs. 
 
In this paper, the failure probability ratio function is introduced for measuring the 
change on failure probability while the distribution parameters of model inputs vary 
in intervals. The proposed sensitivity index is similar to the function of failure 
probability developed by Au (2005) to some extent. The failure probability ratio 
function has important significance in many engineering application. Firstly, it can 
tell the analysts the amount of failure probability reduction while one change the 
distribution parameters of inputs to any specific ones, thus can help the analysts 
reducing the failure probability efficiently and quantitatively. Second, it can provide 
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plenty of information for RBO. After the failure probability ratio function been 
obtained, the RBO problem can be transformed to a deterministic one. Third, for 
model with epistemic uncertainty (due to lack of information (data), the distribution 
parameters of model inputs are represented by an confidence interval), it is helpful for 
selecting the inputs distribution parameters which are most valuable for collecting 
more information. 
 
For numerically estimating the failure probability ratio function, the MCS procedure, 
which needs only a set of samples for implementing it, is firstly introduced. For 
problem with relatively large failure probability, the MCS procedure is accurate and 
efficient. For problem with small failure probability, we suggest using the Importance 
Sampling (IS) and Truncated Importance Sampling (TIS) procedures for reducing the 
computational burden. 
 
2. Failure probability ratio function 
Let ( )Y g= X  denote the limit state function of the structure under investigation, 
where ( )1 2, , , nX X X=X   is the n -dimensional inputs vector. The joint PDF of the 
input vector X  is given as ( )fX x , and the marginal PDF of the input iX  is 
denoted by ( )i if x . In this paper, we assume that the failure of structure happens when 
the model output Y  is less than zero, thus the failure domain F  is defined as: 
 ( ){ }: 0F g= <x x  (1) 
and the failure probability fP  of the structure can be derived as: 

 ( ) ( ) ( ) ( ) ( )( )d df F f FF
P P F f I f E I= = = =∫ ∫X Xx x x x x x  (2) 

where ( )P ⋅  denotes the probability measure, ( )fE ⋅  indicates the expectation with 
respect to the joint PDF ( )fX x  and ( )FI x  stands for the indictor function of the 
failure domain, which is given as: 

 ( )
1
0F

F
I

F
∈

=  ∉

x
x

x
 (3) 

 
Generally, the failure probability is related with the distribution parameters of model 
inputs such as the mean, variance and correlation of multivariate normal distribution. 
If one of these distribution parameters is changed, then the failure probability will 
also be changed. Let p  denote one of these parameters, e.g., variance. Suppose now 
the parameter p  varies in the interval ( ) ( ),l up p 

  , then let ( ) ( )( ) ( )u l lp p p q p= − + , 

where q  is a variable. While the parameter p  varies in the interval ( ) ( ),l up p 
  , q  

varies in the unit interval [ ]0,1 . If we keeps all the other parameters of model inputs 
constant, then denote the updated joint PDF of model inputs due to changed p  as 

( )* ;f qX x . For example, suppose the n -dimensional inputs vector follows independent 

normal distribution, i.e., ( ) ( )1

n
j jj

f f x
=

=∏X x , where ( )
( )2

22 22
j

j

x

j j jf x e
µ

σ πσ
−

−

= . Let p  

denote the variance 2
iσ  of iX  and p  varies in the interval 20, iσ   , then the joint 

PDF ( )fX x  can be updated as: 
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The failure probability with respect to the updated joint PDF ( )* ;f qX x  is computed 
as: 
 ( ) ( ) ( ) [ ]* * ; d , 0,1f FP q I f q q= ∈∫ Xx x x  (5) 
The univariate failure probability ratio function ( )pRPF q  is defined as: 

 ( ) ( )*
f

p
f

P q
RPF q

P
=  (6) 

By definition, ( )pRPF q  measures the ratio between residual and total failure 

probabilities while the parameter p  is changed to ( ) ( )( ) ( )u l lp p q p− + , where 

[ ]0,1q∈ .   
 
Similarly, we can develop the multivariate failure probability ratio function for 
measuring the reduction of failure probability while multiple distribution parameters 
of model inputs are changed. Suppose now we have m  distribution parameters kp  
( 1,2, ,k m=  ) of model inputs, each of which varies in a interval ( ) ( ),l u

k kp p 
  . Let 

( ) ( )( ) ( )u l l
k k k k kp p p q p= − + , where [ ]0,1kq ∈ . Then, similarly, we can obtain the updated 

joint PDF ( )*
1 2; , , , mf q q qX x  , and define the failure probability ( )*

1 2, , ,f mP q q q  with 
respect to ( )*

1 2; , , , mf q q qX x   as: 
 ( ) ( ) ( ) [ ]* *

1 2 1 2 1 2, , , ; , , , d , , , , 0,1f m F m mP q q q I f q q q q q q= ∈∫ Xx x x    (7) 
The m -dimensional failure probability ratio function ( )

1 2, , , 1 2, , ,
mp p p mRPF q q q



  is 
defined as 

 ( ) ( )
1 2

*
1 2

, , , 1 2

, , ,
, , ,

m

f m
p p p m

f

P q q q
RPF q q q

P
=





  (8) 

    
The local reliability sensitivity index pS  of the parameter p  is defined as the 
derivative of the failure probability with respect to p  [Wu and Mohanty (2006)]: 

 
* *

f f f
p

fp p p p

P P PpS
p p P p

= =

∂ ∂
= =

∂ ∂
  (9) 

where *p  is a constant value (often chosen as the true value of the parameter p ). 
The partial derivative *f p p

P p
=

∂ ∂  indicates the change of failure probability while 

one perturbing the parameter p  at point *p . fp P  is a normalization factor that 
makes the sensitivity index dimensionless. 
    
Then it can be proved that (see Appendix for proof):   

 ( ) ( ) ( )

*
*

u l
p

p

q q

RPF q p p S
q p

=

∂ −
=

∂
 (10) 

where ( ) ( )( ) ( )* *u l lp p p q p= − +  is a constant. Eq. (10) indicates that the derivative of 
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the probability ratio function with respect to the parameter p  is proportional to the 
local reliability sensitivity index of p . The local sensitivity index pS  only reflect 
the sensitivity information of the parameter p  at one given point *p , whereas, the 
failure probability ratio function ( )pRPF q  measures the reduction of failure 
probability when the parameter p  is fixed at any point, thus it provides much more 
information on failure probability reduction than the local sensitivity index. 
 
3. Estimators for Failure probability ratio function 
3.1 Monte Carlo simulation 

By definition 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

* *
1 2 1 2*

1 2

; , , , ; , , ,
, , , dm m

f m F f F

f q q q f q q q
P q q q I f E I

f f
 

= =   
 

∫ X X
X

X X

x x
x x x x

x x
 

  (11) 

Eq. (13) indicates that ( )*
1 2, , ,f mP q q q  can be expressed as the expectation with 

respect the original joint PDF ( )f X x , thus can be estimated by MCS procedure using 
one set of samples. The Monte Carlo estimator is given as: 

 ( ) ( )( )
( )( )

( )( )
*

1 2*
1 2 1

; , , ,1ˆ , , ,
j

mN j
f m Fj j

f q q q
P q q q I

N f=
= ∑ X

X

x
x

x



  (12) 

where ( )jx  ( 1,2, ,j N=  ) stands for the j th sample of model inputs generated by 
using the original joint PDF ( )f X x .  
 
Apparently, ( )*

1 2
ˆ , , ,f mP q q q  is an unbiased estimator of  ( )*

1 2, , ,f mP q q q . In this 
paper, we use the mean square error (MSE) for quantifying the error of the estimate. 
Take the univariate failure probability ratio function ( )pRPF q  as an example, the 
MSE of the estimate  ( )pRPF q  is given as: 

  ( ) ( )( )21

0
dpp pMSE RPF q RPF q q= −∫  (13) 

where ( )pRPF q  is the reference result. In this paper, the MSE is estimated via 
bootstrap, thus the reference result ( )pRPF q  is computed by averaging the repeated 
estimates. 
   The samples can be generated using many methods such as simple random 
sampling, Latin-hypercube sampling [Helton and Davis (2003); Loh (1996)] and 
Sobol's sequence [Sobol’ (1976)]. In this paper, the Sobol's sequence is recommended 
since it leads to better convergence rate and lower discrepancy of estimates especially 
for input dimension less than a few hundred [Sobol’ (1976); Varet et al. (2012)].  
   The above MCS procedure needs only a set of sample for estimating the failure 
probability ratio function. For structure with relative large failure probability, it is 
efficient and accurate. However, for small failure probability (<10-3), the MCS 
procedure need more samples for promising some of them dropping in the failure 
domain so that the failure probability can be correctly estimated, thus the 
computational cost increases heavily.  
3.2 Importance Sampling 

To reduce the computational burden of simulation method for computing the small 
failure probability, many researchers have suggested using the IS procedure [Harbitz 
(1986); Melchers (1989); Melchers (1990)]. The basic idea of the IS procedure is 



6 
 

choosing an importance sampling density (ISD) for generating samples so that more 
samples drop into the failure domain.  
 
Denote the ISD as ( )hX x , then Eq. (13) can be written as: 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

* *
1 2 1 2*

1 2

; , , , ; , , ,
, , , dm m

f m F h F

f q q q f q q q
P q q q I h E I

h h
 

= =   
 

∫ X X
X

X X

x x
x x x x

x x
 

  (14) 

where ( )hE   is the expectation operator taken with respect to the ISD ( )hX x . Eq. 
(16) indicates that ( )*

1 2, , ,f mP q q q  can be expressed as an expectation with respect to 
( )hX x , thus can be estimated by using the sample mean, i.e., 

 ( ) ( )( )
( )( )

( )( )
*

1 2*
1 2 1

; , , ,1ˆ , , ,
k

mN k
f m Fk k

f q q q
P q q q I

N h=

 
 =
 
 

∑ X

X

x
x

x



  (15) 

 
Similarly, one can verify that Eq. (17) provides an unbiased estimator for the failure 
probability ratio function ( )*

1 2, , ,f mP q q q . The efficiency of the IS procedure is 
greatly affected by the choice of the ISD ( )hX x . Theoretically, the optimal ISD can 
be identified by minimizing the variance of the estimator in Eq. (17), i.e.,  

 ( ) ( )
( )

*
1 2; , , ,

min m
h F

h

f q q q
V I

h
 
  
 

X

X

x
x

x
  (16) 

where the subscript in ( )hV   indicates that the variance is computed with respect to 
( )hX x . It can be proved that the solution of the optimization problem is Eq. (18) is 

[Au and Beck (2002)]: 

 ( ) ( ) ( )
( ) ( )

( ) ( )
( )

* *
1 2 1 2

, **
1 21 2

; , , , ; , , ,
, , ,; , , , d

F m F m
opt

f mF m

I f q q q I f q q q
h

P q q qI f q q q
= =
∫

X X
X

X

x x x x
x

x x x
 





 (17) 

By using the optimal ISD in Eq. (19), the variance of the estimates in Eq. (17) can be 
derived as: 

 ( )( ) ( ) ( )
( ) ( )( )

*
1 2* *

1 2 1 2
,

; , , ,1 1ˆ , , , , , , 0
opt opt opt

m
h f m h F h f m

opt

f q q q
V P q q q V I V P q q q

N h N
 

= = =  
 

X

X

x
x

x


  (18) 

Although the optimal ISD ( ),opthX x  can be derived by Eqs. (18) and (19), it is not 
available in practical application. One reason is that the identification of ( ),opthX x  
involves the information of the failure probability ( )*

1 2, , ,f mP q q q , which is what to 
be estimated from the simulation. Another reason is due to the fact that the indicator 
function ( )FI x  is unknown in advance. Even though the optimal ISD ( ),opthX x  can 
be constructed via some numerical method, it is often a complicated and 
time-consuming task to generate samples from the constructed ISD especially for 
high dimensional ISD [Au and Beck (2002)]. 
 
In practical application, researchers often attempt to construct the approximate 
optimal ISD under some assumptions. One of the most common used methods is 
assuming the ISD belongs to one family of distribution, and then choosing the 
optimal ISD via optimizing the distribution parameters. Au and Beck (2002) use the 
cross-entropy for searching the optimal distribution parameters of ISD belongs to 
assumed distribution family. Others suggested generating the ISD by shifting the 
center of the original joint PDF ( )f X x  to the design point *x  with the highest 
probability density in the failure region [Harbitz (1986); Melchers (1989)]. In the 
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examples of this paper, for simplicity, the later method is used. For problem with 
multiple failure modes, the ISD can be constructed by mixing multiple PDFs, each of 
which is centered at one design point. The design points can be identified by using 
many optimization algorithms such as FOSM [Hasofer and Lind (1974)] and genetic 
algorithm [Obadage and Harnpornchai (2006)]. 
    
Compared with the MCS procedure, the above IS procedure is more suitable for 
problem with small failure probability since the ISD ( )hX x  allows more sample 
drop into the failure domain. One note that, as the distribution parameters vary, the 
failure domain will not change since the limit state function remains unchanged. 
Those samples within the failure domain will always stay in the failure domain no 
matter how the distribution parameters change. Therefore, one need only one set of 
samples generated by one pre-identified ISD ( )hX x  for computing the failure 
probability ratio function ( )

1 2, , , 1 2, , ,
mp p p mRPF q q q



  at any points. 
    
The main drawback of the above IS procedure is that it may not always be suitable for 
high-dimensional (up to a few hundred) nonlinear problems since that the 
identification of an approximate fixed ISD is practically impossible [Katafygiotis and 
Zuev (2008)].    
3.3 Truncated Importance Sampling 

In subsection 3.2, the introduction of the ISD constructed using the design point has 
substantially reduced the computational burden for computing the failure probability 
ratio function. In fact, the computational cost can be further reduced by using the TIS 
procedure [Grooteman (2008)]. 
 
In a standard Gaussian space, the reliability index β  is in fact the distance from the 
from the design point *x  to the origin of coordinate, as shown by Figure 1. Then a 
hypersphere with radius β  can be obtained. We denote this hypersphere as β

-sphere. Define the indictor function ( )Iβ x  of the β -sphere as: 

 ( )
2

2

1

0
Iβ

β

β

 ≥= 
<

x
x

x
 (19) 

It is shown in Fig. 1 that the failure region outsides the β -sphere, and there is no 
failure point drop in the region of β -sphere, then the failure probability 

( )*
1 2, , ,f mP q q q  can be further derived as: 

 
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )
( )

*
1 2*

1 2

*
1 2

; , , ,
, , , d

; , , ,

m
f m F

m
h F

f q q q
P q q q I I h

h

f q q q
E I I

h

β

β

=

 
=   

 

∫ X
X

X

X

X

x
x x x x

x

x
x x

x







 (20) 

Then ( )*
1 2, , ,f mP q q q  can be estimated by: 

 ( ) ( )( ) ( )( )
( )( )

( )( )
*

1 2*
1 2 1

; , , ,1ˆ , , ,
j

mN j j
f m Fj j

f q q q
P q q q I I

N h
β=

 
 =
 
 

∑ X

X

x
x x

x



  (21) 

In Eq. (23), if the sample point ( )jx  drop into the β -sphere, then ( )( ) 0jIβ =x , 

further ( )( ) ( )( ) ( )( ) ( )( )*
1 2; , , , 0j j j j

F mI I f q q q hβ =X Xx x x x , thus one needs not to compute 

the value of limit state function at the point ( )jx . By this way, the computational 
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burden is further reduced. 
 
The above TIS procedure can further reduce the computational cost by introducing 
the β -sphere. However, since the design point *x  is computed numerically, as 
some computational error exists, the β -sphere may include some non-negligible part 
of the failure region. This will further leads to computational error of the estimate of  

( )*
1 2, , ,f mP q q q  [Wei et al. (2012)].   

 

( )g x
β

*x

 

Figure 1. Schematic illustration of the β -sphere. 
 
4. Numerical test case 
In this section, we use a numerical example for illustrating the engineering 
significance of the failure probability ratio function, and verifying the efficiency and 
accuracy of the proposed numerical methods. The limit state function of the structure 
is represented by 
 ( ) 1 2 1 34Y g X X X X= = − − −X  (22) 
where ( )1 2 3, ,X X X=X  is a vector including three inputs, which are assumed to 
follow standard normal distribution, i.e., ( )0,1iX N  for 1,2,3i = .  
 
In this test case, we consider the sensitivity of the mean and variance of the model 
inputs to the failure probability. We assume that the means and variances of the three 
inputs vary in the interval [ ]0.1,0.1−  and [ ]0,1  respectively. Then the mappings from 
q  to the mean µ  and variance 2σ  are given as 0.2 0.1qµ = +  and 2

i qσ = , where 
[ ]0,1q∈ .  

 
The univariate failure probability ratio functions with respect to the means and 
variances of the three inputs are computed by MCS, IS and TIS procedures using one 
set of sample, and the estimates are plotted in Figures 2-4. The total number of 
function evaluations of the MCS, IS and TIS procedure are 106, 1022 and 719, thus 
the estimates of the MCS procedure can be regarded as the exact solution. It is shown 
that the estimates of the IS and TIS procedures are in good agreement with their exact 
solutions. Compared with the MCS procedure, the computation burden of the IS 
procedure is sufficiently reduced, and due to the introduction of the β -sphere, the 
computational cost is further reduced without affecting the accuracy of estimates. For 
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further investigating the convergence of the IS procedure, we plot the MSEs of the 
estimates with respect to the sample size in Figure.5. It can be seen that the MSE of 
each estimate tends to zero as the sample size increases.  
 
It is shown by Fig.2(a) that, the failure probability increases monotonically and 
linearly with respect to the means of the three inputs. As one decrease the means of 
the model inputs, the failure probability tends to reduce linearly, and the slopes of the 
failure probability ratio functions in Fig.2(a) indicate the rate of reduction. As can 
been, as reducing the same amount of means, 1X  leads to the most reduction of 
failure probability, followed by 3X , and then 2X .  
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Figure 2. Univariate failure probability ratio functions computed by MCS 
procedure: (a) with respect to means of inputs; (b) with respect to variances of 

inputs. 
 

0 0.2 0.4 0.6 0.8 1
0.8

0.9

1

1.1

1.2

1.3

Mean, q

R
at

io
 o

f f
ai

lu
re

 p
ro

ba
bi

lit
y

 

 

X1

X2
X3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Variance, q

R
at

io
 o

f f
ai

lu
re

 p
ro

ba
bi

lit
y

 

 

X1

X2
X3

( )a ( )b  

Figure 3. Univariate failure probability ratio functions computed by IS 
procedure: (a) with respect to means of inputs; (b) with respect to variances of 

inputs. 
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Figure 4. Univariate failure probability ratio functions computed by TIS 
procedure: (a) with respect to means of inputs; (b) with respect to variances of 

inputs. 
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Figure 5. Convergence plots of the univariate failure probability ratio functions 
with respect to (a): mean of inputs; (b) variance of inputs. 

 
In many engineering application, the failure probability is reduced via decreasing the 
dispersion (variance) of model inputs. Suppose now our target is to reduce the failure 
probability by 80%. As one can see in Figure.2(b), the failure probability tends to 
decrease as the variances of inputs are reduced. It can be read from Figure.2(b) that, 
to achieve our targeted reduction of failure probability, one need to reduce the 
variance of 1X  by 63% or that of 3X  by 94% individually. It is possible to achieve 
our target by reducing the variance of 2X . 
 
In most cases, it is difficult to reduce the variance of one input by 63%. For reducing 
the failure probability by 80%, one needs to use the bivariate failure probability ratio 
function. Since that reducing the variances of 1X  and 3X  leads to more failure 
probability reduction that reducing the variance of 2X , we plot the bivariate failure 
probability ratio function (computed by MCS procedure) with respect to the variances 
of 1X  and 3X  in Figure.6. The diagonal line of this bivariate failure probability 
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ratio function measures the ratio between the residual and total failure probability 
while both the variances of 1X  and 3X  are reduced to q , thus we plot it in Figure 7. 
As can be seen that, by reducing the variances of 1X  and 3X  by 48% 
simultaneously, we can achieve our targeted reduction of failure probability. 
 

 

Figure 6. 3D plots of the bivariate failure probability ratio function with respect 
to the variances of the pair ( )1 3,X X , where 1q  and 2q  indicate the variance 

reduction of 1X  and 3X  respectively 
 

 

Figure 7. Diagonal line of the failure probability ratio function with respect to 
the variance of the input pair ( )1 3,X X  
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