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Abstract

Isogeometric analysis (IGA) is a relatively new method and receiving much attention
recently, the efficient quadrature in which is an important branch far from mature. We
introduce the Clenshaw-Curtis quadrature into IGA and give the corresponding
algorithms. The estimated computation cost for both rules and of the whole
isogeometric approximation are proposed, and through which we compare it with the
optimal standard Gauss rule. It is found that the Clenshaw-Curtis rule have better
efficiency than the Gauss for spline degree of 2. Better accuracy of CC than Gauss for
low spline degrees are also found through the applications of both rules in the
boundary value problems.
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1 Introduction

Isogeometric analysis (IGA) is a recently proposed subject which is receiving a great
deal of attention amongst the computational mechanics community. isogeometric
analysis is a technique of numerical analysis that uses the same basis functions
commonly found in description of Computer Aided Design (CAD) geometries to
represent both geometry and physical fields in the solution of problems governed by
partial differential equations (PDE)[Hughes et al. (2005); Cottrell et al.(2009)]. Based
on its initial intends of bridging the gap between the CAD and the Finite Element
Analysis (FEA), IGA has the potential to have a profound effect and the promise of
overcoming some bottleneck issues that plagued computer aided engineering for
decades.

The use of the most popular Non-Uniform Rational B-Spline (NURBS) basis function
applied for the geometry description in the solution field therefore leads to
elimination of geometric-approximation error in even the coarsest mesh. In this way,
the isoparametric concept is maintained but more significantly, the geometry of the
problem is preserved exactly. The increased continuity of the NURBS basis has led to
significant numerical advantages over traditional Lagrange polynomials and other C°
inter-element continuity based FEA, e.g. it can possess high regularity across mesh
elements, leading to a higher accuracy per degree-of-freedom (DOF) basis [Cottrell et
al.(2009)]; it also has better robustness and system condition number than FEA
[Bazilevs et al.(2006)]. Many researchers have applied B-splines and NURBS as the
basis for IGA applications such as fluid dynamics [Bazilevs et al.(2006); Bazilevs et
al.(2012)], structural mechanics [Kiendl et al.(2009); Lipton et al.(2010); Benson et
al.(2011)], thermal analysis [Anders et al.(2012)], shape optimization [Qian (2010)],
electromagnetics [Buffa and Sangalli (2010)] and so on.



However, several challenges remain for IGA to be fully accepted as industrial-
strength analysis technology. One of them is the design of efficient and adaptive
quadrature rules. The quadrature scheme of the IGA is accomplished over individual
non-zero knot spans of the underlying B-spline based geometry, which is different
from performing the numerical quadrature on individual finite elements in the FEA.
In fact, the widely used Gauss quadrature on each element in the IGA computation is
a choice far from being optimal [Auricchio et al. (2012)]. An optimal quadrature rule
which exactly integrates B-spline basis functions with the minimum number of
function evaluations for IGA was initially constructed in [Hughes et al. (2010)]. It
significantly improves the computational efficiency despite that sometimes it is
difficult to solve for high polynomial degrees and numbers of elements due to a
global ill-conditioned equation system. [Auricchio et al. (2012)] developed an
efficient algorithm through which can obtain nearly optimal rules. That algorithm is
proved to be much easier to construct.

In this paper, we discuss the quadrature in IGA from another aspect. As mostly used
rules are commonly Gaussian, we introduced an existing non-Gaussian rule named
Clenshaw-Curtis into IGA and explored its new features. The Clenshaw-Curtis rule
uses Chebyshev points instead of optimal nodes of Gauss quadrature. The
computation of a cosine transformation and the arithmetic cost of this were
prohibitive and thus limited the use of this rule before the FFT transformation was
used. It has particular advantages such as easier implementation [Gentleman (19723;
1972b)], most similar convergence rate [Calabro and Esposito (2009)] and in fact, for
most integrands, about equally accurate [Trefethen (2008)] compared to the Guass
quadrature. We know its own merits, but how it performs in IGA — this is what we
discuss in this paper. We discuss its convergence and efficiency through comparisons
with standard Gauss rule and find some interesting points. Note that, there are several
variations on this theme (see [Trefethen (2008); Clenshaw and Curtis (1960)]). What
we use in this paper is commonly called “practical” Clenshaw-Curtis formula.

The paper is organized as follows. Section 2 gives some of the preliminaries on IGA
and Clenshaw-Curtis rules. Section 3 studies the integration of quadrature rules into
IGA and makes discussions on computational cost of both rules. Section 4 exploits
the Clenshaw-Curtis rules to numerically solve boundary value problems in Poisson’s
and elasticity problems and makes verifications of Section 3. In this paper, we took
advantage of the open-source codes of GeoPDEs (http:// geopdes.sourceforge.net)
and modified the corresponding parts.

2. Preliminaries on IGA

We start with a brief review of some technical aspects of B-spline and NURBS bases
for IGA. More detailed introduction can be found in the fundamental works proposed
by [Hughes et al. (2005); Cottrell et al.(2009)].

As aforementioned, similar with the isoparametric concept of standard FEM,
isogeometric analysis uses higher degree smooth spline functions, in particular B-
splines and NURBS. A univariate B-spline function of polynomial degree m is
specified by n basis functions Nin(&)(Nim, for short), (i=1,...,n) in the parametric
space & The non-decreasing set of (n+m+1) coordinates & are so-called knots and
subdivide the parametric space into (n+m) knot spans forming a patch [Hughes et al.
(2005); Cottrell et al.(2009)].



E‘ :{é:l’ 62 1 §n+m+l} (1)
Piecewise polynomial B-spline functions are defined over m+1 knot spans with C™*
continuity between the spline elements. Repeated knots decrease the continuity
between the knot spans and make the B-splines interpolatory at the knots. For a
repetition of the first and last knot the knot span is said to be open. Knot spans with
non-zero extension will in the following be referred to as knot-span elements. The 1D
patch of Figure 1 consists of four knot-span elements. The B-spline basis functions
are constructed recursively by the Cox-de Boor formula [Piegl and Tille (1997)]
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Figurel. 1D non-uniform NURBS patch.

NURBS basis functions and geometric entities are then immediately obtained from
the previous B-Spline spaces. In brief, a positive weight @; can be associated to each
B-Spline basis function Nj,m, and the corresponding NURBS basis function is defined
as

oN; ()
Z?=1ijj,m(§)
Such a definition is easily generalized to the two- and three-dimensional cases by
means of tensor products. For instance, in the trivariate case, given the degrees pq, the

integers ng and the knot vectors =, Hand 7, the corresponding B-spline and NURBS
basis functions are

(2)

Ri,m (5) =

Bk (&.7,7) =N, ,(EM; (ML, (7) (3)
and
wi,j,kBi?jf]Iér(é:!n’y)

RYE (€. 7) = : (4)
o 2@ 5Bl ()
B-spline or NURBS curves, surfaces and volumes are then defined as
C(&n.7) :Zpiiji’,)j?kr(g’n’V) ®)

3. Clenshaw-Curtis Quadrature in the element of IGA

Let n>1 be a given fixed integer, and define n+1 quadrature nodes on the standard
interval [—1, 1] as the extremes of the Chebyshev polynomial T, (x), augmented by
the boundary points,

X =c0s9,, 9 =kZ, k=01..n (6)
n



Given a spline function f, an n-point interpolatory quadrature rule is a choice of n
ordered points and weights such that

[ £00dx=3 0, f (x)+R )

where Ry is the approximation error, and ax are the quadrature weights, which can be
obtained by integrating the n-th-degree polynomial interpolating the n+1 discrete
points (X, f(xx)). Applying this procedure to the nodes eq.(6) directly yields the
Clenshaw-Curtis rules. [Davis and Rabinowitz (1984)] summarized the explicit

expressions for the Clenshaw-Curtis weights oy°

[n/2]

b.
o =C_k£1_z4j2’ 1cos(2j19k)J, k=0,1..n, (8)

n =i
where the coefficient b;, ¢y, are defined as
1, j=n/2 1, k=0 modn
b; = ; k= ; (9)
2, j<nl2, 2, otherwise

Eq. (8) holds for every even or odd integer n>1, which together with the definition (9)
of cx implies

1
cc — cc — 10
“o =0 STy mod(n, 2) (10)

We give the detailed constructions proposed in [Waldvogel (2006)], which are given
by the inverse discrete Fourier transform of the vector v + g, where v and g is
defined in eq.(11) and eq.(12), respectively. The evaluation is particularly fast if nis a

power of 2.
v, =L2, k=0,1,...,[£}_1,
1-4k 2
oy~ nn_3 -1
’ 2[}—1
2
v, =V, k=12, [”_‘1}
: (11)
g, =-w,, k=0,1 [2}4
k 0 Yy reny 2 y
90 = @y’ [(2—mod(n, 2))n-1],
— n-1
gn—k =gk’ k=1121---|[7:|.
(12)

cC

where @,° is defined in eq.(10) with o := ;. The superscripts in defining v, and
gn-k refer to complex conjugation.

We take one-dimensional parametric domain as an example, two and three-
dimensional can be easily obtained by means of tensor product. We assume the

. . . o . i—1i .
interval [0,1] with a uniform subdivision into | unitary elements [IT:_ ], where i



Remark 3.1: We call S;" the space spanned by the B-spline basis functions with

global C%continuity, which is associated with a knot vector having internal knots
with multiplicity r =m - q.
Given a spline function f €S, which is a polynomial of degree m in each

element [Il;lll ] with f eC%([0,1]). In the computation, m+1 coefficients on each

of the | elements with g+1 continuity requirements on the n-1 internal points need to
be assigned. The dimension of the space S is therefore I(m-g)+g+1, where -1<q<

m-1 as g= -1 refers to the discontinuous case. In particular, =0 refers to the case of
functions continuous on the whole parametric domain and piecewise polynomial on
each single element, which is similar to the FEA approximation.

In the elements defined above, Gauss quadratures are commonly used in

numerical integration of functions inS;'. Compared with the standard Gauss rule,

which has its quadrature points totally implemented within each element boundaries,
the Clenshaw-Curtis have points at element boundaries. We apply Clenshaw-Curtis

quadrature points eg.(6) to each element (i.e. subinterval) [Il;l% ] and thus the first

: P i-1 i [
and the last quadrature points are exactly the x; = T and X , =T If there are same

integration points number n; in each element, the translation and scaling method

Ko=xM (- x )+, k=10, (13)
are always used to save the computation, see Figure 2a; where %, is the unknown
quadrature point; x. “Yis the k-th point in the biunit interval [-1,1]; x, is the k-th point
in the i-th element. Sometimes quadrature points need to be enriched in certain
elements or parametric direction in the sense of product tensor, as we need high
accuracy there than the acceptable general accuracy of the whole domain. For this
case, different point numbers are implemented and the corresponding weights are
usually evaluated separately. Figure 2b shows that the quadrature points are added to
4 in the subinterval [0.125, 0.625] where only 2 Gauss points are needed to obtain the
exact integration for the basis functions of degree 2. A pseudo-code for
implementation of the standard Clenshaw-Curtis quadrature points is proposed below
according to the two cases aforementioned, which are the respective using of uniform
quadrature points and different quadrature points in subintervals. We fix the spline
degree and full regularity for simplicity. The computational domain is considered k-
dimensional.

Input: 1xKk integer array: spline_degree
for parametric direction: idir=1,...,k

> find out the unique knots: uniq_knots(1:n);

> record the first n-1 elements of unig_knots(1:n): unig_knots_el(1:n-1);

> calculate the differences adjacent elements of unig_knots(1:n): du(1:n-1);

if case 1, then

> calculate quadrature points in unit interval [-1,1]: g_points_temp(idir,
points, weights) = CC(spline_degree(idir));
for the i-th node, inode = 1:n-1



> calculate quadrature points in current parametric direction: q_points(idir,
inode) = (q_points_temp(idir,:,weights) +1) / 2 * du(inode) +
uniq_knots_el(inode);
> calculate quadrature weights in current parametric direction:
g_weights(idir,inode)=qg_points_temp(idir,points,:);
endfor
elseif case 2, then
for the i-th node, inode = 1:n-1
> calculate quadrature points in unit interval [-1,1]: g_points_temp(idir,
inode, points, weights) = CC(spline_degree(idir, inode));
> calculate quadrature points in current parametric direction:
g_points(idir, inode) = (g_points_temp(idir, inode, : ,weights) +1)
/ 2 * du(inode) + unig_knots_el(inode);
> calculate quadrature weights in current parametric direction:
g_weights(idir,inode)=qg_points_temp(idir,points,:);
endfor
endif
endfor

Return: n-points quadrature rule (xn, ax) in the whole parametric direction.

in which the subroutine CC is used for evaluation of the Clenshaw-Curtis points and
weights in the unit interval. A pseudo-code for subroutine CC is listed below.

Input: number points minus 1: n-1

> calculate quadrature points xi defined in eq.(6);

> calculate the vector v and g defined in eg.(11) and eq.(12);

> perform the inverse discrete Fourier transform of the vector v + g ;

Return: n-points quadrature rule (x™*", @l™*7) in biunit interval[-1,1].

N1,2 N3,2 N4,2 N6,2

N2,2 N5,2
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Figure 2a. Uniform quadrature points (red circles) used in subintervals, which
are implemented by the translation and scaling method.
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Figure 2b. Different quadrature points (red circles) used in subintervals, where
the translation and scaling method are invalid.



For m-degree basis functions, mT+10r m+2

(for m is odd or even, respectively)

quadrature points for Gauss rules and m+1 for Clenshaw-Curtis rules per element are
needed in order to exactly integrate functions in space. Note that, for Gauss rules, all

the m+10rm+2

points are within each knot span; while for Clenshaw-Curtis, there

are m-1 rather than m+1 points within each element as the two boundary points are
the knots themselves (Figure 3). Here we denote the minimum number of the

quadrature points needed in Clenshaw-Curtis and Gauss by n/° and nj respectively,
which expressed as,
. {(m+1)/2 form=odd (14)

n~-=m-=1 n’ =
(m+2)/2 form=even

min Imin
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Fig.3 Setting the quadrature points (red circles) using Clenshaw-Curtis rules in
one parametric direction.

For smaller values of quadrature points number n,, the well known Gauss efficiency
of the factor of 2 cannot be achieved (i.e., size of n, needed to achieve a certain
accuracy). [Trefethen (2008)] pointed out that, for functions that are not analytic in
stable neighborhood of [-1,1], the Clenshaw-Curtis rule too comes close

to|| —1, |~ E;, .., see Remark 3.2. Accordingly, for common low-degree (m<4)

spline functions in IGA, the minimum number of the quadrature points n,CmC needed in

Clenshaw-Curtis rule can be decreased. Furthermore, in the lower degree case that the
quadrature points and weights need to be calculated in each element, Clenshaw-Curtis
rule should be more efficient than Gauss rule in a literal sense; as the former can be
done in O(njlogn;) operations comparing with operations in O(n,?) for the latter. For
simplicity, we assume an open knot vector with the form

U={a,a¢& & ..b- b} (15)

m+1 m+1

where the first and the last knots have a multiplicity of m+1 and 1 for other knots, m
is the spline degree, I+1 is the knot number, thus the element number ke is

k,=1-2m (16)
and the basis function number is
ng=l-m (17a)
or
ng =k, +m (17b)
The estimated operations needed in IGA for these two rules are
for CC: O{n,cmC logny® +n;° anop} (18a)
for Gauss: O {n,Gmm2 +ny anop} (18b)

7



where ngp is the times of evaluations of basis functions at quadrature points, which is
determined by the feature of the problem and the experience of the programmer. The
first terms of these two equations are related to the evaluations of quadrature points
and weights in non-uniform case; the second terms are related to the evaluations of
basis functions of the discrete space at quadrature points computed above. Substitute
eq.(17a) and eq.(17b) into eq.(18a) and eq.(18b) yield the estimated operations
needed in IGA for this two rules,

for CC: O{[k,(m-1)+1]log[k,(m—-1)+1]+[k,(m-1)+1](k, + m)n, | (19a)

_ke(m+1ﬂ J{ke (m_”ﬂ(ke + m)nop} for m = odd
i 2 2
_ke(mzzﬂ {ke(mzzﬂ(kﬁm)nop} for m=even

We give the estimated results in Figure 4a - Figure 4c for no, equaling to 110"
respectively. In each figure the variations of computational cost (operation times)
with the spline degree is plotted. We find that the CC rule has higher efficiency for
spline degree of 2 than Gauss, which is applicable for all of three cases. However, the
Gauss rule is faster for degrees larger than 3 with a larger no, (for ng, of significantly
greater than 10, e.g.100 and 1000 as shown in figure, the Gauss needs less operations;
for nyp of near 10, both are almost the same). Another surprising finding about CC
rule in IGA for the spline degree of 2 will be elaborate in section 4.The minimum
numbers of the quadrature points for all cases of 1D are shown in table 1. The

interesting observation about n < n/® will be shown in section 4.
Remark 3.2: We use the definition of E; in [Trefethen (2008)]: Given f € C[-1,1]

and n;=0, let p; be the unique best approximation to g on [-1,1] of degree <n with

@)

/_/%\

for Gauss : (19b)

@)
—

respect to the supremum norm|j«||=||+||, » and define E, =|| f —p, II.

Table 1. Minimum number of points for exact integration for standard Gauss rule vs.
Clenshaw-Curtis rule.

Degree 2 elements 3 elements 4 elements
m Gauss CC Gauss CC Gauss CC
1 2 3 3 4 4 5
2 4 5 6 7 8 9
3 4 7 6 10 8 13
4 6 9 9 13 12 17
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Figure 4 The computational cost (operation times) of CC and Gauss versus the
spline degree in cases of different nqp: @, Ngp=10; b, NE=100; ¢, NEKE=1000.



4. Numerical applications and results

To verify the rules presented in the previous section, the Poisson’ problem and
plane strain elasticity are numerically solved. NURBS based physical domains used
as test samples to investigate the applicability, accuracy and efficiency of Clenshaw-
Curtis rules in IGA. The geometric parameterization #is defined as

P Q->Q, )A<—>X:F(>A()::ZI:Ni'p(>”()Ci (20)
where Q is the parametric domain described through the parameterization F, Q is
the physical domain. N; (X)is the NURBS basis function; C; is the corresponding

control points.
4.1 Poisson’s problems on a quarter of annulus with Dirichlet boundary conditions

A Poisson’s problem is defined in a single 2D NURBS patch which forms a
quarter of annulus (see Figure 5). The domain has an internal radius of 1 and an
external radius of 2. For simplicity, homogeneous Dirichlet boundary conditions are
imposed on the whole boundary. The problem in their variational formulation with
the source term read as

jQVqudx = jQ fvdx+LN gvdl  VveH;. (Q)

u=0 onl, 1)
with (8—9y/x* + y?)sin(2arctan ){)
f =
X*+y°
u
i
0.1
E
0.2

-0.248

Figure 5. Solution of the Poisson’ problem with Clenshaw-Curtis rules. On the
left: geometry sketch (with elements) of the domain Q. On the right: contours of
the solution.

In this case, the exact solution is given by

u=(x?+y?-3yx’+y? +2)sin(2arctan X) (22)
X

10



Such a problem is approximated by a standard isogeometric Galerkin method for
basis function degrees m ranging from 2 to 4 in both parametric directions. In each
direction, the higher regularity q of m-1 is used.

The Clenshaw-Curtis (CC for short in figures and tables) rule is compared with a
standard element-wise Gauss quadrature in Figure 6 by giving the convergence
curves for the L%-norm of the relative error with respect to (w.r.t.) the exact solution.
Such convergence curves are plotted with control points (or degree of freedoms)
varying from 20 to 140 in each parametric direction and full quadrature is used. It can
be seen that differences between the two kinds of errors are negligible w.r.t. the
approximation error. The convergence rate of the Clenshaw-Curtis is almost the same
as the Gauss. Besides, the order of accuracy increases evidently with the increment of
the degree. The detailed error information is listed in Table 2.

Table 2. The results of the Poisson’s problem: L%norm of the relative error
w.r.t. the exact solution in the case of different number of control points for the
Clenshaw-Curtis and standard element-wise Gauss quadrature. Full
guadratures are evaluated. See section 4.1 for detailed computation setup.

DOF number per

direction Rule Spline degree of 2 Spline degree of 3 Spline degree of 4

20 CC 5.431343771566488e-06  1.894233786199076e-07  9.430382212269052e-09

Gauss 3.572914474223246e-06  1.680628530304760e-07  9.366661545768601e-09
60 CcC 1.613192377810281e-07 1.471198622014350e-09 1.742675787352948e-11

Gauss 1.054458637452052e-07  1.299645295684350e-09  1.678912535123116e-11
100 CC 3.342719810125322e-08  1.752487255178711e-10  1.203087010291692e-12

Gauss 2.183982466163931e-08  1.547715389168774e-10  1.130145581122103e-12
140 CC 1.196987407020663e-08  4.40320178888078%-11  2.157064347426942¢e-13

Gauss  7.819640850756566e-09  3.888441670882580e-11  1.978973380670083e-13

10*

. 10° |

e

@

210° |

©

[3]

- 10" | —#—m=2(CC) L

§ 8- m=2(Gauss) -

& 0 -6-m=3(CC)

- 10'“ { =¢m=3(Gauss) w.

- m=4(CC) I
1™ m=4(Gauss) :
10’ 107

DOF number per parametric direction
Figure 6. Convergence curves in solving the Poisson’s model for the L?-norm of

the relative error (double log-scale). Full regularity is assumed and minimum
numbers of quadrature points for exact integration are used.
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The comparison between the convergence rate w.r.t. the number of quadrature points
of the Clenshaw-Curtis and that of Gauss rules is plotted in Figure 7a- Figure 7c. In
these three figures, convergence curves of the relative error w.r.t. the exact solution is
considered with the control nets fixed at 2020 and basis function degrees varying
from 3 to 5 respectively. It can be found that the Gauss converges faster than CC
w.r.t. the same number of quadrature point. For higher degrees it is more evident. In
other words, to converge to certain accuracy, the Gauss needs less quadrature points
due to the “factor of 2”.
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Figure 7. The computational cost of the Clenshaw-Curtis rule vs. that of Gauss
rules. a. with a spline degree of 3; b. with a spline degree of 4; c. with a spline
degree of 5.

The number of quadrature points for each whole parametric direction and averaged in
each element (in brackets) are shown in Table 3, respectively. The bold data is the
minimum point number for exact quadrature, corresponding to Table 1. Given spline
degree of 3, the minimum point number needed in Gauss and CC for exact integration
are 2 and 4 respectively, corresponding total number are 34 and 52. However, the
accuracy has already been achieved by 3 CC points (35 in total, which is 1 point more
than the optimal Gauss.), rather than the 52 points required. Given spline degree of 4,
the CC has a better accuracy than Gauss if the functions are under integrated (the
point number used is less than the minimum, and thus the exact quadrature is not
achieved), which can be seen from the case of 3 and 2 points for CC and Gauss,
respectively. Besides, the Clenshaw-Curtis essentially never requires many more
function evaluations than Gauss to converge to a prescribed accuracy [Trefethen
(2008)]. In the plane strain problem which will be presented at section 4.2, we will
report the similar results.

Table 3. The results of the Poisson’s problem: L*norm of the relative error
w.r.t. the exact solution in the case of different quadrature points for the
Clenshaw-Curtis and standard element-wise Gauss quadrature. See section 4.1
for detailed computation setup. Integers before and in bracket refer to the
number of quadrature points in each parametric direction and in each element,
respectively. The bold data relates to the minimum points for exact quadrature,
corresponding to Table 1.

Rule %%@P&L% Spline degree of 2 %%@P&L% Spline degree of 3 ('q\luuargg?aetru% Spline degree of 4
points points points
cC 37(3) 5.810937748390370e-07 35(3) 3.507832956193244e-06 33(3) 4.815269168741496e-05
Gauss 36(2) 5.910381033719918e-06 34(2) 3.237004970763237e-06 32(2) 1.883677307485299-04
cC 55(4) 5.431343771566488e-06 52(4) 1.076046179389082¢-06 49(4) 2.267120441916495e-05
Gauss 54(3) 3.572914474223246e-06 51(3) 2.043586698351132¢-07 48(3) 2.487016794552956e-08
cC 73(5) 3.984412401849476e-06 69(5) 1.894233786199076e-07 65(5) 1.242345091306609e-08
Gauss 72(4) 4.254679062985767e-06 68(4) 1.680628530304760e-07 64(4) 9.726530536491443e-09
cc 91(6) 4.221771456414136e-06 86(6) 1.719740835113939e-07 81(6) 9.430382212269052¢-09
Gauss 90(5) 4.254426013745271e-06 85(5) 1.720555724776312e-07 80(5) 9.366661545768601e-09
cC 109(7) 4.254443331292910e-06 120(7) 1.719868621478127e-07 97(7) 9.400145380498706e-09
Gauss 108(6) 4.254426057907695e-06 102(6) 1.720541618939914e-07 96(6) 9.386569470718392e-09
cc 127(8) 4.254430377691922¢-06 137(8) 1.720541968799450e-07 113(8) 9.390607008627601e-09
Gauss 126(7) 4.254426057908292e-06 119(7) 1.720541622130770e-07 112(7) 9.386561687283082e-09
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Table 4. The results of the plane strain problem: L?-norm of the relative error w.r.t.
the exact solution in the case of different number of control points for the Clenshaw-
Curtis and standard element-wise Gauss quadrature. Full quadratures are evaluated.
See section 4.1 for detailed computation setup.

DOF
number per  Rule
direction

Spline degree of 2

Spline degree of 3

Spline degree of 4

cC 7.580838422425806e-05 5.709802889966272e-05 1.473215457485271e-06
20 Gauss 3.486429685645471e-04 1.721340273127870e-04 2.049928251576902e-06
cC 6.898433383401487e-07 7.835584539592522e-07 3.435163758080126e-09
°0 Gauss 1.021598276698650e-05 2.387179634052311e-06 6.585591990210384e-09
cC 8.431769959773612e-08 1.206946575532456e-07 2.774539343390426e-10
100 Gauss 2.114898963028304e-06 3.686934132431995e-07 5.763877757080713e-10
cC 2.140789685445826e-08 3.590101948398621e-08 5.551247202533930e-11
140 Gauss 7.571314444567726e-07 1.098048534810133e-07 1.197411811057983e-10

Another finding is that the minimum CC points needed in exact quadrature lead
to the highest accuracy for the degree of 2. It can be seen from Table 3 that the
minimum error is obtained when the CC points number is 3, which is about 10 to the -
7; however, for the increased number of quadrature points, all the errors are about 10
to the -6 including those reaching steady state. We can also see from this column of
data that, the minimum CC points for degree of 2 still yield a better result than each
point number case of Gauss rule, which has a power of -6 without exception. This
phenomenon reappeared in the benchmark problem of plane strain problem (in
section 4.2).

4.2 Plane strain problem with Dirichlet boundary conditions

As another example, we define a plane strain problem which is linear elastic and
isotropic in a two dimensional square (1< 1) region. For comparison, both of the
quadrature methods are used in the solution of the problem. The problem in its
variational formulation is expressed in eq.(23). Again for simplicity, homogeneous
Dirichlet boundary conditions are imposed on the whole boundary and the external
force term f is defined in eq.(23).

FindueV =(H;, (Q))2 such that
jQ(W(u)V(v)+2yg(u):g(v)) = Igf V+ jr g-v WweV (23)

u=0 onI,
with < f, = f, = —47°[-3u+ Asin(2zx)sin(2zy)
+ (u+ A)cos(2zx)cos(2xy)]

where g and A are the Lamé parameters of the material. The geometry of the domain
and the displacement magnitude for a material with Young modulus E = 1 and
Poisson ratio v= 0.3 is plotted in Figure 8 The exact solution of this model is shown
in eq.(24)
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u, =u, =sin(2zx)sin(2zy) (24)

In order to compare it with the presented Poisson’s equation, this problem is still
approximated by a standard isogeometric Galerkin method for basis function degrees
m ranging from 2 to 4 in both parametric directions. In each direction, the higher
regularity q of m-1 is used.

Figure 8. Solution of the plane strain problem. The geometry sketch of the
domain with element (top) and the contour plot of displacements (bottom).

The convergence curves for the L?-norm of the relative error with respect to (w.r.t.)
the exact solution for both rules are shown in Figure 9. Similar to the conclusion
aforementioned, the Clenshaw-Curtis has almost the same convergence rate as the
Gauss rules. The comparison between the convergence rate w.r.t. the number of
quadrature points of the Clenshaw-Curtis and that of Gauss rules is showed in Table 5
and not plotted. Similarly, the Gauss’s convergence is faster than CC w.r.t. the same
number of quadrature point and more evidently for higher degrees; it not necessarily
needs 4 CC points (52 in total) for a degree of 3, actually, 3 points (35 in total) are
enough for exact quadrature; the 3 points CC has a better accuracy than 2 points
Gauss for degree of 4. From the column of degree 2, the identical conclusion that
minimum 3 CC points for exact quadrature lead to the highest accuracy has been
found.

Table 5. The results of the plane strain problem: L?-norm of the relative error
w.r.t. the exact solution in the case of different quadrature points for the
Clenshaw-Curtis and standard element-wise Gauss quadrature. See section 4.2
for detailed computation setup. Integers before and in bracket refer to the
number of quadrature points in each parametric direction and in each element,
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respectively. The bold data relates to the minimum points for exact quadrature,
corresponding to Table 1.

Rule lalggg?:tru?g Spline degree of 2 all%g?eiru?g Spline degree of 3 all%g?eiru?g Spline degree of 4
points points points
cC 37(3) 7.580838422425806¢e-05 35(3) 1.856112366410516e-04 33(3) 7.889085258275995e-04
Gauss 36(2) 3.486429685645471e-04 34(2) 1.721340273127870e-04 32(2) 0.002869708867170
cC 55(4) 3.213220416249692¢-04 52(4) 5.709802889966272e-05 49(4) 3.905908393191598e-04
Gauss 54(3) 2.159149300119856e-04 51(3) 2.122049676131301e-05 48(3) 2.049928251576902e-06
CcC 73(5) 2.391125067420231e-04 69(5) 1.973816028233426e-05 65(5) 1.473215457485271e-06
Gauss 72(4) 2.544164579534698e-04 68(4) 1.763946743470982e-05 64(4) 1.508026371023410e-06
cc 91(6) 2.525513107997929¢-04 86(6) 1.802195523770241e-05 81(6) 1.474188307465811e-06
Gauss 90(5) 2.544061479534598e-04 85(5) 1.802810705630391e-05 80(5) 1.458299097251400e-06
CcC 109(7) 2.544068533940345e-04 103(7) 1.800176949085848e-05 97(7) 1.463032143415990e-06
Gauss 108(6) 2.544061494631728e-04 102(6) 1.802801880799568e-05 96(6) 1.461314539284407e-06
cc 127(8) 2.544063254948461e-04 120(8) 1.802145721232466e-05 113(8) 1.461841366010776e-06
Gauss 126(7) 2.544061494630725e-04 119(7) 1.802801881926631e-05 112(7) 1.461313960405898e-06
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Fig.9 Convergence curves in solving the plane strain model for the L?*-norm of
the relative error (double log-scale). Full regularity is assumed and minimum

numbers of quadrature points for exact integration are used.
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5. Conclusions

We introduced the Clenshaw-Curtis quadrature into the IGA scheme and
compared its accuracy and efficiency with that of the optimal standard Gauss rule.

We found that for exact quadrature and higher spline degrees (m=3), the Gauss has
advantages in both accuracy and efficiency due to its “factor of 2”; while for under
integration (points number is less than the minimum required), the Clenshaw-Curtis is

better. For lower spline degrees (m=3), the exact quadrature can be achieved for the
Clenshaw-Curtis rule when the functions are under integrated and thus it has an
improved efficiency. Moreover, the degree of 2 requires the least points to obtain the
highest accuracy for Clenshaw-Curtis rule.

Considering the overall operations needed in isogeometric approximation
(Galerkin method is used in this paper), the Gauss also proves its higher efficency in
solving problems with high spline degrees. Considering all the indefinite factors due
to the externals (such as PDE types, the programmer’s experience, etc.), we quantify
those factors as a coefficient no, and take values from 10 to 1< 10°. However, all
these values yield a same result: for lower spline degrees (m<3), the Clenshaw-
Curtis has a better efficiency than the Gauss rules.
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