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Abstract 
Isogeometric analysis (IGA) is a relatively new method and receiving much attention 
recently, the efficient quadrature in which is an important branch far from mature. We 
introduce the Clenshaw-Curtis quadrature into IGA and give the corresponding 
algorithms. The estimated computation cost for both rules and of the whole 
isogeometric approximation are proposed, and through which we compare it with the 
optimal standard Gauss rule. It is found that the Clenshaw-Curtis rule have better 
efficiency than the Gauss for spline degree of 2. Better accuracy of CC than Gauss for 
low spline degrees are also found through the applications of both rules in the 
boundary value problems.  

Keywords: isogeometric analysis, quadrature, Clenshaw-Curtis, Gauss, NURBS 

1 Introduction  

Isogeometric analysis (IGA) is a recently proposed subject which is receiving a great 
deal of attention amongst the computational mechanics community. isogeometric 
analysis is a technique of numerical analysis that uses the same basis functions 
commonly found in description of Computer Aided Design (CAD) geometries to 
represent both geometry and physical fields in the solution of problems governed by 
partial differential equations (PDE)[Hughes et al. (2005); Cottrell et al.(2009)]. Based 
on its initial intends of bridging the gap between the CAD and the Finite Element 
Analysis (FEA), IGA has the potential to have a profound effect and the promise of 
overcoming some bottleneck issues that plagued computer aided engineering for 
decades. 
 
The use of the most popular Non-Uniform Rational B-Spline (NURBS) basis function 
applied for the geometry description in the solution field therefore leads to 
elimination of geometric-approximation error in even the coarsest mesh. In this way, 
the isoparametric concept is maintained but more significantly, the geometry of the 
problem is preserved exactly. The increased continuity of the NURBS basis has led to 
significant numerical advantages over traditional Lagrange polynomials and other C0 
inter-element continuity based FEA, e.g. it can possess high regularity across mesh 
elements, leading to a higher accuracy per degree-of-freedom (DOF) basis [Cottrell et 
al.(2009)]; it also has better robustness and system condition number than FEA 
[Bazilevs et al.(2006)]. Many researchers have applied B-splines and NURBS as the 
basis for IGA applications such as fluid dynamics [Bazilevs et al.(2006); Bazilevs et 
al.(2012)], structural mechanics [Kiendl et al.(2009); Lipton et al.(2010); Benson et 
al.(2011)], thermal analysis [Anders et al.(2012)], shape optimization [Qian (2010)], 
electromagnetics [Buffa and Sangalli (2010)] and so on.  
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However, several challenges remain for IGA to be fully accepted as industrial-
strength analysis technology. One of them is the design of efficient and adaptive 
quadrature rules. The quadrature scheme of the IGA is accomplished over individual 
non-zero knot spans of the underlying B-spline based geometry, which is different 
from performing the numerical quadrature on individual finite elements in the FEA. 
In fact, the widely used Gauss quadrature on each element in the IGA computation is 
a choice far from being optimal [Auricchio et al. (2012)]. An optimal quadrature rule 
which exactly integrates B-spline basis functions with the minimum number of 
function evaluations for IGA was initially constructed in [Hughes et al. (2010)]. It 
significantly improves the computational efficiency despite that sometimes it is 
difficult to solve for high polynomial degrees and numbers of elements due to a 
global ill-conditioned equation system. [Auricchio et al. (2012)] developed an 
efficient algorithm through which can obtain nearly optimal rules. That algorithm is 
proved to be much easier to construct.  
 
In this paper, we discuss the quadrature in IGA from another aspect. As mostly used 
rules are commonly Gaussian, we introduced an existing non-Gaussian rule named 
Clenshaw-Curtis into IGA and explored its new features. The Clenshaw-Curtis rule 
uses Chebyshev points instead of optimal nodes of Gauss quadrature. The 
computation of a cosine transformation and the arithmetic cost of this were 
prohibitive and thus limited the use of this rule before the FFT transformation was 
used. It has particular advantages such as easier implementation [Gentleman (1972a; 
1972b)], most similar convergence rate [Calabrò and Esposito (2009)] and in fact, for 
most integrands, about equally accurate [Trefethen (2008)] compared to the Guass 
quadrature. We know its own merits, but how it performs in IGA – this is what we 
discuss in this paper. We discuss its convergence and efficiency through comparisons 
with standard Gauss rule and find some interesting points. Note that, there are several 
variations on this theme (see [Trefethen (2008); Clenshaw and Curtis (1960)]). What 
we use in this paper is commonly called “practical” Clenshaw-Curtis formula.  
 
The paper is organized as follows. Section 2 gives some of the preliminaries on IGA 
and Clenshaw-Curtis rules. Section 3 studies the integration of quadrature rules into 
IGA and makes discussions on computational cost of both rules. Section 4 exploits 
the Clenshaw-Curtis rules to numerically solve boundary value problems in Poisson’s 
and elasticity problems and makes verifications of Section 3. In this paper, we took 
advantage of the open-source codes of GeoPDEs (http:// geopdes.sourceforge.net) 
and modified the corresponding parts. 

2. Preliminaries on IGA 

We start with a brief review of some technical aspects of B-spline and NURBS bases 
for IGA. More detailed introduction can be found in the fundamental works proposed 
by [Hughes et al. (2005); Cottrell et al.(2009)]. 
 
As aforementioned, similar with the isoparametric concept of standard FEM, 
isogeometric analysis uses higher degree smooth spline functions, in particular B-
splines and NURBS. A univariate B-spline function of polynomial degree m is 
specified by n basis functions Ni,m(ξ)(Ni,m, for short), (i=1,…,n) in the parametric 
space ξ. The non-decreasing set of (n+m+1) coordinates ξi are so-called knots and 
subdivide the parametric space into (n+m) knot spans forming a patch [Hughes et al. 
(2005); Cottrell et al.(2009)]. 
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1 2 1{ , ,..., }n mξ ξ ξ + +Ξ =                                                      (1) 
Piecewise polynomial B-spline functions are defined over m+1 knot spans with Cm-1 
continuity between the spline elements. Repeated knots decrease the continuity 
between the knot spans and make the B-splines interpolatory at the knots. For a 
repetition of the first and last knot the knot span is said to be open. Knot spans with 
non-zero extension will in the following be referred to as knot-span elements. The 1D 
patch of Figure 1 consists of four knot-span elements. The B-spline basis functions 
are constructed recursively by the Cox-de Boor formula [Piegl and Tille (1997)] 

 
Figure1. 1D non-uniform NURBS patch. 

 
NURBS basis functions and geometric entities are then immediately obtained from 
the previous B-Spline spaces. In brief, a positive weight ωi can be associated to each 
B-Spline basis function Ni,m, and the corresponding NURBS basis function is defined 
as  
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Such a definition is easily generalized to the two- and three-dimensional cases by 
means of tensor products. For instance, in the trivariate case, given the degrees pd, the 
integers nd and the knot vectors Ξ, Η and Γ, the corresponding B-spline and NURBS 
basis functions are  
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B-spline or NURBS curves, surfaces and volumes are then defined as 
, ,

, ,( , , ) ( , , )p q r
ijk i j kRξ η γ ξ η γ= ∑C P                                       (5) 

3. Clenshaw-Curtis Quadrature in the element of IGA 

Let n>1 be a given fixed integer, and define n+1 quadrature nodes on the standard 
interval [−1, 1] as the extremes of the Chebyshev polynomial Tn (x), augmented by 
the boundary points, 

: cos , : , 0,1,... .k k kx k k n
n
πϑ ϑ= = =                                      (6) 
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Given a spline function f, an n-point interpolatory quadrature rule is a choice of n 
ordered points and weights such that 

1

1
0

( ) ( )
n

k k n
k

f x dx f x Rω
−

=

= +∑∫                         (7) 

where Rn is the approximation error, and ωk are the quadrature weights, which can be 
obtained by integrating the n-th-degree polynomial interpolating the n+1 discrete 
points (xk, f(xk)). Applying this procedure to the nodes eq.(6) directly yields the 
Clenshaw-Curtis rules. [Davis and Rabinowitz (1984)] summarized the explicit 
expressions for the Clenshaw-Curtis weights cc

kω  
[ /2]

2
1

1 cos(2 ) , 0,1,... ,
4 1

n
jcc k

k k
j

bc j k n
n j

ω ϑ
=

 
= − = − 

∑                         (8) 

where the coefficient bj, ck, are defined as  
1, / 2 1, 0 mod
2, / 2, 2,j k

j n k n
b c

j n otherwise
= = 

= = < 
                           (9) 

Eq. (8) holds for every even or odd integer n>1, which together with the definition (9) 
of ck implies  

0 2

1
1 mod( ,2)

cc cc
n n n

ω ω= =
− +

                                            (10) 

 
We give the detailed constructions proposed in [Waldvogel (2006)], which are given 
by the inverse discrete Fourier transform of the vector v + g, where v and g is 
defined in eq.(11) and eq.(12), respectively. The evaluation is particularly fast if n is a 
power of 2. 

2
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0 , 0,1,..., 1,
2

cc
k

ng kω  = − = −                                                       

2
0 [(2 mod( ,2)) 1],n
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= − −
                                                    

1, 1, 2,..., .
2n k k

ng g k−

− = =                                                (12) 
where 0

ccω  is defined in eq.(10) with cc
nω := 0

ccω . The superscripts in defining vn-k and 
gn-k refer to complex conjugation.  

We take one-dimensional parametric domain as an example, two and three-
dimensional can be easily obtained by means of tensor product. We assume the 

interval [0,1] with a uniform subdivision into l unitary elements [ 1i
l
− , i

l
 ], where i 

=1,…, l.  
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Remark 3.1: We call m
qS the space spanned by the B-spline basis functions with 

global Cq-continuity, which is associated with a knot vector having internal knots 
with multiplicity r = m - q. 

Given a spline function m
qf S∈ , which is a polynomial of degree m in each 

element [ 1i
l
− , i

l
 ] with qf C∈ ([0,1]). In the computation, m+1 coefficients on each 

of the l elements with q+1 continuity requirements on the n-1 internal points need to 
be assigned. The dimension of the space m

qS  is therefore l(m-q)+q+1, where -1≤q≤
m-1 as q= -1 refers to the discontinuous case. In particular, q=0 refers to the case of 
functions continuous on the whole parametric domain and piecewise polynomial on 
each single element, which is similar to the FEA approximation.  

In the elements defined above, Gauss quadratures are commonly used in 
numerical integration of functions in m

qS . Compared with the standard Gauss rule, 
which has its quadrature points totally implemented within each element boundaries, 
the Clenshaw-Curtis have points at element boundaries. We apply Clenshaw-Curtis 

quadrature points eq.(6) to each element (i.e. subinterval) [ 1i
l
− , i

l
 ] and thus the first 

and the last quadrature points are exactly the 1
1i ix

l
−

=  and 1
i
m

ix
l− = . If there are same 

integration points number nI in each element, the translation and scaling method 
[ 1,1] 1 1( ) , 1,...,i i i i

k k k k k Ix x x x x k n− − −= ⋅ − + =                                   (13) 
are always used to save the computation, see Figure 2a; where i

kx is the unknown 
quadrature point; [ 1,1]

kx − is the k-th point in the biunit interval [-1,1]; i
kx  is the k-th point 

in the i-th element. Sometimes quadrature points need to be enriched in certain 
elements or parametric direction in the sense of product tensor, as we need high 
accuracy there than the acceptable general accuracy of the whole domain. For this 
case, different point numbers are implemented and the corresponding weights are 
usually evaluated separately. Figure 2b shows that the quadrature points are added to 
4 in the subinterval [0.125, 0.625] where only 2 Gauss points are needed to obtain the 
exact integration for the basis functions of degree 2. A pseudo-code for 
implementation of the standard Clenshaw-Curtis quadrature points is proposed below 
according to the two cases aforementioned, which are the respective using of uniform 
quadrature points and different quadrature points in subintervals. We fix the spline 
degree and full regularity for simplicity. The computational domain is considered k-
dimensional. 

Input: 1 k integer array: spline_degree 
for parametric direction: idir=1,…,k 

﹥find out the unique knots: uniq_knots(1:n); 
﹥record the first n-1 elements of uniq_knots(1:n): uniq_knots_el(1:n-1); 
﹥calculate the differences adjacent elements of uniq_knots(1:n): du(1:n-1); 
if case 1, then 

﹥calculate quadrature points in unit interval [-1,1]: q_points_temp(idir, 
points, weights) = CC(spline_degree(idir)); 

for the i-th node, inode = 1:n-1 
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        ﹥calculate quadrature points in current parametric direction: q_points(idir, 
inode) = (q_points_temp(idir,:,weights) +1) / 2 * du(inode) + 
uniq_knots_el(inode); 

﹥ calculate quadrature weights in current parametric direction: 
q_weights(idir,inode)=q_points_temp(idir,points,:); 

     endfor 
elseif case 2, then 

for the i-th node, inode = 1:n-1 
        ﹥calculate quadrature points in unit interval [-1,1]: q_points_temp(idir, 

inode, points, weights) = CC(spline_degree(idir, inode)); 
﹥ calculate quadrature points in current parametric direction: 

q_points(idir, inode) = (q_points_temp(idir, inode, : ,weights) +1) 
/ 2 * du(inode) + uniq_knots_el(inode); 

﹥ calculate quadrature weights in current parametric direction: 
q_weights(idir,inode)=q_points_temp(idir,points,:); 

     endfor 
endif 

endfor 
Return: n-points quadrature rule (xn,ωn) in the whole parametric direction. 

in which the subroutine CC is used for evaluation of the Clenshaw-Curtis points and 
weights in the unit interval. A pseudo-code for subroutine CC is listed below. 

Input: number points minus 1: n-1 
﹥calculate quadrature points xk defined in eq.(6); 
﹥calculate the vector v and g defined in eq.(11) and eq.(12); 
﹥perform the inverse discrete Fourier transform of the vector v + g ; 
Return: n-points quadrature rule ( [ 1,1]

nx − , [ 1,1]
nω − ) in biunit interval[-1,1]. 

 

 
Figure 2a. Uniform quadrature points (red circles) used in subintervals, which 

are implemented by the translation and scaling method. 

 
Figure 2b. Different quadrature points (red circles) used in subintervals, where 

the translation and scaling method are invalid. 
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For m-degree basis functions, 1
2

m + or 2
2

m +   (for m is odd or even, respectively) 

quadrature points for Gauss rules and m+1 for Clenshaw-Curtis rules per element are 
needed in order to exactly integrate functions in space. Note that, for Gauss rules, all 

the 1
2

m + or 2
2

m +  points are within each knot span; while for Clenshaw-Curtis, there 

are m-1 rather than m+1 points within each element as the two boundary points are 
the knots themselves (Figure 3). Here we denote the minimum number of the 
quadrature points needed in Clenshaw-Curtis and Gauss by 

min

CC
In and 

min

G
In respectively, 

which expressed as, 

min min

( 1) / 2
1,

( 2) / 2
CC G
I I

m for m odd
n m n

m for m even
+ =

= − =  + =                          
(14)  

 
Fig.3 Setting the quadrature points (red circles) using Clenshaw-Curtis rules in 

one parametric direction. 
 

For smaller values of quadrature points number nI, the well known Gauss efficiency 
of the factor of 2 cannot be achieved (i.e., size of nI needed to achieve a certain 
accuracy). [Trefethen (2008)] pointed out that, for functions that are not analytic in 
stable neighborhood of [−1,1], the Clenshaw-Curtis rule too comes close 
to *

2 1I In nI I E +− ≈ , see Remark 3.2. Accordingly, for common low-degree (m≤4) 

spline functions in IGA, the minimum number of the quadrature points 
min

CC
In  needed in 

Clenshaw-Curtis rule can be decreased. Furthermore, in the lower degree case that the 
quadrature points and weights need to be calculated in each element, Clenshaw-Curtis 
rule should be more efficient than Gauss rule in a literal sense; as the former can be 
done in O(nIlognI) operations comparing with operations in O(nI

2) for the latter. For 
simplicity, we assume an open knot vector with the form 

     
1 1

1 1

{ , , , , , , , , }m l m
m m

U a a b bξ ξ+ − −

+ +

=   

 

                                        
(15)

 
where the first and the last knots have a multiplicity of m+1 and 1 for other knots, m 
is the spline degree, l+1 is the knot number, thus the element number ke is 

2ek l m= −
                                                         

(16) 
and the basis function number is 

Bn l m= −
                                     

                   (17a) 
or  

B en k m= +
                                    

                  (17b) 
The estimated operations needed in IGA for these two rules are 

{ }min min min
: logCC CC CC

I I I B opfor CC O n n n n n+                               (18a) 

{ }min min

2: G G
I I B opfor Gauss O n n n n+                                  (18b) 
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where nop is the times of evaluations of basis functions at quadrature points, which is 
determined by the feature of the problem and the experience of the programmer. The 
first terms of these two equations are related to the evaluations of quadrature points 
and weights in non-uniform case; the second terms are related to the evaluations of 
basis functions of the discrete space at quadrature points computed above. Substitute 
eq.(17a) and eq.(17b) into eq.(18a) and eq.(18b) yield the estimated operations 
needed in IGA for this two rules, 

[ ] [ ] [ ]{ }: ( 1) 1 log ( 1) 1 ( 1) 1 ( )e e e e opfor CC O k m k m k m k m n− + − + + − + +
  
(19a) 

2

2

1 1 ( )
2 2

:
2 2 ( )

2 2

e e e op

e e e op

m mO k k k m n for m odd

for Gauss
m mO k k k m n for m even

   +   +      + + =                 


   +   +     + + =                 

  (19b) 

 
We give the estimated results in Figure 4a - Figure 4c for nop equaling to 1×101~3 

respectively. In each figure the variations of computational cost (operation times) 
with the spline degree is plotted. We find that the CC rule has higher efficiency for 
spline degree of 2 than Gauss, which is applicable for all of three cases. However, the 
Gauss rule is faster for degrees larger than 3 with a larger nop (for nop of significantly 
greater than 10, e.g.100 and 1000 as shown in figure, the Gauss needs less operations; 
for nop of near 10, both are almost the same). Another surprising finding about CC 
rule in IGA for the spline degree of 2 will be elaborate in section 4.The minimum 
numbers of the quadrature points for all cases of 1D are shown in table 1. The 
interesting observation about 

min

CC CC
I In n≤ will be shown in section 4. 

Remark 3.2: We use the definition of *
InE in [Trefethen (2008)]: Given [ 1,1]f C∈ −   

and nI≥0, let *
Inp be the unique best approximation to g on [−1,1] of degree ≤n with 

respect to the supremum norm ∞=  ，and define * *
I In nE f p= −  . 

Table 1. Minimum number of points for exact integration for standard Gauss rule vs. 
Clenshaw-Curtis rule. 

Degree 
m 

2 elements  3 elements  4 elements 
Gauss  CC Gauss  CC Gauss  CC 

1 2       3  3       4  4       5 
2 4       5  6       7  8       9 
3 4       7  6      10  8      13 
4 6       9  9      13  12     17 

 



9 
 

 
Figure 4a. 

 
Figure 4b. 

 
Figure 4c. 

Figure 4 The computational cost (operation times) of CC and Gauss versus the 
spline degree in cases of different nop: a, nop=10; b, nop=100; c, nop=1000. 
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4. Numerical applications and results 

To verify the rules presented in the previous section, the Poisson’ problem and 
plane strain elasticity are numerically solved. NURBS based physical domains used 
as test samples to investigate the applicability, accuracy and efficiency of Clenshaw-
Curtis rules in IGA. The geometric parameterization P is defined as  

P : Ω̂ → Ω ,   ,ˆ ˆ ˆ( ) : ( )i p i
i

F N C
∈

→ = = ∑
I

x x x x                              (20) 

where Ω̂  is the parametric domain described through the parameterization F, Ω  is 
the physical domain. , ˆ( )i pN x is the NURBS basis function; Ci is the corresponding 
control points. 

4.1 Poisson’s problems on a quarter of annulus with Dirichlet boundary conditions 

A Poisson’s problem is defined in a single 2D NURBS patch which forms a 
quarter of annulus (see Figure 5). The domain has an internal radius of 1 and an 
external radius of 2. For simplicity, homogeneous Dirichlet boundary conditions are 
imposed on the whole boundary. The problem in their variational formulation with 
the source term read as 

1
0,

2 2

2 2

( )

0

(8 9 )sin(2arctan )

D
N

D

u vdx fvdx gvd v H

u on
ywith x y
xf

x y

ΓΩ Ω Γ
∇ ∇ = + Γ ∀ ∈ Ω

= Γ


− +
 =

+

∫ ∫ ∫

                      (21) 

 

 
Figure 5. Solution of the Poisson’ problem with Clenshaw-Curtis rules. On the 
left: geometry sketch (with elements) of the domain Ω. On the right: contours of 
the solution. 

 
In this case, the exact solution is given by  

2 2 2 2( 3 2)sin(2arctan )yu x y x y
x

= + − + +                            (22) 
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Such a problem is approximated by a standard isogeometric Galerkin method for 
basis function degrees m ranging from 2 to 4 in both parametric directions. In each 
direction, the higher regularity q of m-1 is used.  
 
The Clenshaw-Curtis (CC for short in figures and tables) rule is compared with a 
standard element-wise Gauss quadrature in Figure 6 by giving the convergence 
curves for the L2-norm of the relative error with respect to (w.r.t.) the exact solution. 
Such convergence curves are plotted with control points (or degree of freedoms) 
varying from 20 to 140 in each parametric direction and full quadrature is used. It can 
be seen that differences between the two kinds of errors are negligible w.r.t. the 
approximation error. The convergence rate of the Clenshaw-Curtis is almost the same 
as the Gauss. Besides, the order of accuracy increases evidently with the increment of 
the degree. The detailed error information is listed in Table 2.  

Table 2. The results of the Poisson’s problem: L2-norm of the relative error 
w.r.t. the exact solution in the case of different number of control points for the 
Clenshaw-Curtis and standard element-wise Gauss quadrature. Full 
quadratures are evaluated. See section 4.1 for detailed computation setup. 

DOF number per 
direction 

Rule Spline degree of 2 Spline degree of 3 Spline degree of 4 

20 
CC 5.431343771566488e-06 1.894233786199076e-07 9.430382212269052e-09 

Gauss 3.572914474223246e-06 1.680628530304760e-07 9.366661545768601e-09 

60 
CC 1.613192377810281e-07 1.471198622014350e-09 1.742675787352948e-11 

Gauss 1.054458637452052e-07 1.299645295684350e-09 1.678912535123116e-11 

100 
CC 3.342719810125322e-08 1.752487255178711e-10 1.203087010291692e-12 

Gauss 2.183982466163931e-08 1.547715389168774e-10 1.130145581122103e-12 

140 
CC 1.196987407020663e-08 4.403201788880789e-11 2.157064347426942e-13 

Gauss 7.819640850756566e-09 3.888441670882580e-11 1.978973380670083e-13 

 

 
Figure 6. Convergence curves in solving the Poisson’s model for the L2-norm of 
the relative error (double log-scale). Full regularity is assumed and minimum 
numbers of quadrature points for exact integration are used. 
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The comparison between the convergence rate w.r.t. the number of quadrature points 
of the Clenshaw-Curtis and that of Gauss rules is plotted in Figure 7a- Figure 7c. In 
these three figures, convergence curves of the relative error w.r.t. the exact solution is 
considered with the control nets fixed at 20 20 and basis function degrees varying 
from 3 to 5 respectively. It can be found that the Gauss converges faster than CC 
w.r.t. the same number of quadrature point. For higher degrees it is more evident. In 
other words, to converge to certain accuracy, the Gauss needs less quadrature points 
due to the “factor of 2”.  

 
Fig.7a 

 
Fig.7b 

 
Fig.7c 
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 Figure 7. The computational cost of the Clenshaw-Curtis rule vs. that of Gauss 
rules. a. with a spline degree of 3; b. with a spline degree of 4; c. with a spline 
degree of 5. 
 
The number of quadrature points for each whole parametric direction and averaged in 
each element (in brackets) are shown in Table 3, respectively. The bold data is the 
minimum point number for exact quadrature, corresponding to Table 1. Given spline 
degree of 3, the minimum point number needed in Gauss and CC for exact integration 
are 2 and 4 respectively, corresponding total number are 34 and 52. However, the 
accuracy has already been achieved by 3 CC points (35 in total, which is 1 point more 
than the optimal Gauss.), rather than the 52 points required. Given spline degree of 4, 
the CC has a better accuracy than Gauss if the functions are under integrated (the 
point number used is less than the minimum, and thus the exact quadrature is not 
achieved), which can be seen from the case of 3 and 2 points for CC and Gauss, 
respectively. Besides, the Clenshaw-Curtis essentially never requires many more 
function evaluations than Gauss to converge to a prescribed accuracy [Trefethen 
(2008)]. In the plane strain problem which will be presented at section 4.2, we will 
report the similar results. 

Table 3. The results of the Poisson’s problem: L2-norm of the relative error 
w.r.t. the exact solution in the case of different quadrature points for the 
Clenshaw-Curtis and standard element-wise Gauss quadrature. See section 4.1 
for detailed computation setup. Integers before and in bracket refer to the 
number of quadrature points in each parametric direction and in each element, 
respectively. The bold data relates to the minimum points for exact quadrature, 
corresponding to Table 1. 

Rule 
Number of 
quadrature 

points 
Spline degree of 2 

Number of 
quadrature 

points 
Spline degree of 3 

Number of 
quadrature 

points 
Spline degree of 4 

CC 37(3) 5.810937748390370e-07 35(3) 3.507832956193244e-06 33(3) 4.815269168741496e-05 

Gauss 36(2) 5.910381033719918e-06 34(2) 3.237004970763237e-06 32(2) 1.883677307485299e-04 

CC 55(4) 5.431343771566488e-06 52(4) 1.076046179389082e-06 49(4) 2.267120441916495e-05 

Gauss 54(3) 3.572914474223246e-06 51(3) 2.043586698351132e-07 48(3) 2.487016794552956e-08 

CC 73(5) 3.984412401849476e-06 69(5) 1.894233786199076e-07 65(5) 1.242345091306609e-08 

Gauss 72(4) 4.254679062985767e-06 68(4) 1.680628530304760e-07 64(4) 9.726530536491443e-09 

CC 91(6) 4.221771456414136e-06 86(6) 1.719740835113939e-07 81(6) 9.430382212269052e-09 

Gauss 90(5) 4.254426013745271e-06 85(5) 1.720555724776312e-07 80(5) 9.366661545768601e-09 

CC 109(7) 4.254443331292910e-06 120(7) 1.719868621478127e-07 97(7) 9.400145380498706e-09 

Gauss 108(6) 4.254426057907695e-06 102(6) 1.720541618939914e-07 96(6) 9.386569470718392e-09 

CC 127(8) 4.254430377691922e-06 137(8) 1.720541968799450e-07 113(8) 9.390607008627601e-09 

Gauss 126(7) 4.254426057908292e-06 119(7) 1.720541622130770e-07 112(7) 9.386561687283082e-09 
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Table 4. The results of the plane strain problem: L2-norm of the relative error w.r.t. 
the exact solution in the case of different number of control points for the Clenshaw-
Curtis and standard element-wise Gauss quadrature. Full quadratures are evaluated. 
See section 4.1 for detailed computation setup. 

DOF 
number per 

direction 
Rule Spline degree of 2 Spline degree of 3 Spline degree of 4 

20 
CC 7.580838422425806e-05 5.709802889966272e-05 1.473215457485271e-06 

Gauss 3.486429685645471e-04 1.721340273127870e-04 2.049928251576902e-06 

60 
CC 6.898433383401487e-07 7.835584539592522e-07 3.435163758080126e-09 

Gauss 1.021598276698650e-05 2.387179634052311e-06 6.585591990210384e-09 

100 
CC 8.431769959773612e-08 1.206946575532456e-07 2.774539343390426e-10 

Gauss 2.114898963028304e-06 3.686934132431995e-07 5.763877757080713e-10 

140 
CC 2.140789685445826e-08 3.590101948398621e-08 5.551247202533930e-11 

Gauss 7.571314444567726e-07 1.098048534810133e-07 1.197411811057983e-10 

 
Another finding is that the minimum CC points needed in exact quadrature lead 

to the highest accuracy for the degree of 2. It can be seen from Table 3 that the 
minimum error is obtained when the CC points number is 3, which is about 10 to the -
7; however, for the increased number of quadrature points, all the errors are about 10 
to the -6 including those reaching steady state. We can also see from this column of 
data that, the minimum CC points for degree of 2 still yield a better result than each 
point number case of Gauss rule, which has a power of -6 without exception. This 
phenomenon reappeared in the benchmark problem of plane strain problem (in 
section 4.2). 

4.2 Plane strain problem with Dirichlet boundary conditions 

As another example, we define a plane strain problem which is linear elastic and 
isotropic in a two dimensional square (1×1) region. For comparison, both of the 
quadrature methods are used in the solution of the problem. The problem in its 
variational formulation is expressed in eq.(23). Again for simplicity, homogeneous 
Dirichlet boundary conditions are imposed on the whole boundary and the external 
force term f is defined in eq.(23). 
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where µ and λ are the Lamé parameters of the material. The geometry of the domain 
and the displacement magnitude for a material with Young modulus E = 1 and 
Poisson ratio ν = 0.3 is plotted in Figure 8 The exact solution of this model is shown 
in eq.(24) 
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sin(2 )sin(2 )x yu u x yπ π= =

                                     

(24) 
In order to compare it with the presented Poisson’s equation, this problem is still 
approximated by a standard isogeometric Galerkin method for basis function degrees 
m ranging from 2 to 4 in both parametric directions. In each direction, the higher 
regularity q of m-1 is used.  

 

 
Figure 8. Solution of the plane strain problem. The geometry sketch of the 
domain with element (top) and the contour plot of displacements (bottom). 

 
The convergence curves for the L2-norm of the relative error with respect to (w.r.t.) 
the exact solution for both rules are shown in Figure 9. Similar to the conclusion 
aforementioned, the Clenshaw-Curtis has almost the same convergence rate as the 
Gauss rules. The comparison between the convergence rate w.r.t. the number of 
quadrature points of the Clenshaw-Curtis and that of Gauss rules is showed in Table 5 
and not plotted. Similarly, the Gauss’s convergence is faster than CC w.r.t. the same 
number of quadrature point and more evidently for higher degrees; it not necessarily 
needs 4 CC points (52 in total) for a degree of 3, actually, 3 points (35 in total) are 
enough for exact quadrature; the 3 points CC has a better accuracy than 2 points 
Gauss for degree of 4. From the column of degree 2, the identical conclusion that 
minimum 3 CC points for exact quadrature lead to the highest accuracy has been 
found. 

Table 5. The results of the plane strain problem: L2-norm of the relative error 
w.r.t. the exact solution in the case of different quadrature points for the 
Clenshaw-Curtis and standard element-wise Gauss quadrature. See section 4.2 
for detailed computation setup. Integers before and in bracket refer to the 
number of quadrature points in each parametric direction and in each element, 
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respectively. The bold data relates to the minimum points for exact quadrature, 
corresponding to Table 1. 

 

Rule 
Number of 
quadrature 

points 
Spline degree of 2 

Number of 
quadrature 

points 
Spline degree of 3 

Number of 
quadrature 

points 
Spline degree of 4 

CC 37(3) 7.580838422425806e-05 35(3) 1.856112366410516e-04 33(3) 7.889085258275995e-04 

Gauss 36(2) 3.486429685645471e-04 34(2) 1.721340273127870e-04 32(2) 0.002869708867170 

CC 55(4) 3.213220416249692e-04 52(4) 5.709802889966272e-05 49(4) 3.905908393191598e-04 

Gauss 54(3) 2.159149300119856e-04 51(3) 2.122049676131301e-05 48(3) 2.049928251576902e-06 

CC 73(5) 2.391125067420231e-04 69(5) 1.973816028233426e-05 65(5) 1.473215457485271e-06 

Gauss 72(4) 2.544164579534698e-04 68(4) 1.763946743470982e-05 64(4) 1.508026371023410e-06 

CC 91(6) 2.525513107997929e-04 86(6) 1.802195523770241e-05 81(6) 1.474188307465811e-06 

Gauss 90(5) 2.544061479534598e-04 85(5) 1.802810705630391e-05 80(5) 1.458299097251400e-06 

CC 109(7) 2.544068533940345e-04 103(7) 1.800176949085848e-05 97(7) 1.463032143415990e-06 

Gauss 108(6) 2.544061494631728e-04 102(6) 1.802801880799568e-05 96(6) 1.461314539284407e-06 

CC 127(8) 2.544063254948461e-04 120(8) 1.802145721232466e-05 113(8) 1.461841366010776e-06 

Gauss 126(7) 2.544061494630725e-04 119(7) 1.802801881926631e-05 112(7) 1.461313960405898e-06 

 

 
Fig.9 Convergence curves in solving the plane strain model for the L2-norm of 
the relative error (double log-scale). Full regularity is assumed and minimum 
numbers of quadrature points for exact integration are used.  
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5. Conclusions 

We introduced the Clenshaw-Curtis quadrature into the IGA scheme and 
compared its accuracy and efficiency with that of the optimal standard Gauss rule. 
We found that for exact quadrature and higher spline degrees (m 3), the Gauss has 
advantages in both accuracy and efficiency due to its “factor of 2”; while for under 
integration (points number is less than the minimum required), the Clenshaw-Curtis is 
better. For lower spline degrees (m 3), the exact quadrature can be achieved for the 
Clenshaw-Curtis rule when the functions are under integrated and thus it has an 
improved efficiency. Moreover, the degree of 2 requires the least points to obtain the 
highest accuracy for Clenshaw-Curtis rule. 

Considering the overall operations needed in isogeometric approximation 
(Galerkin method is used in this paper), the Gauss also proves its higher efficency in 
solving problems with high spline degrees. Considering all the indefinite factors due 
to the externals (such as PDE types, the programmer’s experience, etc.), we quantify 
those factors as a coefficient nop and take values from 10 to 1×103. However, all 
these values yield a same result: for lower spline degrees (m≤3), the Clenshaw-
Curtis has a better efficiency than the Gauss rules. 
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