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Abstract

Fluid models were developed as an alternative to the Navier-Stokes equations to
avoid computational complexity especially in case of turbulent flows. Model errors due
to the sensitivity of a model to user-elected parameters become an immediate concern.
Quantifying this error and assessing the reliability of the model given a parameter value
are essential to understanding and using model predictions within an engineering design
process. This paper presents an overview of sensitivity computations of three fluid models
namely Eddy Viscosity Model, Leray-Alpha Model, and Time Relaxation Model to the
variations of different model parameters. The 2D Cavity problem is used to numerically
illustrate the application of sensitivity computations in identifying the range of parameter
values for which the fluid model can be considered a reliable approximation. In addition,
testing on the 2D flow around a cylinder, our numerical results supports the idea that
sensitivity information can incorporate the effects of unresolved scales on flow functionals
that leads to an improved estimation.

1 Introduction

Numerous types of fluid flows are formulated by Navier-Stokes Equations (NSE) based on
the fluid velocity and pressure. When we solve these equations numerically, the flow velocity
consists of different scales and eddies. Numerical simulations of NSE are used for two major
purposes. One is to understand the physical mechanism of the fluid and the other is to
predict the flow characteristics in applications. Both cases require a numerical simulation
producing data of very high accuracy. Since the precision of generated data depends on the
level of selected resolution, for the best possible numerical result the simulation has to take
into account all the space-time scales in the fluid dynamics. As known by Kolmogorov’s law,
the required number of mesh points in space per time step in a three dimensional flow is
related to the Reynolds number, Re, and it is O(Re*). This leads to the fact that fluid flows



with large enough Re are expensive simulations regarding both the required storage and the
running time. Technically Direct Numerical Simulation (DNS) is computationally infeasible
especially in the case of turbulent flows when the range of velocity scales is very large. As an
alternative, regularization models of NSE were developed to allow for computational efficiency
in case of high Re numbers. These models are mostly based on a technique that uses a filtering
procedure on NSE, ultimately solving the equations for only large scale velocities. Removing
some scales from the fluid system not only affects the accuracy of the numerical data but
also their reliability that leads to the major issue of model errors and uncertainty in model
predictions. This raises concerns particularly in applications where important decisions are
made; see [31, 19, 29, 3]. The model reliability becomes an issue especially when the fluid model
is sensitive with respect to the variation of a user-elected parameter. Such parameters appear
to be inevitable in the process of modeling. Filter length scale is a simple example to be named.
To this end, parameter sensitivity analysis is considered a technique to asses the reliability of
the computed flow solution using a fluid model. Sensitivity analysis of a flow system is defined
as the computation of derivative of flow variables with respect to model parameters upon
which the response of the flow system explicitly and/or implicitly depends [5, 16]. A natural
approach to obtain flow sensitivity known as Continuous Sensitivity Equation Method (CSEM)
is to form a continuous equation for the designated sensitivity and then numerically solving it.
CSEM has been used in sensitivity calculations of flows with respect to various flow-related
parameters; see for example [4, 6, 14].

This paper provides a summery first on the use of CSEM in computing sensitivity of three
specific fluid models, namely a subgrid Eddy Viscosity Model (EVM), Leray-Alpha Model
(LAM), and Time Relaxation Model (TRM) with respect to a model parameter, second the
use of sensitivity information in quantifying the model reliability, and last on the application of
the sensitivity computation in improving flow functionals. An extensive study of these topics
are presented by authors in [28, 26, 27].

2 Continuous Sensitivity Equation

In this section we introduce the equations for EVM, LAM, and TRM, and derive the sensitivity
equations with respect to variations of a model parameter for each. In the first two models, the
parameter of consideration is the filter length scale and in the latter, it is the time relaxation
coefficient whose value specifies how strongly the growth of fluctuations are truncated.

The discussed subgrid EVM in this paper was first introduced by Layton [21]. The analysis
and numerical computations of two first-order semi-implicit schemes for EVM and NSE are
persented in [10]. An error analysis of this model using discontinuous polynomial approxi-
mations can be found in [20]. An explicit sensitivity study of this model with application to
quantifying model reliability is given in [28].

In 1934, for the first time Leray introduced a regularization of NSE on the nonlinear term
using a Gaussian filter and proved the existence and uniqueness of strong solutions to his model
24, 25]. In a reexamination of Leray model, the Gaussian filter was replaced by a differential
filter and the theory and computations of this new model, LAM, were studied by different
group of scientists [8, 9, 18, 33, 23, 7|. A computational study on the sensitivity of LAM with
respect to the filter width is presented in [26].

TRM was originally developed from regularized Chapman-Enskog expansion of conserva-



tion laws by Rosenau [30], Schoehet and Tadmor [32]. The given TRM in this paper uses
the van Cittert deconvolution in regularization term proposed by Stolz, Adams and Kleiser[1]
who also extensively tested the model on compressible flows with shocks and turbulent flows
[1, 2, 13]. An analysis of a discrete numerical scheme using a continuous finite element method
can be found in [13].

EVM and TRM regularize the NSE by adding a stabilization term however LAM applies
a regularization to the non-linear term in NSE. EVM is obtained by applying a filtering op-
erator to the NSE that is an L?-orthogonal projection while the other two fluid models use a
differential filter.

In the following equations for EVM, LAM, and TRM, u and p represent velocity and
pressure respectively, f is the body force, and v > 0 is the kinematic viscosity, which is
inversely proportional to Re. In the corresponding sensitivity equations for all models, s and
r represent the velocity and pressure sensitivities with respect to the designated parameter,
and U stands for the average velocity. In all the equations, €2 is considered to be a bounded,
simply connected two- or three-dimensional domain with polygonal boundary 0f2.

Definition 2.1. Let u, @, and p be the flow variables as velocity, average velocity, and pressure,
respectively. The sensitivity of these variables to variations of a designated model parameter n
15 defined to be the flow variable derivative with respect to 7.
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Note that all the models are for incompressible flows with zero boundary condition given
as,

V-u 0, inQx[0,T]
u = 0, ondQx|[0,7T]
u(z,0) = uy(z), in Q.

Assuming that the velocity initial condition is dependent free from the designated model
parameter, the sensitivity of the above equations appears as the following,

Vs = 0, inQx[0,7]
S 0, on 90 x [0,T]
s(z,0) = 0, in Q.

In the following, we introduce the equations for EVM, LAM, and TRM.

2.1 Eddy Viscosity Model

The EVM over the time interval [0, 7] is outlined as following

w+u-Vu—vAu+Vp—aV-(Vu—u)=1f, inQx(0,7]. (2.1)



Here for any v € (L?(Q))%, d = 2 or 3, v = P(Vv), where P : L?(Q) — L is an L*-
orthogonal projection, defined on a chosen subspace of L%(Q) [21], denoted by L. The param-
eter o known as the eddy viscosity coefficient, corresponds to the filter length scale. Therefore
its values vary between 0 and 1 with a = 0 corresponding to the Navier-Stokes equations.

For simplicity, it is assumed that the L?*-orthogonal projection P is differentiable with
respect to parameter a.. Since this operator is a linear operator, using the chain rule it can be
easily shown that the operator P commutes with differentiation with respect to a. Implicitly
differentiating (2.1) with respect to a produces the following sensitivity equation.

st+u-Vs+s-Vu—vAs+Vr—aV-(Vs—5)=V-(Vu—1), in Qx(0,7]. (2.2)

2.2 Leray-Alpha Model
The regularization of the NSE by LAM is formulated as following

w+u-Vu—rvAu+Vp=1£f inQx(0,7] (2.3)
where W is obtained from the differential filter,

—a*Au+u = u, inQ
u = 0, onof. (2.4)

c

Sensitivity equations of LAM with respect to variations of parameter o are given as
s;+w-Vu+u-Vs+Vg—vAs=f, inQx(0,T] (2.5)
In (2.5), w is obtained from the sensitivity equation of the differential filter in (2.4).

2
—’Aw+w = ——(u—1u)+s, inQ
a

w = 0, on dQ (2.6)

2.3 Time Relaxation Model

Similar to EVM, TRM consists of the Navier-Stokes equations with an addition of a stabiliza-
tion term to the momentum equation and is defined by

u;+u-Vu+Vp—vAu+ x(u—Gyu)=f£f, in Qx (0,7 (2.7)

Here, u stands for an averaged function of u by filter width « satisfying the differential filter
given in (2.4). The operator Gy is the continuous van Cittert deconvolution operator, where
N denotes the deconvolution order, and for any v € Hj () is defined as following [22],

N

GyV = Z(I —G)"v.

n=0

For the zero and first order of deconvolution, we have the van Cittert deconvolution as Gyv = v,
and G1v = 2v — ¥, respectively. As discussed in [12], higher order of deconvolution produces
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more accurate approximations but it becomes costly in terms of computational time. All the
studies in this paper are carried out for the fundamental case when the order of deconvolution
is zero, i.e. N = 0. The action of the term y(u — Gyu) is to drive fluctuations lower than
O(«) to zero as t — oo.

Differentiating TRM implicitly with respect to parameter x gives the following equations
for sensitivity,

sstu-Vs+s-Vu+Vr—vAs+ (u—u)+ x(s—w) =0, in Qx[0,7] (2.8)

where w is the solution of the following sensitivity equation obtained by differentiating (2.4)
with respect to parameter Y,

—a*Aw+w = s, inQ,
w = 0, on 09Q. (2.9)

3 The Algorithms and Discretizations

This section is devoted to introducing the basis for deriving a finite element approximation of
uin (2.1), (2.3)-(2.6), and (2.7) as well as s in (2.2), (2.5)-(2.6), and (2.8)-(2.9).

As it can be seen in (2.2), (2.5)-(2.6), and (2.8)-(2.9), velocity u, and its average U appear
in the sensitivity equations. Therefore in computing sensitivities one needs to couple the
sensitivity equations with the corresponding model. Given u, and u the sensitivity equations
are linear equations. Therefore sensitivity can be calculated in a very inexpensive manner once
the numerical method for computing u in each model is constructed. The bulk of the work
for the computation is in the implementation of equations (2.1), (2.3), and (2.7). Once that
is accomplished, the incorporation of the sensitivity equations in (2.2), (2.5), and (2.8) into a
numerical algorithm that computes both u and s is straightforward. As one can easily observe,
all the sensitivity data structures are virtually the same or very similar to one computed from
the fluid model.

Following is the notation for function spaces used in finite element theory,

X"Cc X = HYQ) :={veH(Q): V] =0}
@ cQ = Li®)={ee @) [ a=0}

For the treatment of convective and diffusive terms in the variational formulation of equations,
we use the following bilinear and trilinear forms.

a(u,v) = (Vu,Vv))
b(u,v,w) = (u-Vv,w)
b*(u,v,w) = %(u-VV,W)—%(U‘VW,V).

Next we apply the following classical steps to EVM, LAM, TRM, and their sensitivity equa-
tions.



e Variational Formulation: The equations (2.1)- (2.2), (2.3)-(2.6), and (2.7)-(2.9) are refor-
mulated in a weak form after multiplication by a suitable set of test functions, v € X and
A € @, and performing an integration upon the domain. At this stage, the integration
by parts is used to reduce the order of differentiation for solutions, u and s.

e Discretization in Space: Let h € (0,1], tending to zero, be the spatial mesh size, then
Vh={veX":(\,V-v)=0, for all A\ € Q"} is a finite dimensional subspace of X".
Since (V" Q") fulfills the inf-sup or Babuska-Brezzi stability condition, by selecting the
test functions from these spaces the pressure p, can be eliminated from the system in
its discrete form; see [15]. In the resulting equations, for each ¢t € [0,7], u;, and s, are
solved in V.

e Discretization in Time: We start with partitioning the time interval [0, 7] into N subin-
tervals [t",t"*1] of length At = % Then at each time level ¢, an approximation to u
and s, denoted by uj and s respectively, are obtained.

3.1 Eddy Viscosity Model

Here we specifically explain how the stabilization term in EVM and its sensitivity are estimated
in our calculations. By definition ¥ is an L2-orthogonal projection of Vv onto L, therefore it
can be obtained by the following equation

(Vv —¥%,1)=0, Vv e (L*(Q)%1 € L. (3.1)

In the spatial discretization form of (3.1), a multiscale spatial discretization is applied. Let h
and H denote two different mesh widths (h < H). Then the space L C L*(Q)%¢, d = 2 or
3, is considered as the space of large scales of the velocity that are numerically solved by EVM
since H represents the coarse mesh size.

In the fully discrete form of EVM, a semi-implicit numerical scheme is applied. The con-
vective term is computed using a backward-forward time-stepping method. Thus the equation
reads as: Given uf, we seek u} ! satisfying

(Vuz - ﬁ%,l) = Oa

1
SO = wv) + 0+ ada(al L v) + b uv) — el YY) = (L) (32)

Similarly, given s7, we find s}'*! such that

(VSZ o g?]a l) =0,
1
A (Sh T = siv) + (v ada(sy™ v) 0T T v) + b(up s )
—a(sh, Vv) = (@) — Y, ). (33)
An extensive numerical analysis of EVM in (3.2) and its sensitivity equation in (3.3) with
further numerical tests can be found in [10, 28|.



3.2 Leray-Alpha Model

In the discretization of the time derivative of LAM, the Crank-Nicolson method is used. For
clarity in notation, we let v(t""1/2) = v((#"*!14#")/2) for the continuous variable and v"1/2 =
(v 4+ v") /2 for both, continuous and discrete variables.

Discrete approximation solutions of LAM, given by (2.3)-(2.4), on the time interval (0,77,
is to find uj™! and u} such that

o?(W, V) + (W, v) — (ufl,v) =0,
1 n x (=T n n
S = V) e ) T W ) = () (34)

At
Discrete approximation to the sensitivity equations (2.5) and (2.6) on the time interval (0,77,

is to find s}*! and w? such that

2
042(VWZ7 VU) + (Wﬁu U) - (SZ,V) + a(uz - ﬁZ,V) =0,

1

S s vl v) 0wy ) @ s v = 0. (35)

3.3 Time Relaxation Model

Similar to LAM, the Crank-Nicolson numerical scheme is applied to TRM and its sensitivity
equations. Therefore we obtain the following discretized finite element variational formulations.
Find u}*! and u} satisfying:

QQ(Vﬁhn, VV) + (ﬁhn> V) = (u27 V)a

1

E(uﬁ“ —ul,v) + ua(uZH/Q, V) + b*(uZ“ﬂ, uZH/Q, v),
(T = ) = (2 ), (3.6)

and for the sensitivity solution, find SZH and wj satisfying:

(YW, VV) + (W] v) = (8. V),

1

E(SZJrl —sp,v)+ Va(sZH/Q, v) + b*<SZ+1/2, uzﬂﬂ, v) + b*(uzﬂﬂ, SZ+1/2, v),
F T w2 ) (s —wl T vy = 0, (3.7)

The numerical analysis of (3.6) and (3.7) can be studied in [11, 27].



4 The Interval of Reliability

In this numerical study, we aim to show that the flow sensitivity calculated from sensitivity
equations (3.3), (3.5), or (3.7) can be used to quantify the reliability of the flow solution
computed using (3.2), (3.4), or (3.6) respectively as the user-elected model parameter takes
different values. Let n be the designated model parameter, then one can look at the following
difference quotient for the sensitivity,

g=u ulm) —ul® (4.1)
on Ul

Considering u as an implicit function of parameter 7, u(0) indicates the true solution of Navier-
Stokes equations while u(n) for n > 0 denotes the corresponding flow model approximation.
In all the discussed fluid models in this paper, EVM, LAM, and TRM, the flow solution is
an accurate approximation to the Navier-Stokes solution when |u(n) —u(0)| is small, and
according to (4.1) the accuracy of the model approximation can be estimated by measuring
n|s|l. As noted in Section 3, the sensitivity calculation can be coupled with that of the
original fluid model simulation. The computations for sensitivity equations are easily added as
all of the data structures and filter calculations are very similar to that of the corresponding
fluid model. Thus after computing a model simulation with a given set of parameters, the
sensitivity computation can be done with only a nominal extra cost and a quantitative measure
of reliability can be then calculated.

Note that in cases where the model parameter 1 corresponds to the filter width e.g. EVM
and LAM, then 0 < n < 1, by selecting larger values of 7, a larger set of velocity scales is
removed. Hence, an approximated flow solution corresponding to large values of n may not
be considered to be a reliable approximation to a solution of the Navier-Stokes model because
too much of the small scale structure could be lost. This situation is especially tenuous for
the case of high Reynolds numbers where the velocity contains a large number of small scales.
Therefore, it is crucial to find the optimal balance between choosing a value of 1 that is small
enough to provide a reliable approximation to the Navier-Stokes flow while choosing a value
of n that is large enough so that the computation of the large scale velocity u is feasible. This
leads us to identify a range of 7 values for the interval of reliability for which both 1 and n||s||
are small. With 7 as the parameter corresponding to filter width to determine the upper end
of the interval of reliability, one can use the Taylor expansion taking 1 values so that O(n?) is
of a certain precision,

u(0) = u(y) —ns + O(n?). (4.2)
Next we present two numerical experiments with 2D Cavity problem where we specify reliable

parameter values for LAM and TRM using the sensitivity computations as discussed in this
section.

4.1 2D Cavity Problem

In the following experiments, two fluid models, LAM and TRM, and their sensitivity equations
are numerically solved on the domain defined by ©Q = [0,1] x [0,1]. The upper boundary
condition is chosen to be u = (1622(1 — z)2,0)T and zero everywhere else. The initial data is

8



u(0,z,y) = (3y* — 2y,0)T in Q. Since initial and boundary conditions are independent from
the model parameter 7, they are set to zero for the sensitivity s.

All the computations are carried out with a fixed mesh size h = %, and a uniform time step
At = 0.01 using the Taylor-Hood finite elements. All the programs have been implemented
using the software package FreeFem++; see [17] for details and examples.

Note that in the following computations, the sensitivity of the approximated velocity u with

respect to the variations of the model parameter is tested by computing [[s[|;2( 7.z2) (Where

1/q
IVlleoriey = | O i, V(A% | ) for final time T = 1.

4.1.1 Leray-Alpha Model

The sensitivity computations in this section are performed for different viscosities correspond-
ing to Reynolds numbers of 5000, 10000, and 50000. In addition for each tested Re value,
computations are carried out for variations of filter width «, where the values are chosen based
on the spatial mesh size as a = kh, for k = }L, %, 1,2,4.

The numerical results obtained from these computations is shown in Figure 1. Note that
by selecting large values for the parameter «, e.g. larger than 4h, all the velocity scales that
are less or equal to « are filtered. Using (4.2), the reliable a values are restricted to values
with O(a?) less than 0.01. Considering the fact that a higher sensitivity for smaller values of
parameter « indicates the rise of computational complexity, the numerical results in Figure 1
suggest the following interval of « values as the optimal choice for the tested Reynolds numbers.

18r

—%— 1=0.0002; Re=5000
—>—1=0.00001; Re=10000| |

L6 =0.00002; Re=50000

lsllz,
o o [ [N
o © = N IS

[=}
kS
T

I
N

0.5 1 15 2 25 3 35 4

o

Figure 1: Sensitivity over the time interval of [0, 1]

As indicated in Table 1, the interval of optimal values of « for the best accuracy and
computational complexity is smaller for higher Reynolds number.

Furthermore we present the sensitivity computations using the Forward Finite Difference
(FFD) quotient W, by computing u from (3.4) for two inputs a + A« and . The
goal is to illustrate a comparison of the sensitivity values obtained from FFD vesus that from
sensitivity equation in (3.5) denoted by SEM for simplicity. The computations for sensitivity

norm via both methods, |sseum(t)||;2q) and [[sprp(t)12(q). are performed for different
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Table 1: The interval of optimal values for parameter «

Re Interval of a values
5000 th<a<dh
10000 sh<a<4h
50000 h<a<4h

values with Aa = 0.001 at times t = 0.1, and 1. Figures 2-4 display these computational
results.

Note that for all «, sensitivities computed via FFD is overall larger than the one computed
via SEM in all the tested Reynolds numbers. Sensitivity norm in both methods increases as «
takes on values closer to 0 demonstrating a higher sensitivity of the approximated velocity u
with respect to smaller values of . One also observes that as time has progressed from ¢ = 0.1
to t = 1, sensitivities become larger in scale. In addition, larger Reynolds numbers show larger
sensitivities especially at the final time.

The difference between |[Ssga|[2(q) and [[Sprp| 12(q) for different values of Reynolds num-
ber at t = 1 is presented in Table 2. Sensitivity values for o = 2h, and 4h are apart up to 0.25
in all cases and there is an increase in the difference as o decreases. For high Reynolds number,
i.e. Re = 10000, and 50000, the difference in sensitivity norms is noticeable for o = %h, and
1,

Table 2: Difference between ||sgpa|| and ||[sprp| at ¢ = 1 with h = L

36
a | Re =5000 | Re = 10000 | Re = 50000

4h 0.1586 0.1603 0.1586

2h 0.2458 0.2335 0.1955

h 0.4118 0.4315 0.3685

%h 0.4732 0.6689 0.9310

%h 0.4394 0.7133 1.4550

4.1.2 Time Relaxation Model

In this experiment, tested Reynolds numbers are 1000, 5000, and 10000, for different values of
time relaxation parameter y = 0.01, 0.1, 1, and 10.

As seen in Table 3, x||s||i2(0,1;2(2)) values via both methods take larger values for larger Re
with any selected value of parameter y. For Re = 1000, we suggest x < 1 as the best choice
of accuracy while for larger Re values, we select a smaller interval of x values, that is x < 0.1.

Remark 4.1. In this experiment, we chose x wvalues for which x||s||z@1;02() < 0.01 for
the best accuracy. The smaller x wvalues becomes, the more accurate calculations of approxi-
mated velocity u becomes. However very small values of parameter x results in increasing the
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Sensitivity Norms

Figure 2: Sensitivity norms via SEM and FFD for Re = 5000

Sensitivity Norms

Figure 3: Sensitivity norms via SEM and FFD for Re = 10000
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Table 3: Sensitivity values x [[s[;2(g 1,12

X Re =1000 | Re = 5000 | Re= 10000
0.01 | 0.000106756 | 0.000191289 | 0.0002248
0.1 | 0.00103614 | 0.00184001 | 0.00215508

1 0.00803338 | 0.0131381 0.0149263

10 0.0503827 0.060064 0.0621485
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Figure 4: Sensitivity norms via SEM and FFD for Re = 50000

complexity of flow structures/scales that cannot be supported by the grid/mesh and thus numer-
ical pollution of the computed velocity starts. Therefore, the user must consider the trade-off
between increased accuracy and computational flow complexity when choosing the x value.

The data listed in Tables 4-5 displays the maximum sensitivity values, i.e. ||s||ec(0.1;22(0)),
over the time interval [0, 1] for Re = 1000, and 10000 with different x values as the spatial
mesh size is refined. It is worth mentioning that the maximum sensitivity norm happens at
the final time for any mesh size as well as any selected x values. One observes a decrease in
|[s]|Lc(0,1;02(2)) @s the spatial mesh size is refined for xy < 1. In both tables, ||s||1=(01;22(02))
values for x = 10 stay close through the mesh refinement.

Table 4: Sensitivity computations for Re = 1000 with mesh refinement

X h=1 h= L h= L
0.01 | 0.0586237 | 0.035002 | 0.0157713
0.1 | 0.0541932 | 0.0330563 | 0.0151647

1 | 0.0250335 | 0.0199503 | 0.0110461

10 | 0.00893807 | 0.00966404 | 0.00747537

4.2 Improving Flow Functionals

The standard procedure of computing a flow functional is to first compute the approximated
flow velocity u from the fluid model, then use u as the fluid velocity input into the given flow
functional. Let 1 be the model parameter upon which u depends implicitly with property
that u(n) — u(0) as n — 0. Let J(u(0)) = J(u) be a flow functional and that u(0) is
extremely computationally expensive to obtain directly. The natural approach to compute a
less expensive approximation of J(u) is to calculate J(u(n)) for a non-zero n. Note that J(u(n))

12



Table 5: Sensitivity computations for Re = 10000 with mesh refinement

x| h=L [ h=X | h=21

0.01 | 0.0808053 | 0.0595574 | 0.0363773
0.1 ]0.0747136 | 0.0557121 | 0.0344382
1 0.0347436 | 0.0307948 | 0.02162
10 | 0.0094678 | 0.0106285 | 0.0090533

is a good approximation provided that u(n) is a good approximation and that the unresolved
scales do not influence the functional. In this section, we discuss how the approximation of
J(u) can be improved by integrating sensitivities into the computations of the flow functional.
The idea is simply based on the first order Taylor expansion of the flow functional around a
non-zero 7 value. Expanding J(u) around a non-zero n implies that

J(u) ~ J(u(n)) —nJ'(u(n)) s

Replacing J’ by J, given J' = J for linear functionals, and incorporating the pressure into the
above formula, the approximation (4.3) is rewritten as

(4.3)

J(u,p) = J(u(n),p(n)) —nJ(s,r) = J(u(n) —ns,p(n) —nr) (4.4)
By (4.4), a flow functional can be approximated using sensitivities as the first order correction
term for both the velocity and pressure.

This idea was proposed by Anitescu and Layton for LES models and was tested on the
Smagorinsky model in [3].

Next we provide a numerical support for the idea that uses drag computations in a channel
with a cylinder.

4.3 2D Flow around Cylinder

In this numerical experiment, we consider estimating drag functional using EVM on the stan-
dard test problem of two-dimensional flow in a channel around a cylinder.
The lift and drag functional for Navier-Stokes equations is given by

J(u,p) = / i (oI — 20V°) - ads (4.5)
D
where n denotes the normal vector on the cylinder boundary D directing into the channel,
V*u presents the deformation tensor and is %(Vu + VuT), the unit vector a in the positive
direction of z-axis or negative direction of y-axis yield the drag or lift flow functional.
Figure 5 displays the geometry of the channel with the cylinder. The channel is a rectangle
with height and width as 0.41m and 2.2m respectively. The cylinder, denoted by D, is of

radius 0.05m, and its center is placed at (0.2,0.2).
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Figure 5: Geometry of 2D-flow around cylinder

The numerical approximation to the solution of EVM in (2.1) are computed for 0 < ¢ < 4 with
the inflow conditions given below that are parabolic in space and periodic in time

u(t,0,y) = (021)2y<041 y) sin(7t) (4.6)
uy(t,0,y) = 0.

A free condition is used for the outflow boundary condition, and the remaining boundary and
initial conditions are given by

w(t,z,0) = uy(t, z,0) =
u(t,2,0.41) = uy(t, z,0. 41) 0
wi(t, z,y) lop=uz(t,2,y) op= 0
w (0, z,y) = uy(0,z,y) = 0.

A non-uniform mesh that is finer around the cylinder D is used for the triangulation of
the domain in Figure 5. A given mesh is constructed using two sizes, h; for the sides of the
channel, and hy for the boundary of D. Therefore the mesh is identified using the ordered
pair (hq, he). For the numerical computation of the projection operator in (3.2) and (3.3), the

applied coarse mesh has the same structure and is always chosen as (H; = /hy, Hy = v/ho).

An example of a mesh of size (55, 75) is indicated in Figure 3.

(V4 V474 NNAINANL (74 AAV/ZAN74 NV VNNV N/

INAAZ/NNNZNIAAZIZNNNNNNNIZNAN {4747 N ANA NN NIANNNE IANNIAZRNNIAAAA

Figure 6: Mesh in a channel of size (%, 4—19)

The reference value of drag for this test problem is calculated using the DNS method on
a fine mesh of size (100, 121) for 0 <t < 4. Figure 7 presents a sample of the scaled velocity
vector field for the case when Re = 1000 and o = 0 at ¢t = 0.5. Note that this graph contains
only the portion of the domain surrounding the cylinder where the interesting flow behavior
occurs.

Table 6 lists the reference values of maximum drag, and the error in its estimation using
the approximated large eddy velocity and pressure (u(«), p(a)) and (u(a) — as, p(a) — ar) in
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Figure 7: Velocity vector field for Re = 1000 and o = 0

drag calculation by (4.5) for different values of Re. In this experiment, the approximated flow
variables and their sensitivities are obtained from (3.2) and (3.3) with o = 0.00125 and a mesh
size of (35,4;). As indicated in this table, computed drag values by (u(e) — as,p(a) — ar)
are more accurate for all Re, especially for Re > 100. In addition the computed drag values
using (u(a) — as, p(a) — ar) shows only a small improvement in comparison to the ones com-
puted using (u(a),p(a)) when Re < 10 . However, for Re > 100, the errors incurred by using

(u(a) — as, p(a) — ar) improve decrease by a full order of magnitude.

Table 6: Maximum drag values and the errors

Max. Drag | Error using (u(«),p(a)) | Error using (u(a) — as, p(a) — ar)
Re | J(u,p) |J(u,p) — J(u(a),p(e))] | [J(u,p) — J(u(a) — as, p(a) — ar)|
1 63.7703 0.4037 0.3702
10 41.1958 0.3628 0.3555
100 36.0677 0.389 0.0152
1000 | 35.29035 0.28095 0.02095
10000 | 35.1186 0.4354 0.0154

We examined the norm of the sensitivity quantities for the same range of Re values in
Table 6. The sensitivity norms in Table 7 are negligible for Re < 10 indicating that the ap-
proximated flow solution is accurate for that range of Re values. As also reflected in Table 6,
there is a nominal error in the drag value approximations using (u(«), p(«)) for Re < 10. Ac-
cording to Table 7, for large values of Re, i.e. Re > 100, the flow becomes more sensitive, and
using sensitivity information improves the estimated values of the drag functional significantly.
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Table 7: Sensitivity for different values of v

Re o HSHLOO(O,T;H)
1 7.19057e-06
10 2.88244e-04
100 0.00483735
1000 | 0.0155576
10000 | 0.0201101

9 Concluding Remarks

In this paper, we introduced CSEM for three fluid models, EVM, LAM and TRM. Obtaining
the sensitivity equations, we developed numerical schemes for simulating the fluid models and
their corresponding sensitivity. Once the numerical algorithm for solving each fluid model is
implemented, the sensitivity calculations can be easily added due to the similarity in data
structure. Our numerical experiments illustrate the application of sensitivities in quantifying
model error arising from the choice of various parameter values and identifying those values
that produce a reliable approximated velocity. The numerical results show that a smaller
interval of reliable parameter values is obtained for larger values of Re. In addition, the
sensitivity information is shown to be useful in increasing the accuracy of flow functionals for
a nominal amount of effort in calculating sensitivities. Future studies can include stochastic
finite element discretization that should give more insights into the parameter sensitivity.
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