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Abstract 

A simple lumped mass-damper idealization of impounded reservoir water is suggested in this paper. 
The effect of impounded reservoir water was modeled as virtual lumped mass which simulates the 
hydrodynamic pressure according to Westergaard (1933), but the lumped mass approach does not 
consider the surface wave generation and wave transmission through the boundaries. On the other 
hand, acoustic/ water elements can be employed to model the dam-reservoir interaction which can 
capture the above mentioned effect, but that needs more computational effort and expertise. In this 
paper, equivalent dampers together with the virtual mass are lumped at the upstream face to 
simulate the effect of the impounded reservoir water on the dam. A simplified procedure is 
proposed for calculating the coefficient of dampers using the geometry of the reservoir and 
impedance of the foundation and dam materials. A comparison of response of lumped mass-damper 
model with acoustic water model is also presented.  
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Introduction 

Concrete gravity dams are one of the most important civil engineering structures.  Gravity dam 
stores a large amount of water in the reservoir, which contributes to the destabilizing forces on the 
dam. That is why, the modeling of the impounded reservoir water and its interaction with the dam 
and foundation attracts the attention of many researchers.  
 
Reservoir considerably affects the earthquake response of the gravity dam. There are three ways to 
consider the reservoirs effect in the seismic response analysis of the dam system, for example, 
Westergaard, Lagrangian and Eularian approaches. Westergaard approach considers the virtual 
lumped mass on the wet surface which stimulates the hydrodynamic effect on the upstream face of 
the dam [Westergaard, 1933; Zanger, 1953]. In Lagrangian Eulerian approach [Bayraktar et al., 
2011; Bleich and Sandler, 1970; Calayir et al., 1996; Dunger, 1978; Kalateh and Attarnejad, 2011; 
Ross et al., 2009; Zienkiewicz et al., 1983] displacements are the variable in structure and pressures 
are the variable in the fluid. Special compatibility equation is required to establish the compatibility 
between the reservoir water and the dam-foundation system. In Lagrangian approach displacement 
is the variable for both impounded reservoir water and the dam-foundation system. No 
compatibility equation is required for Lagrangian approach [Hamdan, 1999; Wilson and Khalvati, 
1983]. On the other hand, the performance of Westergaard model (incompressible water) and 
Acoustic water (compressible water) model were compared [Banerjee et al., 2014]. It is observed 
that when the water is considered incompressible, the response is much higher as compared to when 
the water is considered compressible. To improve the results of Westergaard model, a simple 
lumped mass-damper model is proposed. A simplified lumped mass-damper model 
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From the results of dam response considering incompressible reservoir water  and compressible 
water [Banerjee et al., 2014], it is clear that the lumped mass model (Westergaard model 
considering water as incompressible) gives almost 18-20% higher response than considering the 
reservoir  water as compressible allowing for  wave propagation and transmission of waves through 
the radiating boundary. Actually, p-waves propagated through the impounded reservoir water from 
the vibrating dam. As the ratio of energy transmission from one layer to another depends on the 
impedance (Z) of the layers, so the transmitted energy from the reservoir by different boundaries 
also depends on the shape of the reservoir and the impedance of the boundary. That is why, the 
wave propagation phenomena can be considered in the model by multiplying the impedance of 
water with the ratio of energy transmitted from the impounded water with the energy transmitting at 
the dam-reservoir interface. 
 
Dam sections 
Two high dams of different heights are designed using Optidam software [Banerjee et al., 2015] are 
taken as examples. One is on the varying rock strata and another is on the single rock profile. The 
two dams are shown in Figure.1. 
 

 
(a) Dam section-A 

 
(b) Dam section-B 

 
Figure.1 Two dam sections 

 
 
The geometrical properties of the dams are given in Table-1. 
 

Table-1 Geometric properties 
 Height Base width Upstream slope Downstream slope 

Dam-A 235 260 1:0.625 1:0.9 
Dam-B 160 145 1:0.360 1:0.8 

 
The peak ground acceleration at the site is taken as 0.2g. The dam section –A is assumed to be on 
the layered rock strata. But the dam section-B is taken on single layer of rock. The property of 
concrete is given in Table-2.  
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Table-2 Property of Concrete 
 Young Modulus (GPa) Poisson Ratio Density (kg/m3) 
Dam –A 30 0.15 2500 
Dam –B 22 0.15 2400 

 
The geotechnical data taken in the analysis is tabulated in Table.3. 
 
 

Table-3 Geotechnical data 
Dam Section Rock layer Depth 

(m) 
Young 

Modulus 
(GPa) 

Poisson 
Ratio 

Density 
(kg/m3) 

 Alluvium/Boulder 0-5 2 0.30 1800 
Dam –A Fragmented Rock 5-20 7 0.32 2400 

 Rock 20-250 10 0.32 2600 
Dam –B Rock 0-250 17 0.16 2000 

 
There are two Philite strips of 10m width present at 60m and 160m from the upstream face of the 
dam. The two strips are parallel to each other making 220 with the horizontal. The property of 
philite strips is same as the fragmented rock layer for Dam-A. Bulk modulus and density of water is 
taken 2.07 GPa and 1000 kg/m3. Damping values of the different material are tabulated in Table-4. 
 
 

Table.4 Damping Value (%) 
Material Concrete Alluvium/Boulder Intact Rock Fragmented Rock 
Dam-A 5 10 7 10 
Dam-B 5 - 7 - 

Computation of dampers coefficient 

The energy loss from the non-reflecting boundary of the reservoir is not considered in Westergaard 
lumped mass model if the mass distribution is as per Eq(1).  
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To consider the energy loss, lumped dampers are attached at the upstream face of the dam along 
with the virtual mass due to incompressible water. The coefficient of the damper is calculated based 
on the energy transmission from different boundaries (except the dam-reservoir interface). Actually, 
the dampers are used to consider the ratio of energy going out from the radiation boundary and the 
energy impinging on the dam-reservoir interface.  To compute the transmitted energy the following 
procedure as shown in Fig.2 is adopted.  
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Figure.2 process to calculate the damping coefficient 

 
 
The ratio of energy transmitted from one medium to the other is computed by  
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where, Z is the impedance of a medium depends on the p wave velocity (Vp) and the density (ρ) of 
the layer. Here s- wave velocity is not considered because s wave cannot propagate through the 
water. 
 
     pVZ        (3) 

 
The impedance of various layers are tabulated in Table-5 according to Eq (3) for two dams A & B. 
  

Table-5 Impedance of different layers 
 Dam-A Dam-B 

Material Density 
(ρ) 

(kg/m3) 

P wave 
velocity (Vp) 

(m/s) 

Impedance (Z) 
(kg m-2 s-1) 

x106 

Density 
(ρ) 

(kg/m3)

P wave 
velocity (Vp) 

(m/s) 

Impedance (Z) 
(kg m-2 s-1) 

x106 
Concrete 2500 3500.0 8.75 2400 3133 7.52 

Rock 2600 2342.3 6.09 2000 3010 6.02 
Water 1000 1440.0 1.44 1000 1440 1.44 

 
The ratio of total energy transmitted from dam to reservoir r-dR  and the total energy impinges on 

the interface (TRin) should be equal, i.e.  
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     in d rTR TR        (4) 

 
The ratio of average energy transmitted out (TRout) from the different boundaries of the reservoir is 
calculated as: 
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So, the ratio of energy transmitted from different boundaries of the reservoir and the total energy 
impinges on the interface of the dam reservoir system (λ) is calculated by  
 
     .in outTR TR        (6) 

 
The length and ratio of transmitted energy from different boundaries of reservoir are tabulated in 
Table.6. 
 

Table-6. Properties of boundary 
 

 Reservoir Boundaries 
Z1 (kg m-2 s-1) 

x106 
Z2 (kg m-2 s-1) 

x106 
TR 

length 
(m) 

TR. l 

D
am

-A
 Free surface 1.44 0.00 0.00 550 0.0 

Infinite boundary 1.44 1.44 1.00 215 215.0 
Reservoir- Dam 1.44 8.75 0.48 230 110.4 
Reservoir- Foundation 1.44 6.09 0.61 512 312.3 

D
am

-B
 Free surface 1.44 0.00 0.00 320 0.0 

Infinite boundary 1.44 1.44 1.00 140 140.0 
Reservoir- Dam 1.44 7.52 0.53 150 79.5 
Reservoir- Foundation 1.44 6.02 0.61 300 183.0 

 
Where Z1  and Z2  are the impedances before and after a boundary. The co-efficient of virtual lumped 
damper at the upstream face is calculated by 
 
       AcC w       (7) 

 
where, C is the coefficient of a damper, c is the velocity of sound in water, w is the density of 

impounded reservoir water, and A is the tributary area of single damper. The evaluation of C is 
worked out in Table 7. 
 

Table.7 Coefficient of dampers 
Dam TEin TEout λ A (m2) C (N s m-1) x106

Dam-A 0.48 0.42 0.20 75 21.60 
Dam-B 0.53 0.44 0.23 75 24.84 

Different dam models  

The seismic response obtained by the proposed simplified method is compared with that of the 
compressible water model as well as incompressible water model. The three dam-reservoir models 
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are (i) with incompressible reservoir water (Westergaard lumped mass idealization, Fig. 3(a)), (ii) 
with compressible reservoir water (exact numerical model, Fig. 3(b)) and (iii) lumped mass-damper 
model (Fig.3(c)), are shown below.  In the lumped mass-damper model, the virtual mass of the 
water is lumped on the wet surface in a similar fashion as if the reservoir water is treated 
incompressible and the energy used in surface waves and the radiation damping is replaced by 
equivalent dampers lumped on the wet surface. 
 

 
Figure-3 Different dam models 

Response of dams 

Baseline corrected deconvoluted accelerogram is applied at the base of the considered foundation. 
The stresses at the heel of the two dam models are plotted in Fig.4.  
 
In Model-1, the incompressible water is replaced by virtual added mass on the wet surface where no 
radiation damping is considered at the truncated reservoir boundary. In Model-2 surface waves can 
be generated and the energy loss due to the outgoing waves at the truncated reservoir boundary 
attributes for lesser response when water is considered compressible. In Model-3 impounded 
reservoir water is replaced by lumped mass to consider the inertia of the water and lumped dampers 
to stimulate the energy dissipation from the reservoir. The principal stresses at the dam heel and u/s 
slope change for the Model-3 are comparable with Model-2.   
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(a) Dam-A, Model-1 (Max 10.10 MPa) 
 

(b) Dam-B, Model-1 (Max 6.85MPa) 

(b) Dam-A, Model-2 (Max 8.90MPa) 
 

(d)  Dam-B, Model-2 (Max 4.90MPa) 

(e) Dam-A, Model-3 (Max 8.40MPa) (f) Dam-B, Model-3 (Max 4.30MPa) 
 

Figure-4 Principal stresses at heel 
 
 
The maximum stresses at the heel and u/s slope change are reduced by 10-15% due to the fluid 
compressibility and energy dissipation through the boundaries. But the stress at the toe is not so 
much affected due to the compressibility of impounded water. Plot of dam crest acceleration for 
different models are plotted in Fig.5. 
 
 
 

(a) Dam-A, Model-1 (Max acceleration 1.69g) (b) Dam-B, Model-1 (Max acceleration 2.90g) 
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(c) Dam-A, Model-2 (Max acceleration 1.27g) (d) Dam-B, Model-2 (Max acceleration 1.80g) 

(e) Dam-A, Model-3 (Max acceleration 1.29g) (f) Dam-B, Model-3 (Max acceleration 2.10g) 
 

Figure.5 Crest acceleration for different cases 
 

Crest acceleration for Model I is higher but it is almost same for the Model-2 and Model-3. The 
peak acceleration at different locations of the dam-foundation-reservoir system due to compressible 
and incompressible water models are tabulated in Table-8. 
 

Table.8 Maximum acceleration and stresses at different locations of dam 

Dam model Model no. 
Crest Upstream slope Heel 

Acceleration 
(g)

Acceleration 
(g)

Stress 
(MPa)

Acceleration 
(g) 

Stress 
(MPa)

 Model-1 1.69 0.40 4.3 0.30 10.1 
Dam-A Model-2 1.27 0.33 2.3 0.26 8.9 

 Model-3 1.29 0.32 1.8 0.26 8.4 

Dam-B 
Model-1 2.90 0.70 4.0 0.43 6.8 
Model-2 1.75 0.28 2.0 0.24 4.9 
Model-3 1.80 0.30 1.9 0.28 4.3 

 
Acceleration at crest, heel and upstream slope change location are reduced almost 18-24% due to 
the influence of compressibility of water. The virtual lumped mass model (Model I) gives result on 
a conservative side. The stress computed at the heel of the dam in Model-3 is slightly less than the 
stress calculated in Model-2 whereas acceleration and stresses at the u/s face are comparable with 
Model-2. 

Conclusions  

In this paper, an approach for approximation dam-reservoir system using a simplified lumped mass-
damper model is suggested, where the energy loss due to radiation is modelled as lumped dampers 
on the upstream wet surface. Radiation damping due to outgoing waves is stimulated by lumping 
virtual dampers. The computation for the coefficient of lumped dampers depends on the density of 
water, sound wave velocity through water, tributary area of a single damper and the ratio of 
incoming energy and outgoing energy from the reservoir.  The virtual lumped mass-damper 
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approach is applicable for both the layered media and homogeneous rock profile. The stresses and 
accelerations of the compressible water model and virtual lumped mass-damper model are 
comparable. The wave propagation is considered only in perpendicular to the boundary for the 
analysis. The simplified virtual lumped mass-damper model is found to be a good approximation 
for the response of dam reservoir foundation system for preliminary design of dam. 
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