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Abstract

A simple lumped mass-damper idealization of impounded reservoir water is suggested in this paper.
The effect of impounded reservoir water was modeled as virtual lumped mass which simulates the
hydrodynamic pressure according to Westergaard (1933), but the lumped mass approach does not
consider the surface wave generation and wave transmission through the boundaries. On the other
hand, acoustic/ water elements can be employed to model the dam-reservoir interaction which can
capture the above mentioned effect, but that needs more computational effort and expertise. In this
paper, equivalent dampers together with the virtual mass are lumped at the upstream face to
simulate the effect of the impounded reservoir water on the dam. A simplified procedure is
proposed for calculating the coefficient of dampers using the geometry of the reservoir and
impedance of the foundation and dam materials. A comparison of response of lumped mass-damper
model with acoustic water model is also presented.
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Introduction

Concrete gravity dams are one of the most important civil engineering structures. Gravity dam
stores a large amount of water in the reservoir, which contributes to the destabilizing forces on the
dam. That is why, the modeling of the impounded reservoir water and its interaction with the dam
and foundation attracts the attention of many researchers.

Reservoir considerably affects the earthquake response of the gravity dam. There are three ways to
consider the reservoirs effect in the seismic response analysis of the dam system, for example,
Westergaard, Lagrangian and Eularian approaches. Westergaard approach considers the virtual
lumped mass on the wet surface which stimulates the hydrodynamic effect on the upstream face of
the dam [Westergaard, 1933; Zanger, 1953]. In Lagrangian Eulerian approach [Bayraktar et al.,
2011; Bleich and Sandler, 1970; Calayir et al., 1996; Dunger, 1978; Kalateh and Attarnejad, 2011;
Ross et al., 2009; Zienkiewicz et al., 1983] displacements are the variable in structure and pressures
are the variable in the fluid. Special compatibility equation is required to establish the compatibility
between the reservoir water and the dam-foundation system. In Lagrangian approach displacement
is the variable for both impounded reservoir water and the dam-foundation system. No
compatibility equation is required for Lagrangian approach [Hamdan, 1999; Wilson and Khalvati,
1983]. On the other hand, the performance of Westergaard model (incompressible water) and
Acoustic water (compressible water) model were compared [Banerjee et al., 2014]. It is observed
that when the water is considered incompressible, the response is much higher as compared to when
the water is considered compressible. To improve the results of Westergaard model, a simple
lumped mass-damper model is proposed. A simplified lumped mass-damper model



From the results of dam response considering incompressible reservoir water and compressible
water [Banerjee et al., 2014], it is clear that the lumped mass model (Westergaard model
considering water as incompressible) gives almost 18-20% higher response than considering the
reservoir water as compressible allowing for wave propagation and transmission of waves through
the radiating boundary. Actually, p-waves propagated through the impounded reservoir water from
the vibrating dam. As the ratio of energy transmission from one layer to another depends on the
impedance (Z) of the layers, so the transmitted energy from the reservoir by different boundaries
also depends on the shape of the reservoir and the impedance of the boundary. That is why, the
wave propagation phenomena can be considered in the model by multiplying the impedance of
water with the ratio of energy transmitted from the impounded water with the energy transmitting at
the dam-reservoir interface.

Dam sections

Two high dams of different heights are designed using Optidam software [Banerjee ef al., 2015] are
taken as examples. One is on the varying rock strata and another is on the single rock profile. The
two dams are shown in Figure.1.
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Figure.1 Two dam sections
The geometrical properties of the dams are given in Table-1.
Table-1 Geometric properties
Height Base width Upstream slope Downstream slope
Dam-A 235 260 1:0.625 1:0.9
Dam-B 160 145 1:0.360 1:0.8

The peak ground acceleration at the site is taken as 0.2g. The dam section —A is assumed to be on
the layered rock strata. But the dam section-B is taken on single layer of rock. The property of
concrete is given in Table-2.



Table-2 Property of Concrete

Young Modulus (GPa) | Poisson Ratio | Density (kg/m’)
Dam -A 30 0.15 2500
Dam —-B 22 0.15 2400

The geotechnical data taken in the analysis is tabulated in Table.3.

Table-3 Geotechnical data

Dam Section Rock layer Depth Young Poisson Density
(m) Modulus Ratio (kg/ m’)
(GPa)
Alluvium/Boulder 0-5 2 0.30 1800
Dam -A Fragmented Rock 5-20 7 0.32 2400
Rock 20-250 10 0.32 2600
Dam —-B Rock 0-250 17 0.16 2000

There are two Philite strips of 10m width present at 60m and 160m from the upstream face of the
dam. The two strips are parallel to each other making 22° with the horizontal. The property of
philite strips is same as the fragmented rock layer for Dam-A. Bulk modulus and density of water is
taken 2.07 GPa and 1000 kg/m’. Damping values of the different material are tabulated in Table-4.

Table.4 Damping Value (%)

Material | Concrete | Alluvium/Boulder | Intact Rock | Fragmented Rock
Dam-A 5 10 7 10
Dam-B 5 - 7 -

Computation of dampers coefficient

The energy loss from the non-reflecting boundary of the reservoir is not considered in Westergaard
lumped mass model if the mass distribution is as per Eq(1).
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To consider the energy loss, lumped dampers are attached at the upstream face of the dam along
with the virtual mass due to incompressible water. The coefficient of the damper is calculated based
on the energy transmission from different boundaries (except the dam-reservoir interface). Actually,
the dampers are used to consider the ratio of energy going out from the radiation boundary and the
energy impinging on the dam-reservoir interface. To compute the transmitted energy the following
procedure as shown in Fig.2 is adopted.
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Figure.2 process to calculate the damping coefficient

The ratio of energy transmitted from one medium to the other is computed by
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where, Z is the impedance of a medium depends on the p wave velocity (¥),) and the density (p) of

the layer. Here s- wave velocity is not considered because s wave cannot propagate through the
water.

Z=pV, 3)
The impedance of various layers are tabulated in Table-5 according to Eq (3) for two dams A & B.

Table-5 Impedance of different layers

Dam-A Dam-B
Material | Density P wave Impedance (Z) | Density P wave Impedance (Z)
(p) | velocity (V,) | (kgm?s™) (p) | velocity (V,) | (kgm™s™)
(kg/m*) (m/s) x10° (kg/m*) (m/s) x10°
Concrete | 2500 3500.0 8.75 2400 3133 7.52
Rock 2600 23423 6.09 2000 3010 6.02
Water 1000 1440.0 1.44 1000 1440 1.44

The ratio of total energy transmitted from dam to reservoir R and the total energy impinges on

the interface (7R;,) should be equal, i.e.
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The ratio of average energy transmitted out (7R,,,) from the different boundaries of the reservoir is
calculated as:
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So, the ratio of energy transmitted from different boundaries of the reservoir and the total energy
impinges on the interface of the dam reservoir system (4) is calculated by

A=TR,.TR,, (6)

The length and ratio of transmitted energy from different boundaries of reservoir are tabulated in
Table.6.

Table-6. Properties of boundary

S S

Reservoir Boundaries Zi (kg m6 ) | 22 (ke m6 s TR length TR. |

x10 x10 (m)

Free surface 1.44 0.00 0.00 550 0.0
< | Infinite boundary 1.44 1.44 1.00 215 215.0
% Reservoir- Dam 1.44 8.75 0.48 230 110.4
O | Reservoir- Foundation 1.44 6.09 0.61 512 312.3

Free surface 1.44 0.00 0.00 320 0.0
Q| Infinite boundary 1.44 1.44 1.00 140 140.0
% Reservoir- Dam 1.44 7.52 0.53 150 79.5
O | Reservoir- Foundation 1.44 6.02 0.61 300 183.0

Where Z; and Z, are the impedances before and after a boundary. The co-efficient of virtual lumped
damper at the upstream face is calculated by

C=Acp, A (7)

where, C is the coefficient of a damper, c is the velocity of sound in water, p,, is the density of

impounded reservoir water, and A is the tributary area of single damper. The evaluation of C is
worked out in Table 7.

Table.7 Coefficient of dampers

Dam TEi, TEou A A (m°) C(Nsm')x10°
Dam-A 0.48 0.42 0.20 75 21.60
Dam-B 0.53 0.44 0.23 75 24.84

Different dam models

The seismic response obtained by the proposed simplified method is compared with that of the
compressible water model as well as incompressible water model. The three dam-reservoir models
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are (i) with incompressible reservoir water (Westergaard lumped mass idealization, Fig. 3(a)), (ii)
with compressible reservoir water (exact numerical model, Fig. 3(b)) and (iii) lumped mass-damper
model (Fig.3(c)), are shown below. In the lumped mass-damper model, the virtual mass of the
water is lumped on the wet surface in a similar fashion as if the reservoir water is treated
incompressible and the energy used in surface waves and the radiation damping is replaced by
equivalent dampers lumped on the wet surface.
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Figure-3 Different dam models
Response of dams

Baseline corrected deconvoluted accelerogram is applied at the base of the considered foundation.
The stresses at the heel of the two dam models are plotted in Fig.4.

In Model-1, the incompressible water is replaced by virtual added mass on the wet surface where no
radiation damping is considered at the truncated reservoir boundary. In Model-2 surface waves can
be generated and the energy loss due to the outgoing waves at the truncated reservoir boundary
attributes for lesser response when water is considered compressible. In Model-3 impounded
reservoir water is replaced by lumped mass to consider the inertia of the water and lumped dampers
to stimulate the energy dissipation from the reservoir. The principal stresses at the dam heel and u/s
slope change for the Model-3 are comparable with Model-2.
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Figure-4 Principal stresses at heel

The maximum stresses at the heel and u/s slope change are reduced by 10-15% due to the fluid
compressibility and energy dissipation through the boundaries. But the stress at the toe is not so
much affected due to the compressibility of impounded water. Plot of dam crest acceleration for
different models are plotted in Fig.5.
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(a) Dam-A, Model-1 (Max acceleration 1.69g) (b) Dam-B, Model-1 (Max acceleration 2.90g)
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Figure.5 Crest acceleration for different cases

Crest acceleration for Model I is higher but it is almost same for the Model-2 and Model-3. The

peak acceleration at different locations of the dam-foundation-reservoir system due to compressible

and incompressible water models are tabulated in Table-8.

Table.8 Maximum acceleration and stresses at different locations of dam

Crest Upstream slope Heel
Dam model Model no. | Acceleration | Acceleration Stress Acceleration Stress
(8) (g) (MPa) (g) (MPa)
Model-1 1.69 0.40 43 0.30 10.1
Dam-A Model-2 1.27 0.33 2.3 0.26 8.9
Model-3 1.29 0.32 1.8 0.26 8.4
Model-1 2.90 0.70 4.0 0.43 6.8
Dam-B Model-2 1.75 0.28 2.0 0.24 4.9
Model-3 1.80 0.30 1.9 0.28 4.3

Acceleration at crest, heel and upstream slope change location are reduced almost 18-24% due to
the influence of compressibility of water. The virtual lumped mass model (Model I) gives result on
a conservative side. The stress computed at the heel of the dam in Model-3 is slightly less than the
stress calculated in Model-2 whereas acceleration and stresses at the u/s face are comparable with
Model-2.

Conclusions

In this paper, an approach for approximation dam-reservoir system using a simplified lumped mass-
damper model is suggested, where the energy loss due to radiation is modelled as lumped dampers
on the upstream wet surface. Radiation damping due to outgoing waves is stimulated by lumping
virtual dampers. The computation for the coefficient of lumped dampers depends on the density of
water, sound wave velocity through water, tributary area of a single damper and the ratio of
incoming energy and outgoing energy from the reservoir. The virtual lumped mass-damper
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approach is applicable for both the layered media and homogeneous rock profile. The stresses and
accelerations of the compressible water model and virtual lumped mass-damper model are
comparable. The wave propagation is considered only in perpendicular to the boundary for the
analysis. The simplified virtual lumped mass-damper model is found to be a good approximation
for the response of dam reservoir foundation system for preliminary design of dam.
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