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Abstract

We present an implicit coupling algorithm that is suitable for strongly coupled
physical problems that were discretized by heterogeneous numerical schemes,
namely finite volume and finite element methods. The primary characteristic
of the proposed scheme is an implicit treatment of the heterogeneous schemes
through a single matrix approach. The finite element and finite volume parts of
the discretized domain exchange information through a coupling boundary and
the resulting discretization coefficients are stored in a block matrix. The structure
of the matrix is such that the coupling coefficients are stored in the off-diagonal
blocks of the matrix, while finite element and finite volume subdomains are stored
in the diagonal blocks of the matrix. A suite of efficient linear solvers based on the
Krylov subspace methods were developed for the solution of the resulting coupling
problem. Several demonstration cases that illustrate the coupling algorithm are
presented.

Keywords: Finite Element Method (FEM); Finite Volume Method(FVM); Cou-
pling algorithm, Block matrix

Introduction

Multiphysics problems are prevalent in todays engineering practice. It is hard to
imagine a device that does not need structural, thermal and fluid flow analysis in
order to design it for the safe operation and the peak efficiency. Today’s engineer-
ing practice rarely undertakes a numerically integrated approach to analyzing and
simulating the proposed designs. The current design practice takes an iterative
approach to simulations and analysis through a series of the stages that involve
the use of computational fluid dynamics, thermal and stress analysis. Numerical
difficulties arise in a staged approach due to increased stiffness of the problem and
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the loss of coupling among equations. A typical approach to simulating coupled
phenomena involving solids and fluids is done through an exchange of boundary
conditions through the coupling boundaries. This process is inherently iterative.
The coupling between fields in fluids and solids can be recovered by an itera-
tive procedure in which the fields on the coupling boundaries acting as boundary
conditions for different analyses, are updated in this iterative process.

This simulation of coupled problems is further complicated by the use of differ-
ent simulation practices that involve different discretization methods used for the
particular stage of the analysis. In fluid flow, finite volume method is commonly
used for the discretization of governing equations. In analyses that involve solid
materials finite element is the method of choice for producing the discrete systems
of equations. The choice of the discretization method that is being used for a given
problem is often dictated by the efficiency and accuracy requirements. The Finite
Volume Method (FVM) is often used in computational fluid dynamics (CFD) as
a method of choice due to its simplicity and ability to reproduce the conservation
laws. The simplicity of the finite volume discretization stems from the fact that
the low degree polynomials (C°) are used for the interpolation within finite vol-
umes. The numerical efficiency of the finite volume schemes stems from the fact
that only one integration point per face of the finite volume cell is required to
evaluate the numeric flux. This approach yields a low storage numerical scheme
that produces very sparse matrices. Furthermore, C? interpolation functions used
for the representation of the variables within a finite volume cell allows the usage
of arbitrary shapes of finite volumes cells, thus simplifying the mesh generation
for the domains with the complex geometric shapes. In this work we are con-
cerned with the cell-centered finite volume method that stores all variables in cell
centers. Matrix coefficients arising in implicit discretization of the finite volume
problems are obtained by evaluating fluxes on the cell face centers. This approach
is chosen intentionally given the fact that cell-centered finite volume discretiza-
tion is the dominant approach in the CFD community. Data structures required
for the efficient representation of the finite element connectivity on unstructured
meshes of arbitrary shapes is of the so-called face-to-cell type. In practical terms,
face-to-cell connectivity allows very fast access to the cell data required for the
flux evaluation in the face center.

On the other hand, finite element method is a preferred approach for the
problem solution in structural analysis and in computational mechanics in gen-
eral. Finite element approach to discretization to problems in mechanics offers a
strong mathematical foundations that allow for error and convergence estimates
even for challenging computational problems. Usage of higher order interpolation
polynomials enables a higher order of accuracy when compared to finite volumes
for the nominally same size of the computational mesh. The finite element method
is particularly well suited for the elliptic problems arising in linear elasticity and
structural mechanics. Since the finite element data is stored in the nodes of the
finite elements, the data structure required for the representation of the finite el-
ement discretization on unstructured meshes consists of node-to-cell connectivity
information. Matrix coefficients in the finite element discretization are obtained
as the collection of the contributions from all finite elements sharing the particular
node.

In recent years researchers have started addressing the problem of coupled sim-
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ulations. Geiger at al. [4] proposed an algorithm for coupling of nodal based finite
volume and finite elements using overlapping groups of finite elements and finite
volumes. Galerikin finite elements were used to provide the second order of accu-
racy interpolation for flux evaluations on finite volume grid. This approach may be
classified as a control volume finite element method using dual grids [I]. Lazarov
at al. [5] proposed the method for coupling finite volume-finite elements by using
the node based finite volume scheme on dual grids. Sardella [3] proposed a mixed
finite element/volume method that used finite volume approach to discretizing
convective terms while finite element approach was used for the discretization of
the diffusion terms in convection diffusion problems. The mixed algorithm was
applied to the singularly perturbed problems in fluid mechanics providing the nu-
merical stability to the computations. Gadeschi at al. [2] proposed the coupling
method based on hierarchical Cartesian grids for heat transfer between solids and
fluids. Vierndeels [6] and Sicklinger at al. [7] recently proposed frameworks for
a general coupling between codes. In both works the idea is based on using the
Jacobians of the governing equations to create the coupling conditions for souped
simulations. Vierendeels and Sicklinger algorithms are examples of the explicit
coupling of black-box solvers within the framework of iterative coupling approach.

It is observed that in the previous attempts to couple finite volume and finite
element methods, the approach was to modify one or the other method across the
shared interface in order to make the approach more suitable for the discretization.
Contrary to that, in this work we maintain the characteristics of each method used
for the discretization of the respective part of the domain. Therefore, we propose
an approach to coupling that maintains the discretization practices of both finite
volume and finite element methods.

A novel implicit coupling algorithm for the mixed discretizations involving fi-
nite elements and finite volumes that exchange information along one or more
boundaries called coupling interfaces is proposed. The resulting discretization co-
efficients are stored in a block matrix in which coupling interface coefficients are
stored in off-diagonal blocks while the finite element and finite volume discrtiza-
tions are stored in diagonal blocks. We propose an algorithm for coupled interfaces
that uses native information from each discretization scheme to produce the nec-
essary data for coupling of finite element and finite volume discretizations. The
method is conservative and there is no loss of mass, energy or momentum across
the interface even though substantially different discretization schemes are used
on each side of the interface. Linear solver suite capable of handling block matri-
ces arising in coupled finite element-finite volume discretizations is also developed.
Two computational examples are presented as an illustration of the coupled algo-
rithm. The first example demonstrates the coupling of finite elements and finite
volumes in the case of the energy equation for the solid with an interface sep-
arating finite volume from finite element discretizations. The second example
is coupled fluid-solid heat transfer problem in which energy equation is coupled
through the solid-to-fluid interface.

Governing equations and boundary conditions

Consider the energy equation in the solid shown in Figure (/1)
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Constant heat conduction coefficient independent of spatial location and temper-
ature was assumed. The energy equation is closed by adding the corresponding
boundary conditions

B(T):b on FIFFEUFF\/. (2)

In addition to the solid energy equation, the coupled system might have a fluid
domain. In that case, the energy equation in the fluid is given by the convection-
diffusion equation

supplemented by the boundary conditions
C(T):C on F:FFEUFFV (4)

Equations and represent the steady-state equations of energy transport in
solids and fluids. The boundary conditions considered here are of Neumann and
Dirichlet type. The computational domain is general is divided in two parts by an
internal surface called coupled boundary separating regions where finite volume
and finite element discretizations are applied. However, the coupling boundary
might be a physical boundary separating fluid from a solid thus representing a
physical surface coinciding with the coupling interface.

An internal consistency condition can be added to the governing equations
through that enforces the conservation of energy across the coupling interface
as illustrated in Figure In simple terms, the energy flux across the coupling
interface is preserved and we can write the balance equation

[ fomar— [ ftnar =o. (5)
r- r+
In the case of heat conduction, the consistency condition becomes
/ (k& T);nidl — | (k&T)Fnidl = 0. (6)
r- T+

Internal consistency condition is used to produce the consistent interpolations
between finite elements and finite volumes for both cases when the interface is an
arbitrary surface separating dicretization zones and as well as when the interface
coincides with both the physical and discretization boundaries. Consistent inter-
polation is defined here in terms of the energy conservation as well as in terms of
bridging the different requirements for the smoothness of the interpolation func-
tions. In other words, the interface consistency condition must allow conservation
of energy even when on one side the data variation within a finite volume cell is
represented by functions belonging to C° space and o the other side the data vari-
ation within a finite volume is represented by C! space. We limit our discussion
here to interfaces that have C° to C' (and vice versa) transitions. Higher order
transitions are the subject of ongoing research.
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Figure 1: Coupling interface separating either physical domains or arbitrary in-
ternal domains discretezed with different numerical schemes

Method of solution

We use two different approaches to discretizing equations and , finite vol-
ume and finite element methods namely. We consider the computational domain
consisting of two parts as depicted in Figure (1). The part denoted by Qpg to-
gether with the boundary I'pg constitute the domain of the discretization by finite
elements. Similarly, the part denoted by {2y together with the boundary I'py is
discretized by the cell-centered finite volume method. Interface I'; between two
discretization domains is an internal surface that is used to transfer the informa-
tion between two discretization methods.

Linear 4-node quadratic finite elements with C! continuity are used for the
finite element basis while the cell centered finite volume discretization with the
C? interpolation basis is used for the finite volume part of the domain. Finite
element and finite volume discretizations are both nominally of the second order
of accuracy. In the case of finite elements, the second order of accuracy is achieved
by using the shape functions with C!' continuity. In the case of the finite volume
discretization, the second order of accuracy is achieved by evaluating the weak
form of the energy equation at the geometric center of the finite volume cell.

Weak form of the energy equation is used for both finite volume and finite
element discretizations. The weak form of the energy equation for the solid is
obtained by multiplying both sides of Eq. by a test function £ and integrating
over the whole domain €2

/Q KOPTEAS) = /ﬂ FEdQ. (7)

The cell centered finite volume method is obtained when the test function £ is
chosen to be constant over the finite volume cell and equal to unity i.e., & € C°.
In that case Eq in the domain Qpy is replaced by the conservation law of
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energy in the solid
Tpy Qpy
Vector of local surface normal is denoted by n; and we used Gauss-Ostrogradsky’s
theorem to obtain the weak form of the conservation law of energy in the solid.
The finite element method for the case of the energy transport in the solid is
obtained through integration by parts Eq.

/ kO TOEd QL — / FEdUpp + / kO TdT . (9)
QrE QrEp I're

In this work we use test functions and shape functions that are linear i.e., £ € C*.

Standard finite volume and finite element discretizations are obtained when
integrals in equations and @D are replaced by the numerical integration per-
formed in face and cell centers for finite volume and nodes for finite element meth-
ods. In addition, partial differentials in Eq. are replaced by finite differences
for a given neighboring finite volume cells, leading to the following expression for
the surface integral

kO, Tndl gy ~ kMApFV +G. (10)
Cry d
Symbol d is used to represent the distance between two cell centers while G is
the non-orthogonal contribution Ar,,, is the surface area of the interface between
finite element and finite volume cell. In a general case the direction between two
cell centers does not coincide with any of the cartesian directions and the non-
orthogonal contribution of the partial derivative, denoted by g¢;, has to be added
to the expression in Eq. . However, here we assume that this contribution was
lumped into the right-hand-side of Eq. without any loss of generality. Right
hand side of Eq. is evaluated in the cell center of the finite volume cell.
The finite element approximation of Eq. @ is obtained by assuming that the
test and shape functions belong to the same space thus yielding the following
expression for the left-hand-side of Eq. (9)

J

Symbol S represents a shape function that is in this case chosen to be linear La-
grange polynomial and we have used the linear representation of the temperature
field over the finite element T' = >, 5;T,,;. Right-hand-side of Eq. @D is evaluated
by computing the contributions of each volumetric integral to the nodes of the
given finite element.

Standard discretization practices are easily applied throughout respective dis-
cretization domains. However, in order to complete the discretization of the whole
domain 2 = Qpp U Qpy the question of the discretization along the interface I';
must be addressed.

Figure depicts a dEtail the interface I'; where we can see finite element
being a neighbor to a finite volume cell connected but the common face I';. We
use the consistency condition in Eq. to complete the discretization for finite
element-finite volume couple. The consistency condition states that the in order
to conserve the energy in the domain then the energy flux leaving one domain

6
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Figure 2: Finite element-finite volume pair sharing a common face that is a part
of the I'; interface. Black circle represents the finite volume cell center while open
circles represent the nodes of finite element.

along the interface I'; must be equal to the energy entering the other domain
across the same interface I';. Therefore, in order to complete the discretization
along the I'; interface we must find the expression for the flux across across every
face connecting finite elements and finite volumes I'¢.

This expression is obtained by approximating the flux across the interface by
the finite difference between finite volume and finite element centroid values

Tc - Zf@(Tnz)CAF‘; + G (12)

k@ZTnZdl"? ~ ]Cf
r

Expression Y(S5;T,;). is the finite element interpolation of the temperature field
in the centroid of the finite element, T, is the value of the temperature field at the
finite volume centroid, Are is the surface area between finite volume and finite
element and G is the non-orthogonal contribution due to misalignment of the
face normal and the direction defined by the cell distance. Since Eq. requires
that the fluxes on both sides of the interface I'; are equal, Eq. is used to
complete the discretization on along the interface. It should be noted that the
same expression Eq. is used to compute the coupling matrix entries for both
finite element and finite volume discretizations. The resulting matrix structure is
shown in Figure (3.

The off-diagonal entries in the block matrix Arc(l’ and AFC(I) are obtained by

computing the contributions to the finite element and ﬁnitecvolume system of
equations using Eq. . The consistency condition given by Eq. produces
the contributions to finite element and finite volume side of the interface so that
the finite volume side (I'*) has the following entries:

T,
Apy = kfdArﬁ} , (13)
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Figure 3: Matrix structure for the coupled finite element-finite volume discretiza-
tion.

(Z SiTni)c

e Are
The symbol k; is the surface heat conduction coefficient evaluated by using the
harmonic averaging procedure. It should be noted that the expression in Eq.
is the contribution to the the block matrix Apy at the interface while Eq. ((14])
is the contribution to the coupling block matrix Ap.. The non-orthogonal con-

tribution G is added to the right hand side of the ﬁmte volume block. Similarly,
finite element discretization produces the following contributions:

A cl =— _kf

FCO

(14)

k Ssz, c "
App = [—;(Zd)AF?] ) (15)
kT, 1"

The finite element discretization of the element produces the contribution to the
diagonal block matrix App as well as to the off-diagonal coupling block A[‘01

Since the consistency condition specifies the flux for the finite element face of
the interface I'7, the nodes that reside on the interface receive the half of the
flux due to linear interpolation as indicated in Eq. and (16). The non-
orthogonal correction is is similarly interpolated and added as the contribution to
the coefficients AFgé‘
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Eq. implicitly uses the fact that the flux across the face I'¢ is evaluated
using the pointwise values of the temperature field instead of cell averages. This
transition between pointwise and cell averages is possible due to the fact that the
pointwise values coincide with the cell averages if the function is evaluate at the cell
centroid for the finite volumes of second order of accuracy. Therefore, even though
the test functions for finite element and finite volume methods belong to different
spaces of continuous functions, the transition from C' to C° functions is enabled
throughout the use of pointwise values in finite volume method thus matching the
desired interpolation continuity requirements. Clearly, the higher order transition,
for example C? to CY will require the reconstruction of the pointwise values in the
finite volume domain that will recover the desired continuity requirements. This
is the subject of the ongoing research work.

Once the off-diagonal coupling coefficient have been computed, the diagonal
entries in the block matrix Apy and Apg are obtained by applying the standard
discretization practices applicable to finite volume and finite element discretiza-
tion schemes. The resulting system represents a fully coupled system that is solved
by the linear algebra suite. Each block in the coupled matrix A is represented
through a sparse matrix structure utilizing the compressed-row format to save the
memory. However, it should be noted that the implementation of the linear alge-
bra library allows for storage of dense blocks as well. The linear algebra library
implements Krylov subspace algorithms including conjugate gradient (CG), bi-
conjugate gradient stabilized (BCGSTB), transpose free qausi-minimum residual
(TFQMR). In addition, algebraic multigrid solver (AMG) based on aggregation
of neighbors has been implemented to operate on the coupled block matrix. Con-
sistent restriction and prolongation operators have been implemented so that the
block matrix can be consistently defined on the progression of coarse levels.

Results and discussions

In this section we present the results for the two cases of the coupled systems. The
first case is represented by the energy transport in the solid with the boundary
conditions as depicted in Fig. (4). The upper half of the domain was discretizaed
by the cell-centered finite volume method while the lower half of the domain was
discretizaed by the linear quadratic finite elements. Since there is no jump in mate-
rial properties and given the adiabatic conditions on the sides, the solution to this
problem is a linear variation of the temperature between 300 K and 400 K in the
vertical direction. The mesh is fully orthogonal and there was no non-orthogonal
contribution in the discretizaed system of equations. The computed temperature
profiles at two locations are shown in Fig. and (@ The agreement between
analytical and the b=numerical solution if excellent as the analytical behavior of
the temperature is recovered. It should be observed that the temperature was
plotted at the nodes of the finite element plot in Fig. . For the finite volume
portion of the domain the temperature was plotted in the cell centers as shown in
@. This explains the offset of the plot in the z-direction.

The second case considered in this work is the coupled energy transport be-
tween fluid and solid domains as depicted in Fig. . Boundary conditions are
given in Fig. . The fluid portion of the domain was discretized with the cell-
centered finite volume schemes while the solid part was discretized using the linear
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quadratic finite elements. Since the problem involves the fluid flow, the boundary
layer formed at the surface of the solid wall is largely responsible for the heat
transfer to and from the fluid. For the given inlet velocity and length of the do-
main, the Reynolds number based on the length is very low Re = 400, well below
the transitional Reynolds number for the flat plate (500,000). Therefore, the flow
over the surface of the solid is laminar. The computed temperature profiles and
the comparison to the theoretical one is given in Fig. (8) and ({9).

Conclusion

We introduced a novel algorithm for finite element-finite volume coupling that is
based on the native cell-centered finite volume and linear quadratic finite element
discretization methods in their respective parts of the computational domain. The
coupling coefficients required for the implicit representation of the coupled matrix
were defined. The consistency condition that is based on the flux conservation
between finite element and finite volume discretizaitons was defined and used to
define the coupling coefficients. Block matrix linear solver based on BCGSTAB
was used to solve the coupled solver in one matrix thus producing the implicitly
coupled solution. Two examples of the application of the newly defined coupled
method were provided. The first example was the energy transport in the solid
body discretized in part by finite volume and the other part by finite element
technique. The solution was compared to the analytical solution and the excel-
lent agreement was achieved. The second case that was considered consisted of
the energy transport between fluid and solid domains. The fluid domain was dis-
cretized but the cell-centered finite volume while the solid part was discretized
by the linear quadratic finite element scheme. The agreement between analytical
and numerical solution, in all cases, is very good.
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Figure 4: Computational domain for energy transport in a solid.
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Figure 5: Temperature profile in the vertical direction for the case of the energy
transport in the solid for the finite element portion of the domain at the loca-
tion x = 0.5m. Solid line represents the numerical whereas dots represent the
analytical solution.
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Figure 6: Temperature profile in the vertical direction for the case of the energy
transport in the solid for the finite volume portion of the domain at the location
x = 0.625m. Solid line represents the numerical whereas dots represent the
analytical solution.
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Figure 7: Computational domain for the fluid-solid energy transport.
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Figure 8: Temperature profile in the vertical direction for the case of the energy
transport in the fluid-solid system for the finite element portion of the domain at

the location x = 0.5m. Solid line represents the numerical whereas dots represent
the analytical solution.
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Figure 9: Temperature profile in the vertical direction for the case of the energy
transport in the solid for the finite volume portion of the domain at the location
x = 0.625m. Solid line represents the numerical whereas dots represent the
analytical solution.
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