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Abstract 
The 3D ES-FEM using tetrahedral mesh proposed recently has showed many great features in 

mechanics, and mid-frequency acoustics analysis, such as kh≈1. When it comes to higher frequencies, the 
3D ES-FEM also encounters the dispersion error, which is related to “slightly overly-soft stiffness” induced 
by the excessive edge-based smoothing operations compared to the continua system. In this paper, an 
improved 3D edge-based smoothed finite element method (IES-FEM) is proposed by introducing a 
parameter controlling the ratio of “slightly over-softness” of the ES-FEM and “over-stiffness” of the FEM, 
and the balance of the discretized system can then be tuned to reduce the dispersion error in higher frequency 
range, i.e. 1≤kh≤2. Numerical results demonstrate the advantages of IES-FEM for acoustic problems, in 
comparison with the ES-FEM using the same mesh. 
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1. Introduction 

Acoustic analysis has been a hot topic due to the increasing customer demands on the comfort 
of automobiles or aircraft, etc. As a traditional numerical modal is used, especially for a linear finite 
element system, the mid-frequency acoustic analysis often encounters computational difficulties. 
Researches in [1] reveal that the standard FEM can provide proper results with the restriction of 
kh<1, which is related to the “rule of thumb”.  In the numerical analysis, the linear FEM cannot give 
accurate prediction even if the kh<1 is satisfied.  

In order to explain the root cause of the acoustic error and predict the acoustic field in the mid-
frequency range, Ihlenburg [1] found that the acoustic error bounds contain a pollution term that are 
related to the loss of stability with large wave numbers, and he firstly showed that FEM with 
higher-order polynomial approximations (the hp version of the FEM) work well in reduce the 
acoustic error. The higher order methods such as p-FEM [2], and the discontinuous enrichment 
method (DEM) [3] have also been studied for acoustic computations in the mid-frequency regime. 
Babuška [4] attempted to correct the loss of stability in the Helmholtz operator and designed a 
Generalized Finite Element Method (GFEM) for the Helmholtz equation such that the pollution 
effect is minimal. The Galerkin/least-squares finite element method (GLS)[5], the quasi-stabilized 
finite element method (QSFEM) [4] were also proposed to improve the accuracy of acoustic 
analysis. 

In a standard Galerkin FEM formulation, the discretized system behaves “overly-stiff”, which 
leads to inaccurate results in acoustic simulation, especially for the linear FEM in the mid-
frequency regime. Due to the adaptively of linear elements (such as triangular and tetrahedral 
elements) in generating mesh in complex domain, the research on the use of low order mesh with 
high accuracy is of practical significance. Recently, Liu’s group conducted intensive studies on the 
softness of low-order elements and proposed smoothed finite element methods (S-FEM) by using 
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the gradient smoothing technique together with the finite element methods. Using the node-based 
strain smoothing operation, a node-based smoothed point interpolation method (NS-PIM or LC-
PIM [6, 7]) and a node-based smoothed finite element method (NS-FEM) [8] have been formulated 
in the frame of meshfree and FEM, respectively. The node-based smoothed technique can provide a 
much better gradient solution than the standard FEM, while the smoothing domain contains too 
many elements leading to “overly-soft” of NS-FEM and instability in solving dynamic and acoustic 
problems [9,10]. The edge-based smoothed finite element methods (ES-FEM) [10-13] are thus 
proposed for 2D and 3D mechanics and acoustic problems, respectively. The ES-FEM showed 
super convergence properties, ultra accuracy and high computational efficiency compared to the 
traditional FEM using the same set of triangular and tetrahedral meshes, and is very suitable for 
dynamic and acoustic problems.  

In studying the 3D ES-FEM for acoustic problems[13], the ES-FEM provides better results 
than improved FEM using hexahedral mesh at kh≈1. When it comes to higher frequencies, the ES-
FEM also encounters the dispersion error [14], which is rooted at the “slightly over-softness” of 
stiffness matrix in ES-FEM. In this paper, an improved 3D edge-based smoothed finite element 
method (IES-FEM) is proposed by introducing a parameter controlling the ratio of “slightly over-
softness” of the ES-FEM and “over-stiffness” of the FEM, and the balance of the discretized system 
can then be tuned to reduce the dispersion error in higher frequency range, i.e. 1≤kh≤2. Numerical 
results demonstrate the advantages of IES-FEM for acoustic problems, in comparison with the 
standard ES-FEM using the same elements. 

In this work, we mainly focus on the acoustic analysis in mid-frequency regime, and “the 
1<kh<2” is adopted as a reference of mid-frequency. The paper is organized as follows: Section 2 
briefly describes the mathematical model of the acoustic problems. The idea of IES-FEM method is 
formulated detailed in Section 3. The numerical example is used to evaluate the performance of the 
proposed method in Section 4. Finally the conclusions from the numerical results are made in 
Section 5. 
 
2. Acoustic problems and its standard Galerkin discretization 

The acoustic pressure p in a bounded domain Ω is governed by the following well-known 
Helmholtz equation: 

2 0p k p∆ + =  (1) 
where ∆ is the Laplace operator, k is the wavenumber defined by 

k
c
ω

=  (2) 

where c and ω denote the speed of sound traveling in the homogeneous media and angular 
frequency, respectively. For general interior acoustic problems with boundary Γ, there are three 
types of boundary conditions prescribed on the boundary of ΓD, ΓN and ΓA, where Γ=ΓD∪ ΓN∪ ΓA, 
and the three sets of boundary conditions are expressed 

Dp p=   on DΓ   (3) 

np n j vρω∇ ⋅ = −  on NΓ   (4) 

np n j A pρω∇ ⋅ = −   on AΓ   (5) 
where Dp  is the prescribed acoustic pressure on the boundary DΓ  , vn is the normal velocity on 
boundary ΓN, ρ is the medium density and An represents the admittance coefficient on boundary ΓA.  
In the standard FEM, the discrete of acoustic pressure p can be expressed in the following form: 

1

m

i i
i

p N p
=

= =∑ Np   (6) 
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where Ni are the nodal shape functions obtained using standard finite element procedure and pi are 
the unknown nodal pressures. In standard Galerkin weak form, the shape function N is also chosen 
as the weight function w and the discretized form for acoustic problems can be obtained as: 

   2d d d d 0
N A

n nk j v j Aρω ρω
Ω Ω Γ Γ

− ∇ ⋅∇ Ω+ ⋅ Ω− ⋅ Γ − ⋅ Γ =∫ ∫ ∫ ∫N NP N NP N N NP  (7) 
The discretized system equations can be finally obtained and written in the following matrix form: 

FEM 2 FEM[ ]{ } { }k j j− + = −Κ Μ C Ρ Fρω ρω  (8) 
where FEMK  is the acoustical stiffness matrix, FEMΜ  is the acoustical mass matrix, C  is the 
acoustical damping matrix, T{ }P is nodal acoustic pressure vector, F  is the nodal acoustic forces 
vector, and all of them are described as follows  

( ) ( )TFEM d
Ω

= ∇ ∇ Ω∫K N N   (9) 
FEM T d

Ω
= Ω∫Μ N N      (10) 

T d
A

nA
Γ

= Γ∫C N N    (11) 
T d

N
nv

Γ
= Γ∫F N    (12) 

3. The idea of Improved edge-based smoothed finite element method (IES-FEM) 

3.1 Brief the Smoothing domain in ES-FEM for acoustic problems 
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Figure 1 The sub-smoothing-domain of edge k in cell j 

In the scheme of the ES-FEM for 3D problems, the numerical integration of Eq. (9) is not 
performed based on the tetrahedral elements but the edge-based smoothing domains. In the 
construction of local smoothing domains, the sub-domain of the smoothing domain s

kΩ  for edge k  
located in the particular cell j  can be obtained by connecting two end nodes of the edge to the 
centroids of the surface triangles and the centroid of cell j , as shown in Fig. 1. The sub-smoothing-
domain for edge k is one sixth region of this tetrahedral element. Finding out other sub-domains 
located in other elements containing edge k  and the smoothing domain for edge k  can be 
constructed by uniting all the sub-domains. The number of local smoothing domain is equals to the 
number of elemental edges. Using edge-based smoothing operation, the gradient component ∇N  is 
replaced by the smoothed item ∇N , and the global smoothed acoustic stiffness matrix can be 
written as:  

( ) ( )TES-FEM
d

Ω
= ∇ ∇ Ω∫K N N  The smoothed acoustical stiffness matrix (13) 
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3.2 Improved ES-FEM (IES-FEM) for acoustic problems   

Recently, it is found that the ES-FEM also encounters the dispersion error[14] in large wave 
number, i.e.1≤kh≤2, which is related to “slightly overly-soft stiffness” induced by the excessive 
edge-based smoothing operations compared to the continua system. The numerical method can be 
tuned to the exact or nearly exact stiffness using appropriate domains as well. Similar as α-FEM by 
combining the FEM and NS-FEM, an IES-FEM is also proposed by introducing a parameter alpha 
making the best use of “over-stiffness” of the FEM model and “slightly over-softness” of the ES-
FEM model to achieve the ultimate performance.  

             

Field node

+ =

FEM ES-FEM IES FEM-

FEM

ES-FEM

Centroid of surface triangle
 

Figure 2 The IES-FEM is formulated by combining of the FEM and ES-FEM 
In the 3D problem of IES-FEM, each tetrahedral element is divided into seven portions, as 

shown in Fig.2: six volumes containing tetrahedral edges have an equal volume of e
1
6

Vα , and the 

remaining part in the middle of the element has a volume of (1−α)Ve, where the Ve is the volume of 
the tetrahedral element. Six volumes containing tetrahedral edges compose a part of six edge-based 
smoothing domain of ES-FEM, and the middle part is used to calculate the contribution to the local 
stiffness matrix of IES-FEM using FEM, thus the stiffness of IES-FEM can be formulated as 
follows: 

( )IES-FEM FEM ES-FEM1
e nN N

i i
α α= - +∑ ∑K K K  (14) 

where Ne is the number of total elements in the entire problem domain and Nn is the number of total 
edges in the entire problem domain. The stiffness matrix KFEM and KES-FEM can be calculated by Eq. 
(9) and Eq. (13). Note that the parameter alpha which controls the contribution of ES-FEM and 
FEM can be selected as constant to improve the results of acoustic simulation [14]. In the 3D IES-
FEM for acoustic problems, numerical analysis indicates that when alpha equals to 0.82, it can 
always provide very good results. 
 
4. Numerical study 

4.1Numerical error for acoustic problems 

The pollution is mainly a consequence of the dispersion effect, meaning that the wave number 
of the numerical solution and the wave number of the exact solution disagree. The dispersion effect 
was first examined for the wave equation [1] 

In the mid-frequency analysis, the standard FEM cannot provide proper results under the 
condition of kh>1 due to dispersion error. In this work, we mainly focus on the acoustic analysis in 
mid-frequency regime, and “the 1<kh<2” is adopted as a reference of mid-frequency. In the 
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following computations, the numerical global error indicator is given in terms of velocity and can 
be described as follows:  

( ) ( )T2

1
de h e h e hp p v v v v

Ω
− = − − Ω∫    (15) 

where v  is complex conjugate of the velocity v, the superscript e denotes the exact solutions and h 
denotes the numerical solutions obtained from numerical methods including the present IES-FEM, 
ES-FEM using low-order elements.  
 
4.2 3D tube with Neumann boundary condition  

The numerical example adopted in 3D interior acoustic problem is a cylinder tube filled with 
air as shown in Fig. 3. The air density ρ is 1.225kg/m3 and the speed of sound in the air is 340m/s. 
The dimension of this cylinder tube with length l=1m, diameter d=0.3m is considered. The 
boundary conditions of this problem are that: the left end of tube is specified normal velocity 
boundary condition with vn=10m/s, and the right end of tube is a rigid wall with zero velocity. The 
analytical solutions for this problem can be easily derived and the acoustic pressure and velocity are 
given by 

( )( )cos 1

sin( )

k
p j cvn k

ξ
ρ

−
= −  (16) 

( )( )sin 1
sin( )

nv k
v

k
ξ−

=  (17) 
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Figure 3 3D acoustic tube with the Neumann boundary condition. 

 

4.2.1 The verification of parameter alpha 
In 3D acoustic analysis, the parameter alpha is firstly investigated. The frequency value of 

1352Hz  is used. Fig. 4 plots the numerical error of IES-FEM against the parameter alpha from 0 to 
1 with a step of 0.01 by the use of four models with nodal spacing of 0.06m, 0.05m, 0.04m and 
0.03m. It can be seen from this figure that: (1) at frequency of 1352Hz , the monotonic convergence 
can be obtained for the IES-FEM with alpha varies from 0 to 1 with the refinement of mesh; and the 
IES-FEM can always provide very good results when α equals to about 0.82. 
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Figure 4 Numerical error for different mesh size by varing the parameter alpha at different frequencies 

4.2.2 Acoustic accuracy and convergence 
The tube is discretized by unstructured mesh with an average mesh size of 0.06m. The 

frequency value of 1352Hz  (kh=1.5) has been studied using present IES-FEM. For the purpose of 
comparison, ES-FEM[13] solutions are also computed using this set of tetrahedral mesh. The results 
obtained from these two numerical methods have been plotted in Fig. 5, together with the exact 
solutions. It can be seen from the plots that: the IES-FEM can give much better results than the ES-
FEM, that gives solution departing a lot from the exact one. The convergence property is also 
investigated by using four models with 588, 990, 1753 and 3894 uniformly distributed nodes with 
nodal spacing of 0.06m, 0.05m, 0.04m and 0.03m. Fig. 6 presents the convergence curves in terms 
of global error against the average nodal spacing h at the frequency of 1352Hz for ES-FEM and 
IES-FEM. From the figure, it can be observed that the present IES-FEM can give much more 
accurate gradient results than that of ES-FEM. 
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Figure 5 Exact and numerical solutions of acoustic pressure for the 3D acoustic tube at kh=1.5 
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Figure 6 Comparison of accuracy and convergence for 3D acoustic tube 

 

4.2.3 Computational time and efficiency study 
Fig. 7 compares the computational time between IES-FEM and ES-FEM. Note the bandwidth 

of IES-FEM is the same as ES-FEM, and the computational time using IES-FEM is almost the same 
as ES-FEM. However, when it comes to the computational efficiency in terms of CPU time for the 
same accuracy, the IES-FEM is found to much more efficient than the ES-FEM as shown in Fig. 8.  
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Figure 7 Comparison of the computational time for the IES-FEM and ES-FEM 
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Figure 8 Comparison of the efficiency of numerical results in terms of global error 

 

5. Conclusions  

In this paper, an improved 3D edge-based smoothed finite element method (IES-FEM) is 
proposed by introducing a parameter controlling the ratio of “slightly over-softness” of the ES-FEM 
and “over-stiffness” of the FEM, and the balance of the discretized system can then be tuned to 
reduce the dispersion error in higher frequency range, i.e. 1≤kh≤2. The determined parameter alpha 
controls a proper gradient smoothing operation in the IES-FEM, and provides a perfect balance 
between stiffness and mass in the discrete system matrix, which dramatically reduces the dispersion 
error. Numerical results demonstrate the advantages of IES-FEM for acoustic problems, in 
comparison with the ES-FEM using the same mesh. 
 

a) The IES-FEM uses the simplest linear tetrahedral mesh, which can be easily generated for 
any complicated domains of acoustic media, and hence is ideal for automated modeling and 
simulation. 

b) In the IES-FEM, no additional parameters or degrees of freedom are introduced, and the 
present method can be implemented in a straightforward way with little change to the 
standard FEM code. 

c) In IES-FEM for acoustic problems, when the parameter alpha equals to 0.82, the numerical 
studies show that it can always provide much better results and is more efficient than ES-
FEM. 
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