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Abstract

Based on the double shockwave approximation procedure and combining RGFM
procedure with level-set method, a local Riemann problem for strong nonlinear
equations of state such as JWL equation of state was constructed and then solved to
suppress successfully the numerical oscillation caused by high-density ratio and
high-pressure ratio across the explosion products and water interface. A fifth order
finite difference WENO scheme and the third order TVD Runge-Kutta method were
utilized for spatial discretization and time advance, respectively. A novel enclosed
type MPI-based parallel methodology for RGFM procedure on uniform structured
meshes was presented to realize the parallelization of the three dimensional
RGFM-based code for underwater exEIosion, which had dramatically improved the
practical scale of computing model. The overall process of three dimensional bubble
pulsations generated b?/ underwater explosion of both TNT and aluminized explosives
was successfully simulated with high order numerical scheme. The peak overpressure
at different locations of three dimensional underwater explosion for both explosives
mentioned above was monitored and analyzed for revealing the influence of
aluminum powder combustion on peak overpressure of explosion wave. The
numerical results obtained indicated that the attenuation of explosion wave formed by
aluminized explosives was slower than that caused by TNT. The influences of
aluminum powder combustion on bubble pulsations were also investigated by
comparing TNT with aluminized explosives.
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Introduction

Underwater explosion is one of the typical multi-medium problems, in which
explosion flow usually consists of detonation products and water. It is obvious that
the sharp medium interface with high-density ratio and high-pressure ratio separates
the detonation products from water. In the |E)rocess of numerical simulation on
underwater explosion problem, because of the abrupt change with density and
pressure close to the interface, the unphysical numerical oscillation is very easy to
occur in the neighborhood of the interface. Meanwhile, as the continuous upgrade of
explosives, density ratio and pressure ratio increase constantly and greatly. Therefore,
tracking and treating the strong discontinuous nonlinear iInterface of underwater
erigpllgsil%n becomes a gradually popular topic and receives considerable attentions in
this field.

As for interface tracking technique, many scholars had presented some efficient ways
over the past few decades. With particle-in-cell [Amsden (1966)] approach based on
the rectangular mesh, the numerical results for the flow field and sharp material
interface were achieved by tracking the particle. MAC method [Harlow and Welch
(1965)] was often used to track the interface movement and the flow field evolution.



Level-set method [Sethian (1996); Adalsteinsson and Sethian (1999)] used the
Hamilton-Jacobi equations to describe the moving interface, which was tracked for
later time as the zero level set of the smooth signed distance function instead of the
explicit function. Thus, some cases with complex interface, such as crisscross, torsion
and separation, can be easily treated.

Fedkiw [Fedkiw et al. (1999)] presented the Ghost Fluid Method (GFM), which can
obtain excellent results in treatlng the interaction between the weak shock wave and
interface. Under the condition of strong shock wave, it, however, may get fake
physical solution. Liu [Liu et al. (2003)] had put forward the MGFM procedure and a
local Riemann problem solver, where the states of ghost fluid across the interface for
each phase were defined. Wang [Wang et al. (200 ])% presented the RGFM procedure.
According to the states of medlum across the interface, a local Riemann problem was
constructed at first. The solution obtained was then used to redefine the flow states
for not only real fluid grids next to the interface but also ghost fluid grids. Thus fewer
errors were introduced by RGFM procedure. Considering the impact of the explosion
on the interface with high-density ratio and high-pressure ratio and different
equations of state, Zhao [Zhao et al. (2013)] proposed a novel interface treatment by
combining the original GFM with RGFM procedure.

It can be observed that, since the GFM, MGFM and RGFM were presented, the
numerical simulations for multi-medium flow had been applied widely. Slmulatlng
the underwater explosion based on the GFM in the attainable Iiteratures generally
used the stiff-?as equation of state for explosion products and water, while the
complex EOS like JWL was seldom used. Meanwhile, RGFM-based simulation by
splitting a multi-medium problem into single medium flows, usually requires that the
computer hardware configuration is extremely rigor to satisfy a large-scale
calculation. In general, serial computation can’t meet the needs of three dimensional
large-scale engineering applications.

In this OFaper, based on double shockwave approximation procedure, we first
presented in detail a technology to solve the local Riemann problem with the complex
equations of state such as JWL equation of state used in underwater explosion
simulations. It effectively avoided the unphysical oscillation occurring at the
multi-medium interface in explosion flow field. Combining RGFM method formally
transformed multi-medium flow field into pure flow fields with enclosed type
parallelization module, the mechanism of three dimensional underwater explosion
and the evolutional laws of bubble pulsation were obtained by using the fifth order
finite difference WENO scheme on uniform structured meshes.

1. Governing equations
The equations governing three dimensional underwater explosion can be written as
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where p, p denote the density and pressure, respectively. u, v and w are the velocity
components, and E is the total energy per unit mass.

The total energy generally consists of internal energy and kinetic energy as follows
Ezl(u2+v2+w2)+e, (2)
2
here e means the internal energy.

To close the above governing equations, the corresponding equations of state for
explosion products and water must be introduced.

The explosion products are usually described by the JWL equation of state, which can
be expressed in the following form as
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where the parameters A, B, R;, Ry, @ and po are material constants of detonation
products, which are specifically shown in the following table.

Table 1. JWL EOS parameters for explosion products

po(kg/m®)  A(MPa) B(MPa) C(MPa) R; R, o

1630.0 373800.0 3747.0 7340 415 09 0.35

The compressible water enclosing the explosion product is also our focus. So the
stiff-gas equations of state must be required and could be written as

p=(r-1)pe-7B, (4)

where y and B shown in Table 2 are constants.

Table 2. Stiff-gas EOS parameters for water

Y B(MPa)

7.15 331.0

For aluminized explosives, Miller mathematical model describing the combustion of
aluminum powder can be written as

LI
it =a(l-1)2 p?, (5)



where 4 is the reaction process variable characterizing the aluminum powder reaction
degree in the process of aluminum powder combustion and a is a material constant.

2. The local Riemann problem for underwater explosion

After confirming the specific locations of the explosion products and water interface
by advancing implicit Level-set function, RGFM-based multi-medium interface
treatment should be utilized to change a multi-medium problem into two single
medium problems. A local Riemann problem is constructed first at the interface and
then solved. In the RGFM method, the predicted interface states solved by Riemann
problem are assigned to the real fluid nodes just close to the interface in the real fluid.
Then normal constant extrapolation by solving extension equation is used to acquire
the values of three ghost fluid nodes required for high order WENO scheme. Next,
the particular solution to local Riemann problem in underwater explosion will be
described briefly.

Taking one dimensional case as an example, with the help of mass conservation
equation and momentum conservation equation, the relationship between the velocity
and pressure of the interface can be achieved as follows

u*=Fl(p*)=uL—\/(F’*—PL)K%L—;LJ, (6)
u*=FZ(R)=UR+\/(R—PR)£piR—pTRj, (7)

here p+_ and p+r are the densities of both sides of interface, which are unknown
quantities for the time being and also need to be solved.

The nonlinear function relationship on interfacial pressure is obtained by the above
two equations, which can be written as

F(p.)=F(p.)-F(p.)=0. (8)

Combining energy conservation equation with respective equations of state, the
implicit function with respect to p«, p=r and p~ can be deduced and then given as
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For the local Riemann problem composing of JWL equations of state and Stiff-gas
equations of state, the brief process of solving it by Newton iterative method is
described below. It is supposed that, for one dimensional Riemann problem, gaseous



detonation products locate at the left hand side of the interface and the water is on the
opposite side. Obviously, the Eq. (8-10) is now a closed nonlinear equation consisting
of interfacial pressure and both sides of densities close to interface as unknown
variables. The classical Newton iterative method is adopted to solve the problem of
interest, and it can be written as

Pneg) = Pen

R ( p*(n))_ (P (11)

F(pa)=F (P
The appropriate guess value of the interfacial pressure for (11) is necessary, and
should be selected at first. If the value of |p«n+1—P=m)| IS equal or less than a given
threshold, Newton iteration will be stop automatically, and the final result p«+1) is the
interfacial pressure p«to be sought. Thus, the velocity and both sides of densities can
be obtained by simultaneously solving the Eq. (6), (9) and (10). At this point, the
solution of the local Riemann problem in underwater explosion has been deduced
completely.

3. Parallelization for RGFM procedure

For a general difference scheme, it is only required to communicate data in current
process with adjacent processes in the orthogonal directions, that is to say, the
processes in the diagonal directions are not necessary. For the WENO scheme
combining with RGFM for underwater explosion, it is slightly different. If the
interface is very close to any corner of the current computational process, information
such as pressure and density at some nodes of diagonal processes will be inevitably
used in the construction of the local Riemann problem. Considering such special
requirements for RGFM method to implement data communication, a novel fully
enclosed type data communication mode is presented, in which the enclosed
communication boundaries are built on the periphery of computational domain of any
process.

Table 3. Parallelization for RGFM

Process number Receive buffer Send buffer Process number
of receive buffer number number of send buffer

n 1 4 n-x-1

n 2 3 n-x+1

n 3 2 n+x-1

n 4 1 n+x+1

n 5 6 n-1

n 6 5 n+l

n 7 8 n-x

n 8 7 n+x




The above table takes the two dimensional case as an example to illustrate the
presented enclosed type parallel method. It is obvious that the method can be directly
extended to three dimension underwater explosion, and has been implemented in this
paper.

4. Numerical investigations on three dimensional underwater explosion

4.1 Validation

According to the one dimensional fluid unsteady motion theory, the law of bubble
pulsation can be given as

9 1”2
R=2lp P 3R (12)

The corresponding initial condition has the following form
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Figure 1. The comparisons of numerical results with theoretical results on
bubble radius under different pressures



The numerical results of bubble pulsation using RGFM procedure are compared with
the theoretical results, which is shown in Fig.1. The maximum bubble radius and its
corresponding time are shown in Table 4 and Table 5, respectively. It is evident from
Fig.1 and two tables that the numerical results obtained are consistent with the
theoretical results, and that the errors of maximum bubble radius and its time don’t
exceed 10%. So, the RGFM-based high order procedure presented in this paper can
exactly describe the whole process of bubble pulsation.

Table 4. The comparisons of numerical results of maximum bubble radius with
theoretical results

Theoretical Numerical Relative
Pressures
results(m) results(m) errors
400MPa 0.572 0.583 1.9%
500MPa 0.534 0.555 3.9%
600MPa 0.506 0.527 4.2%
700MPa 0.483 0.504 4.3%

Table 5. The comparisons of numerical results of the maximum radius time with
theoretical results

Theoretical Numerical Relative
Pressures

results(m) results(m) errors
400MPa 0.819 0.768 -6.2%
500MPa 0.668 0.618 -7.5%
600MPa 0.602 0.554 -8.0%
700MPa 0.541 0.495 -8.5%

4.2 Numerical investigations on bubble pulsation of TNT explosive

The TNT explosive is used with the radius of 0.25m for underwater explosion. Water
pressure is 400MPa, 500MPa and 600 MPa, respectively. Apparently, the selected
pressure exceeds the usual pressure of underwater explosion. The main purpose is to
save the computing time without damaging the essential laws of bubble pulsation.
The 64 processes are employed to compute this problem with up to 13.824 million
grids. The size of grids is 0.02mx0.02mx0.02m, while the whole physical domain is
4.8mx4.8mx4.8m.

The computational results at some typical moments are shown in Fig. 2-4. The
contour of density and pressure are very symmetrical and fake nonphysical oscillation
doesn’t happen. The distribution of density and pressure in the underwater explosion
field can be reflected precisely.



(@ Density contour (b) Pressure contour

Figure 2. Numerical results at 0.531ms

(@) Density contour (b) Pressure contour

Figure 3. Numerical results at 0.744ms

(@) Density contour (b) Pressure contour

Figure 4. Numerical results at 0.962ms



Figure 5. Numerical results on the evolution of bubble pulsation

The numerical results shown in Fig. 5 indicate that combining the local Riemann
solver with RGFM procedure can exactly simulate the full process of underwater
explosion and bubble pulsation, and the interface of the computed bubble consistently
maintains smooth without any numerical oscillation.
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Figure 6. The evolution of bubble radius under the different pressure conditions

Fig. 6 shows that maximum bubble radius decreases with the increase of pressure.
The maximum radius is 0.583m when water pressure is 400MPa. When its pressure is
700MPa, the maximum radius reduces by 13.6% and decreases to 0.504m. Bubble
pulsation period also decreases with the increase of pressure. The pulsation period is
1.749ms when pressure is 400MPa. When pressure is 700MPa, the period reduces by
40.4% and reduce to 1.043ms. So, the influence of water pressure on bubble pulsation
period is more obvious.

The numerical results reveal that the physical essence of expansion and contraction of
the bubble interface is the movement of contact discontinuity for local Riemann
problem at the interface, and the pressure, normal speed and density close to the
interface determine the evolution of bubble interface. Thus, solving local Riemann
problem is an effective way to quantitatively reveal the formation mechanism of
bubble pulsation. Solving local Riemann problem can obtain accurate flow
characteristics near the interface and the evolution of bubble interface in the flow
field. The complete process of bubble pulsation is captured nicely. Therefore, the
unique advantages based on RGFM procedure and local Riemann solver are obvious
to simulate bubble pulsation in underwater explosion.



4.3 Numerical investigations on bubble pulsation of aluminized explosives

The aluminized explosives is simplified to gas detonation products containing
unreacted aluminum powder. The stiff-gas equation of state is used for water. The
initial pressure is 500 MPa, and the radius of explosive is 0.21m. The 64 processes
are employed for this problem with 13.824 million grids, and the size of grids is
0.02mx0.02mx0.02m, while the whole physical domain is also 4.8mx4.8mx4.8m.
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Figure 7. The comparison of aluminized explosive with TNT on bubble pulsation
radius under 500 MPa water pressure

It is shown in Fig. 7 that the expansion processes of two kinds of explosive are almost
the same at the initial stage and the radius-time curve is substantially coincident. But,
at the late stage, the appearances of two kinds of explosives are very different. First,
the maximum bubble radius and its evolutional period of aluminized explosives are
significantly greater than those of TNT. Second, because explosion wave propagation
causes energy loss, the maximum radius for TNT at the later stage becomes small.
For aluminized explosives, the maximum radius during the second period is even
greater than that of the previous period due to the secondary energy release formed by
the combustion of aluminum powder supplementing the energy losses to some extent.

Conclusions

Combining RGFM multi-medium interface treatment method with fifth order finite
difference WENO scheme, the large scale underwater explosion parallel simulations
are performed by the novel Riemann problem solver presented for complex nonlinear
equations of state and MPI-based enclose type parallel module. The three dimensional
whole physical processes of bubble pulsation in underwater explosion are numerically
investigated. The important mechanism of underwater explosion is also revealed as
follows:

1) Solving local Riemann problem defined by detonation products and water can

essentially depicts the motion process of bubble surface caused by both sides of the
flow field, by which the complete process of bubble pulsation is captured exactly. The
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maximum radius and its corresponding time of bubble obtained by numerical
simulations are agreed well with the theoretical results;

2) For bubble pulsation in underwater explosion, the physical essence of expansion
and contraction of bubble surface is the propagation of contact discontinuity of local
Riemann problem at the explosion products and water interface. The interfacial states
including pressure and normal speed at the interface and density on both sides of the
interface play a key role in determining the motion behavior of bubble surface;

3) For the same charge configuration, with the increase of water pressure, both
maximum bubble radius and its pulsation period decrease. Nevertheless, the influence
of water pressure on bubble pulsation period is more obvious than maximum bubble
radius;

4) The secondary energy release for aluminized explosives can continuously add the
energy loss caused by explosion wave propagation in water. So in the subsequent
process of bubble pulsation, the radius and pulsation period for aluminized explosives
are obviously larger than those of TNT charge. Maximum radius of aluminized
explosive in the process of the second pulsation even exceeds the first pulsation
process.
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