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Computational modeling of complex fracture phenomena, where multiple  cracks propagate and 
interact in three-dimensional geometry is a very challenging task that has not been satisfactorily 
demonstrated.  Despite huge technological incentives, most of the exisiting methods are limited to 
simple geometries and a small number of interacting cracks.  The main reason appears to be the 
conceptual way that cracks are currently modeled as a disruption to an otherwise perfect continuum.   
 
We have developed a fundamentally different approach to modeling discontinuities and defects in 
materials, namely the method of Parametric Dislocation Dynamics (PDD), where discrete crystal 
dislocations are represented by parametric space curves, and their collective interactions in 3-D is 
completely resolved [Amodeo and Ghoniem (1990); Ghoniem et al. (2000); Po and Ghoniem 
(2013)].  It has been known for a while that cracks can be represented by a suitable distribution of 
discontinuities (Volterra or Somigliana type dislocations), where the Burgers vector can be either 
fixed (Volterra), or locally variable (Somigliana).  Thus, such objects can provide enormous 
flexibility in modeling complex-shape cracks and their mutual interactions, if only a computational 
method can be developed.  We present here a new approach to modeling complex facture 
phenomena by extending the robust framework of our PDD method.  We show that suitable choices 
of the Volterra Burgers vector enables dislocation arrays to represent 2-D cracks in modes I, II, and 
III [Ghoniem and Huang (2006); Takahashi and Ghoniem (2013)].  Moreover, it is shown that the 
Peach-Koehler force, which is the basis for motion and equilibrium in PDD simulations, is 
equivalent to the J-integral in fracture mechanics problems.  Crack propagation is shown to be a 
natural extension to dislocation motion in PDD simulations.  Several examples of crack problems in 
3-D finite geometry will also be given to illustrate the utility of the proposed approach. 
 
Dislocation-based Fracture Mechanics 

A crack may be considered a distribution of dislocations along the crack plane with fixed 
dislocations representing crack tips.  Cracks under mode-I and mode-II loading consist of 
distributed climb-edge and glide-edge dislocations respectively, while mode-III cracks consist of 
screw dislocation distributions.  When tractions are applied to an elastic body, the resulting forces 
cannot be transferred across crack surfaces.  To satisfy this condition, the distributed dislocations 
must be in mechanical equilibrium with the exception of the fixed dislocations at the crack tips.   
 
The configurational force that drives dislocation motion is given by the well-known Peach-Koehler 
formula.  For a 2D crack under mixed mode I and mode II loading, dislocation motion along the 
crack line is driven by the force component shown in Fig. 1.  The dislocation velocities are 
proportional to the Peach-Koehler force so that when the dislocations reach their equilibrium 
positions the stress on each dislocation is zero.  Thus at each equilibrium position, the traction-free 
crack surfaces condition is satisfied.  The unbalanced Peach-Koehler force on the fixed crack-tip 
dislocations is equivalent to the J-integral around the crack tip.  The stress-intensity factor 𝐾 can 
then be calculated for each fracture mode using the relationship: 
 
                                                         𝐾𝐼 = �𝐽𝐼𝐸 ,    𝐾𝐼𝐼 = �𝐽𝐼𝐼𝐸                          (1) 
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The number of dislocations used in the distribution and the magnitude of the Burgers vector has a 
close relationship with the crack opening displacement (COD).  LEFM has provided the COD 
analytically for a large number of crack problems, and shown that the ratio of the COD to the crack 
length is proportional to the ratio of the applied load to the shear modulus of the material.  For 
problems in which the COD is given analytically, the Burgers vector is exactly the ratio of the COD 
to the number of dipoles or loops in the distribution.  It follows that the crack representation is 
improved with an increasing number of dislocations used to model the crack.  This is shown in Fig. 
2 for a 2D mode I crack in an infinite body.  For more complex cracks where the COD is not given 
exactly, the Burgers vector magnitude is estimated using the same relationship.   

 
Figure 2.  Mode I crack profile with increasing number of dislocations 

Applying the dislocation dynamics fracture modeling method to a slanted crack oriented at an angle 
β gives the results shown in Fig. 3.  The numerical results are in close agreement with the analytical 
stress intensity factors given by:  

                                                      𝐾𝐼 = √𝜋𝜋(𝜎𝑦𝑦 sin2 𝛽 + 𝜎𝑥𝑥 cos2 𝛽)                                             (2) 
                                                      𝐾𝐼𝐼 = √𝜋𝜋(𝜎𝑦𝑦 − 𝜎𝑥𝑥) sin𝛽 cos𝛽                                               (3) 
 

 
Figure 3.  Mode I and mode II stress intensity factors for an inclined crack 

Figure 1.  2D mixed mode-I and mode-II crack 
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The distributed dislocation loops used to model three-dimensional cracks are represented by 
parametric space curves as shown in Fig. 4a. Results of the PDD simulation for a mode I penny-
shaped crack in an infinite body are shown in Fig. 4b for Burgers vector magnitudes ranging from 
0.06 nm to 0.14 nm.  The diameter of the crack is 2a = 1 μm and the uniform tensile stress applied 
is 100 MPa.   
 

 
Figure 4.  (a) Penny-shaped crack  (b) Relative error in KI given by PDD simulation 

Conclusion 
A new method for fracture modeling is proposed based on the Parametric Dislocation Dynamics 
(PDD) method developed for simulating crystal plasticity.  A crack is represented by a distribution 
of dislocation loops in which the outer dislocation loop at the crack tip is fixed.  The driving force 
behind dislocation motion, the Peach-Koehler (PK) force, is proportional to the dislocation velocity.  
Thus the traction-free crack surfaces condition is satisfied at each dislocation in mechanical 
equilibrium.  The developed method has a number of computational advantages: (1) any complex 
shape crack can be represented in 2-D and 3-D geometries; (2) the PK (J-intergral) provide a natural 
mechanism that governs crack propagation and crack-crack interactions; (3) crack problems in 
finite domains can be solved without the need for re-meshing or special crack elements. 
 
The unbalanced Peach-Koehler force on the fixed crack-tip dislocations is equal to the J-integral 
around the crack tip, allowing for direct calculation of the stress intensity factor.  Two examples of 
the dislocation dynamics method for modeling cracks are shown – a 2D slanted crack in an infinite 
plate and a 3D penny-shaped crack in an infinite body.  For both examples, the simulation results 
for the stress intensity factors are shown to be in good agreement with analytical solutions.    
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