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Abstract 

In this work, a local kernel based numerical scheme is constructed for numerical 

solution of sine-Gordon equation in circular domain. The global kernel method resulted 

the dense differentiation matrices and hence difficult to apply for problem with large 

amount of data points. The present numerical scheme is local with sparse 

differentiation matrices, consequently capable of removing the deficiency of ill-

conditioning in the global kernel method.  
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1. Introduction 

The kernels (RBFs) was first used for solving partial differential equations by Kansa in 

the year 1990 [Kansa (1990), fluid dynamics-I; Kansa (1990), fluid dynamics-II]. In 

this original work the fluid mechanics problems were solved by approximating the 

derivatives by the derivative of MQ kernel functions directly. The differentiation 

matrices obtained in this method are unsymmetric as well as dense. The dense linear 

system in the global kernel method solved by Gaussian elimination methods needed 

)( 3NO  floating point operations. Due to the high resolution for large amount of data 

points it becomes difficult to solve the problem with global kernel based method. Many 

robust numerical approximation methods have been developed to overcome this 

difficulty some of them are the transforms based methods and the multi-pole 

approaches [Greengard  and Strain  (1991); Cherrie et al. (2002); Gumerov and 

Duraiswami (2007)], the domain decomposition methods [Beatson et al. (2001); Kansa 

and Hon (2000); Li,  and Hon (2004)], the partition of unity methods [Wendland 

(2002)], the greedy algorithms [Hon  et al. (2003); Schaback and Wendland (2000); 

Ling and Schaback (2008)], the multilevel methods [Fasshauer  (1999)], and the use of 

locally supported kernel functions [Wendland  (1995); Floater  and Iske (1996)]. An 

other alternative approach to overcome this difficulty was developed by Tolstykh 

[Tolstykh  (2000)], here local kernel interpolants in small domains centered around 

each node is used to form differentiation weights. This idea has been used to construct 

various types of local kernel based approximate methods and has been applied 

successfully to a wide range of problems. These include convection-diffusion 

[Chandhini and Sanyasiraju (2007); Stevens et al (2009); Sarler and Vertnik (2006); 

Sarra (2012)], incompressible NavierStokes [Chinchapatnam et al (2009); Shan et al 
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(2008); Shu et al (2003)], elliptic equations [Tolstykh and Shirobokov (2003); Wright 

and Fornberg (2006)] and [Wong et al (1999); Xiao and McCarthy (2003); Brown et al 

(2005)]. In the present work we used the same idea to construct local kernel based 

numerical scheme for simulating two-dimensional sine-Gordon equation. 

 

 The sine-Gordon equation in two space dimension is 

 

,),(and0where,sin),(   ssss                                            (1)    

  

with associated initial conditions  

 

),,()0,,(),,()0,,( 21   hshs                                                                        (2)                                          

 

and with boundary condition 

 

),,,(  s                                                                                                                  (3) 

 

In science and engineering we always need some robust numerical scheme to solve 

soliton type equations for large scaled data points in irregular domain for example the 

sine-Gordon type solitons. Many robust numerical scheme have been developed by 

many researchers over the years to approximate the sine-Gordon equation. For example 

the finite difference scheme [Guo et al (1986)], The leapfrog scheme [Christiansen and 

Lomdahl (1981)], the finite-elements approach [Argyris et al (1991)]. A predictor-

corrector scheme [Khaliq, A. Q. M. et al. (2000)], and a split cosine scheme [Sheng, Q. 

et al. (2005)]. Bratsos [Bratsos (2007)] used a three-time level fourth-order explicit 

finite-difference scheme for solving sine-Gordon equation. In this work we used local 

kernel based numerical scheme to approximate the solution of 2d sine-Gordon 

equation. 

 

2. Description of the method 

 

In multivariate scattered data interpolation, we always need to recover an unknown 

function RRs d :  from a given set of N function values 

  .)(),...,(),( 21 Rsss N  Where the scattered centers N ,...,, 21  and dR is 

arbitrary shaped domain and the centers can be chosen anywhere in the domain. In the 

local kernel based approximation method, at each center i , the local interpolant 

takes the form 

      ,, 



ij

jiji as


                                                                 (4)             
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where ],...,[ 1 n

i aaa  is a vector of expansion coefficients, R:  is a radial 

kernel defined by    
jj r ,  with jjr    and  j  is a local domain 

corresponding to center i  contains Nn   centers. The corresponding N  number of  

nn linear systems are given as, 

 

,,...,2,1, Nias iii                                                                                                 (5)                                                                                                            

 

Where the entries of the matrix i  are    ,,, i

i

jk jk  the matrix i   is 

called the interpolation matrix, and each system have to be solved for the expansion 

coefficients. Now to approximate the differential operator  ,),( Ls  we have 

 ,)(),( 



ij

jiji LaLs


                                                                                  (6)                       

The expression in (6) may be given in matrix form, 

,),( ii

i aLs                            (7)

     

Where ia  is the 1n vector of expansion coefficients, and i  is the  n1  vector with 

entries 

 

 ji

i L   , ij  .                       (8)

              

To eliminate the expansion coefficients, we have from equation (5) 

 

,)(
1 iii sa


                                                                                            (9)

                       

we substitute the values of  ia  from (9) in (7) to get,  

 

,)(),(
1 iiiii

i ssLs  


                    (10)  

where, 

,)(
1

 iii                         (11)                            

is the weight corresponding to center i  . Hence for all centers locations, we have 

 sLs ,                                                                                                                (12)

                      

where,    is NN   sparse differentiation matrix, each row of the matrix   

contains n  non-zeros elements. After spatial local RBF approximation, we obtained the 

following system of ODEs 
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).(sF
s







                                   (13)

            

Time integration can be carried out using any ODE solver like ode15s, ode113, ode45 

etc from Matlab. In general, ode45 is the best function to apply as a first try for most 

problems. A good ODE solver will automatically select a reasonable time step δτ and 

detect stiffness of the ODE system. For this ODE computation we have used Runge-

Kutta method of order four. 

3. Stability of the local meshless numerical scheme: 

In the present local meshless method of lines our numerical scheme is given by 

 

, ss                                   (14)                            

 

here the time-dependent PDE is transformed into a system of ODEs in time. The 

method of lines refers to the idea of solving the coupled system of ODEs by a finite 

difference method in   (e.g. Runge-Kutta, etc.) The numerical stability of the method 

of lines is investigated by a rule of thumb. The method of lines is stable if the 

eigenvalues of the (linearized) spatial discretization operator, scaled by   , lie in the 

stability region of the time-discretization operator [Trefethen and Bau (1997)]. The 

stability region is a part of a complex plane consisting of those eigenvalues for which 

the technique produces a bounded solution. In the present meshless method of lines our 

numerical scheme is given in (13). We can investigate the stable and unstable 

eigenvalue spectrum for the given model by computing the eigenvalues of the matrix 

,  scaled by . 

 

4. Choosing a good value of shape parameter: 

 

A variety of kernel functions are available in the literature. In our computation we used 

the multiquadrics kernel fuctions, 221)( rr   . As usual these RBFs contain a 

shape parameter and the solution accuracy greatly depends on this parameter. There 

exist some strategies for the optimization of the shape parameter [Hardy  (1971); 

Franke  (1982); Carlson and Foley (1991); Foley  (1994); Rippa (1999); Trahan and 

Wyatt (2003); Fasshauer  and Zhang (2007); Scheuerer  (2011)]. A condition number 

may be used to quantify the sensitivity to perturbations of a linear system, and to 

estimate the accuracy of a computed solution. The conditioning results require that in 

order for the system matrix to be well conditioned that the shape parameter and 

minimum separation distance be large. Obviously, both situations cannot occur at the 

same time. This observation has been referred to as the uncertainty principle [Schaback 

(1995)]. Incorporating this idea the smallest errors occur when the condition number v  

of the system matrix is approximately kept in the range 1513 1010  v in our 

computations. The system matrix is decomposed as A, E, B = )( isvd  . Here svd is the 
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singular value decomposition of the interpolation matrix i . A, B are nn orthogonal 

matrices and E is nn  diagonal matrix contains the n  singular values of i , and  

  )min()max(
1

EEv ii 


 is the condition number of the matrix i . When an 

acceptable value of shape parameter is returned by the above algorithm, then the svd is 

used to compute   TTi ABEAEB 111
)( 

 (see [Trefethen and Bau (1997)]). Note 

that for orthogonal matrices the inverse of the matrix is equal to its transpose. 

Consequently, we can compute the weights i  in (11). 

5. Application of the method 

In this section we apply the method described above to solve the two-dimensional sine-

Gordon equation. We considered various types of initial solutions in the form of 

circular, ring solitons, interaction of two and four circular ring solitons. The two-

dimensional sine-Gordon equation has been transformed into a system of two partial 

differential equations given by 

 

,ps  ,0,sin),(   sssp  

 

with the boundary condition as ,0 qs  and ,0 qp and with the initial 

conditions 

),,()0,,(),,()0,,( 21  hphs  respectively and where q  is a unit normal 

vector. 

 

5.1. Circular solitons 

We apply the proposed method for the case when 1),(  , the initial solution is 

taken as circular solitons [Argyris et al (1991)] given by 

 

],3exp[tan4),( 221

1   h                                                      (16)

           

,0),(2 h                            (17)                      

 

the problem is solved in the circular domain of radius r = 8 with N = 3000 uniformly 

distributed interpolation nodes. We select 200n  points in each local domain i  

corresponding to each node  Ni ,...,3,2,1 .The time integration is carried out with 

Runge-Kutta method of order 4 with time step 005.0t . The results are obtained 

by the present numerical method in terms of sin(s/2), where s is the approximate 

solution of the given model obtained with present local method. The obtained results at 

different times are shown in Figure 1. 
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Figure 1: Circular soliton: approximate solution in the form of sin(s/2) at τ = 0, 

5.6, 8.5, and 11.2, in the domain Ω with radius r = 8, N = 3000. 

 

 5.2. Two solitons collision 

Here we consider the interaction of two expanding solitons for the choice 1),(   

and with the initial solutions 





2

1
1 ),(),(

i
ifh  , 




2

1
2 ),(),(

i
igh                    (18) 

],436.0))7()3(4(exp[tan4),( 221   if                                              (19)                    

and 

].436.0))7()3(4([sec13.4),( 22   hg i                                             (20)                    

 

We select 5000N  number of uniformly distributed interpolation points in the 

circular domain   of radius 25r . We solved the problem without using the 

symmetry features that was used in the earlier work [Argyris et al (1991), Sheng, Q.et 
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al. (2005); Dehghan, M. and Shokri, Ali. (2008)] for simulating the collision of two 

circular solitons. We take the interpolation points in the whole computation domain to 

demonstrate the robustness of local radial kernel method. This demonstrates the 

capability and efficiency of the present method for solving large scale problem in 

circular domain. The results of the present method are shown in Figure 2. 
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Figure 2: Two solitons collision: the function sin(s/2), at t = 0, 4, 8 and 10, in the 

domain Ω with radius r = 25, N = 5000. 
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5.3. Four expanding solitons collision 

The collision of four expanding circular solitons are considered for the choice 

1),(  , and with the initial solutions 





4

1
1 ),(),(

i
ifh  , 




4

1
2 ),(),(

i
igh                                                        (21)                                  

 

],436.0))7()7(4(exp[tan4),( 221   if                                           (22)                     

and 

].436.0))7()7(4([cosh13.4),( 22  ig                                            (23)                    

 

This problem is solved in the circular domain of radius 25r  with 5000N  

uniformly distributed interpolation points. Again we are not using the symmetry 

features used in the earlier work [Argyris et al (1991), Sheng, Q. et al. (2005); 

Dehghan, M. and Shokri, Ali. (2008)]. The evolution of the four expanding solitons in 

times are shown in Figure 3.  
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Figure 3: Four expanding solitons collision: the function sin(s/2), at t = 0, 4, 8 and 

10, in the domain Ω with radius r = 25, and N = 5000. 
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6. Conclusions 

In this work we have constructed local kernel based numerical scheme for simulating 

the two dimensional sine-Gordon equation. As contrary to the global based kernel 

based methods [Dehghan, M. and Shokri, Ali. (2008)], the present local scheme 

performed efficiently for large data points in complex shaped domain. The present local 

method may be used to similar types of time-dependent partial differential equations in 

irregular shaped domain. 
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