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Abstract

In this work, a local kernel based numerical scheme is constructed for numerical
solution of sine-Gordon equation in circular domain. The global kernel method resulted
the dense differentiation matrices and hence difficult to apply for problem with large
amount of data points. The present numerical scheme is local with sparse
differentiation matrices, consequently capable of removing the deficiency of ill-
conditioning in the global kernel method.
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1. Introduction

The kernels (RBFs) was first used for solving partial differential equations by Kansa in
the year 1990 [Kansa (1990), fluid dynamics-1; Kansa (1990), fluid dynamics-11]. In
this original work the fluid mechanics problems were solved by approximating the
derivatives by the derivative of MQ kernel functions directly. The differentiation
matrices obtained in this method are unsymmetric as well as dense. The dense linear
system in the global kernel method solved by Gaussian elimination methods needed

O(N?®) floating point operations. Due to the high resolution for large amount of data

points it becomes difficult to solve the problem with global kernel based method. Many
robust numerical approximation methods have been developed to overcome this
difficulty some of them are the transforms based methods and the multi-pole
approaches [Greengard and Strain (1991); Cherrie et al. (2002); Gumerov and
Duraiswami (2007)], the domain decomposition methods [Beatson et al. (2001); Kansa
and Hon (2000); Li, and Hon (2004)], the partition of unity methods [Wendland
(2002)], the greedy algorithms [Hon et al. (2003); Schaback and Wendland (2000);
Ling and Schaback (2008)], the multilevel methods [Fasshauer (1999)], and the use of
locally supported kernel functions [Wendland (1995); Floater and Iske (1996)]. An
other alternative approach to overcome this difficulty was developed by Tolstykh
[Tolstykh (2000)], here local kernel interpolants in small domains centered around
each node is used to form differentiation weights. This idea has been used to construct
various types of local kernel based approximate methods and has been applied
successfully to a wide range of problems. These include convection-diffusion
[Chandhini and Sanyasiraju (2007); Stevens et al (2009); Sarler and Vertnik (2006);
Sarra (2012)], incompressible NavierStokes [Chinchapatnam et al (2009); Shan et al
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(2008); Shu et al (2003)], elliptic equations [Tolstykh and Shirobokov (2003); Wright
and Fornberg (2006)] and [Wong et al (1999); Xiao and McCarthy (2003); Brown et al
(2005)]. In the present work we used the same idea to construct local kernel based
numerical scheme for simulating two-dimensional sine-Gordon equation.

The sine-Gordon equation in two space dimension is

S,, =S +8,, —u(&,m)sins, where 7 >0 and(&,77) € Q, Q)

with associated initial conditions

$(£,7.0) =h,(&,7), 5.(&,7,0) = h, (S, 77), )
and with boundary condition

ps=(&n.7), ©)

In science and engineering we always need some robust numerical scheme to solve
soliton type equations for large scaled data points in irregular domain for example the
sine-Gordon type solitons. Many robust numerical scheme have been developed by
many researchers over the years to approximate the sine-Gordon equation. For example
the finite difference scheme [Guo et al (1986)], The leapfrog scheme [Christiansen and
Lomdahl (1981)], the finite-elements approach [Argyris et al (1991)]. A predictor-
corrector scheme [Khalig, A. Q. M. et al. (2000)], and a split cosine scheme [Sheng, Q.
et al. (2005)]. Bratsos [Bratsos (2007)] used a three-time level fourth-order explicit
finite-difference scheme for solving sine-Gordon equation. In this work we used local
kernel based numerical scheme to approximate the solution of 2d sine-Gordon
equation.

2. Description of the method

In multivariate scattered data interpolation, we always need to recover an unknown
function s:R* >R from a given set of N function values
{s(£),8(&,),-,S(£y )} = R.Where the scattered centers &,&,,...,&, € Q and Q < R%is

arbitrary shaped domain and the centers can be chosen anywhere in the domain. In the
local kernel based approximation method, at each center & € Q, the local interpolant

takes the form

s(&.7)= 3 a, ()& — ). @



where a' =[a,,...,a,]is a vector of expansion coefficients, x: QxQ —R is a radial
kernel defined by «{&,&;)=xdr;) with r; =|-¢&| and Q; = is a local domain

corresponding to center £ contains n< N centers. The corresponding N number of
nxnlinear systems are given as,

s'=A'a',i=12,...,N, (5)

Where the entries of the matrix A’ are {K(“‘fk =&l )} Kk, j e, thematrix A" is

called the interpolation matrix, and each system have to be solved for the expansion
coefficients. Now to approximate the differential operator Ls(&,7), we have

Ls(£.9)= X a, @)Lxlle —&)]) (6)
The expression in (6) may be given in matrix form,

Ls(&,,7)=0"ea', (7

Where a' is the nx21vector of expansion coefficients, and &' isthe 1xn vector with
entries

st =Lille - ¢))). & . )
To eliminate the expansion coefficients, we have from equation (5)
al =(A') s, ©)

we substitute the values of a' from (9) in (7) to get,

Ls(&,7)=5"(A) s’ =o's', (10)
where,
o =8(A) (11)

is the weight corresponding to center & . Hence for all centers locations, we have

Ls=>"s, (12)

where, Z is NxN sparse differentiation matrix, each row of the matrix Z

contains n non-zeros elements. After spatial local RBF approximation, we obtained the
following system of ODEs



0s
5 =F0). (13)

Time integration can be carried out using any ODE solver like odel5s, odel13, ode45
etc from Matlab. In general, ode45 is the best function to apply as a first try for most
problems. A good ODE solver will automatically select a reasonable time step oz and
detect stiffness of the ODE system. For this ODE computation we have used Runge-
Kutta method of order four.

3. Stability of the local meshless numerical scheme:

In the present local meshless method of lines our numerical scheme is given by
S.=2.5S, (14)

here the time-dependent PDE is transformed into a system of ODEs in time. The
method of lines refers to the idea of solving the coupled system of ODEs by a finite
difference method in = (e.g. Runge-Kutta, etc.) The numerical stability of the method
of lines is investigated by a rule of thumb. The method of lines is stable if the
eigenvalues of the (linearized) spatial discretization operator, scaled by oz , lie in the
stability region of the time-discretization operator [Trefethen and Bau (1997)]. The
stability region is a part of a complex plane consisting of those eigenvalues for which
the technique produces a bounded solution. In the present meshless method of lines our
numerical scheme is given in (13). We can investigate the stable and unstable
eigenvalue spectrum for the given model by computing the eigenvalues of the matrix
>, scaled by or .

4. Choosing a good value of shape parameter:

A variety of kernel functions are available in the literature. In our computation we used

the multiquadrics kernel fuctions, ¢(r) =+1+¢&°r®. As usual these RBFs contain a
shape parameter and the solution accuracy greatly depends on this parameter. There
exist some strategies for the optimization of the shape parameter [Hardy (1971);
Franke (1982); Carlson and Foley (1991); Foley (1994); Rippa (1999); Trahan and
Wyatt (2003); Fasshauer and Zhang (2007); Scheuerer (2011)]. A condition number
may be used to quantify the sensitivity to perturbations of a linear system, and to
estimate the accuracy of a computed solution. The conditioning results require that in
order for the system matrix to be well conditioned that the shape parameter and
minimum separation distance be large. Obviously, both situations cannot occur at the
same time. This observation has been referred to as the uncertainty principle [Schaback
(1995)]. Incorporating this idea the smallest errors occur when the condition number v

of the system matrix is approximately kept in the range 10" <v<10™ in our
computations. The system matrix is decomposed as A, E, B =svd(A'). Here svd is the
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singular value decomposition of the interpolation matrix A'. A, B are nx northogonal
matrices and E is nxn diagonal matrix contains the n singular values of A', and

i i Y1
v=[fix)
acceptable value of shape parameter is returned by the above algorithm, then the svd is
used to compute (A‘ )_1 =(AEB")™ =BE A" (see [Trefethen and Bau (1997)]). Note

that for orthogonal matrices the inverse of the matrix is equal to its transpose.
Consequently, we can compute the weights ' in (11).

= max( E)/min(E) is the condition number of the matrix A'. When an

5. Application of the method

In this section we apply the method described above to solve the two-dimensional sine-
Gordon equation. We considered various types of initial solutions in the form of
circular, ring solitons, interaction of two and four circular ring solitons. The two-
dimensional sine-Gordon equation has been transformed into a system of two partial
differential equations given by

ST = p’ pr :Sé‘f +ST717 _ﬂ(§777)8in S,T>O,

with the boundary condition as Vseq=0, and Vpeq=0, and with the initial
conditions

s(&,n,0) =h,(&,77), p(&,1,0) =h,(&,77), respectively and where g is a unit normal
vector.

5.1. Circular solitons
We apply the proposed method for the case when u(&,77) =1, the initial solution is

taken as circular solitons [Argyris et al (1991)] given by
h(§,7) = 4tan~ exp[3— &% +7°], (16)

h,(&,n) =0, (7)

the problem is solved in the circular domain of radius r = 8 with N = 3000 uniformly
distributed interpolation nodes. We select n =200 points in each local domain Q,
corresponding to each node i =1,2,3,..., N € Q.The time integration is carried out with
Runge-Kutta method of order 4 with time step St = 0.005. The results are obtained
by the present numerical method in terms of sin(s/2), where s is the approximate

solution of the given model obtained with present local method. The obtained results at
different times are shown in Figure 1.



t= 840 t=11.20

Figure 1: Circular soliton: approximate solution in the form of sin(s/2) at t =0,
5.6, 8.5, and 11.2, in the domain Q with radius r =8, N = 3000.

5.2. Two solitons collision
Here we consider the interaction of two expanding solitons for the choice u(&,77) =1
and with the initial solutions

h(&m) =2 (&), hy(Em) =égi (&7) (18)
f,(£,m) = 4tan " ep[(4—(£+3)% + (£ 7)%)/0.436], (19)
and

9, n) = 4.13$ech[(4—\/(§i3)2 +(77i7)2 )/0.436]. (20)

We select N =5000 number of uniformly distributed interpolation points in the
circular domain Q of radius r=25. We solved the problem without using the
symmetry features that was used in the earlier work [Argyris et al (1991), Sheng, Q.et
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al. (2005); Dehghan, M. and Shokri, Ali. (2008)] for simulating the collision of two
circular solitons. We take the interpolation points in the whole computation domain to
demonstrate the robustness of local radial kernel method. This demonstrates the
capability and efficiency of the present method for solving large scale problem in
circular domain. The results of the present method are shown in Figure 2.

t= 4.00

t=0.00

t=10.00

Figure 2: Two solitons collision: the function sin(s/2), att = 0, 4, 8 and 10, in the
domain Q with radius r = 25, N = 5000.



5.3. Four expanding solitons collision
The collision of four expanding circular solitons are considered for the choice
u(&,m) =1, and with the initial solutions

hy (£,17) =z £,(£,77),h, (&,77) = zg ) (21)
f,(£,7) = 4tan " ep[(4—(£+7)? +(n+7)?)/0.436], (22)
and

g,(&n) = 4.13/cosh[(4—\/(é“_r7)2 +(n J_r7)2 )/0.436]. (23)

This problem is solved in the circular domain of radius r =25 with N =5000
uniformly distributed interpolation points. Again we are not using the symmetry
features used in the earlier work [Argyris et al (1991), Sheng, Q. et al. (2005);

Dehghan, M. and Shokri, Ali. (2008)]. The evolution of the four expanding solitons in
times are shown in Figure 3.

Figure 3: Four expanding solitons collision: the function sin(s/2), att =0, 4, 8 and
10, in the domain Q with radius r = 25, and N = 5000.



6. Conclusions

In this work we have constructed local kernel based numerical scheme for simulating
the two dimensional sine-Gordon equation. As contrary to the global based kernel
based methods [Dehghan, M. and Shokri, Ali. (2008)], the present local scheme
performed efficiently for large data points in complex shaped domain. The present local
method may be used to similar types of time-dependent partial differential equations in
irregular shaped domain.
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