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An unsteady double-diffusive natural convection flow in an inclined rectangular enclosure subject
to an applied magnetic field and heat generation parameter. The enclosure is heated and concen-
trated from one side and cooled from the adjacent side. The other two sides are adiabatic. The
governing equations have been solved numerically using a staggered grid finite-difference method
to determine the streamline, isotherm and iso-concentration patterns. We have further obtained
the local and average Nusselt numbers and local and average Sherwood numbers for various values
of buyancy ratio and angles of the magnetic field by considering three different inclination angles
of the enclosure while keeping the aspect ratio fixed. The results indicate that the flow pattern,
temperature and concentration fields are significantly dependent on the thermal radiation and the
magnetic field angles. It is found that different angles of the magnetic field suppress the convection
flow and its direction influences the flow pattern. This leads to the appearance of inner loop and
multiple eddies.

Keywords: Double- diffusive natural convection; Inclined rectangular cavity; Magnetic field angles;
Buoyancy ratio.

1. Introduction

The study of magnetic field effect and buyancy ratio on double diffusive natural convection
in a fluid-saturated cavity have received considerable attention in recent years due to its
wide variety of applications in engineering and technology processes such as solar energy
collection, nuclear reactor insulation, cooling of electronic devices, furnaces, drying tech-
nologies and crystal growth in liquids, etc. As the Lorentz force suppresses the convection
currents by reducing the velocities when the fluid is electrically conducting and exposed to
a magnetic field, a external magnetic field is used as a flow control mechanism in manu-
facturing industries. Rudraiah et al. (1995) studied the effect of a magnetic field on free
convection inside a rectangular enclosure. They found that a circular flow was formed with
a relatively weak magnetic field, the convection was suppressed and the rate of convective
heat transfer decreased when the magnetic field strength was increased. Garandet et al.
(1992) analyzed the effect of magnetic field on buoyancy driven convection in a rectangu-
lar enclosure. Sarris et al. (2005) examined two-dimensional unsteady simulations of MHD
natural convection of a liquid-metal in a laterally and volumetrically heated square cav-
ity. Mansour et al. (2010) studied the effects of an inclined magnetic field on the unsteady
natural convection in an inclined cavity filled with a fluid saturated porous medium con-
sidering heat source in the solid phase. Al-Najem et al. (1998) showed that an increase in
the Hartmann number causes reduction in the heat transfer rate from cavity sidewalls. Ece
and Biiytk (2006) found solutions for the velocity and temperature fields inside the rect-
angular enclosure and determined the effect of the strength and direction of the magnetic
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field, the aspect ratio and the inclination of the enclosure on the transport phenomena.
Later, Ece and Biiyiik (2007) investigated the steady natural convection flow in an inclined
square enclosure with differentially heated adjacent walls under the influence of magnetic
field. Jordan (2007) studied the effects of thermal radiation and viscous dissipation on MHD
unsteady free-convection flow over a semi-infinite vertical porous plate. He examined the
velocity, temperature, local skin-friction and local Nusselt number for various physical pa-
rameters like the Eckert number, magnetic number and suction (or injection). The effect of
heat-generation/absorbtion in an enclosure in the presence of magnetic field also plays an
important role in convective flows. Grosan et al. (2009) discussed the effects of magnetic
field and internal heat generation on the free convection in a rectangular cavity filled with
a porous medium. Thereafter, Mahapatra et al. (2013) numerically examined the effects of
buoyancy ratio and thermal Rayleigh number on double diffusive natural convection in a
cavity when boundaries are uniformly and non-uniformly heated and concentrated. Rahman
and Sharif (2003) investigated the laminar natural convection in differentially heated inclined
rectangular enclosures of various aspect ratios. Chamkha and Al-Naser (2001) considered
laminar double-diffusive convective flow of a binary gas mixture in an inclined rectangular
enclosure filled with a uniform porous medium. A numerical investigation of double-diffusive
laminar mixed convection in an inclined cavity has been studied by Teamah et al. (2011).
Wang et al. (2008) studied the natural convection heat transfer in an inclined porous cavity
with time-periodic boundary conditions numerically. Teamah et al. (2013) studied double-
diffusive convective flow in an inclined rectangular enclosure with the shortest sides being
insulated and impermeable. On the other hand, studies on the combination of radiative heat
transfer and heat generation with convection or conduction were intensified because the ef-
fect of the radiation heat transfer and heat generation is more important, particularly in the
presence of a participating medium and/ or radiative surfaces with large emissivities [Maha-
patra et al. (2012; 2011)]. Recent developments in hypersonic flights, missile reentry rocket
combustion chambers and gas cooled nuclear reactors have focused attention of researchers
on thermal radiation, heat generation and emphasize the need for inclusion of heat transfer
in these processes. Moufekkir et al. (2013) investigated double- diffusive natural convection
and radiation in an inclined cavity using lattice Boltzmann method. After that, Mahapatra
et al. (2013) studied mixed convection flow in an inclined enclosure under magnetic field with
thermal radiation and heat generation. They had studied the radiation and heat generation
effects in a inclined cavity with different magnetic field angle. Recently, Mondal and Sibanda
(2015) studied studied effects of buoyancy ratio on unsteady double-diffusive natural con-
vection in a cavity filled with porous medium with non-uniform boundary conditions.

Not much attention has been given to the study of the effects of the buoyancy ratio on dou-
ble diffusive natural convection flow when the magnetic field acts at different angles in an
inclined rectangular enclosure with heat generation and uniform boundary conditions (i.e.
the rectangular enclosure is heated and concentrated from the left vertical wall and cooled
from the top wall by keeping other walls in adiabatic state). The present study deals with the
effects of the buoyancy ratio on unsteady double-diffusive natural convection in an inclined
rectangular enclosure with different angle of magnetic field in presence of heat generation
parameter. The streamline pattern, isotherms, iso-concentrations, average Nusselt number
and average Sherwood number are presented graphically and in tabular forms.

2. Governing equations and boundary conditions

An unsteady-state flow in two-dimensional rectangular cavity of height H and length is L
as shown in Fig.1 is considered. The thermophysical properties of the fluid are assumed
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to be constant except the density variation in the buoyancy force, which is approximated
according to the Boussinesq approximation. This variation, due to both temperature and
concentration gradients, can be described by the following equation:

p:pO[l _/BT(T_TC) _ﬁC(C_Cc)]> (1)

where Sr and (¢ are the thermal and concentration expansion coefficients, respectively.
The angle of inclination of the enclosure with the horizontal line in the counter-clockwise

Adiabatic
T=Th, C=C h

Fig. 1. Geometry and the coordinate system.

direction is denoted by ¢. The magnetic field strength By is applied at an angle ¢ with
respect to the coordinate system. The right and the bottom walls are insulated and the
fluid is isothermally heated and cooled at the left and top walls with uniform temperature
of Ty, and T, respectively. The magnetic Reynolds number is assumed to be small and the
induced magnetic field due to the motion of the electrically conducting fluid is neglected
[Shercliff (1965)]. The Joule heating of the fluid and the effect of viscous dissipation are also
negligible.
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The governing equations under Boussinesq approximation are written as:
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The associated boundary conditions are

UX,00=U(X,H)=U(0,Y)=U(L,Y) =0, (7)
V(X,00=V(X,H)=V(0,Y)=V(L,Y) =0, (8)
T0,Y)=T,T(X,H) = or —(L,Y) = or —(X,0) =0, (9)
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Dimensionless variables used in the analysis are defined as,
at’ X Y H HU LV
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where, X and Y are the distances measured along the horizontal and vertical directions re-
spectively; U and V are velocity components in the X- and Y- directions respectively; T and
C denote the temperature and concentration respectively; v, a and D are kinematic viscos-
ity, thermal diffusivity and mass diffusivity respectively; p is viscosity; P is the pressure and
p is the density; Tj, and T, are the temperatures at the hot and cold walls respectively; Cj
and C, are the concentrations at the hot and cold walls respectively; C}, and @ are specific
heat at constant pressure and heat generation parameter.

The dimensionless governing equations are as follows :

ou Ov
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Here, dimensionless parameters are
Grr = gBr(Ty, — T.)L?/v*, Gre = gBs(Ch, — C.)L? /v?, Ha = LBy % (18)
Iz Gre QL
P=— N=—, = Pr,He = —. 1
o Grr Ra = GrpPr,He . (19)
Dimensionless boundary conditions are
u=0, v=0on x=0,1 and y=0,1. (20)
=1 on z=0 and 6=0 on y=1. (21)
(00/0z) = 0 and (96/9y) 0 0. (22)
r= y=
S=1 on z=0 and S=0 on y=1L1 (23)
(0S/0x) = 0 and (95/9y) 0 0. (24)
xr= Y=

Here, §, N, Le, Pr, Gro, Grp, o* and He are aspect ratio of the enclosure, buoyancy ratio,
Lewis number, Prandtl number, solutal Grashof number, thermal Grashof number, Stefan-
Boltzmann constant and heat generation parameter respectively.

Nu and Nuy are defined by,

Nu= —6%’ . and mH:(SfolNu dy.
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Fig. 2. Control volume for u-momentum, v-momentum, temperature and concentration equations.

2.1. Solution procedure and numerical stability criteria

A control-volume based finite-difference discretization of the continuity, momentum,
temperature and concentration equations is carried out using a staggered grid, popularly
known as MAC cell method. The velocity components u and v are evaluated at different
locations in the control volume whereas the pressure, temperature and concentration are
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evaluated at the same location of the control volume as shown in Fig. 2. We note from Fig. 2
that the velocity components u, v are stored at the mid point of the vertical and horizontal
faces respectively whereas the pressure, temperature and concentration values are stored
at the centre of the cells. In the MAC method we use different cells to discretize different
equations. For discretizing the continuity, temperature and concentration equations, we use
the cell ABCD in Fig. 2.

Now the iteration process is described to obtain the solutions of the basic equations with
appropriate boundary conditions. In the derivation of pressure-Poisson equation, the di-
vergence term at n-th time level (D}';) is retained and evaluated in the pressure-Poisson
iteration. It is done because the discretized form of divergence of velocity field, i.e, D}’ is not
guaranteed to be zero initially. The solution procedure starts with the initializing the veloc-
ity field. This is done either from the result of previous cycle or from the prescribed initial
and boundary conditions. Using this velocity field pressure-Poisson equation is solved using
Bi-CG-Stab method. Knowing the pressure field, equation for u—momentum, v—momentum,
temperature and concentration are updated to get u, v, and S at (n+1)th time level. Then
using the values of v and v at (n + 1)th time level, the value of the divergence of velocity
field is obtained and checked for its limit. If its absolute value is less than 0.5 x 10~° and
steady state is reached then iteration process stops, otherwise pressure-Poisson equation is
solved again for pressure.

Linear stability of fluid flow gives dt; < Min[%,%}, which is related to the con-
vection of fluid, i.e., fluid should not move more than one cell width per time step
(Courant, Friedrichs and Lewy condition). Also, from the Hirt’s stability analysis, we

2 2
have 0ty < Min{ﬁ.%] This condition roughly stated that momentum can-

not diffuse more than one cell width per time step. The time step is determined from
0t = FCT x [Min(5t176t2)}, where the factor FCT varies from 0.2 to 0.4. The upwind-

ing parameter § is governed by the inequality condition 1 > § > ]Wax[\%L |%|} As a
rule of thumb, S is taken approximately 1.2 times larger than what is found from the above
inequality condition.

3. Results and discussions

The working fluid in this study was chosen to be air with Prandtl number P, = 0.7, heat
generation parameter He = 1.0, Hartmann number Ha = 102, Lewis number Le = 1.0,
Grashof number Gry = 10* and aspect ratio § = 2. The inclination angle ¢ of the enclosure,
magnetic field angle ¢ in the enclosure and buoyancy ratio are such that 45° < ¢ < 135°,
45° < ¢ < 135° and —20 < N < 20 respectively.

Numerical results for the streamline, isotherm and iso-concentration contours inside the
inclined rectangular cavity, average Nusselt and average Sherwood numbers distribution at
the uniformly heated and concentrated surface of the inclined cavity for various values of
the angle of magnetic field (¢), buoyancy ratio (N) and inclination angle (¢) have been
examined and are presented graphically in Figures 3 - 8 and in tabular form in Tables 1 - 3.

In order to obtain a grid independent solution to the problem, a grid refinement study
is performed in Table 1 for P, = 0.7, Grp = 10*, Ha = 10?, § = 2, Le = 1.0, N = 1.0,
He =1.0, ¢ =45°, ¢ =45° and N = 1. It is important to note that as the number of grid
points are increased the value of | ¥,q. | increases. But when the number of grid points
increases from 80 x 80 to 160 x 160, no significant change is found in the value of | ¥paz |-
Hence, all the results are computed taking 80 x 80 grid points.

A comparison of the average Nusselt number at the hot wall in absence of concentration
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equation, thermal radiation parameter and heat generation parameter with same boundary
conditions and same values of all other parameters are made with [Mahapatra et al. (2013);
Ece and Biiyiik (2006)] for various values of ¢ and ¢ in Table 2. It is noted from this table
that a very good agreement has been obtained with the previously published results.

Table 3 shows the average Nusselt numbers and sherwood numbers for different values
of magnetic field angle ¢, inclination angle of the cavity ¢ and buoyancy ratio N when the
other parameters are fixed. It is seen from this table that when ¢ is fixed and N = 20,
the Nug is increases with increase in ¢. But Shy decreases from ¢ = 45° to ¢ = 90° and
afterthat opposite trend is observed. But when ¢ is fixed and N = 1, both Nuy and Shy
are increase with increase in ¢. Again, when ¢ is fixed and N = —20, both the Nuy and
Shy are decrease form ¢ = 45° to ¢ = 90° and after that the opposite trends are observed.
For any value of N both the Nuy and Shy are increased form ¢ = 45° to ¢ = 90° and
afterthat the opposite trends are observed when ¢ is fixed. Again this table shows that if ¢
and ¢ are fixed then the Nuy and Shy are decreased from N = 20 to N = 1 and after that
opposite trends are observed ( i.e., from N =1 to N = —20).

The numerical results for streamline, isotherm, iso-concentration contours are presented
in Figures 3 - 8 for uniformly heated and concentrated walls for different values of ¢, ¢
and N. The relative importance of thermal and solutal buoyancy forces is denoted by the
buoyancy ratio (N) and is defined as the ratio of the solutal buoyancy force to thermal
buoyancy force. This parameter is varied through a wide range —20 < N < 20; covering
the concentration-dominated opposing flow (N = —20), pure thermal convection dominated
flow (N = 0), and concentration-dominated aiding flow (N = 20). When N is sufficiently
small i.e, the mass buoyancy is greater than the thermal buoyancy, the buoyancy forces that
drive the fluid motion are mainly due to the gradients of temperature. Negative values of N
represent the opposing nature of two buoyancy forces, due to the negative coefficient of con-
centration expansion. In this limit, the so-called heat transfer driven flows, the distribution
of constituent does not influence the flow pattern and the heat transfer rate. When N =1,
the flow is steady; this is because in this case, the two buoyancies are equal to and oppose
each other. When N > 1, the flows driven by buoyancy due to solutal gradients where the
flow are mainly due to gradients of solute concentration. Clockwise and anticlockwise flows
are shown via negative and positive signs of stream functions, respectively.

Fig. 3 shows the effect of N on the streamlines, isotherms and as well as on the iso-
concentrations for wide range of variations in the buoyancy ratio (N) with uniformly heated
and concentrated wall when ¢ = 90° and ¢ = 45° for P, = 0.7, Gry = 10*, Ha = 102, § = 2,
Le = 1.0 and He = 1.0. When N = 20 the streamlines are concentrated near the hot wall.
Again when N = 1, as expected due to the cold fluids rise up from middle portion of the
bottom wall and flow down along the two vertical walls forming two symmetric rolls with
clockwise and anti-clockwise rotations inside the cavity. But, when N = —20 the streamlines
are covered whole cavity with forming two eddies in the centre of the cavity in anticlockwise
directions and the value of stream functions increases from the value of the stream functions
when N = 1 due to the the strong circulations of fluid. In this figure we can see the
isotherms are spreaded whole cavity when N = 20 but when N decreases the isotherms are
concentrated near the cold wall. As the value of N more decreases the isotherms are more
concentrated near the cold wall. The stronger circulation causes the temperature contours
to be concentrated near the cold wall which may result in greater heat transfer rate due to
convection. Again, in this figure we can see that iso-concentration contours are concentrated
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near edge of the hot wall and cold wall in one side and the edge of hot wall and adiabatic
wall on the other side. But, as the value of IV decreases from 20 to —20 the iso-concentration
contours of the one side of the cavity are dispersed towards the adiabatic wall this is due to
higher mass transfer rate.

Streamline, isotherm and iso-concentration contours for different values of N when P, =
0.7, Grp = 10*, Ha = 10?2, § = 2, Le = 1.0,He = 1.0, ¢ = 90° and ¢ = 90° with
uniformly heated and concentrated wall are displayed in Fig. 4. As the inclination angle
increases the streamlines forms a single eddy near the uniformly heated and concentration
wall with anticlockwise directions when N = 20. The center of the single eddy is slightly
shifted away from the heated wall towards the adiabatic wall as N decreases from 20 to 1.
Again, it interesting to note that for N = —20, the effect of solutal buoyancy force is in the
opposite direction of thermal buoyancy force. Therefore, it is noticed that the magnitude of
the thermal buoyancy force is very small compared to the solutal buoyancy force. For which
reason we can see the streamlines are in clockwise direction which is different from other
two figures of streamlines. As IV decreases the isotherms are dispersed towards the adiabatic
walls form the cold wall by dividing into two parts due to stronger heat transfer rate from
the heated wall. But as N decreases the iso-concentrations are concentrated to the hot wall.

Fig. 5 shows the effect of N on the streamlines, isotherms and as well as on the iso-
concentrations for wide range of variations in the buoyancy ratio (V) with uniformly heated
and concentrated wall when ¢ = 90° and ¢ = 135° for P, = 0.7, Gry = 10%, Ha = 102,86 = 2,
Le = 1.0 and He = 1.0. This figure shows that as buoyancy ratio decreases the streamlines
are concentrated near the hot wall due the convection. When N = 20 the isotherms are
concentrated near the cold wall. But, as as buoyancy ratio decreases the isotherms are
spreaded to the whole cavity. The iso-concentrations are mainly concentrated towards the
hot wall due to the mass transfer rate at the heated wall.

Streamline, isotherm and iso-concentration contours for different values of N when P, =
0.7, Gr =10*, Ha =102, 6 =2, Le = 1.0, He = 1.0, ¢ = 135° and ¢ = 45° with uniformly
heated and concentrated wall are displayed in Fig. 6. Comparing Figs. 3 and 6, it can be
said that the patterns of streamlines, isotherms and iso-concentrations are almost similar for
uniformly heated and concentrated cases except the streamlines for value of N = —20. Here,
when N = —20 the streamlines form a single eddy in the centre in anticlockwise direction.

Fig. 7 shows the effect of N on the streamlines, isotherms and as well as on the iso-
concentrations for wide range of variations in the buoyancy ratio (N) with uniformly heated
and concentrated wall when ¢ = 135° and ¢ = 90° for P. = 0.7, Gry = 10*, Ha = 102,
0=2,Le=10, N =10 and He = 1.0. Comparing Figs. 4 and 7, it can be said that the
patterns of streamlines, isotherms and iso-concentrations are almost similar for uniformly
heated and concentrated cases.

Fig. 8 depicts the effect of N on the streamlines, isotherms and as well as on the iso-
concentrations for wide range of variations in the buoyancy ratio (N) with uniformly heated
and concentrated wall when ¢ = 135° and ¢ = 90° for P. = 0.7, Grp = 10*, Ha = 102,
0 =2, Le = 1.0 and He = 1.0. Comparing Figs. 5 and &, it can be said that the patterns of
streamlines, isotherms and iso-concentrations are almost similar for uniformly heated and
concentrated cases.

4. Conclusion

The main objective of the current investigation is to study the effects of buoyancy ratio on an
unsteady double diffusive natural convection in an inclined rectangular enclosure with differ-
ent angles of magnetic field. As, the buoyancy ratio increases the boundary layer thickness
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becomes thinner. The change in the flow structure for high buoyancy ratio has a significant
influence on the concentration field. Formation of multiple eddies of counter-clockwise rota-
tions greatly influences the fluid flow. When N is sufficiently small i.e, the mass buoyancy
is greater than the thermal buoyancy, the buoyancy forces that drive the fluid motion are
mainly due to the gradients of temperature. Negative values of N represent the opposing
nature of two buoyancy forces, due to the negative coefficient of concentration expansion.
In this limit, the so-called heat transfer driven flows, the distribution of constituent does
not influence the flow pattern and the heat transfer rate. When N = 1, the flow is steady;
this is because in this case, the two buoyancies are equal to and oppose each other. When
N > 1, the flows driven by buoyancy due to solutal gradients where the flow are mainly due
to gradients of solute concentration.
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Table 1. Grid independence test when P. = 0.7, Gr = 104, Ha = 102, § = 2, Le = 1.0, He = 1.0, ¢ = 45°,
¢ =45° and N = 1.

Grid points Tter |Ymax|
20 x 20 34368 5.95110 x 102
40 x 40 131880 | 6.00418 x 102
80 x 80 530782 6.01884 x 10~2
160 x 160 1162672 | 6.01887 x 102

Table 2. Comparison of average Nusselt number Nug|z—o in absence of concentration equation, thermal
radiation parameter and heat generation parameter with same boundary conditions and same values of all
other parameters.

Nupr
> = 0° o = 45 © = 90°
b [Mahapatra et al.|Ece and Biiyiik,|PresentMahapatra et al.|Bce and Biyiik,PresentMahapatra et al. |Ece and Biyik,|Present,
(2013) (2006) Results|(2013) (2006) Results|(2013) (2006) Results
0°  [3.5350 3.6831 3.5350 [3.5354 3.6819 3.5354 [3.5356 3.6813 3.5356
—45°3.5363 3.6806 3.5363 [3.5366 3.6846 3.5366 [3.5363 3.6843 3.5363
45°  [3.5340 3.6780 3.5340 [3.5339 3.6820 3.5339 [3.5341 3.6806 3.5341
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Table 3. Computed values of Nug and Shy when P. = 0.7, Gr = 10*, Ha = 102, § = 2, Le = 1.0 and
He = 1.0 for various values of ¢, ¢ and N.

Buoyancy ratio Buoyancy ratio Buoyancy ratio
N =20 N=1 N =-20
P ¢ Nug Shy Nug Shy Nuy Shy
45° 1.94699 8.93750 | 1.67498 7.50946 1.88540 | 7.85743
45° 90° 2.11064 7.93526 | 1.68330 | 7.5132655 | 1.76858 | 7.57010
135° | 2.42024 8.52446 | 1.68626 7.51558 2.44834 | 8.40416
45° 2.65610 | 10.73437 | 1.67736 7.51126 2.19201 | 8.56903
90° 90° 2.66738 9.10950 | 1.70193 7.52637 1.88740 | 7.73783
135° | 3.00922 | 11.00129 | 1.71378 7.54384 3.00949 | 10.23665
45° 1.931679 | 8.37004 | 1.67510 7.50954 1.86995 | 7.96886
135° | 90° 2.12979 7.80844 | 1.68421 7.51211 1.84856 | 7.613725
135° | 2.46780 8.76437 | 1.68908 7.51589 2.42373 | 8.37702
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Fig. 3. Contour plots for P = 0.7, Gr = 10, Ha = 102, § = 2, Le = 1.0, He = 1.0, ¢ = 90°, ¢ = 45° for

different values of N.
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Fig. 4. Contour plots for Pr = 0.7, Gr = 10, Ha = 102, § = 2, Le = 1.0, He = 1.0, ¢ = 90°, ¢ = 90° for
different values of N.
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Fig. 5. Contour plots for P. = 0.7, Gr = 10%, Ha = 102, § = 2, Le = 1.0, He = 1.0, ¢ = 90°, ¢ = 135° for

different values of N.
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Fig. 6. Contour plots for P, = 0.7, Gr = 10*, Ha = 102, § = 2, Le = 1.0, He = 1.0, = 135°, ¢ = 45° for

different values of N.
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Fig. 7. Contour plots for P. = 0.7, Gr = 10%, Ha = 102, § = 2, Le = 1.0, He = 1.0, ¢ = 135°, ¢ = 90° for
different values of N.
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Fig. 8. Contour plots for P = 0.7, Gr = 104, Ha = 102, § =2, Le = 1.0, He = 1.0, ¢ = 135°, ¢ = 135° for

different values of N.



