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Abstract 

The paper introduces a coupling FEM-BEM procedure for solving elastodynamic frequency domain 

problems. Emphasis is given to infinite domain analyses, including discrete complex heterogeneous 

regions, rendering a configuration in which neither the Finite Element Method (FEM) nor the 

Boundary Element Method (BEM), isolated, is ideally suited for the complete numerical analysis. 

In this case, the coupling of these methodologies is recommended, allowing for the exploration of 

their respective intrinsic advantages. The elastodynamic multi domain interaction is carried out here 

by an optimized iterative coupling procedure. This coupling technique allows for independent 

discretization strategies, not even needing to include matching interface nodes between methods, 

leading to a best of both worlds approach. In addition, optimal relaxation parameters are computed, 

in order to improve convergence of the iterative procedure, properly dealing with possible 

frequency domain  ill-posed problems. 
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Introduction 

The numerical simulation of arbitrarily shaped continuous bodies subjected to harmonic or transient 

loads remains, despite much effort and progress over the last decades, a challenging area of 

research. In most cases, discrete techniques, such as the finite element method (FEM) and the 

boundary element method (BEM) have been employed and continuously further developed with 

respect to accuracy and efficiency. Both methodologies can be formulated in the time domain or in 

the frequency domain, and each approach has relative benefits and limitations. The finite element 

method, for instance, is well suited for inhomogeneous and anisotropic materials as well as for 

dealing with the nonlinear behaviour of a body. For systems with infinite extension and regions of 

high stress concentration, however, the use of the boundary element method is by far more 

advantageous.  

In fact, it did not take long until some researchers started to combine the FEM and the BEM in 

order to profit from their respective advantages, trying to evade their disadvantages, and nowadays 

several works dealing with FEM-BEM coupling are available (an overview is provided by [Beskos 

(2003)], taking into account dynamic analyses). However, Standard coupling procedures of 

FEM/BEM can lead to several problems with respect to efficiency, accuracy and flexibility. First, 

the coupled system of equations has a banded symmetric structure only in the FEM part, while in 

the BEM part it is non-symmetric and fully populated. Consequently, for its solution, the optimized 

solvers usually used by the FEM cannot be employed anymore, which leads to rather expensive 

calculations with respect to computer time. Second, quite different physical properties may be 
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involved in the coupled model, resulting in bad-conditioned matrices when standard coupling 

procedures are considered. This may affect the accuracy of the methodology, providing misleading 

results. Third, the standard coupling methodology does not allow independent discretization for 

each sub-domain of the model, requiring matching nodes at common interfaces, which drastically 

affects the flexibility and versatility of the technique.  

In order to evade these drawbacks, iterative coupling procedures have been developed. Initially, 

static problems were studied considering iterative coupling approaches, and linear and nonlinear 

behaviour have been simulated [Lin et al (1996)], [Elleithy et al (2001; 2009; 2012)], [Jahromi et al 

(2009)], [Boumaiza and Aour (2014)]. Later on, dynamic problems were focused, and time domain 

analyses were initially implemented [Soares et al (2004)], [Soares (2008; 2012)]. Recently, 

frequency domain iterative analyses have also been considered; but, in this case, most works are 

related to fluid-fluid or fluid-structure coupled models [Bendali et al (2007)], [Soares and Godinho 

(2012)], [Godinho and Soares (2013)]. For an overview of recent advances in the iterative analysis 

of coupled models considering time and frequency domain approaches, the work of [Soares and 

Godinho (2014)] is recommended. 

Iterative coupling approaches allow BEM and FEM sub-domains to be analyzed separately, leading 

to smaller and better-conditioned systems of equations (different solvers, suitable for each sub-

domain, may be employed). Moreover, a small number of iterations is required for the algorithm to 

converge and the matrices related to the smaller governing systems of equations do not need to be 

treated (inverted, triangularized etc.) at each iterative step, providing an efficient methodology. This 

coupling technique allows independent discretizations to be efficiently employed for the boundary 

and finite element sub-domains, without any requirement of matching nodes at the common 

interfaces. As a matter of fact, in the present work, constant boundary elements and linear finite 

elements are considered, and matching functional nodes are never provided in the common 

interfaces. It is important to observe, however, that frequency domain analyses usually give rise to 

ill-posed problems and, in these cases, the convergence of the iterative coupling algorithm can be 

either too slow or unachievable if no special procedure is taken into account. In order to deal with 

this ill-posed problem and ensure convergence of the iterative coupling algorithm, an optimal 

iterative procedure is adopted here, with optimal relaxation parameters being computed at each 

iterative step. Thus, an expression to compute optimal relaxation parameters, which is quite 

efficient and easy to implement, is provided and discussed, being its effectiveness illustrated at the 

end of the paper, where numerical examples are analyzed. In the numerical examples, soil-structure 

interacting models are discussed, being the results of the proposed iterative coupling formulation 

compared to those of the standard coupling technique. As one will observe, the proposed technique 

is flexible, robust and efficient, allowing a quite effective coupling of the finite element and 

boundary element methods for frequency domain elastodynamic analyses. 

Governing Equations 

The frequency domain elastic wave equation for homogenous media is given by: 

         (1) 

where  and  stand for the displacement and the body force distribution components, 

respectively. In Eq. (1),  is the dilatational wave velocity and  is the shear wave velocity, they 

are given by:  and , where   is the mass density and   and  are the 

Lamé’s constants.  stands for viscous damping related parameters. Eq. (1) can be obtained from 

the combination of the following basic mechanical equations (proper to model heterogeneous 

media): 

         (2a)  
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         (2b) 

         (2c) 

where  and  are, respectively, stress and strain tensor components, and  is the 

Kronecker delta . Eq. (2a) is the momentum equilibrium 

equation; Eq. (2b) represents the constitutive law of the linear elastic model and Eq. (2c) stands for 

kinematical relations. The boundary conditions of the elastodynamic problem are given by:  

         (3a)  

         (3b) 

where the prescribed values are indicated by over bars,  denotes the traction vector along the 

boundary and  stands for the components of the unit outward normal vector. 

Boundary Element Modelling 

The BEM integral equation related to the elastodynamic model is given by:  

         (4)  

where  depends on geometric aspects,  stands for possible domain integral 

contributions (such as body sources) and the terms  and  represent the 

fundamental displacement and traction, respectively (X is the field point and ξ is the source point). 

For a two-dimensional approach, the fundamental solutions can be found at [Dominguez (1993)].  

By introducing spatial approximations for the variables of the model into the integral Eq. (4), the 

following system of equations can be obtained, once proper numerical treatment is considered 

[Dominguez (1993)]:  

         (5)  

where ,   and   are influence matrices,   is a vector related to domain integrals and  and  are 

displacement and traction vectors, respectively, at frequency . After considering the boundary 

conditions of the problem (translating all the known variables to the right-hand-side of Eq. (5), and 

the unknown fields to the left-hand-side), the BEM responses for the elastic model can be computed 

for the given frequency . 

Finite Element Modelling 

The integral weak-form of the governing equations at section 2 can be written as:  

         (6) 

       

where  stands for a weight function, which is assumed to have null values in the essential 

boundary (i.e., ).  
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By introducing spatial approximations for the variables of the model into the integral Eq. (6), and 

by adopting these approximations to define the specified weight functions (Galerkin Method), the 

following system of equations can be obtained, once proper numerical treatment is considered 

[Bathe (1996)], [Hughes (2000)]:  

         (7)  

where ,  and  stand for the mass, damping and stiffness matrix of the model, respectively, and 

 and  stand for the nodal displacement and force vector, respectively. Matrices ,  and  are 

computed taking into account the first, second and third terms in Eq. (6), respectively, whereas 

vector  is computed taking into account the last two terms in the l.h.s. of Eq. (6) (for the stiffness 

matrix computation, Eqs. (2b)-(2c) are employed to relate the stress tensor with the displacement 

vector). After considering the boundary conditions of the problem, the FEM responses for the 

elastodynamic model can be computed for the given frequency , taking into account Eq. (7). 

Coupling Procedures 

In order to enable the coupling between the BEM and the FEM sub-domains of the model, an 

iterative procedure is employed here, which performs a successive renewal of the relevant variables 

at the common interfaces. The proposed approach is based on the imposition of prescribed 

displacement at the BEM sub-domain and of prescribed nodal forces at the FEM sub-domain. Since 

the two sub-domains are analysed separately, the relevant systems of equations are formed 

independently, before the iterative process starts, and are kept constant for each frequency along the 

iterative process. The separate treatment of the two sub-domains allows independent discretizations 

to be used on both parts, without any special requirement of matching nodes along the common 

interfaces. Thus, the coupling algorithm can be presented for a generic case, in which the interface 

nodes may not match, allowing exploiting this benefit of the iterative coupling formulation. 

To ensure and/or to speed up convergence, a relaxation parameter λ is introduced in the iterative 

coupling algorithm. The effectiveness of the iterative process is strongly related to the selection of 

this relaxation parameter, since an inappropriate selection for λ can significantly increase the 

number of iterations in the analysis or, even worse, make convergence unfeasible. At the end of the 

section, an optimal relaxation parameter is calculated, taking into account the coupled BEM-FEM 

frequency-domain formulation. 

Iterative coupling procedures 

Initially, in the  iterative step of the FEM-BEM coupling, the FEM sub-domain is analysed and 

the structure displacements at the common interfaces  (subscript  indicates the common 

interface, whereas f and b indicates finite and boundary element sub-domains, respectively) are 

computed, as described in section 4. In this case,  is evaluated taking into account 

prescribed nodal forces at the common interfaces , which are provided from the previous 

iterative step (in the first iterative step, null prescribed nodal forces are considered). Once  

is computed, it is applied to evaluate the essential boundary conditions that are prescribed at the 

common interfaces of the BEM sub-domains. More precisely,  is used to compute BEM 

displacements, as indicated below:  

         (8)  
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where  stands for a matrix representation of the Dirac's Delta function, employed here just to 

properly indicate the computation of the variables at the BEM nodes , and  stands for the 

BEM or FEM interpolation functions, according to the subscript  or , respectively. 

To better describe the proposed FEM-BEM coupling methodology, Figure 1 illustrates its 

application for the case of constant boundary elements and linear triangular finite elements.  

As previously discussed, in this work, relaxation parameters are considered in order to ensure 

and/or to speed up the convergence of the iterative process. Thus, the displacements that 

are calculated by Eq. (8) are actualized as follow:  

         (9)  

where λ stands for the relaxation parameter.  

BEM 
model

FEM 
model

Common interface

i

i+1

j

j-1

j+1

 
 

Figure 1. Detail of a portion of the FEM-BEM interface when linear triangular finite elements 

and constant boundary are used. In the figure, ,  and  are FEM interface nodes, 

while and  are BEM nodes. Displacements at BEM node  can be computed by 

interpolation of FEM displacements at nodes  and  (Eq. (8)); FEM nodal force in j can 

be calculated by integration of the traction along boundaries  and , using Eq. (10) 

and considering FEM linear and BEM piecewise constant shape functions along these 

boundaries. 

  

Once the BEM displacements at the common interfaces are computed, the BEM sub-domains can 

be analyzed, as described in section 3. As a consequence, the BEM tractions at the common 

interfaces are evaluated , allowing the computation of the natural boundary conditions that 

are prescribed at the FEM sub-domains at the next iterative step. This is carried out as indicated 

below:  

         (10)  

Once  is computed, the algorithm goes on to the next iterative step, repeating all the 

above described procedures, until convergence is achieved.  

As it is illustrated in section 6, a proper selection for λ at each iterative step is extremely important 

for the effectiveness of the iterative coupling procedure. In order to obtain an easy to implement, 

efficient and effective expression for the relaxation parameter computation, in the next sub-section 

optimal λ values are deduced.   
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Optimal relaxation parameter  

In order to evaluate an optimal relaxation parameter, the following square error functional is 

minimized here:  

         (11)  

where  stands for the BEM prescribed values at the common interfaces. 

Taking into account the relaxation of the prescribed values for the (k+1) and (k) iterations, Eq. (12a) 

and Eq. (12b) may be written, based on the definition in Eq. (9):  

         (12a)   

         (12b)  

Substituting Eqs. (12) into Eq. (11) yields:  

         (13)   

          

where the inner product definition is employed (e.g., ) and new variables, as defined 

in Eq. (14),  are considered.  

         (14) 

To find the optimal  that minimizes the functional , Eq. (13) is differentiated with respect to  

and the result is set to zero, as described below:  

         (15)  

Re-arranging the terms in Eq. (15), yields:  

         (16)  

which is an easy to implement expression that provides an optimal value for the relaxation 

parameter , at each iterative step. This expression requires a low computational cost, when 

compared to other alternatives that can be found in the literature (see, for instance, [Elleithy et al 

(2001)]). 

Additionally, one should keep in mind that the computed relaxation parameter is a complex number, 

since the problem is formulated in the frequency domain. This complex number computation could 

be ranged (e.g., imposing ), but the authors have observed that faster convergence is usually 

achieved in the iterative process if a non-restricted relaxation parameter selection, provided by Eq. 

(16), is considered. Moreover, although the authors found that the iterative process is relatively 

insensitive to the value of the relaxation parameter used for the first step, in all the cases discussed 

here, a real value of  is considered. 

Numerical Analysis 

In order to illustrate the performance and potentialities of the discussed techniques, two application 

examples are considered here, corresponding to a circular ring-shaped structure involved by an 
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infinite soil domain. Different material properties, as well as prescribed load/displacement 

configurations, are considered in the analyses. 

Ring-shaped structure inside an infinite elastic domain  

Consider a circular homogeneous ring-shaped elastic inclusion, inside a homogeneous and infinite 

elastic environment (see Fig. 2a). The external environment has a density of , 

Young's modulus of  and Poisson's ratio of  (no damping is considered). This 

elastic material allows dilatational and shear waves to travel at  and , 

respectively. The circular inclusion has an external radius of 3.0 m and an internal radius of 2.0 m 

and is made of the same elastic material of the external domain.  

 

 
  

(a) Sketch of the model (b) FEM discretization (c) BEM discretization 

 

Figure 2. Model’s sketch and discretization 

 

The external environment is discretized by boundary elements distributed uniformly along the 

common interface (straight boundary elements with constant interpolation functions are adopted); 

the ring structure is modelled by using linear triangular finite elements. Fundamental harmonic 

displacements are prescribed at the internal cavity of the ring structure, which are acquired by 

considering a horizontal Dirac’s delta force acting at the centre of the cavity. Thus, the analytical 

solution for the problem is known and it is provided by the model's fundamental solutions. 

First, the external environment is modelled using 40 boundary elements, while a total of 210 

elements (40 nodes at the interface) are considered at the finite element mesh. The corresponding 

FEM and BEM discretizations are illustrated in Fig. 2b and Fig. 2c, respectively.  

Fig. 3 illustrates the displacements computed at point A (see Fig. 2a), taking into account the 

proposed iterative coupling procedure, considering a frequency range from  to . 

Analytical answers and results computed taking into account a standard FEM-BEM direct coupling 

methodology are also depicted in Fig. 3, for comparison. As one can observe, the results provided 

by these different approaches are in good agreement. It is important to highlight that the coupled 

FEM-BEM results get closer to the analytical answers as the discretization of the model is refined.  
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(a) Real part (b) Imaginary part 

 

Figure 3. Vertical displacements at point A 

 

As a matter of fact, the convergence of the proposed technique is analyzed next, taking into account 

independent discretizations (and, as a consequence, no matching nodes at the common interface) for 

the FEM and the BEM. In order to do so, 4 discretizations for the BEM sub-domain and 4 

discretizations for the FEM sub-domain are focused, as described in Table 1 (as one may observe, 

meshes 2 are those depicted in Fig. 2). These different discretizations are combined among each 

other and the errors that arise (taking into account the analytical answer of the model) are depicted 

in Fig. 4. Three combinations are considered here, the first one considers the FEM mesh 4 (i.e., 160 

nodes on the FEM common interface) combined with all the focused BEM meshes. This 

combination is referred here as "FEM 160 - BEM". The second combination considers the BEM 

mesh 4 (i.e., 160 nodes on the BEM common interface) combined with all the focused FEM 

meshes. This combination is referred here as "BEM 160 - FEM".  Finally, standard node-to-node 

combinations (i.e., considering matching geometrical nodes at the common interface) of the BEM 

and FEM meshes are also considered, and this combination is referred here as "node - node". 
 

Table 1: Discretizations for the BEM and FEM sub-domains. 

 

BEM 

straight constant elements 

FEM 

triangular linear elements 

Mesh 1: 20 elements Mesh 1: 162 elements (20 elements at the interface) 

Mesh 2: 40 elements Mesh 2: 210 elements (40 elements at the interface) 

Mesh 3: 80 elements Mesh 3: 726 elements (80 elements at the interface) 

Mesh 4: 160 elements Mesh 4: 3436 elements (160 elements at the interface) 
 

 

The relative errors depicted in Fig. 4 are computed as follows:  

         (17)  

where  stands for the computed numerical displacement at point A and frequency ,  stands 

for the analytical answer at the same point and frequency, and  is the total number of frequencies 

considered in the analysis. 
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(a) Convergence analysis (error x 

discretization) 

(b) Efficiency analysis (error x CPU time) 

 

Figure 4. Error analysis 

 

As one can observe in Fig. 4a, convergence is achieved, even considering non-matching nodes at 

the common interface. As it can be further observed in Fig. 4a, the "BEM 160 / FEM" and the "node 

/ node" curves are very close, indicating that, in this case, a small amount of boundary elements are 

sufficient to properly discretize the model. On the other hand, better results are obtained considering 

the "FEM 160 / BEM" combination, which was expected, since refined FEM discretizations can 

better represent the prescribed boundary conditions of the model, providing more accurate analyses.   

In Fig. 4b, the computed errors are plotted against the CPU times of the analyses. As one can 

observe, considering matching nodes at the common interface, the iterative coupling procedure is 

usually more efficient than the standard direct coupling procedure (i.e., for a given CPU time of 

analysis, more accurate results can be obtained by the iterative procedure; or, for a given accuracy 

level, faster analyses can be provided by the iterative procedure). Moreover, as described in Fig. 4a, 

once proper discretizations are considered for each sub-domain of the model, even more efficient 

analyses may be achieved, highlighting the importance of a coupling procedure that allows flexible 

and independent discretizations of the involved sub-domains, taking into account non-matching 

nodes at the common interfaces.  

In order to further analyze the performance of the iterative coupling algorithm, the evolution of the 

optimal relaxation parameter and the convergence of the iterative process are briefly illustrated in 

Fig. 5. In Fig. 5a, the total amounts of iterative steps necessary for convergence are depicted, for 

each frequency, considering the spatial discretizations illustrated in Fig. 2. For comparison, results 

are also depicted considering a constant relaxation parameter value of 0.5. As one can observe, for 

higher frequencies (above 2500 Hz), convergence is not achieved if λ = 0.5 is adopted, highlighting 

the importance of Eq (16) for the effectiveness of the iterative coupling analysis. Moreover, for a 

constant value λ = 1.0, convergence is never achieved considering the entire adopted frequency 

range, further illustrating the importance of relaxation parameters in the iterative coupling 

technique. In Fig. 5b, the evolution of the optimally computed relaxation parameters (eq. 16) are 

illustrated, taking into account . As one can observe, its evolution is quite complex 

since it is based on residuals computed at consecutive iterative steps. 
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(a) Convergence of the iterative procedure (b) Evolution of the optimal relaxation 

parameter 

 

Figure 5. Convergence and optimal relaxation parameter evolution 
 

 

Ring-shaped structure inside an infinite elastic domain  

Consider, once again, a circular homogeneous ring-shaped elastic structure, inside a homogeneous 

and infinite soil environment. The external environment has a density of , Lamé 

constant  and Poisson's ratio of  (no damping). The tunnel structure is 

made of concrete and has an external radius of 3.0 m and an internal radius of 2.0 m. It has a density 

of , Young's modulus of  and Poisson's ratio of  (no damping). The 

structure is loaded as indicated in Figure 6a, i.e., the load is applied at the bottom of the concrete 

ring internal cavity, with constant amplitude of 850 kN/m. The corresponding FEM and BEM 

discretizations are illustrated in Figure 2b and 2c, respectively. In Fig. 6b and Fig. 6c, the computed 

deformation of the tunnel is illustrated, considering . 

 

 

  

(a) Sketch of the model 

 

(b) real part (c) imaginary part 

Figure 6. model’s sketch and scaled deformation of the tunnel for ω=500Hz 
 

Fig. 7 illustrates the displacements computed at point A (see Fig. 6a), taking into account the 

proposed iterative and a standard direct FEM-BEM coupling procedure, considering a frequency 

range from  to . As one can observe, the results provided by these different approaches are 

once again in good agreement, indicating that the iterative solution is converging to the right 

solution.  
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In Fig. 8a, the total amounts of iterative steps necessary for convergence are depicted, taking into 

account the selected frequency range. As one can note, for all tested frequencies, convergence 

occurred with a relatively small amount of iterations, with no more than 25 iterations being 

necessary at any of the tested frequencies. It is important to highlight that, for the present 

application, for λ = 0.5 and λ = 1.0, convergence is never achieved considering the entire adopted 

frequency range, further illustrating the importance of optimal relaxation parameters in the iterative 

coupling technique. In Fig. 8b, the evolution of the optimally computed relaxation parameters (Eq. 

16) are illustrated, taking into account . 
 
 

  

(a) Real part (b)  Imaginary part 

 

Figure 7. Vertical displacements at point A 
 

 

 

 

 

(a) Convergence of the iterative procedure (b) Evolution of the optimal relaxation 

parameter 

 

Figure 8. Convergence and optimal relaxation parameter evolution 

 

Conclusions 

A FEM-BEM iterative coupling algorithm was discussed here to analyze elastodynamic models, 

taking into account frequency domain formulations. In order to deal with this ill-posed problem, 

optimal relaxation parameters were introduced into the iterative coupling analyses, enabling 

convergence at a relative low number of iterative steps. An efficient and easy to implement 
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expression to compute the optimal relaxation parameters was discussed and tested, providing an 

effective and robust iterative coupling procedure.  

The use of iterative coupling approaches enables the separated analysis of different sub-domains, 

leading to better conditioned, smaller and easier to deal with systems of equations, as well as 

independent definitions of nodal points along distinct sub-domains, allowing non-matching nodes 

on common interfaces to be easily considered. In section 6 several results were presented, 

illustrating the versatility and effectiveness of the proposed procedure.  

As a matter of fact, the present methodology represents an important step forward in the analyses of 

wave propagation in frequency domain problems considering iterative coupling procedures, which 

are well-known ill-posed problems, specially taking into account sub-domains governed by 

different physical properties and discretized by different numerical techniques. 
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