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Abstract

The paper introduces a coupling FEM-BEM procedure for solving elastodynamic frequency domain
problems. Emphasis is given to infinite domain analyses, including discrete complex heterogeneous
regions, rendering a configuration in which neither the Finite Element Method (FEM) nor the
Boundary Element Method (BEM), isolated, is ideally suited for the complete numerical analysis.
In this case, the coupling of these methodologies is recommended, allowing for the exploration of
their respective intrinsic advantages. The elastodynamic multi domain interaction is carried out here
by an optimized iterative coupling procedure. This coupling technique allows for independent
discretization strategies, not even needing to include matching interface nodes between methods,
leading to a best of both worlds approach. In addition, optimal relaxation parameters are computed,
in order to improve convergence of the iterative procedure, properly dealing with possible
frequency domain ill-posed problems.
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Introduction

The numerical simulation of arbitrarily shaped continuous bodies subjected to harmonic or transient
loads remains, despite much effort and progress over the last decades, a challenging area of
research. In most cases, discrete techniques, such as the finite element method (FEM) and the
boundary element method (BEM) have been employed and continuously further developed with
respect to accuracy and efficiency. Both methodologies can be formulated in the time domain or in
the frequency domain, and each approach has relative benefits and limitations. The finite element
method, for instance, is well suited for inhomogeneous and anisotropic materials as well as for
dealing with the nonlinear behaviour of a body. For systems with infinite extension and regions of
high stress concentration, however, the use of the boundary element method is by far more
advantageous.

In fact, it did not take long until some researchers started to combine the FEM and the BEM in
order to profit from their respective advantages, trying to evade their disadvantages, and nowadays
several works dealing with FEM-BEM coupling are available (an overview is provided by [Beskos
(2003)], taking into account dynamic analyses). However, Standard coupling procedures of
FEM/BEM can lead to several problems with respect to efficiency, accuracy and flexibility. First,
the coupled system of equations has a banded symmetric structure only in the FEM part, while in
the BEM part it is non-symmetric and fully populated. Consequently, for its solution, the optimized
solvers usually used by the FEM cannot be employed anymore, which leads to rather expensive
calculations with respect to computer time. Second, quite different physical properties may be
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involved in the coupled model, resulting in bad-conditioned matrices when standard coupling
procedures are considered. This may affect the accuracy of the methodology, providing misleading
results. Third, the standard coupling methodology does not allow independent discretization for
each sub-domain of the model, requiring matching nodes at common interfaces, which drastically
affects the flexibility and versatility of the technique.

In order to evade these drawbacks, iterative coupling procedures have been developed. Initially,
static problems were studied considering iterative coupling approaches, and linear and nonlinear
behaviour have been simulated [Lin et al (1996)], [Elleithy et al (2001; 2009; 2012)], [Jahromi et al
(2009)], [Boumaiza and Aour (2014)]. Later on, dynamic problems were focused, and time domain
analyses were initially implemented [Soares et al (2004)], [Soares (2008; 2012)]. Recently,
frequency domain iterative analyses have also been considered; but, in this case, most works are
related to fluid-fluid or fluid-structure coupled models [Bendali et al (2007)], [Soares and Godinho
(2012)], [Godinho and Soares (2013)]. For an overview of recent advances in the iterative analysis
of coupled models considering time and frequency domain approaches, the work of [Soares and
Godinho (2014)] is recommended.

Iterative coupling approaches allow BEM and FEM sub-domains to be analyzed separately, leading
to smaller and better-conditioned systems of equations (different solvers, suitable for each sub-
domain, may be employed). Moreover, a small number of iterations is required for the algorithm to
converge and the matrices related to the smaller governing systems of equations do not need to be
treated (inverted, triangularized etc.) at each iterative step, providing an efficient methodology. This
coupling technique allows independent discretizations to be efficiently employed for the boundary
and finite element sub-domains, without any requirement of matching nodes at the common
interfaces. As a matter of fact, in the present work, constant boundary elements and linear finite
elements are considered, and matching functional nodes are never provided in the common
interfaces. It is important to observe, however, that frequency domain analyses usually give rise to
ill-posed problems and, in these cases, the convergence of the iterative coupling algorithm can be
either too slow or unachievable if no special procedure is taken into account. In order to deal with
this ill-posed problem and ensure convergence of the iterative coupling algorithm, an optimal
iterative procedure is adopted here, with optimal relaxation parameters being computed at each
iterative step. Thus, an expression to compute optimal relaxation parameters, which is quite
efficient and easy to implement, is provided and discussed, being its effectiveness illustrated at the
end of the paper, where numerical examples are analyzed. In the numerical examples, soil-structure
interacting models are discussed, being the results of the proposed iterative coupling formulation
compared to those of the standard coupling technique. As one will observe, the proposed technique
is flexible, robust and efficient, allowing a quite effective coupling of the finite element and
boundary element methods for frequency domain elastodynamic analyses.

Governing Equations
The frequency domain elastic wave equation for homogenous media is given by:
p{ccf — cf}u}-(}(, w) ;i + peiu (X, w) ;; + (w?p — iwvhu; (X, w) + b; (X, w) =0 1)

where U {X,@) and b: (X, @) stand for the displacement and the body force distribution components,
respectively. In Eq. (1), €< is the dilatational wave velocity and €= is the shear wave velocity, they
are given by: €2 =4 +21)/p and &5 = /P where P is the mass density and A and & are the
Lamé’s constants. ¥ stands for viscous damping related parameters. Eq. (1) can be obtained from
the combination of the following basic mechanical equations (proper to model heterogeneous
media):
o ; (X, w) ; + {p(X}m: - Im*u(X]}ui(X, w) +b;(X,w) =0 (2a)
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0; (X, w) = A(X)8; 5 (X, 0) + 2p(X)g;;(X, ) (2b)
Ez‘_:"':XJ w) = (1/2)(u,(X, ml}- + u}-(X, mlf} (2c)

where o;;(X,w) and =;;(X,w) are, respectively, stress and strain tensor components, and &;; is the
Kronecker delta (8;; = 1,fori =jand d; = 0,fori=). Eq. (2a) is the momentum equilibrium
equation; Eq. (2b) represents the constitutive law of the linear elastic model and Eq. (2c) stands for
kinematical relations. The boundary conditions of the elastodynamic problem are given by:

w(X,w) =i;(X,w)forX €D (3a)

(X, w) = 0;(X, wn;(X) = 7,(X, w) for X € T; (3b)

where the prescribed values are indicated by over bars, T: (X, @) denotes the traction vector along the
boundary and n;(X) stands for the components of the unit outward normal vector.

Boundary Element Modelling
The BEM integral equation related to the elastodynamic model is given by:

Ci}'(f}uj(& '5'-:'} = j u?}-(X; g, M}T}'(X.u '5'-:'} alr — J‘ T;}(X;f, m} u_;u'(X} al’ + ';z'(XF £, m}
r r 4)

where (&) depends on geometric aspects, S:(Xif,@) stands for possible domain integral

contributions (such as body sources) and the terms u; (X8, w) gng T8 @) represent the
fundamental displacement and traction, respectively (X is the field point and & is the source point).
For a two-dimensional approach, the fundamental solutions can be found at [Dominguez (1993)].
By introducing spatial approximations for the variables of the model into the integral Eq. (4), the
following system of equations can be obtained, once proper numerical treatment is considered
[Dominguez (1993)]:

CU(w) = G(w)T(w) — H(w)U(w) + S(w) (5)

where €, G and H are influence matrices, 5 is a vector related to domain integrals and ¥ and T are

displacement and traction vectors, respectively, at frequency «. After considering the boundary
conditions of the problem (translating all the known variables to the right-hand-side of Eq. (5), and
the unknown fields to the left-hand-side), the BEM responses for the elastic model can be computed

for the given frequency .

Finite Element Modelling

The integral weak-form of the governing equations at section 2 can be written as:

o j (0w, (X, w)w o (X)d0 + fw j VOO, (X, w0)w o (X)d0 +
: : ©)

+ j o;; (X, wIwy (X)) ;d + j b (X, wlwy (X)dn — J‘ T, (X, wlw, (X)dlM =0
o o it

where Wix(X) stands for a weight function, which is assumed to have null values in the essential
boundary (i.e., Wa(X) = 0for X e ),
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By introducing spatial approximations for the variables of the model into the integral Eq. (6), and
by adopting these approximations to define the specified weight functions (Galerkin Method), the
following system of equations can be obtained, once proper numerical treatment is considered
[Bathe (1996)], [Hughes (2000)]:

—w?MU(w) + iwCU(w) + KU(w) = F(w) (7

where M, € and K stand for the mass, damping and stiffness matrix of the model, respectively, and
U and F stand for the nodal displacement and force vector, respectively. Matrices M, € and K are
computed taking into account the first, second and third terms in Eq. (6), respectively, whereas
vector F is computed taking into account the last two terms in the Lh.s. of Eq. (6) (for the stiffness
matrix computation, Eqgs. (2b)-(2c) are employed to relate the stress tensor with the displacement
vector). After considering the boundary conditions of the problem, the FEM responses for the
elastodynamic model can be computed for the given frequency , taking into account Eq. (7).

Coupling Procedures

In order to enable the coupling between the BEM and the FEM sub-domains of the model, an
iterative procedure is employed here, which performs a successive renewal of the relevant variables
at the common interfaces. The proposed approach is based on the imposition of prescribed
displacement at the BEM sub-domain and of prescribed nodal forces at the FEM sub-domain. Since
the two sub-domains are analysed separately, the relevant systems of equations are formed
independently, before the iterative process starts, and are kept constant for each frequency along the
iterative process. The separate treatment of the two sub-domains allows independent discretizations
to be used on both parts, without any special requirement of matching nodes along the common
interfaces. Thus, the coupling algorithm can be presented for a generic case, in which the interface
nodes may not match, allowing exploiting this benefit of the iterative coupling formulation.

To ensure and/or to speed up convergence, a relaxation parameter A is introduced in the iterative
coupling algorithm. The effectiveness of the iterative process is strongly related to the selection of
this relaxation parameter, since an inappropriate selection for A can significantly increase the
number of iterations in the analysis or, even worse, make convergence unfeasible. At the end of the
section, an optimal relaxation parameter is calculated, taking into account the coupled BEM-FEM
frequency-domain formulation.

Iterative coupling procedures

Initially, in the & k™" jterative step of the FEM-BEM couplmg, the FEM sub-domain is analysed and

the structure displacements at the common interfaces fU ‘:“3' (subscript ! indicates the common
interface, whereas f and b indicates finite and boundary element sub-domains, respectively) are

computed, as described in section 4. In this case, fU ‘:“3' is evaluated taking into account

Fi

prescribed nodal forces at the common interfaces 7% 1 , which are provided from the preV|ous

iterative step (in the first iterative step, null prescribed nodal forces are considered). Once fU ‘:“3'
is computed, it is applied to evaluate the essential boundary condltlons that are prescribed at the

common interfaces of the BEM sub-domains. More precisely, fU ‘:“3' is used to compute BEM
displacements, as indicated below:

U () = j 8T(X— ,X) N U¥ (w)
r1 (8)



where & stands for a matrix representation of the Dirac's Delta function, employed here just to

properly indicate the computation of the variables at the BEM nodes %, and N(X) stands for the
BEM or FEM interpolation functions, according to the subscript & or f, respectively.

To better describe the proposed FEM-BEM coupling methodology, Figure 1 illustrates its
application for the case of constant boundary elements and linear triangular finite elements.

As previously discussed, in this work, relaxation parameters are considered in order to t?ﬂsure
(k+
and/or to speed up the convergence of the iterative process. Thus, the displacements sUr " that

are calculated by Eq. (8) are actualized as follow:
—w’MU(w)+ iwCU(w)+ KU(w) = F{w) (9)

where A stands for the relaxation parameter.

Common interface

Figure 1. Detail of a portion of the FEM-BEM interface when linear triangular finite elements
and constant boundary are used. In the figure, j — 1, j and j + 1 are FEM interface nodes,
while i and i + 1 are BEM nodes. Displacements at BEM node i can be computed by
interpolation of FEM displacements at nodes j — 1 and j (Eq. (8)); FEM nodal force in j can
be calculated by integration of the traction along boundaries I';_; ; and I ;.4, using Eq. (10)

»,

and considering FEM linear and BEM piecewise constant shape functions along these
boundaries.

Once the BEM displacements at the common interfaces are computed, the BEM sub-domains can

be analyzed, as described in §ection 3. As a consequence, the BEM tractions at the common
(le+1

interfaces are evaluated sTr allowing the computation of the natural boundary conditions that
are prescribed at the FEM sub-domains at the next iterative step. This is carried out as indicated
below:

I () = j ANT(X) ,N(Er T (w)
1 (10)

once #F EHI}(“} is computed, the algorithm goes on to the next iterative step, repeating all the
above described procedures, until convergence is achieved.

As it is illustrated in section 6, a proper selection for A at each iterative step is extremely important
for the effectiveness of the iterative coupling procedure. In order to obtain an easy to implement,
efficient and effective expression for the relaxation parameter computation, in the next sub-section
optimal A values are deduced.



Optimal relaxation parameter

In order to evaluate an optimal relaxation parameter, the following square error functional is
minimized here:

F = | U - bﬂﬁk}(ﬁ”: (12)

where s stands for the BEM prescribed values at the common interfaces.
Taking into account the relaxation of the prescribed values for the (k+1) and (k) iterations, Eq. (12a)
and Eqg. (12b) may be written, based on the definition in Eq. (9):

bU:;HU =(4) bU:;HM +(1-4) bUI;m (12a)
buik} =(4) bUi;kH_U +(1-4) buik_u (12b)
Substituting Egs. (12) into Eq. (11) yields:

Q) = ||(;|,}w*1k+ﬂ +(1-DWe ||2 _ )

= (22) || W02 + 2201 - D(WOD, W) + (1 - 2) 2 |[w||

where the inner product definition is employed (e.g.,(W. W) = lIWI*) and new variables, as defined
in Eq. (14), are considered.

( (e+A) (k+A-1)
Wikt — U, - ,U; (14)
To find the optimal 4 that minimizes the functional f (A, Eq. (13) is differentiated with respect to 4

and the result is set to zero, as described below:

A ||wiesd) ‘r(1-22) (Wil wid) 4 (3 — 1) || wie ‘Z0 (15)
Re-arranging the terms in Eq. (15), yields:
(W Wi — i)
T |l wR — e | (16)

which is an easy to implement expression that provides an optimal value for the relaxation

parameter 4, at each iterative step. This expression requires a low computational cost, when
compared to other alternatives that can be found in the literature (see, for instance, [Elleithy et al
(2001)]).

Additionally, one should keep in mind that the computed relaxation parameter is a complex number,
since the problem is formulated in the frequency domain. This complex number computation could
be ranged (e.g., imposing |4l = 1), but the authors have observed that faster convergence is usually
achieved in the iterative process if a non-restricted relaxation parameter selection, provided by Eq.
(16), is considered. Moreover, although the authors found that the iterative process is relatively
insensitive to the value of the relaxation parameter used for the first step, in all the cases discussed
here, a real value of 4 = 0.3 is considered.

Numerical Analysis

In order to illustrate the performance and potentialities of the discussed techniques, two application
examples are considered here, corresponding to a circular ring-shaped structure involved by an
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infinite soil domain. Different material properties, as well as prescribed load/displacement
configurations, are considered in the analyses.

Ring-shaped structure inside an infinite elastic domain

Consider a circular homogeneous ring-shaped elastic inclusion, inside a homogeneous and infinite
elastic environment (see Fig. 2a). The external environment has a density of 7:85 % 10° kg/m?
Young's modulus of 20,58 X 10%% N/m? 34 poisson's ratio of 0-2 (no damping is considered). This
elastic material allows dilatational and shear waves to travel at 2397,17 m/s gnd 3305,08 m/s

respectively. The circular inclusion has an external radius of 3.0 m and an internal radius of 2.0 m
and is made of the same elastic material of the external domain.

BEM

6m

o\
LT’ T S

(a) Sketch of the model (b) FEM discretization (c) BEM discretization

Figure 2. Model’s sketch and discretization

The external environment is discretized by boundary elements distributed uniformly along the
common interface (straight boundary elements with constant interpolation functions are adopted);
the ring structure is modelled by using linear triangular finite elements. Fundamental harmonic
displacements are prescribed at the internal cavity of the ring structure, which are acquired by
considering a horizontal Dirac’s delta force acting at the centre of the cavity. Thus, the analytical
solution for the problem is known and it is provided by the model's fundamental solutions.

First, the external environment is modelled using 40 boundary elements, while a total of 210
elements (40 nodes at the interface) are considered at the finite element mesh. The corresponding
FEM and BEM discretizations are illustrated in Fig. 2b and Fig. 2c, respectively.

Fig. 3 illustrates the displacements computed at point A (see Fig. 2a), taking into account the
proposed iterative coupling procedure, considering a frequency range from 100 to 5000 Hz
Analytical answers and results computed taking into account a standard FEM-BEM direct coupling
methodology are also depicted in Fig. 3, for comparison. As one can observe, the results provided
by these different approaches are in good agreement. It is important to highlight that the coupled
FEM-BEM results get closer to the analytical answers as the discretization of the model is refined.
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Figure 3. Vertical displacements at point A

As a matter of fact, the convergence of the proposed technique is analyzed next, taking into account
independent discretizations (and, as a consequence, no matching nodes at the common interface) for
the FEM and the BEM. In order to do so, 4 discretizations for the BEM sub-domain and 4
discretizations for the FEM sub-domain are focused, as described in Table 1 (as one may observe,
meshes 2 are those depicted in Fig. 2). These different discretizations are combined among each
other and the errors that arise (taking into account the analytical answer of the model) are depicted
in Fig. 4. Three combinations are considered here, the first one considers the FEM mesh 4 (i.e., 160
nodes on the FEM common interface) combined with all the focused BEM meshes. This
combination is referred here as "FEM 160 - BEM". The second combination considers the BEM
mesh 4 (i.e., 160 nodes on the BEM common interface) combined with all the focused FEM
meshes. This combination is referred here as "BEM 160 - FEM". Finally, standard node-to-node
combinations (i.e., considering matching geometrical nodes at the common interface) of the BEM
and FEM meshes are also considered, and this combination is referred here as “node - node".

Table 1: Discretizations for the BEM and FEM sub-domains.

BEM FEM
straight constant elements triangular linear elements
Mesh 1: 20 elements Mesh 1: 162 elements (20 elements at the interface)
Mesh 2: 40 elements Mesh 2: 210 elements (40 elements at the interface)
Mesh 3: 80 elements Mesh 3: 726 elements (80 elements at the interface)
Mesh 4: 160 elements Mesh 4: 3436 elements (160 elements at the interface)

The relative errors depicted in Fig. 4 are computed as follows:

_ [FEvD-u.Dr
v () -

where Uc stands for the computed numerical displacement at point A and frequency ¢, ‘Ua stands

for the analytical answer at the same point and frequency, and nf is the total number of frequencies
considered in the analysis.
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Figure 4. Error analysis

As one can observe in Fig. 4a, convergence is achieved, even considering non-matching nodes at
the common interface. As it can be further observed in Fig. 4a, the "BEM 160 / FEM™ and the "node
/ node" curves are very close, indicating that, in this case, a small amount of boundary elements are
sufficient to properly discretize the model. On the other hand, better results are obtained considering
the "FEM 160 / BEM" combination, which was expected, since refined FEM discretizations can
better represent the prescribed boundary conditions of the model, providing more accurate analyses.
In Fig. 4b, the computed errors are plotted against the CPU times of the analyses. As one can
observe, considering matching nodes at the common interface, the iterative coupling procedure is
usually more efficient than the standard direct coupling procedure (i.e., for a given CPU time of
analysis, more accurate results can be obtained by the iterative procedure; or, for a given accuracy
level, faster analyses can be provided by the iterative procedure). Moreover, as described in Fig. 4a,
once proper discretizations are considered for each sub-domain of the model, even more efficient
analyses may be achieved, highlighting the importance of a coupling procedure that allows flexible
and independent discretizations of the involved sub-domains, taking into account non-matching
nodes at the common interfaces.

In order to further analyze the performance of the iterative coupling algorithm, the evolution of the
optimal relaxation parameter and the convergence of the iterative process are briefly illustrated in
Fig. 5. In Fig. 5a, the total amounts of iterative steps necessary for convergence are depicted, for
each frequency, considering the spatial discretizations illustrated in Fig. 2. For comparison, results
are also depicted considering a constant relaxation parameter value of 0.5. As one can observe, for
higher frequencies (above 2500 Hz), convergence is not achieved if A = 0.5 is adopted, highlighting
the importance of Eq (16) for the effectiveness of the iterative coupling analysis. Moreover, for a
constant value A = 1.0, convergence is never achieved considering the entire adopted frequency
range, further illustrating the importance of relaxation parameters in the iterative coupling
technique. In Fig. 5b, the evolution of the optimally computed relaxation parameters (eq. 16) are
illustrated, taking into account @ = 3000 Hz, As one can observe, its evolution is quite complex
since it is based on residuals computed at consecutive iterative steps.
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Figure 5. Convergence and optimal relaxation parameter evolution

Ring-shaped structure inside an infinite elastic domain

Consider, once again, a circular homogeneous ring-shaped elastic structure, inside a homogeneous
and infinite soil environment. The external environment has a density of 1900 kg/m® | amg
constant & = 2.5 x 10 N/m? 304 poisson's ratio of 0-35 (no damping). The tunnel structure is
made of concrete and has an external radius of 3.0 m and an internal radius of 2.0 m. It has a density
of 2500 kg/m* voung's modulus of 25 * 10%° N/m? 54 poisson's ratio of 0-2 (no damping). The
structure is loaded as indicated in Figure 6a, i.e., the load is applied at the bottom of the concrete
ring internal cavity, with constant amplitude of 850 kN/m. The corresponding FEM and BEM
discretizations are illustrated in Figure 2b and 2c, respectively. In Fig. 6b and Fig. 6c, the computed

deformation of the tunnel is illustrated, considering « = 500 Hz,
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2.5315e-07 1.9819¢-08
A ‘ - 2.2914e-07 1.9352¢-08
4m
(a) Sketch of the model (b) real part (c) imaginary part

Figure 6. model’s sketch and scaled deformation of the tunnel for ®=500Hz

Fig. 7 illustrates the displacements computed at point A (see Fig. 6a), taking into account the
proposed iterative and a standard direct FEM-BEM coupling procedure, considering a frequency
range from 10 to 500 Hz, As one can observe, the results provided by these different approaches are
once again in good agreement, indicating that the iterative solution is converging to the right
solution.
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In Fig. 8a, the total amounts of iterative steps necessary for convergence are depicted, taking into
account the selected frequency range. As one can note, for all tested frequencies, convergence
occurred with a relatively small amount of iterations, with no more than 25 iterations being
necessary at any of the tested frequencies. It is important to highlight that, for the present
application, for A = 0.5 and A = 1.0, convergence is never achieved considering the entire adopted
frequency range, further illustrating the importance of optimal relaxation parameters in the iterative
coupling technique. In Fig. 8b, the evolution of the optimally computed relaxation parameters (Eq.

16) are illustrated, taking into account @ = 430 Hz,
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A FEM-BEM iterative coupling algorithm was discussed here to analyze elastodynamic models,
taking into account frequency domain formulations. In order to deal with this ill-posed problem,
optimal relaxation parameters were introduced into the iterative coupling analyses, enabling
convergence at a relative low number of iterative steps. An efficient and easy to implement
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expression to compute the optimal relaxation parameters was discussed and tested, providing an
effective and robust iterative coupling procedure.

The use of iterative coupling approaches enables the separated analysis of different sub-domains,
leading to better conditioned, smaller and easier to deal with systems of equations, as well as
independent definitions of nodal points along distinct sub-domains, allowing non-matching nodes
on common interfaces to be easily considered. In section 6 several results were presented,
illustrating the versatility and effectiveness of the proposed procedure.

As a matter of fact, the present methodology represents an important step forward in the analyses of
wave propagation in frequency domain problems considering iterative coupling procedures, which
are well-known ill-posed problems, specially taking into account sub-domains governed by
different physical properties and discretized by different numerical techniques.
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