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Abstract

Evidence theory has a strong capacity to deal with epistemic uncertainty, in view of
the overestimation in interval analysis, the responses of structural-acoustic problem
with epistemic uncertainty could be untreated. In this paper, a numerical method is
proposed for structural-acoustic system response analysis under epistemic
uncertainties based on evidence theory. To improve the calculation accuracy and
reduce the computational cost, the interval analysis technique and radial point
interpolation method are adopted to obtain the approximate frequency response
characteristics for each focal element, and the corresponding formulations of
structural-acoustic system for interval response analysis are deduced. Numerical
examples are introduced to illustrate the efficiency of the proposed method.
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Introduction

In the last two decades, with the increasing of people’s interest in the performance of
NVH (noise, vibration and harshness), researches on the structural-acoustic field have
been experienced a rapid development in engineering [1-3]. In most engineering cases,
the structural-acoustic problems have been analysed by Probabilistic methods, in
which the probability distribution, the boundary conditions and the external loads are
defined unambiguously. However, due to the effects of manufacturing/assembling
errors, original algorithm defect, imprecise environment factors and external
excitations, uncertainties associated with geometric tolerances, material properties



and boundary conditions are unavoidable [4,5]. Generally, uncertainty can be divided
into epistemic and aleatory categories based on the source of uncertainty. Epistemic
uncertainty is related to the incomplete knowledge or imprecise information in any
activity, which can be reduced by collecting more knowledge or experimental data.
Aleatory uncertainty, on the other hand, derives from inherent variation in a physical
system or environment, which is always regarded as random variables in probability
theory [6]. Numerous mathematical theories or methods are developed to deal with
the structural-acoustic problems under epistemic uncertainties, including possibility
theory, D-S evidence theory, Bayesian theory, interval analysis, p-box method,
Monte—Carlo method, spectral stochastic method, etc [7-9].

Among the approaches above, evidence theory seems to be more capable or more
flexible to define epistemic uncertainty in the practical engineering problems.
According to the D-S theory, it defines BPAs (basic probability assignment) to each
focal element, which can provide corresponding formulations as possibility theory.
Besides, the basic axioms in evidence theory can also deal with hybrid uncertainties
in which aleatory and epistemic uncertainties combined in a very natural way. Thus,
evidence theory has been widely used in artificial intelligence related fields and has
been extended to conduct engineering structures and mechanical systems design, and
reliability analysis, recently. The benefits and drawbacks of evidence theory in
reliability analysis were summed by Oberkampf and Helton through a simple
algebraic function [10]. An evidence-theory-based reliability analysis method was
developed by Jiang et al., in which the concept of focal element was proposed firstly
[11,12]. H. R. Bae proposed an efficient method based on evidence theory for
reliability analysis using a multi-point approximation [13,14]. Helton et al. combined
evidence theory with sampling-based sensitivity analysis when determining the
epistemic uncertainty in model inputs [15]. A non-probability convex model was
created by Elishakoff et al. to handle uncertain problems without sufficient
information [16]. Qiu et al. proposed an interval perturbation method for narrow
parameter intervals due to the unpredictable effect of neglecting the higher order
terms of Taylor series or Neumann series [17]. An exploration of evidence theory has
been conducted by J. C. Helton by using three uncertain quantification methods to
address the challenge problems at model predictions [18]. An evidence-theory-based
interval method was proposed by Rao et al. to analyse uncertain structural systems
[19]. The application of fuzzy set theory in finite element method had developed the
fuzzy finite element method (FFEM) for non-deterministic models [20-23]. Bae et al.
applied an efficient method under a multi-point approximation to process
evidence-theory-based reliability analysis [24,25]. The evidence theory and Bayesian
theory were used for decision-making problems to compare the effectiveness of
uncertainty quantification [26].

The response characteristics of structural-acoustic system is one of the hot points in
noise prediction, which is important for NVH performance in engineering design and
manufacturing [27]. From the works above, some inspiring progresses have been
made for the response analysis of structure-acoustic coupling system with epistemic



uncertainties and evidence-theory-based reliability analysis. However, from an
overall perspective, research on the hybrid uncertain analysis and response
characteristics of complex system are still at the very beginning. Moreover, some
crucial issues have not yet been solved [28]. Traditional numerical methods for the
structural-acoustic problems are possibility theory or FEM (Finite Element method)
in which the parameters are always regarded as random variables and the probability
distributions are defined unambiguously. This assumption would ignore the influence
of uncertainty and correlation in complex system [29].

In this paper, an evidence-theory-based radial point interpolation method (DSRPIM)
is proposed for structure-acoustic coupling system under epistemic uncertainties,
which can acquire the frequency response characteristics of complex system. The
remainder of this paper is organized as follows. In chapter 2, the fundamentals of
evidence theory are introduced. The equilibrium equation for structure-acoustic
coupling system is deduced in chapter 3. In chapter 4, DS-RPIM is proposed to
predict the frequency response characteristics of structural-acoustic problems. Two
numerical examples are investigated in chapter 5. In chapter 6, some conclusions are
given.

1. Evidence theory
1.1. Fundamentals of evidence theory

Evidence theory, also called as DS (Dempster-Shafer) theory, was firstly introduced
by Dempster through studying statistical problems in 1976. And further developed by
Shafer who defined probability to make it more suitable for general cases [30].
Compared with probability theory, evidence theory uses a prior probability
distribution to get a posterior evidence interval, which quantifies the belief and
plausibility of each proposition to handle the uncertainty in system response.

As probability theory, evidence theory firstly defines FD (a frame of discernment) ©,
which contains a set of mutually exclusive propositions. 2° is a non-blank finite set
that always denotes the power set of ®, which means all possible various propositions.
For example, if the frame of discernment ® includes three mutually exclusive
elementary propositions X;, X, and X3, the power set of ® can be illustrated as follows

2° = {@ X3 X3 X1 X0, X3 X0 X X, Xad X0, Xo, Xa 3 1)

In evidence theory, the probability is assigned not only to a single matter but also to
any subset of possible propositions. m: 2° — [0, 1], called as the BPAF (basic
probability assignment function) of ®, defines the elementary belief of each
proposition, which should satisfy the following three theorems

Theorem 1: m(A)>0 foranyAe?

Theorem 2: m(d) =0
Theorem 3: > 'm(A)=1

AcO



where m(A) represents the corresponding BPAs of A. And every set A satisfying
m(A)  ealbe defined as a focal element.

It is hard to construct a precise PDF (probability density function) for proposition A
because of the insufficient information or knowledge. Thus, it seems more reasonable
to provide a confidence interval instead of a deterministic value to depict the total
degree of belief in a proposition. In general, evidence theory uses the belief and
plausibility to quantify the lower and upper bounds of an interval [Bel(A), PI(A)],
which is defined as

Bel(A)= Y m(B) (VAcO) 2)
PI(A)= > m(B) 3
ANB=¢

where Bel: 2° — [0, 1] is called as belief which is obtained by adding the evidence of
propositions in A. Meanwhile, Pl: 2° — [0, 1] is the summation of BPAs that belong
to the propositions of A totally or partially, which is defined as the Plausibility
function of ©.

1.2. Characteristic function with interval variables based on DS theory

Considering a general function with g-dimensional independent variables
Y=1f(X) X, eX,i=12,...q 4)

Similar to the probability theory, the uncertain parameters are generally seen as
relatively independent and the joint frame of discernment S is defined as

S =Xy x Xy xx Xy ={8, =[X, X0 X, 1, X; € X, j=12,...,0} ®)

where s and x; represent the focal element of joint FD and the focal element of the jth
evidence variable, respectively. The joint BPAs can be expressed as

Tmx,)

m,(s,) =174 (6)
0, otherwise

In probability theory, the mean value E(X) and the evidence variable X' are
relatively independent. However, the evidence variable X! is an interval rather than

a deterministic value. Thus, E(X) and X/ are related rather than independent. Based

on the concepts mentioned above, considering the overestimation phenomenon in
interval analysis, the characteristic function of evidence variables are provided below
[31].



1.2.1. The relevant expectance E(X)

Through the analysis above, the relevant expectance E(X,) is expressed as

E(xi)zzn:x;/n (7)

J#
where n is the amount of evidence variables. X ; is the others except X .

1.2.2. The relevant variance D' (X)

Similar to the expectance E(X), the overestimation characteristics is also exited in the
variance D(X) calculation. To eliminate the phenomenon above, expanding the E(X),
the variance formula is defined as

DO = 30~ (X{mOK) + XEmOXD -+ XLmOX ) e x(mix))

+ X m(X] )+ X m(X )P m(X])

where X! is the ith evidence variable and m(X}) is the corresponding BPAs.

Obviously, D(X) changes with the change of X; in the interval [Bel(A), PI(A)]. Thus,

the relevant variance D (X) can be defined as

()= AN S e mex
D) =2 gy X X)) m(x)) ©)

J#i

where [ is the interval correction coefficient and its range is from 0.01 to 0.30. The
coefficient factor o is introduced to the relevant variance, which is expressed as

e n®—(1+B)n (10)
n(n-p)

So, the relevant variance formula is rewritten as
D'(X) =) (&X{ —E(X;))* m(X) (11)
i=1

1.2.3. The relevant covariance Cov (X, X,)

Similarly, the co-relevant expectance E (X,) is introduced for covariance Cov(X;,

X32), which is defined as



E(X;)=>X;m(X}) (12)
B
By introducing the coefficient factor & to covariance, the relevant covariance

Cov'(X,,X,) can be expressed as

Cov (X3, X5) = D > (6 Xy = E (X))(6, X35 = E (Xz))m(Xy X5) (13)
i=1 j=1
where 6, = -m(X;}), &,= m -m(X,;), € and g are the interval

1 2

combined coefficients whose range is from 0.01 to 0.25.

2. FEM/RPIM for structural-acoustic coupling system

In this paper, the coupled FEM/RPIM method is proposed to solve the
structural-acoustic field problem, in which the FEM/RPIM model is used to simulate

the plate structure and the acoustic medium. Due to the c, continuity characteristic

of fluid element, the Reissner-Mindlin plate is elected to the plate structure, in which
the normals to the mid-plane of the plate remain straight during the deformation[32].
And the acoustic medium satisfies the linear constitutive equations which is assumed
to be inviscid and incompressible. On the interface of the plate and the acoustic
medium, only the acoustic medium exerts the normal loads on the plate and the
normal displacement of the plate is just coupled with the acoustic medium[33].

2.1. FEM/RPIM model of the plate structure

In the frequency domain, without considering structural damping, the steady-state
dynamic equation Galerkin weak form of the plate structure can be defined as

I&KT D, xdQ2 + J.5}/T D dQ+ I ou' pto’ ,u dQ
Q Q Q (14)
+ [5ut,dS ~[ qu"h,dQ =0

oQ Q

where u is the displacement, ,u is the acceleration, p is the material density, t is the

thickness of plate element, ts is the surface loading plate structure and bs is volume
force, respectively.

y and x are the plate shear strain and bending strain, respectively, which can be

expressed as:



ow . ow
y=[&—9x a—y—Gy]T (15)
00, 06, _ a6, 29,

Il (16)

K=[- -

OX oy oy  oX

D; and Dy, are the transverse shear stiffness constitutive matrix and the bending plate
stiffness constitutive matrix, respectively, which are written as:

1
D, = Etv |10 (17)
21+v)|01
i |
£ 1 v O
D= v 1 0 (18)
12(1-v?) .
0 0 v
i 2

where E is the Young’s modulus, v is the Poisson’s ratio and v=5/6 is the shear
correction factor, respectively.

B
From EQs.(15-18), we can get that {K} = [Bb} 4, the steady-state dynamic equation
|4

S

of the plate structure is defined as
Ku-Mu=F, +F, (19)
where K denotes the plate stiffness matrix which is given as
K=K, +K; = (B,) D,B,dQ+] (B,) D,B,dQ (20)

Ky denotes the the bending stiffness matrix, K denotes the shear stiffness matrix, M
denotes the plate element mass matrix, M is defined as

3

M= pQTdiag[;—Z ;—2 tJQdo 21)

F; and F, are the surface load matrix and a volume force array, which are expressed
as

Fo=[ Qtds (22)



F, = IQ Q'b,dO (23)

2.2. FEM/RPIM model for the acoustic medium

In the engineering application, the fluid is generally regarded as compressible and
inviscid which is seen to undergo small translational movement[34]. Considering an

acoustic field problem with domain . and boundary T, the speed of sound c

and the field acoustic pressure p are provided, the acoustic wave equation is defined
as

-0, in Q (24)

where A is the Laplace operator, p is the field acoustic pressure, ¢ and t are the
speed of sound traveling in the fluid medium and its time, respectively.

The boundary condition of acoustic field is written as

Vp.n=0 on Fo
(25)
where n denotes the boundary surface normal to the acoustic fluid domain.

On the interface between the plate structure and the acoustic medium, the momentum
balance requires that

Vpn=—pu; On € (26)

where p is the density of acoustic medium, ;, is the normal acceleration component

of acoustic fluid on the interface and €2; is the interface between the plate structure
and acoustic fluid.
If the acoustic pressure p is regarded as a time harmonic variable, the Eq.(24) can be
re-written as

Vip+kip=0 (27)
where k=w/c represents the wavenumber, e is the angular frequency, ¢ denotes the
sound speed.

The smoothed Galerkin weak form for acoustic problems can be expressed as



. P
- VT.VWPdQ+i2j Y¥PAQ-p[  WP.u, dr-| vp Dgn-0 (28)
/o) c?do oW /9! ot

whereq, is the additional load of unit volume andw expresses the shape function

matrix of FE-RPIM.

For numerical computation, the acoustic wave equation should be discretized by
using the Radial Point Interpolation method[35]. This leads to the discreted equation
of node sound pressure p which is re-written as

p:szipi:NfP (29)
=)

where p is the vector of nodal pressure, m expresses the number of nodal variables

per element, and N, denotes the FE-RPIM shape function of fluid domain.

By substituting Eq.(29) into Eq.(28), the matrix form equation of acoustic domain can
be obtained as

K,p+M,p=F, (30)
where K, is the acoustic stiffness matrix and it can be expressed as
K, = B, B,dO (31)

B, denotes the smoothed gradient matrix that is defined as

q’l‘x q’z‘x YlM,x
B, =¥, ¥, . Y., (32)
y’l,z YIZ,Z yIM,z

M, is the acoustic mass matrix and it is written as

M, =i2j P PdO (33)
c Q
p denotes the nodal pressure of the acoustic domain, which can be expressed as

p:{pl’pZ""!pn}T (34)



F, and F, are the vectors of nodal acoustic forces that are given as

F,=p [Wwdr (35)
Qg
0
Fo=f W %dQ (36)

2.3. Coupled FEM/RPIM for structural-acoustic problem

Considering that the structural domain €2 coupled with fluid domain £2: on the
interface €2 , the boundary conditions of structural-acoustic coupling system are
denoted by 7, , 77, and 7y which are illustrated in Fig.1. In this section, the coupled
FEM/RPIM equation is proposed for structural-acoustic problem.

N
// T f

Figure 1. Schematic illustrating of the structural-acoustic system

The fluid particle and the structure move in the normal direction of the interface are
written as

usns :ufnf (37)

where n is the normal vector, us is the displacement of structure on the interface and
us is the displacement of fluid contacting the structure.

On the interface, based on the continuity and equilibrium conditions, we obtain that

n=n{=-n[36]. The fluid force loading on the structure Fs can be expressed as

F. =J'st N!n.o.dT, Zjas, NIn, pdT,

qj'g N;andef)p (38)

The structural force loading on the fluid F; is also expressed as

10



Fi=—p [Nfu dl =—p [Nfu,dl
Qg Qg

(39)
=—p([Nfn,N,dr)u,
Qy
The spatial coupling matrix H can be defined as
H=| N.,n/N,dS (40)

Qst

By substituting the Eq.(40) into Eq.(38) and Eq.(39), the equations are rewritten as

F=Hp NN -=-pH'U[ (41)

Thus, the governing equation for coupled structure-acoustic system is expressed as

Y AR e R @

Assuming that the displacement and pressure are all time-harmonic[37], Eq.(42) can

be rewritten as
K —o’M -H u ] | F
po*H™ K, —o®M, || p| |F (43)

To simplify the process of analyzing the FE/RPI equation of the structural-acoustic
system[38,39], we rewrite Eq. (43) into the following form

ZU =F (44)

where Z is the structural-acoustic dynamic stiffness matrix, U is the response vector
and F is the external excitation vector which can be expressed as

,_|K-oM  -H U=[u p]', F=[F. F] (45)
= , :uS , = s
po’HT K, —o’M, P f

3. DS-FE/RPIM for epistemic uncertainty structural-acoustic problem

Discretizing the structural-acoustic coupling system, the discretization form of the
structural-acoustic dynamic stiffness matrix Z and the external excitation vector F can
be rewritten as

N

ZN:Ki_wziMi -2 Hq
R ]

i=1 i

o o e -, NA
P [szi] zKﬁ szfi
i1 i1 i1

Z (46)

11



F :{i Fy i Fqt (47)

where N denotes the number of plate elements and NA denotes the number of
acoustic field elements, respectively.

According to D-S evidence theory, the FPD of the dynamic stiffness matrix and the
external excitation vector in evidence focal element are expressed as

N

0Z(Xi) _| = 8X | = 0K, (48)

X pa)z[z—ﬁ]T i fi zz
i1 OX Xy

i=1

z Z (49)

where X is the interval variable which denotes the kth focal element of the ith
evidence variable.
Combined with the interval perturbation theory, ignoring the higher order

perturbation[40], the approximate formula of node pressure response is defined as

pir: = (ZiT)il Filin (50)

Apilk = (Ziil?)_l (AF'I _Azilk Pi)

:(Z_m)—l AX aI:(Xlk) aZ(Xlk) Ae (51)
§ - aXik aXik Ik

where pr is the node pressure and Ae'=[-1, 1].
According to Eq.(51), the estimated value of Ap! interval radius is expressed as

aI:(Xlk) aZ(Xlk) p

52
X, - (62)

Apik = ‘(Zirl?)le

‘(Zlk )71Ax

12



Based on the value range of evidence vector, under the effects of the evidence
variable Xi, the upper and lower bounds of the node pressure response value pr

can be write as
Pi = Pix +AD, (53)

pit = pink1 — APy (54)

By substituting Eqg.(53) and Eq.(54) to Eq.(7), the expectance interval of the
steady-state sound pressure response can be expressed as

E(p)’ =YD RV I (55)

E(p) =Y YR/ (56)

where | is the number of the evidence variables and n denotes the number of focal
elements, respectively.

By substituting Eqs.(53-56) to EQ.(9), the deviation interval of the sound pressure
response is expressed as

D(p)" Z(Zn_‘,(n (1+£)np.‘;—E(p)”)2mu) (57)
D(p)* -zé(” (“/g)” oE—E(p)H)2m,) (58)

4. Numerical example

In this section, a 3D structural-acoustic problem is provided to verify the approach
mentioned above. A square flexible plate model coupled with the acoustic field of
dimensions 500x500x500mm is depicted in Fig.2. The plate structure is discretized
by 144 four-node quadrilateral elements and the acoustic field is discretized by 1152
eight-node hexahedron elements. The acoustic field is surrounded by five rigid walls
and a flexible plate. The plate is excited by a unit normal harmonic point force at the
middle point and the boundary conditions for it are: w = 0, and 6, and 6, are free at
the edges.

13
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Figure 2. A cubic structural-acoustic coupling model

The density ps and the Poisson’s ratio v of the plate are 2.5x10° kg/m3 and 0.37,
respectively. The sound speed of the air in the acoustic field c is 346m/s. The Young’s
modulus and the thickness of the plate, the density of the air in the acoustic field are
considered to be the independent uncertain parameters which are treated as evidence
variables. To compare with the probability method, assumed that the evidence
variables are the truncated normal distribution: ,u(E)=21><1O4Mpa, ¢(E)=0.84x10*

Mpa, u(p)=1.30 kg/ma, o-(pf):0.03kg/m3 and u(®)=1.25mm, a(t)=0.05mm. The BPA
of uncertain parameters with 4, 8 and 16 focal elements are given in Table 1.
Simulations of the cubic structural-acoustic coupling model are carried out by
MATLAB R2009a on a 3.30 GHz Xeon(R) CPU E3 1230 v3.

Table 1. The BPA for uncertain parameters with 4, 8 and 16 focal elements

focal E (10° MPa) pi (kg/m®) t (mm)

elements focal element BPA focal element BPA  focal element BPA
[18.50,19.75] 6.69 [1.21,1.26] 6.55 [1.10, 1.18] 6.55

4 [19.75,21.00] 43.16 [1.26,1.30] 43.30 [1.18,1.25] 43.30
[21.00,22.25] 43.16 [1.30,1.34] 4330 [1.25,1.33] 43.30
[22.25,23.50] 6.69 [1.34,1.39] 6.55 [1.33, 1.40] 6.55
[18.50,19.13] 1.13 [1.21,1.23] 1.08 [1.10,1.14] 1.09
[19.13,19.75] 556 [1.23,1.26] 545 [1.14,1.18] 5.46
[19.75,20.38] 16.00 [1.26,1.28] 1598 [1.18,1.21] 15.97
[20.38,21.00] 27.16 [1.28,1.30] 27.34 [1.21,1.25] 27.33

8 [21.00,21.63] 27.16 [1.30,1.32] 27.34 [1.25,1.29] 27.33
[21.63,22.25] 16.00 [1.32,1.35] 1598 [1.29,1.33] 15.97
[22.25,22.88] 5.56 [1.35,1.37] 5.45 [1.33, 1.36] 5.46
[22.88,23.50] 1.13 [1.37,1.39] 1.08 [1.36, 1.40] 1.09
[18.50,18.81] 0.31 [1.21,1.22] 0.30 [1.10, 1.12] 0.29
[18.81,19.13] 0.82 [1.22,1.23] 0.79 [1.12, 1.14] 0.78

16 [19.13,19.44] 1.86 [1.23,1.24] 1.82 [1.14,1.16] 1.82
[19.44,19.75] 3.69 [1.24,1.26] 3.64 [1.16,1.18] 3.64
[19.75,20.06] 6.38 [1.26,1.27] 6.35 [1.18, 1.19] 6.35

14



[20.06,20.38] 9.62 [1.27,1.28] 963  [1.19,1.21] 9.63
[20.38,20.69] 12.65 [1.28,1.29] 1271 [1.21,1.23] 1272
[20.69,21.00] 14.52 [1.29,1.30] 14.61 [1.23,1.25] 14.62
[21.00,21.31] 1452 [1.30,1.31] 14.61 [1.25,1.27] 14.62
[21.31,21.63] 12.65 [1.31,1.32] 1271 [1.27,1.29] 12.72
[21.63,21.94] 962 [1.32,1.33] 963 [1.29,1.31] 9.63
[21.94,22.25] 638 [1.33,1.35] 6.35 [1.31,1.33] 6.35
[22.25,22.56] 3.69 [1.35 1.36] 3.64 [1.33,1.34] 3.64
[22.56,22.88] 1.86 [1.36,1.37] 1.82 [1.34,1.36] 1.82
[22.88,23.19] 0.82 [1.37,1.38] 079 [1.36,1.38] 0.78
[23.19,2350] 031 [1.38,1.39] 0.30 [1.38 1.40] 0.29

The relevant expectance and standard deviation of the sound pressure response at the
points with the distances of 50mm, 100mm, 150mm, 200mm, 250mm, 300mm,
350mm, 400mm, 450mm and 500mm are calculated. In Fig. 3, the results of
frequency 100 Hz are depicted. The lower and upper bounds of the relevant
expectance and standard deviation of the sound pressure response at the Point 1 with
the distance of 400mm in the frequency range of 20 to 200 Hz are plotted in Fig. 4.
The results obtained by the Monte Carlo method with 100000 samples are used as the
reference. From Fig. 3 and Fig. 4, when the uncertain parameters are treated as
evidence variables, the relevant expectance and standard deviation of the sound
pressure response are intervals. Besides, the lower and upper bounds of the relevant
expectance and standard deviation contain the reference. With the number of focal
elements increasing, the width of the expectance and standard deviation will be
decreased. Because of each evidence variable follows the truncated normal
distribution in which the BPA of focal element is the cumulative probability
distribution in the corresponding interval. With the amount of information increasing,
the evidence uncertainty could be reducible. Thus, the analysis results will more
approach to the probability computational results with more BPAs in a certain interval
range. In the numerical example, the precision and effectiveness of the proposed
approach for structural-acoustic fields with epistemic uncertainty is validated by
comparing the analysis results with evidence variables to the probability
computational results.

— 4 focal elements (lower)

of the sound

The standard devie

50 100 150 200 250 300 350 400 450 300 50 100 150 200 250 300 350 400 450 500
Coordinate x/mm Coordinate x/mm

Figure 3. Bounds of the relevant
expectance and standard deviation of the sound
pressure response with 4, 8 and 16 focal elements (100Hz)
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Figure 4. Bounds of the relevant expectance and standard deviation of the sound
pressure response at the Point 1 under 4, 8 and 16 focal elements (20 - 200 Hz)

Assuming that x is an evidence variable and X denotes the sound pressure response,
the belief Bel (X < x) and the plausibility Pl (X < x) of the sound pressure response at
the Point 2 for the frequency 100 Hz are depicted in Fig. 5. The probability density
function (PDF) of probability computational results obtained by the Monte Carlo
method with 100000 samples are also regarded as the reference. From Fig.5, the
PDFs are surrounded by the Bels and the Pls. Furthermore, with the number of focal
elements increasing, the width between Bel and PI will be decreased which further
indicates the precision and effectiveness of the proposed method.

o 1.0 5
Z
T 0.8r -
I
2
Z0.6F -
= —4 focal elements (P1)
9 —8 focal elements (P1)
S 0.4 —16 focal elements (P1) :
= Monte Carlo (PDF)
Cf —16 focal elements (Bel)
= 0.2F 8 focal elements (Bel)
Eé —4 focal elements (Bel)
5.3
0

L [ | |
0.35 0. 39 0. 43 0. 47 0.51 0.55 0.59 0.63
Sound pressure response p/Pa

Figure 5. Cumulative probability distribution of the sound pressure response
at the Point 2 (100Hz)

Conclusions

In this paper, an evidence-theory-based approach is proposed for structural-acoustic
problem with epistemic uncertainty. The evidence theory is used to handle the
epistemic uncertainty in which there is no enough information or sufficient
knowledge to construct the precise probability distribution for uncertain parameters.
The numerical example of a plate structure-acoustic coupling system is investigated.
The conclusions are as follows:
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(1) The overestimation phenomenon, which derives from the correlation between
parameters, is widely existent in the analysis of complex systems. The proposed
method is suggested to overcome the characteristic of overestimation. The results of
the numerical example shows that the proposed approach is much more efficient than
the original method as the focal elements increases. Therefore, we can control the
form, size and quantity of focal element to improve the analytical accuracy in
practical applications.

(2) The relevant expectance, standard deviation and probability density distribution
of sound pressure response are intervals not deterministic values. As the amount of
information and knowledge increasing, the epistemic uncertainty could be eliminated.
In other words, the bandwidths of the relevant expectance, standard deviation and
probability density distribution of sound pressure response will be narrower which
means the analysis results will more approach to the probability computational
results.

It should be noted that this paper is focused on the epistemic uncertainty. In practical
engineering problems, epistemic uncertainty and aleatory uncertainty may exist
simultaneously. Thus, in further research, on the one hand, the hybrid evidence
variables and random variables involved in structural-acoustic field will be
investigated. On the other hand, the proposal method could be widely applied in
engineering fields, such as dynamic thermal field analysis, thermal-coupling field
analysis, heat-pressure field analysis and so on.
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