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Abstract 

Metamaterial is a designed material, having some exotic phenomena in resonating frequency range, 
such as negative properties. This is often achieved through resonant electromagnetic, acoustic or 
mechanical structures inside the metamaterial. Mechanical metamaterials have a comprehensive 
range of applications in sound, vibration and seismic engineering. However, the effectiveness of 
metamaterials is limited to a relatively narrow frequency band as they are generally based on linear 
resonance mechanisms. These linear metamaterials do not perform well under the broadband 
excitation spectra that are common in real life applications. Towards the first step to widen the 
bandwidth of the metamaterial, different classes of nonlinear oscillations, namely Duffing type 
monostable and bistable, and piecewise linear, are studied in non-dimensional way and compared 
with each other, to identify the best one according to resonating bandwidth increment. A straight-
forward time history based iterative methodology FRSFTI is developed to get the frequency 
amplitude plot of a nonlinear system without employing any approximate perturbation method. The 
frequency-amplitude plot from this method shows a good agreement with the conventional 
perturbation method at the resonating frequency range; moreover, this method enables to compute 
the response away from the resonating range. From the analysis it can be concluded that the 
bandwidth increment of bistable Duffing type oscillator is largest compared to others.  

Keywords: Nonlinear metamaterial, Mechanical metamaterial, Nonlinear oscillation, Bandwidth 
comparison, Multi-stability, Steady state response, Non-dimensional analysis 

Introduction 

Metamaterials are generalized composites that can exhibit unconventional behaviors and responses 
that are not commonly encountered in natural materials [Banerjee, B. (2011)], such as negative 
properties. This is often achieved through resonant electromagnetic [Lei, Z. (2008); Willis, J. R. 
(2011)], acoustic [Lee, S. H. et al. (2009); Huang, H. H. and Sun, C. T. (2012); Pai, P. F. et al. 
(2014); Sun, H. et al. (2014)] or mechanical structures inside the metamaterial. Mechanical 
metamaterials extensively used in the field of sound, vibration and seismic engineering. However, 
as they are generally based on linear resonance mechanisms, their effectiveness tends to be limited 
to a relatively narrow frequency band. These linear metamaterials do not perform well under the 
broadband excitation spectra that are common in real life applications.  
Nonlinearity has a potential to widen the bandwidth of oscillator-based metamaterials by exploiting 
features, such as sub- and super-harmonic resonances, period multiplication, and chaotic response. 
Nonlinear metamaterials have already been studied in the context of electromagnetic wave 
propagation [Lapine, M. et al. (2014)], but to date the applicability of nonlinear metamaterials in 
other fields has received little attention. On the other hand, nonlinear oscillation and its effect on 
bandwidth have been well studied in the context of energy harvesting. Vibration of a ferromagnetic 
beam [Holmes, P. (1979); Moon, F. and Holmes, P. J. (1979); Erturk, A. and Inman, D. J. (2011)] 
or a beam with tip magnet [Stanton, S. C. et al. (2009); Zhou, S. et al. (2014)] in the presence of 
magnetic field can show monostable and bistable Duffing type oscillation depending on the position 
of magnets. Similarly, bistable and monostable oscillation can be found in the case of transverse 
[Sneller, A. J. et al. (2011); Cottone, F. et al. (2013); Andò, B. et al. (2014)] and axial [Masana, R. 
and Daqaq, M. F. (2011); Cottone, F. et al. (2012); Masana, R. and Daqaq, M. F. (2012)] vibration 
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of post and pre-buckled beams, respectively. Transverse vibration of Euler spring systems 
[Winterflood, J. et al. (2002); Zhang, G. et al. (2013)] or inclined springs systems can also result in 
bistable oscillations. Comparative studies between bistable and monostable harvesters show that the 
output power and the bandwidth exhibited a greater increase during bistable chaotic response 
[Masana, R. and Daqaq, M. F. (2011); Daqaq, M. F. et al. (2014)]. Ferrari et al [Stanton, S. C. et al. 
(2010); Ferrari, M. et al. (2011)] have shown that as the slope of the inner wall of the potential well 
becomes steeper, the system performs like a monostable system, and the response of the system is 
reduced.   
As a first step towards the development of a nonlinear mechanical metamaterial, the behaviors of 
three types of nonlinear oscillators are examined in non-dimensional form. The oscillators under 
consideration are characterized by the shape of their potential energy well, namely cubic 
monostable, cubic bistable, and piecewise linear, as shown in Figure 1. 
 

 

Figure 1 Potential well of typical bistable, monostable and linear system 

Figure 1 shows that in a monostable system the potential well has only one stable point; whereas, 
the bistable system has two stable points and one saddle node. Displacement range is the peak to 
peak deflection of the system, as shown in Figure 1. It can be seen that the displacement range of a 
monostable resonator is less than that of linear and bistable oscillators, although due to the presence 
of sub- and super-harmonic resonances the monostable resonator can also generate a wider resonant 
bandwidth. On the other hand, the displacement range of a bistable oscillator is higher compared to 
other oscillators at high potential energy, but for lower energy vibration (below the sepratix), the 
displacement range is considerably reduced. The main objective of this paper is to investigate the 
effect of the steepness of the inner wall of the potential well and the relative distance between the 
stable nodes on the bandwidth for bistable systems and also compare that with monostable and 
piecewise type systems. The amplitude of the non-dimensional velocity in response to 
monochromatic excitation is determined and used to infer the bandwidth over which its response is 
greater than that of an equivalent linear oscillator. Thus, in this paper a comparative study is carried 
out to determine the bandwidth of monostable, bistable, piecewise linear system with that of a linear 
system.  

Methodology 

Linear oscillator 

Equation of motion of linear oscillation can be written as  

 2 singu u u t      (1) 

where u and uare the displacement and acceleration of the system, gu is the base excitation,   and 

 are the natural frequency and excitation frequency of the system, respectively.  
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To non-dimensionalize Eq.(1), we set  u Ax  and t   . So, the modified Eq.(1) is  
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Now, introducing a nonlinear stiffness term  in Eq.(2) the nonlinear oscillation equation can be 
formulated.  

Duffing type monostable cubic nonlinear system 

Monostable Duffing oscillation is a common example of nonlinear oscillation. Vibration of a 
ferromagnetic beam under the influence of magnets [Ferrari, M. et al. (2010); Kang-Qi, F. et al. 
(2014)], axial and transverse vibration of a pre-buckled beam [Min, G.-B. and Eisley, J. G. (1972)] 
result in cubic monostable Duffing type nonlinearity. By introducing a nonlinear stiffness term  in 
Eq.(2), the equation of motion of a typical monostable Duffing oscillator can be written as: 
 2 2 3 singu u r u u t        (3) 

where r is ratio of the nonlinear spring constant to the linear spring constant. To non-dimensionalize 

Eq.(3),  u Ax  and t    substitutions are considered. So, the modified form of Eq.(3) is: 
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shows that the non-dimensional nonlinear spring constant 

 
is directly 

proportional to the ratio of nonlinear to linear spring constant and the square of the amplitude of the 
acceleration input, and inversely proportional to the fourth power of the natural frequency of the 
system.  

 

Figure 2 Plot of non-dimensional nonlinear spring constant    with natural frequency    
and 

excitation amplitude  gu  for a constant value of ratio of spring coefficient (r) 

From Figure 2, it can be seen that the non-dimensional spring coefficient increases parabolically 

with the amplitude of vibration  gu , and is much higher at low natural frequencies.  

The restoring non-dimensional force (F) and potential energy (U) can be expressed as: 
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Duffing type bistable cubic nonlinear system 

Bistable Duffing oscillation is another common form of nonlinear oscillation. Vibration of 
ferromagnetic beam under the influence of magnets [Stanton, S. C., McGehee, C. C. et al. (2010); 
Ferrari, M., Baù, M. et al. (2011)], axial and transverse vibration of post-buckled beam [Virgin, L. 
and Davis, R. (2003); Ibrahim, R. A. (2008); Camescasse, B. et al. (2013)], vibration of Euler 
spring system [Winterflood, J., Barber, T. A. et al. (2002); Ibrahim, R. A. (2008); Huang, X. et al. 
(2014)], result in cubic bistable Duffing type nonlinearity. Unlike monostable oscillation, bistable 
Duffing equation has two stable nodes and one saddle node. The non-dimensional bistable Duffing 
equation can be written as: 

  3 sinx x x      (6) 

So the restoring force (F) and the potential energy (U) can be expressed as: 
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Now at the stable nodes the restoring force must be 0. So, the location of the stable node can be 

calculated as 
1

eqx


  . If the minimum value of potential well is assumed to be zero, then the 

value of c is: 
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The different shapes of the potential well are plotted for various values of  .  

Piecewise linear system 

In the piecewise linear system, the restoring force varies with the distance linearly up to a certain 
range. Thereafter due to impact with stopper, the slope of the restoring force curve changes 
significantly, but still remains linear. As the restoring force curve consists of different straight lines, 
this type of system is commonly known as a piecewise linear system. Vibro-impacting devices 
[Soliman, M. S. M. et al. (2008); Vandewater, L. and Moss, S. (2013)], where stoppers are placed at 
some distance from the stable point of the beam, are an example of this type of oscillator. The 
impact between the stopper and the beam creates the nonlinear term. The equation of motion of 
piecewise linear system can be written as: 
  2 sin ; 0gu u u u g         (9) 

The Eq.(9) can be written in non-dimensional form by considering,  u Ax  , t    and 

2

gu
g g





 . 

  sin ; 0x x x g      (10) 

The restoring force  F and the potential energy  U can be expressed as: 
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Identification of parameter 

To compare the bandwidth of these different systems, their frequency response must be computed 
for a range of oscillator parameters. In linear systems, the amplitude corresponding to a specific 
excitation frequency of motion is conventionally solved because this is sufficient to completely 
describe the vibration. On the other hand, as there may be no linear correlation among all the 
parameters in nonlinear systems, displacement amplitude does not fully describe the oscillator 
dynamics. In this paper, the non-dimensional velocity amplitude max( )x is used to describe the 
response, because it can represent not only the maximum velocity, but also the maximum 
momentum and the maximum kinetic energy of the system, which have greater significance in the 
context of metamaterials. The amplitude of the velocity of monochromatic excitation of frequency 
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 
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. The non-

dimensional momentum  P of the system can be expressed as the ratio of the momentum 

 P Mu 
 
and the input momentum corresponding to system  sP , in Eq.(12).  
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Solution 

The frequency content of a signal is generally a more important parameter than its time history, 
because the corresponding response to a particular frequency can be easily calculated by 
convolution. In linear systems Fourier transformation of the equation of motion produces its 
frequency response directly; whereas in nonlinear systems Fourier transformation is not applicable 
[Cameron, T. M. and Griffin, J. H. (1989)]. In order to determine the frequency response of a 
nonlinear system, several methods have been developed mainly based on perturbation techniques. 
The harmonic balance (HB) method [Nayfeh, A. H. and Mook, D. T. (2008)] is the most popular 
and widely used technique to determine the frequency response of a nonlinear system [Beléndez, A. 
et al. (2007); Beléndez, A. et al. (2009); Cochelin, B. and Vergez, C. (2009); Wang, X. et al. 
(2012); García-Saldaña, J. D. and Gasull, A. (2013); Karkar, S. et al. (2013)]. The HB method is 
adequate where only single harmonic description is sufficient, as it is in the case of weakly 
nonlinear systems. Among the techniques that can deal with strong nonlinearity, alternating 
frequency/time (AFT) method [Cameron, T. M. and Griffin, J. H. (1989)], homotopy method [Liao, 
S. (2004); Vyasarayani, C. P. et al. (2012)] and the max-min method [He, J.-H. (2008); Azami, R. et 
al. (2009); Ibsen, L. B. et al. (2010)] have gained popularity. 
In this paper a simple time domain based iterative method, an in house program (FRSFTI), is 
developed to compute the frequency response of a particular nonlinear system. To apply the 
method, a frequency domain of interest needs to be first defined. The program FRSFTI enables the 
user to control the number of steps and discretize the frequency domain into finite number of input 
excitation frequencies. Sinusoidal excitation of each frequency is applied to a specific system to 
calculate its response. To reduce the frequency leakage and the aliasing, a sine wave of fifty cycles 
is considered in the analysis [Lynch, S. (2011)]. The ODE45 solver of MATLAB version 8.4 
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[Mathworks, Natick, MA] is used to solve the equation of motion for a particular monochromatic 
excitation. An event identifier is amalgamated with the ODE in response to the case of a piece-wise 
linear system, to locate the occurrence of impact and restart integration with new initial values. 
Then, maximum of velocity (  max x )is plotted for the corresponding frequency to obtain the 

frequency response because according to Eq.(12) it can represent the non-dimensional momentum 
which is the most important parameter in metamaterial. As the method is based on time domain 
solutions, there are certain advantages of this method over existing methods, such as 

 No stabilization check is required and it results in a single output for a particular frequency; 
whereas the HB method results in a sixth order correlation between the amplitude and 
frequency. [Nayfeh, A. H. and Mook, D. T. (2008)].  

 It can solve any type of nonlinearity or discontinuity; whereas perturbation methods are 
approximate and sometimes cannot deal with high level of nonlinearity or discontinuity 
[Nayfeh, A. H. and Mook, D. T. (2008)]. 

 As every frequency excitation is applied to the system, the method can work in every 
frequency range; whereas, most of the perturbation methods can only work near the 
resonating frequency or some specific sub or super harmonics. 

 The method is programmable, so rigorous mathematical calculations are not needed. 
To compare the bandwidth increment of three different classes of nonlinear oscillators, in each case 
the initial condition is assumed to be the stable node to ensure the initial potential energy is zero. 
That is why, initial condition is assumed to be (0,0) for the linear, monostable and piecewise linear 

system; whereas for bistable condition the initial condition is  1 ,0 . Maximum non-

dimensional velocity  max x is considered as the comparing parameter. Figure 3 shows the flow 

chart of the full process.  
 

 

Figure 3 Steps for frequency-amplitude plot 
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Results and Discussions  

Monostable cubic nonlinear system 

The potential well and the restoring force profile of the monostable system for varying nonlinearity 
is plotted in Figure 4, based on Eq.(5).   

 

Figure 4 a) Potential energy well and b) restoring force of a linear and a monostable cubic 
nonlinear system for three level of nonlinearity 

Figure 4 shows the variation of potential energy and the restoring force of a linear and a monostable 
cubic nonlinear system for three different levels of nonlinearity. The potential well becomes steeper 
and the restoring force shows hardening behavior as the nonlinearity increases. The resulting 
frequency response is shown in Figure 5. 

 

Figure 5 Frequency response of the maximum non-dimensional velocity  x  that relates to the 

amplitude of non-dimensional momentum of linear and monostable systems of varying nonlinearity 

From Figure 5 it can be concluded that the resonance peak shifts to a higher side and its amplitude 
reduces as nonlinearity increases. Due to the presence of sub and super harmonic resonances, 
amplification is observed in the low frequency range.  The frequency response of monostable 
systems is generally less than the equivalent linear system.   

Bistable cubic nonlinear system 

The potential well and the restoring force profile of bistable system for varying nonlinearity is 
plotted in Figure 6, based on Eq.(7).  
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Figure 6 a) Potential energy well and b) restoring force of a linear and a monostable cubic 
nonlinear system for three levels of nonlinearity 

Figure 6 shows the variation of potential energy and the restoring force of a linear and a bistable 
cubic nonlinear system for three different levels of nonlinearity. It can be noted that the stable nodes 
approach closer with increasing level of nonlinearity. Negative stiffness resulted at the region 
between two stable nodes as shown in Figure 6. The distance between the outer walls of potential 
wells decreased with increment of nonlinearity, hence the motion confined between two walls. 
Simultaneously, the energy required to overcome the sepratix barrier decreases with nonlinearity, 
which enables the motion to overcome the sepratix barrier easily and results a bistable motion. 
Therefore, an optimum level of nonlinearity should exist where the maximum response can be 
obtained in the case of bistable systems.  

 

Figure 7 Frequency response of the maximum non-dimensional velocity  x  that relates to the 

amplitude of non-dimensional momentum of linear and bistable systems of varying nonlinearity 

Figure 7 shows that the nonlinear system’s response (maximum non-dimensional velocity) is above 
the equivalent linear response over a considerable range of frequencies. The increased response is 
particularly marked at low frequencies, which of significant practical interest, and upon 
examination this frequency range is found to be greatest for 0.5  among the three nonlinear 
systems. Bistable systems with high nonlinearity show much higher response in the low frequency 
range because the energy required to cross the sepratix barrier is less.  
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 Piecewise linear system 

The potential well and the restoring force profile of piecewise linear system for varying gap 
distance is plotted in Figure 8, based on Eq.(11). 

 

Figure 8 a) Potential energy well and b) restoring force of a linear and a piecewise linear system 
for three level of nonlinearity 

Figure 8 shows that the potential well and the restoring force of a piecewise linear system, such as a 
vibro-impacting device, are the same as those for a linear system until the point of impact, 
whereupon a large impacting force is suddenly applied.  

  

Figure 9 Frequency response of the maximum non-dimensional velocity  x  which represents the 

amplitude of non-dimensional momentum of linear and bistable systems of varying nonlinearity 

Figure 9 shows that the nonlinear system’s response (maximum non-dimensional velocity) is above 
the equivalent linear response over a considerable range of frequencies. Figure 9 shows a 
remarkable increase in the frequency response at low frequency range and at a frequency ratio  
around 2. Due to the impact, the motion path reduces which shifts the frequency towards   2. 
When the displacement of the system is more than the gap distance then impact happens, otherwise 
for non-impacting case the frequency response curve follows the linear response curve. That is why 
the systems having large gap yields very less bandwidth and almost follows the linear path.  

Bandwidth 

To compare the bandwidth of these three nonlinear systems considered with that of an equivalent 
linear system, the frequency range is divided into two main categories: the low range when the 
frequency ratio is
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frequency ratio
 
is above the linear resonant frequency (η > 1). The low and high ranges are further 

subdivided into two parts, the nonlinearity dominated range (NLD) and the linearity dominated 
range (LD). In the NLD range, the maximum momentum of the nonlinear system is greater than that 
of the linear one; whereas, in the LD range the linear response is higher than the nonlinear one. A 
bandwidth index (BWI) for each system at different ranges, such as low, high and overall, is 
calculated based on the ratio: 

 
NLD

BWI
LD

  (13) 

The bandwidth comparison of all the proposed systems is given in Table 1. 

Table 1 Summary of nonlinearity-dominated frequency range (non-dimensional) and the associated 
bandwidth index (BWI) for three different types of nonlinear systems 

Type of 
nonlinearity 

Level of 
nonlinearity 

Frequency band increment  
Low range High range Overall 

  NLD (η) BWI NLD (η) BWI NLD (η) BWI 
Monostable   = 0.1 0.28 0.39 2.02 2.06 2.30 1.31 

  = 0.5 0.27 0.37 1.86 1.63 2.13 1.14 
  = 2.0 0.20 0.25 1.88 1.67 2.08 1.08 

Bistable   = 0.1 0.57 1.34 2.86 19.83 3.43 5.99 
  = 0.5 0.76 3.10 2.78 12.89 3.54 7.70 
  = 2.0 0.63 1.69 2.67 8.15 3.30 4.71 

Piecewise g  = 2.0 0.69 2.25 1.07 0.55 1.76 0.79 

g = 0.5 0.62 1.66 1.64 1.21 2.27 1.31 

g = 0.1 0.65 1.87 1.94 1.84 2.60 1.85 

Remarks 

From the above discussion the following remarks can be made: 
 The relative magnitude of the nonlinear term is proportional to the square of amplitude of 

excitation and the ratio of nonlinear to linear stiffness, and inversely proportional to the 
forth power of natural frequency of the system. The strength of the nonlinearity increases 
rapidly as the frequency of excitation decreases.  

 In a monostable system, the potential well becomes stiffer with increasing nonlinearity. The 
nonlinearity dominated bandwidth in the low frequency range is lower than that of the linear 
system and much lower than that of the other nonlinear systems, such as bistable and 
piecewise linear.   

 In a bistable system, the energy required to overcome the sepratix decreases and the stable 
nodes approach closer as nonlinearity increases. This lowers the threshold to achieve the 
bistable response that produces maximum displacement and velocity in the low frequency 
excitation. On the other hand, the potential well becomes narrower and steeper, which 
reduces the velocity peak. For this reason, the nonlinearity dominated bandwidth increases 
up to an optimum value and thereafter it decreases.  

 A piecewise linear system having large gap size results least nonlinear dominated 
bandwidth, but the bandwidth increases significantly as the gap reduces.  

Conclusion 

In this paper, a comparative study of three types of nonlinear systems, namely, cubic monostable 
and bistable, and piecewise linear, is carried out using non-dimensional variables. The equations of 
motion for these systems were non-dimensionalized and solved numerically for monochromatic 
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excitation over a range of frequencies. To examine the effect of nonlinearity on the response 
bandwidth, the non-dimensional velocity response of these systems is compared to that of a linear 
system. A new parameter, bandwidth index (BWI), is proposed and used to quantify the relative 
performance of these nonlinear systems. Of the three systems studied, the bistable system with 
intermediate nonlinearity has the largest nonlinear dominated bandwidth (NLD) and BWI, both for 
low range and overall.   
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