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Abstract

Here, we report a high order, high resolution coupled compact difference scheme for solving
computational acoustics problems. Proposed coupled compact difference scheme displays significant
spectral resolution while estimating spatial derivatives and has a physical dispersion relation
preserving (DRP) ability over a wide range of wave number when a fourth order four stage Runge-
Kutta scheme is used for time integration. Proposed scheme simultaneously computes the first, the
second and the fourth derivative in a coupled manner at all the grid points in the domain. We have
purposefully evaluated the fourth derivative term using coupled compact difference scheme to add
numerical diffusion for the attenuation of unphysical spurious waves in the computed solution.
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Introduction

Propagation of an acoustic wave over a small distance inside a homogeneous medium displays non-
dissipative, non-dispersive characteristics [Kinsler et al. (1999)]. Simulation of acoustic wave
propagation problem involves computation of acoustic wave field either directly from the linearized
compressible flow equations [Tam & Webb (1993)] or by solving hyperbolic partial differential
equation for wave propagation [Sengupta (2013)]. The numerical scheme used for solving acoustic
problems must have a significant spectral resolution to effectively resolve all the scales present in the
acoustic field. Compact schemes provide higher spectral resolution as compared to the explicit
difference schemes for same stencil size [Lele (1992), Fung et al. (1995), Chu & Fan (1998), Sengupta
etal. (2003), Zhou et al. (2007), Bhumkar et al. (2014)] and are preferred for obtaining highly accurate
solutions. As propagation of an acoustic wave displays non-dispersive, non-dissipative and isotropic
nature, numerical schemes used for simulating computational acoustic problems must be neutrally
stable and preserve the physical dispersion relation numerically [Tam & Webb (1993), Sengupta
(2013)]. For an adopted numerical scheme, it is not only important to resolve all physical spatial and
temporal scales but also display neutrally stable, DRP nature [Sengupta (2013)]. This has prompted
researchers to search for a high resolution, dispersion relation preserving schemes which are useful
for computing wave propagation problems [Chiu & Sheu (2009), Tam & Webb (1993), Hu et al.
(1996)].

Here, we are proposing a new high order, high resolution coupled compact difference scheme to
compute the spatial derivative terms while a fourth order four stage Runge-Kutta scheme has been
used for time integration. The derived coupled compact difference scheme evaluates the first
derivative, the second derivative and the fourth derivative simultaneously at all the grid points in the
domain.



Methodology
Stencil for the coupled compact difference scheme:

Almost all discrete difference computations involve implicit filtering and corresponding solution
components in high wavenumber range show spurious nature which are often responsible for
numerical instabilities [Sengupta (2013)]. Unphysical amplification of high wavenumber components
can be controlled by either using upwind scheme or by using explicit filters [Yu et al. (2015), Visbal
& Gaitonde (2002)]. A general stencil for the upwind scheme is given as [Sengupta (2013)],
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In upwind schemes, one adds explicit numerical diffusion through the even order derivative term in
Eq. 1. For adding controlled amount of numerical diffusion, diffusion coefficient & has been used.
In Eq. 1, n is an integer and the subscript CD shows derivative has been obtained using a central
difference scheme. Diffusion coefficient & can be either positive or negative based on the direction
of propagation of information at a particular point in the domain.

A high accuracy, spectrally optimized upwind CCD scheme has been proposed in [Chiu et al. (2009)],
to evaluate the first and second derivative terms together. In the present work, we propose following
coupled compact difference scheme with a central stencil to evaluate the first, the second and the
fourth derivative terms together. Information associated with the fourth derivative term has been used
here to attenuate unphysical spurious waves.

Consider a domain discretized using equi-spaced grid points with a grid spacing h. The coupled
compact difference scheme for simultaneous evaluation of the first, the second and the fourth
derivative term is given as,
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In order to obtain the first, the second and the fourth derivative terms, equations (2)-(4) are solved in
an iterative and coupled manner. For iterative approach, we propose to evaluate the various derivative
terms using explicit central difference schemes as an initial guess. This will reduce the computational
cost required for iterative approach as the iterations are performed with reasonable initial guess which
is more close to final solution as compared to some random initial guess. Equations (2)-(4) are solved
in an iterative manner till the maximum residue becomes less than the prescribed tolerance value
which is chosen as 107 in present study. Here, a simple traditional Gauss-Seidel iterative algorithm
has been used.

One can use equations (2)-(4) at all the grid points for the periodic problem. However for the non-
periodic problems, different stencils for the boundary and the near boundary nodes are required. In
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this regard, we propose to use following stencils for the respective derivative terms at the inlet
boundary [Sengupta (2013)]. The second and the fourth derivative terms are usually not required at
the boundary nodes where one usually prescribe a Dirichlet boundary condition and hence are not
evaluated at the boundary nodes while the fourth derivative term is not evaluated at the second and
second last node. Same stencils can be used for the boundary and the near boundary points on the
other end by reverting the stencils and adding a minus sign [Sengupta (2013)]. Thus, we have used
explicit stencils for the boundary and the near boundary nodes as,

u'i = (-1.5u1+2u2-0.5u3)/h; u''s = 0; u'V1=0 (5)
ub2 = (u3-u1)/(2h); u'z = (ui-2u2tus)/h?; V=0 (6)
uls = (-ustuit8(us-u2))/(12h); ulls = (u1-2uz+us)/h?; ulVi=(uitus-4(u2+us)+6us)/h? 7

Finite difference schemes depend on information available at the nearby points to estimate derivative
values. Taylor series approximation is used to derive stencil for difference scheme in such a way that
the lower order derivative terms are matched accurately while the higher order derivatives terms are
truncated. Thus the numerically estimated derivative and the exact derivative values differ due to the
truncation error. This is also known as implicit filtering associated with the difference schemes
[Sengupta (2013)]. Different finite difference schemes can have same order of accuracy however
different spectral resolution while evaluating derivative terms. In such case, the scheme having higher
spectral resolution will produce more accurate results as compared to low resolution schemes. Thus,
it is imperative to evaluate performance of numerical scheme based on its spectral resolution and not
on its order of accuracy [Sengupta (2013)]. Here, we have estimated spectral resolution of the
proposed scheme using the full domain matrix global spectral analysis (GSA) technique in [Sengupta
(2013)]. Details about this technique are not provided here to avoid repetition.

Following the work in [Sengupta (2013)], if one denotes K and Keq as the exact and the numerically
obtained wavenumber in a difference computation then the discretization effectiveness for the first,
the second and the fourth derivative can be obtained as shown in Figure 1(a)-(c), respectively. Figure
1(a) compares the effectiveness of spectral resolution (Keq/K) for the proposed coupled compact
difference scheme and a 12 order compact difference scheme. Figure shows proposed scheme has
even better spectral resolution as compared to the 12" order compact difference scheme.
Discretization effectiveness for the second and the fourth derivative terms show near spectral
resolutions. Thus the proposed coupled compact difference scheme has significantly improved
spectral resolution as compared to the existing difference schemes.

Apart from estimation of effectiveness for spatial derivative terms, one needs to estimate combined
effects of spatial and temporal discretization terms for solving unsteady problems. Consider a 1D
wave equation which also serves as a model equation for computational acoustics problems as,
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Simulation of the computational acoustics problems involves estimation of both space and time
derivative terms. For such unsteady problems, one needs to first estimate important numerical
properties such as the numerical amplification factor |G| and the numerical group velocity Vgn/c.
Variation of these important numerical properties with respect to non-dimensional wavenumber Kh
and CFL number Nc has been discussed in [Sengupta (2013)] for the solution of 1D wave equation
using different discretization schemes. Using the same methodology, we obtained the contours of the
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numerical amplification factor |G| and the numerical group velocity Ven/c for the solution of 1D wave
equation when coupled compact difference scheme has been used for spatial discretization while RK4
scheme is used for time integration.
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Figure 1: (a) Comparison of the effectiveness of spectral resolution (Keq/K) for different spatial
discretization schemes to evaluate the first derivative term at the central node; Discretization
effectiveness of the second and the fourth derivative terms is shown in (b) and (c) respectively;
Contours for the variation of the numerical amplification factor |G| and the numerical group velocity
Ven/c are shown in (d) and (e), respectively when the coupled compact difference scheme is used
with the fourth order RK4 scheme for time integration to solve Eq. (8).

Figure 1 (d) and (e) shows numerical properties corresponding to the central node. Numerical
amplification factor contours in Fig. 1(d) show that for a small CFL number Nc, one observes a
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neutrally stable region across a complete wavenumber range. Non-dimensionalized numerical group
velocity contours in Fig. 1(e) show that for a small CFL number, physical dispersion relation has been
preserved accurately up to non-dimensional wavenumber Kh = 1.9. Thus present scheme has
significant DRP ability. One observes presence of negative group velocity above Kh=2.6. This region
has been identified as a g-wave region [Sengupta (2013)] in which solution components not only
travel with wrong velocity but also in wrong direction. Such waves are often responsible for numerical
instabilities.

Spurious waves are often triggered due to presence of sharp discontinuities, irregularly spaced grid
points, discontinuities in the initial and boundary conditions [Sengupta (2013)]. One needs to
attenuate these spurious waves by addition of numerical diffusion to avoid numerical instabilities.
One can add numerical diffusion using the information associated with the fourth derivative evaluated
at each grid point as shown in Eq. (1). Amount of added numerical diffusion directly depends on
diffusion coefficient a. Figure 2 (a)-(b) show variation of numerical amplification factor and
numerical group velocity contours for the solution of 1D wave equation when the indicated diffusion
coefficient is used to obtain the upwind coupled compact difference scheme. Figure 2 shows that with
increase in o, scheme displays more and more stable behavior for a small CFL number across a
complete wavenumber range Kh. Thus one can construct upwind coupled compact difference scheme
to damp out unphysical, spurious components from the solution.
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Figure 2: Comparison of the numerical amplification factor |G| contours and the numerical group
velocity Ven/c contours for the central node is shown for different diffusion coefficients. Contours
are obtained for the solution of Eq. (8) when the coupled compact difference scheme has been used
with the fourth order RK4 scheme for time integration following work in [Sengupta (2013)]. Note
that with addition of numerical diffusion, stability is achieved (|G|<1) for a small CFL number.
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Figure 3: Initial condition of the wave packet along with its fourth derivative and FFT of the initial
condition have been shown in (a), (b) and (c), respectively. Numerical group velocity contours for
the solution of Eq. (8) have been shown in (d).

Results and Discussion

In this section, we use the coupled compact difference scheme to solve the model wave equation
problems as well as for solving computational acoustics problems.

1. Solution of 1-D wave equation for wave propagation problem.

We have chosen this problem to verify the efficacy as well as advantages of the proposed
scheme while solving unsteady problems. Here, we have obtained solution of 1D wave equation Eq.
(8) subjected to the initial condition as shown in Fig. 3(a). We have purposefully designed the initial
condition as a combination of two different wave packets, packet A and packet B. Figure 3(b) shows
the fourth derivative of the initial condition and it indicates large values corresponding to packet B
due to rapid variation of amplitude associated with packet B. The FFT of the initial condition has
been shown in Fig. 1(c). Central wavenumber of packet A is very small while that for packet B is
close to the Nyquist limit. In figure 1(d), we have shown the numerical group velocity contours for
the solution of Eq. (8) when the spatial discretization has been obtained using coupled compact



difference scheme while RK4 scheme has been applied for time integration. We have also marked
the central wavenumbers corresponding to packet A and packet B.
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Figure 4: Solutions of 1D wave equation Eq. (8) without and with addition of numerical diffusion
have been shown in (a)-(c) and (d)-(f), respectively. Note, in frames (d)-(f) addition of numerical
diffusion attenuates spurious packet B which is present in frames (a)-(c) when no diffusion has been
added.

We have considered a domain 0 < x <20 with 101 equi-spaced grid points. Phase speed c is kept as
0.10. Computations are performed using the coupled compact difference scheme for the spatial
discretization and RK4 scheme for the time integration by keeping CFL number as 0.01.
Corresponding Vgn/c contours show group velocity for the packet A as 1.0 while that for packet B as
-2.63. Figures 4(a) —(c) show the solution of Eq. (8) subjected to the initial condition in Fig. 3(a). Due
to positive group velocity packet A propagates towards right hand side while packet B displays
spurious nature and propagates in completely opposite direction towards left. In order to attenuate
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such spurious waves and prevent numerical instabilities, one can add numerical diffusion as shown
in Eq. (1). Figures 4(d)-4(f) show propagation of wave packet when numerical diffusion has been
added with a diffusion coefficient as 0.01. Due to addition of numerical diffusion, spurious packet B
gets attenuated completely while packet A retain itself and travel towards correct direction with
correct velocity. This shows the advantage of coupled contact difference scheme.
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Figure 5: Initial condition of a 2D wave packet and zoomed view of a grid are shown in (a) and (b),
respectively. Solutions of 2D wave equation Eq. (9), without and with addition of numerical diffusion
are shown in (c)-(d) and (e)-(f), respectively. Note, in frames (e)-(f) addition of numerical diffusion
attenuates spurious packets present in frames (¢)-(d) when no diffusion has been added.



2. Propagation of a wave packet on a discontinuous grid
Next, we consider a propagation of a wave packet inside a 2D domain following the 2D wave equation
given as,

ou ou ou
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In Eq. (9), ¢, and Cy are phase speeds in x- and y-direction. In order to check the performance and

applicability of the present scheme, we have purposefully considered wave propagation on a
discontinuous grid as the discontinuous distribution of grid points triggers spurious high wavenumber
oscillations. Figures 5 (a) and (b) show the initial condition of a 2D wave packet and zoomed view
of a grid, respectively. We have obtained solutions of 2D wave equation following Eq. (9) using
coupled compact difference scheme for the spatial discretization terms and RK4 scheme for time
integration. We have constructed a domain 0 < x, y < 1, with 101 points in either direction. We have
purposefully assigned a random distribution to grid point spacing so as to test the efficacy of the
coupled compact difference scheme. Figures 5(c) and (d) show propagation of 2D wave packet at the
indicated instants. Due to discontinuous distribution of grid points one observes large amount of
spurious g-waves in the domain. However, when a fourth order numerical diffusion has been added
to the solution, spurious waves are attenuated. This shows the advantage of proposed coupled
compact difference scheme while working on a discontinuous grid.

3. Propagation of the acoustic and the entropic disturbances.
Next, we solve the computational acoustic wave propagation problem which consists of simultaneous
propagation of acoustic and entropic disturbances. These disturbances propagate following the

linearized compressible Navier-Stokes equations given by [Tam et al. (1995)],
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Initial condition for this problem is given as,
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Figure 6: Initial condition and propagation of acoustic and the entropic disturbances following Eq.
(10) are shown in frames (a)-(d). Comparison of density variation on the line y=0 obtained from
present simulation with that of [Tam et al. (1995)] is shown in (e).

This case consists of an acoustic pulse generated by a Gaussian pressure distribution at the center of
the computational domain as shown in the initial condition in Fig 6. The mean flow Mach number is
0.5. We have constructed the domain using 501 X 501 grid points. Downstream of the pressure pulse,
at x = 0.67 an entropy pulse has also been superimposed. Acoustic pulse travels faster than entropy
disturbances in the downstream direction as observed in Figs. 6(b) to 6(d) which show development
and propagation of acoustic as well as entropic disturbances with time. We have compared the density
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variation on the line y=0 obtained from present simulation with that of [Tam et al. (1995)] in
Fig. 6(e). Comparison shows a good match and justifies use coupled compact difference scheme for
obtaining high accuracy solutions of computational acoustics problems.

Conclusions

Here, we have proposed a new coupled compact difference scheme to solve computational acoustics
problems. Proposed scheme has significant resolution and physical dispersion relation preserving
ability. In addition, one can add controlled amount of numerical diffusion to attenuate spurious waves
in the solution. Solution of model wave propagation problems and computational acoustic problem
highlights the advantages of the proposed coupled compact difference scheme.
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