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Abstract 

 Protection of space vehicles from natural and man-made debris is a significant 

practical problem. Thin barriers, placed in front of the main body of the object, crush 

high- velocity particles into fragments and thereby reduce probable penetration. The 

replacement of the solid plate by a grid of high-strength material lightens the 

protective structure, with clear benefit for space vehicle applications. 
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 Introduction  

 

The process of high- velocity interaction between grid barriers and compact elements 

(aluminum balls) is considered in Lagrangian 3-D formulation. To solve this problem 

it is necessary to have a reliable and sufficiently universal method to enable adequate 

reproduction of the processes occurring in solids under high- velocity collision. The 

natural heterogeneity of the structures of barrier and projectile materials affects the 

distribution of physical-mechanical characteristics (PMC) of the material, and is one 

of the most important factors determining the fracture behavior of real materials. One 

can account for it in the equations of deformable solid mechanics using a random 

distribution of the initial deviations of the strength properties from a nominal value 

(simulating the initial heterogeneity of the material). The relations of deformable 

solid mechanics, used in major recent works on dynamic fracture of structures and 

materials, ignore this factor. It can distort a real pattern of impact and explosive 

fractures of the bodies under consideration. The latter is particularly evident  in  the  

solution  of  axisymmetric  problems,  where the properties at all points on the  

circumferential coordinate of a calculated element are initially equal due to the use of 

standard equations of continuum  mechanics   in  the  numerical  simulation.  

However  in  practice  there  are  many problems where fragmentation is mainly a 

probabilistic process, for example the explosive fracture of axisymmetric shells, 

where the fragmentation pattern is unknown beforehand, or penetration and fracture 

of thin barriers by a projectile along surface normal, etc. The introduction of a 

random distribution of the initial deviations of the strength properties from a nominal 

value in the PMC of the body leads to the fact that, in these cases, the process of 

fracture becomes probabilistic in nature, and  more consistent with the experimental 

data.  
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Basic relations and solution method  

 

To describe the processes of deformation and fracture of solids we used a model of a 

compressible and perfectly elastoplastic body. Basic relations describing the medium 

motion are based on the laws of conservations of mass, momentum and energy 

[Stanjukovich (1975); Wilkins M.L. (1964)], and are closed by Prandtl - Reuss 

relations under the von Mises flow condition. The equation of state was taken in the 

form of Tate and Mie - Gruneisen [Stanjukovich (1975)]. Plastic deformations, 

pressure and temperature are known to affect yield strength and shear modulus, 

therefore the model was supplemented by the relations recommended in [Steinberg et 

al. (1980)]. Reaching a limiting value for equivalent plastic deformation was used as 

a fracture criterion at intensive shear deformations [Stanjukovich (1975);  

Kreyenhagen et al. (1970)]. 

 

To calculate elastoplastic flows we used a procedure implemented on tetrahedral cells 

and based on the combined application of Wilkins method [Wilkins M.L.(1964; 

(1985)] intended to calculate the internal points of the body and Johnson method 

[Johnson et al. (1979); Johnson (1981)] to calculate contact interactions. The number 

of computational cells was about 800 000. To solve the problem, the authors used 

their own 3-D program [Gerasimov (2007)]. 

 

The initial heterogeneities of the structure were simulated by imposing a distribution 

of ultimate equivalent plastic strain in the cells of the calculated domain by means of 

a modified random number generator issuing a random variable obeying the selected 

distribution law. The probability densities of the random variables used were in the 

form of  a normal Gaussian distribution with arithmetical mean being equal to the 

tabulated value and variable dispersion. The ideology and methodology of a 

probabilistic approach to the problem of the fracture of solids is completely described 

in [Gerasimov (2007)]. 

 

The experimental results  

 

High - velocity collisions between projectiles and grid barriers were also 

experimentally investigated using two-stage light-gas installations modified to throw 

particles 0.5 mm in diameter at velocities (2.5 - 5) km/s [Gerasimov (2007)]. 

Projectile - aluminum particles (2 mm in diameter) and a barrier - two steel grids 

(wire diameter 0.32 mm and 0.2 mm, respectively). The first grid: steel, density = 7.9 

g/cm2, the shear modulus = 86 GPa, yield point = 0.28 GPA, cell size 0.5 × 0.5 mm, 

wire diameter = 0.32 mm. The second grid: steel, density = 7.9 g/cm2, the shear 

modulus = 86 GPa, yield point = 0.28 GPA, the cell size 0.356 × 0.356 mm, wire 

diameter = 0.2 mm. The tank: duralumin, density = 2.64 g/cm2, shear modulus = 26.9 

GPa, yield point = 0.12 GPA, thickness = 1.9 mm.  

 

 Figure 1 shows the investigated assembly, consisting of a tank element of a space 

vehicle and two grids, which were placed at some distance from each other and the 

tank. The numbers in Figure 1 indicate the results of separate experiments. The Table 

1 presents a brief description of two typical experiments on the interactions of 

aluminum projectiles, a grid barrier and the element of the protected tank, where V = 



initial velocity of the projectile. As is seen from the results of the experiments there 

were no penetrations or damage to the tank wall, thus the grid barrier has successfully 

fulfilled its function. 

 

Figure 1. The face of assembly "grid - tank element" 

 

Table 1. Experimental data 

 

Test 

number  
Projectile  

Tested barrier and 

protection 
V, km / sec Experiment results 

5 
Duralumin ball 2 mm 

in diameter   

"tank" + 0.32 mm 

grid  + 0.2 mm grid 
2.0 

Through penetration both 

grids. The depth of craters 

from the fragments is 0.3-

0.5 mm 

23 
Duralumin ball 2mm 

in diameter   

 "tank" + 0.32 mm 

grid + 0.2 mm grid   
3.0 

Through penetration the 

both grids. The depth of 

craters from the fragments 

is 0.27-0.45 mm  
 

Numerical results  

 

The results of numerical calculations of the projectile interaction with the first grid 

are presented below. Figure 2 presents a top view of a spherical particle and of the 

first grid element, as well as a two-dimensional section of the configuration. 

 

 

                  
                       (a) 3D configuration              (b) 2D section 

 

Figure 2. The initial configuration of the grid and a spherical particle 

 



The calculations proved the experimental data on the protective properties of grid 

barriers. Then numerical experiments were carried out for the velocities of the 

particle collision with the first grid barrier V = 2 km/s.  

 

   
         (a)  0.5000 s                             (b) 0.7500 s                         (c) 1.4000 s 

 

Figure 3. The configurations of the grid and the spherical particle in 3D image for 

V=2 km/s 

  

 

         

(a) time = 0.5000 s                 (b) time= 0.7500 s            (c) time= 1. 0000 s 

 

Figure 4. 2D Section of the grid and the spherical particle. Velocity distribution. V=2 

km/s 

 

 

 
 

Figure 5. Contact of cloud fragments with the second barrier (grid) 

t=8.7000s V=2 km/s 



 
 

Figure 6. Particle fragment impact on the main body: distribution of current velocity, 

time = 40.2996 s, V=2 km/s 

 

Figure 6 demonstrates that the particle fragment did not penetrate the main body of 

the space vehicle and made only a small dent on the surface. The same result was 

obtained for the collision velocity of  V = 3 km/s. 

 

 

       
         (a) time=0,3330                    (b) time=   5000 s               (c)  time= 0.6700 s 

 

Figure 7. The configuration of the grid and the spherical particle in 3D image for V=3 

km/s 

 

 

            

(a) time = 0.3330 s                  (b)  time= 0. 5000 s        (c )  time= 0.6700 s 

 

Figure 8. 2D Section of the grid and the spherical particle. Velocity distribution.  

V=3 km/s 

 



 

Figure 9. Contact of cloud fragments with the second barrier (grid) 

t=5.5000s V=3 km/s 

 

 
 

Fig. 10. Particle fragment impact on the main body: distribution of current velocity, 

time = 26.4579 s, V=3 km/s 

 

As seen in Figures 3-10, the fragmentation of the incident particle intensifies with 

increasing collision velocity, as evidenced by the  intense formation of material jets 

penetrating through the meshes (Fig. 7c). In figures number 6 and number 10 show a 

portion of the ball passing through the two grids, which does not penetrate the tank 

shell. The results for the initial velocity V = 2 km / s and V = 3 km / s, respectively. 

Dimensions calculated crater close to the size of the experimental craters (Table 1). 

 

Conclusion   

This paper presents numerical research into the interaction of high-velocity particles 

and barriers – grids which are used to protect space vehicles — and demonstrates the 

efficiency of grid shielding structures.  

  

The data obtained proved the possibility of the proposed approach and Lagrangian 

numerical techniques were used to reproduce completely, from the physical point of 

view, in three-dimensional formulation the interactions of the spaced grid barriers and 



protected space vehicle elements with high- velocity particles from fractured 

structures and vehicles, as well as fragments of cosmic bodies, and to inform the 

selection of the most effective protection systems.  

 

In the course of numerical experiments the protection consisting of the two grids 

proved to be more effective as compared with an equivalent by mass solid barrier. 

The experimental results proved the adequacy of the numerical method and the 

simulations provide some qualitative support for the proposed protection mechanism.  
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