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Abstract 
A two dimensional discontinuous Galerkin finite element method for supersonic flow 
field simulation on hybrid meshes is proposed. The governing equations are Euler 
equations, and the 3rd order explicit Runge–Kutta method is used for temporal 
discretization. The Hermit WENO limiter is introduced to increase the stability of this 
scheme when it is applied to supersonic flow fields. Two dimensional hybrid 
unstructured meshes are used in spatial discretizations, which contain both triangle 
elements and quadrangle elements. This method is validated with supersonic test 
problems, the results show that this method can solve supersonic flow fields using 
hybrid unstructured meshes. 
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Introduction 

Supersonic flow field simulation plays an important role in flight aerodynamic 
predictions and space craft designs. There are many computational fluid dynamic 
methods for solving supersonic flow problems, these methods can be put into three 
categories: finite difference method (FDM), finite volume method (FVM) and finite 
element method (FEM). The FDM is suitable for constructing high order numerical 
schemes, and widely used in academic researching, but this method is mainly 
developed under Cartesian grids, it is difficult to extend this method to unstructured 
or hybrid meshes, which are common when dealing with real world complex 
geometries. The FVM, on the other hand, has no limitation on mesh types or 
geometry complexities, but it is difficult for FVM to achieve a scheme higher than 
second order on an unstructured mesh, mainly due to the difficulties to implement a 
compact reconstruction stencil for high order FVM. 
 
The discontinuous Galerkin method (DGM) is a special kind of FEM, this method 
was first proposed by Reed and Hill [Reed and Hill (1973)], in the 1990s, Cockburn 
and Shu proposed the Runge-Kutta Discontinuous Galerkin method [Cockburn and 
Shu (1998)]. After that, the DGM is widely used in many areas, such as aerodynamics, 
hydrodynamics, wave propagations and computational acoustics. The DGM has both 
the advantages of FDM and FVM, it is suitable for constructing high order numerical 
schemes by using high order basis functions, the computational mesh and element 
shape has no limitations. The stencil in DGM is compact with any order of basis 
functions, that means to get the solutions of unknown variables in one element, only 
the unknown variables in its neighbor elements are needed. All these characteristics 
of the DGM make it a promising method for solving real world engineering flow 
problems. 
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The present authors have developed a two dimensional discontinuous Galerkin 
method for compressible Euler equations on unstructured and hybrid meshes. In order 
to suppress the non-physical oscillation, a Hermit WENO limiter [Hong et al. (2007)] 
is introduced. The numerical tests show that this scheme provides an attractive way 
for solving supersonic flow problems with complex geometries. 

Governing equations 

The governing equations are two dimensional inviscid Euler equations, which can be 
expressed in the form as: 
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The equation of state for perfect gas is used: 

 p RTρ=  (3) 

These form the complete set of equations, ready to be solved with proper numerical 
methods. 

Discontinuous Galerkin method 

Spatial discretization 

Assuming that the computational domain is divided into a set of non-overlapping 
elements jK , the governing equations are solved in a weak form, we introduce test 
functions v , multiply test functions with the governing equations, then integrate over 
element jK , we have: 
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After integrating by parts, we obtain the final form: 
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Where the f̂  is numerical flux between the two adjacent elements, any numerical 
flux calculation schemes can be used, here the Van Leer scheme [Toro (2009)] is 
chosen to calculate f̂ . 
 
The approximate solution is defined in each element as a polynomial: 
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Where ( , )i x tφ is the basis function, iu is the solution coefficient, the order of 
discontinuous Galerkin scheme is defined as the maximum order of the basis 
functions. 

Time discretization 

Replace the solution vectors and test functions in Eq.(5) by their approximation 
polynomials, a system of ordinary differential equations is obtained: 

 ( )dUM R U
dt

=  (7) 

( )R U  is the residual vector, this ODE system can be solved step forward in time using 
explicit Runge-Kutta scheme, a third order scheme is used: 
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Where ( )nU U t=  and 1 ( )nU U t t+ = + Δ . 

Slope limiter 

When there are strong discontinuous in the flow field, the discontinuous Galerkin 
solving procedure may fail due to the severe oscillations near strong discontinuity 
regions, these oscillations will cause non-physical solutions such as negative pressure 
or negative density. When shock waves exist in flow fields, certain amount of 
numerical dissipation is crucial for the successful solving. The DGM with piecewise 
constant basis functions could offer enough dissipations by itself, but when the order 
of basis functions is equal or greater than unity, some additional dissipations is often 
needed, limiters are most commonly used tools to do this. 
 
There are many kinds of limiters proposed by researchers, the Hermit WENO limiter 
proposed by Luo and Shu is becoming popular among them. The Hermit WENO 
limiter is based on the idea of Hermit polynomial reconstruction and WENO 
reconstruction. The major advantage of this limiter is the compactness of its stencils, 
this makes it suitable for hybrid unstructured mesh, detailed implementations of 
Hermit WENO limiter on unstructured mesh can be found in [Hong et al. (2007; 
2010)]. 

Numerical tests 

The following numerical tests is obtained by the discontinuous Galerkin method 
using piecewise linear basis functions in two dimensional space. 

Riemann problem 

The two dimensional Riemann problem is designed to test the performance of 
numerical methods when there are shock waves and contact discontinuities in 
supersonic flow fields. The computational domain is [0,1]×[0,1], the domain is 
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divided into four parts, they are (a): [0,0.5]×[0,0.5], (b): [0.5,1]×[0,0.5], (c): 
[0,0.5]×[0.5,1] and (d): [0.5,1]×[0.5,1], each part has its own initial condition, the 
initial conditions are: 
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Two kinds of Meshes are used in this numerical test case, Fig.1 shows the elements 
distributions of these meshes, the first mesh is a Cartesian grid which contains only 
uniform distributed quadrangle elements, the second mesh is a hybrid mesh with two 
blocks of Cartesian grids and two blocks of unstructured grids, this mesh contains 
both quadrangle and triangle elements. The solutions of the flow field are calculated 
until the time t=0.23. 

 
Figure 1. Uniform cartesian grid (left) and hybrid mesh (right) used in the 

numerical simulation 

 
Figure 2.  Comparison of density distributions at t=0.23 obtained by 

cartesian grid (left) and hybrid mesh (right) 
Fig. 2 shows the flow field density distribution when t=0.23, the Cartesian grid and 
hybrid mesh give similar density profiles, which means that the discontinuous 
Galerkin method has the capable of solving Euler equations on unstructured hybrid 
meshes, this characteristic of DGM gives a lot flexibilities in modeling complex flow 
geometries. 

Supersonic cylinder 

Supersonic cylinder flow is a common test case in supersonic flow field simulations, 
the flow field contains a strong bow shock wave in front of the cylinder, the radius of 
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cylinder is chosen as 0.01, inflow Mach number M=3, and the non-dimensional 
inflow parameters are chosen as : 1ρ = , 1u = , 0v = , ( )21 /p Mγ= , Fig.3 shows the 
computational mesh, which contains both quadrangle elements and triangle elements. 
There is a quadrangle element block near the cylinder surface, and a quadrangle 
element block designed to capture the bow shock wave, between these two 
quadrangle element blocks are triangle elements. 

   
Figure 3.  Computational mesh (left) and its local details (right) 

   
Figure 4.  Solution of density distribution compared with mesh (left) and the 

density contour (right) 
Fig. 4 shows the solution of density distribution using this hybrid mesh, the shock 
wave is distributed in the quadrangle element region and has a sharp resolution with 
these quadrangle elements, The density profile in the flow field between shock wave 
and cylinder gets a smooth distribution with triangle elements. The result gives a 
demonstration of the advantage to use discontinuous Galerkin method combined with 
hybrid meshes in supersonic flow simulations, the parallel distributed quadrangle 
elements are suitable for capturing shock waves, mean while for smooth flow regions, 
the usage of triangle elements can offer more geometrical flexibilities. 

Conclusions 

A two dimensional discontinuous Galerkin finite element method for supersonic flow 
field simulations is proposed. The governing equations are Euler equations, and the 
computational mesh is unstructured hybrid mesh. Numerical tests show that the 
discontinuous Galerkin mehod provides an effective way of solving engineering 
supersonic problems on hybrid meshes. 
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