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Introduction

This study is motivated by the challenges in estimating bone cell diffusivity for a
scaffold. Bone cell diffusion is based on numerous factors including the scaffold
architecture, cell differentiation and clustering within the scaffold pores and temporal
factors over time. While we can observe cell stainingi on histology slides to estimate
the degree of cell proliferation, this is typically only for a 2D slice and does not
represent the entire scaffold. Alternatively, 3D computational models of cell
differentiation provide a tool to predict cell diffusion given geometry, initial cell
concentration and diffusion values. However, the biology is far more complicated
than a simple continuum diffusion analysis can reveal. In this study we propose a
different computational approach whereby a statistical model is developed using
machine learning. In this way the more biological information available the better the
model can predict the diffusion. The idea is to develop 100’s of synthetic models of
diffusion that are used to link diffusion with cell concentration patterns. We can then
reverse engineer this bz obtainin? real temporal cell concentration patterns in
scaﬁ;olds to reveal the likely scaffold diffusion. This study presents our preliminary
results.

Methods

Experimental: The experimental scaffold data for this study came from a previous
PhD thesis. Specifically, PLLA, poly(L-lactide), was mixed with PVA, poly(vinyl
alcohol), at a ratio of 20:80 wt [Lin et al. (2014)]. The mixture was extruded at 180°C
and the bristle was drawn at 75+ 5°C. The PVA was then removed from this
composite blend to create voids within the product by washing with and submerging
in distilled water at 45+ 5°C for 7-10 days. The remaining PLLA scaffold was cut
into discs about 1.5cm across and about 1-3mm high. In order to prepare for cell
culture, the scaffold was sterilized with 70% ethanol for 30 minutes. After residual
ethanol was completely evaporated, the scaffold was washed with phosphate-buffered
saline and immersed In cell culture medium at 37°C for 24 hours. The test for the
biomaterial compatibility was performed twice. In each attempt, each scaffold was
seeded with 0.4mL of mouse pre-osteoblastic cells (MC3T3-E1) at a concentration of
5x10%cells/mL. On day 3, 7 10, 14, 20, the total cell population was estimated via
AlamarBlue cell viability assays, which indicate the osteoblast population by the
intensity of its fluorescence. Meanwhile, live/dead staining assays were performed to
highlight the cell viability locally. Both the AlamarBlue intensity values and live/
dead staining images were used to reconstruct the osteoblast concentration values for
all of the days.

Computational: Our transductive machine learning approach can be summarized in
six steps: 1) Using the finite element method to simulate the osteoblast cells growth;
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2) Calculating root mean square errors between the simulation results and the
experimental concentration; 3) Storing the errors and augmenting the training data set
with the simulation results; 4) Retaining the support vector regression and predict the
diffusivity values for cell-scaffold constructs; 5) Updating and storing the predicted
diffusivity values; and6) repeat step 1 until convergence is reached. For step 1, we
modelled cell migration with Fick’s law of mass diffusion. The law is given as

J(x)=—D(ac/ox), 1)

where diffusion flux, J, is proportional to the change in the spatial concentration of
cell, c. The proportionality constant is the diffusivity, D. The minus sign infers that
any highly concentrated cell clusters spread out. With the divergence theorem, we
deduce the formation of Fick’s second law which describes the temporal and spatial
change of the solute concentration. Fick’s second law is solved numerically by the
finite element method in Abaqus using linear mass diffusion elements.

The support vector regression models are deployed to find the inverse of Fick’s
second law, thus deriving the diffusivity from the concentration values. It formulates
a decision boundary as in equation (2) by minimizing objective function (3) so this
primal function is rewritten as a dual optimization problem using Lagrange
multipliers [Campbell and Ying (2011)]. It has been shown by applying the Karush-
Kuhn-Tucker conditions, the solution lies on a saddle point. In equation (2), it is up to
the user’s discretion to ensure the chosen dot product suits the problem.

f(C)=weC+b,we X,beR (2)
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Results

The outcome from the transductive learning algorithm is an estimation of the
diffusivity for each element in the PLLA scaffold. Figure 1 shows the iteration
improvements on the estimation of the diffusivity values that lead to a better match
between the simulation concentration values and the experimental concentration
values. Specifically, concentration values from the experiment for PLLA are plotted
on the top row, followed by the optimal simulation in the middle that provides the
best match with the early initial guess at the bottom (improvements move from
bottom to the top). The experiment shows the total living osteoblasts experience rise
and falls in concentration over 3 weeks). It is reasonable to assume that the total
osteoblast population is located on the surface because all scaffolds used were sliced
thinly. It is worthy to note how the osteoblast concentration indeed varied both
temporally and spatially, giving rise to an interesting pattern on how living
osteoblasts migrate, proliferate, adhere on surfaces and grow. Osteoblasts appear to
regroup: the highly concentrated neighborhood in earlier days no longer exists at the
same spot in later da?/s, and vice versa. Therefore, the concentration patterns are
uneven not only spatially at each time point but also over the 3 week period.

The improvements in cell concentration estimation from increasing the number of
iterations were obvious. As the number of iteration rises, the simulated concentration
values show both %Iobal and local matches to those seen in the experiment. It is
worthwhile to note how the mean of the concentration was first matched and later the
spatial clusters of osteoblasts are partially captured. Our approach thus shows
promising results as the support vector regression models morph themselves in order
to refine the estimate of the diffusivity values that approach the concentration values
from the experiment. In addition to visual examination on the similarity between the
simulated concentration values from the transductive learning and the concentration
values found in the experiment, we introduce the use of the Pearson product-moment
correlation coefficients as a way to determine how the two are Iinearlly associated.
Their coefficients inform how linear proportionality between the simulated and the
experimental. Between the PLLA, the coefficient is 0.0228 with a p-value of 0.312.
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Thus, despite the similar appearance between the simulated and the experimental, we
have seen evidence that the two are unlikely to be associated. It is well known that
Flologlcal behaviours are highly non-linear and may explain why the coefficient is
ow.
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Figure 1 A summary of the transductive learning algorithm. The top row shows the raw
experimental osteoblast concentrations over 3 weeks. The bottom two rows show the
convergence of the solution after 100+ iterations. The optimal solution shows a consistent trend
to the experimental data but differs in spatial regions.

Conclusions

The proposed transductive learning may be useful in estimating diffusivity in
scaffolds from cell viability data. The transductive learning algorithm estimates the
osteoblast diffusion given spatial and temporal data from an experiment. Its estimate
is driven by and uniquely suited to the biological data. This Is done without prior
expert knowledge or manual input. Its diffusion prediction partly matches the
observed on all days and thereby gives us some degree of confidence about the
validity of the simulated diffusion on other unobserved days. This additional
information may shed light on some biological and engineering questions.
Nevertheless, our results should be interpreted with the following limitations in mind.
By the nature of the algorithm, it does not guarantee a global optimum solution.
Because of its slow convergence rate, it is even difficult to reach a local optimal. The
poor convergence rate comes hand in hand with the resolving Fick’s law and
retraining the support vector regression models. The experimental data inform
osteoblast behaviours on the specific days. However, the experiment data do not
include further quantifiable information to accurately estimate the actual osteoblast
concentration in the osteoblast-polymer construct. As part of the reconstruction of the
osteoblast-polymer construct model, a possible improvement may be to weight “more
recent” information as more salient and “less recent”, less salient. Thus, a weighting
scheme in the temporal dimension may be applied.
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