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Introduction 

This study is motivated by the challenges in estimating bone cell diffusivity for a 
scaffold. Bone cell diffusion is based on numerous factors including the scaffold 
architecture, cell differentiation and clustering within the scaffold pores and temporal 
factors over time. While we can observe cell staining on histology slides to estimate 
the degree of cell proliferation, this is typically only for a 2D slice and does not 
represent the entire scaffold. Alternatively, 3D computational models of cell 
differentiation provide a tool to predict cell diffusion given geometry, initial cell 
concentration and diffusion values. However, the biology is far more complicated 
than a simple continuum diffusion analysis can reveal. In this study we propose a 
different computational approach whereby a statistical model is developed using 
machine learning. In this way the more biological information available the better the 
model can predict the diffusion. The idea is to develop 100’s of synthetic models of 
diffusion that are used to link diffusion with cell concentration patterns. We can then 
reverse engineer this by obtaining real temporal cell concentration patterns in 
scaffolds to reveal the likely scaffold diffusion. This study presents our preliminary 
results.   
 
 Methods  
 
Experimental: The experimental scaffold data for this study came from a previous 
PhD thesis. Specifically, PLLA, poly(L-lactide), was mixed with PVA, poly(vinyl 
alcohol), at a ratio of 20:80 wt [Lin et al. (2014)]. The mixture was extruded at 180°C 
and the bristle was drawn at 75± 5°C. The PVA was then removed from this 
composite blend to create voids within the product by washing with and submerging 
in distilled water at 45± 5°C for 7-10 days. The remaining PLLA scaffold was cut 
into discs about 1.5cm across and about 1-3mm high. In order to prepare for cell 
culture, the scaffold was sterilized with 70% ethanol for 30 minutes. After residual 
ethanol was completely evaporated, the scaffold was washed with phosphate-buffered 
saline and immersed in cell culture medium at 37°C for 24 hours. The test for the 
biomaterial compatibility was performed twice. In each attempt, each scaffold was 
seeded with 0.4mL of mouse pre-osteoblastic cells (MC3T3-E1) at a concentration of 
5x10

4
cells/mL. On day 3, 7 10, 14, 20, the total cell population was estimated via 

AlamarBlue cell viability assays, which indicate the osteoblast population by the 
intensity of its fluorescence. Meanwhile, live/dead staining assays were performed to 
highlight the cell viability locally. Both the AlamarBlue intensity values and live/ 
dead staining images were used to reconstruct the osteoblast concentration values for 
all of the days. 
 
Computational: Our transductive machine learning approach can be summarized in 
six steps: 1) Using the finite element method to simulate the osteoblast cells growth; 
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2) Calculating root mean square errors between the simulation results and the 
experimental concentration; 3) Storing the errors and augmenting the training data set 
with the simulation results; 4) Retaining the support vector regression and predict the 
diffusivity values for cell-scaffold constructs; 5) Updating and storing the predicted 
diffusivity values;  and6) repeat step 1 until convergence is reached. For step 1, we 
modelled cell migration with Fick’s law of mass diffusion. The law is given as  

    )/()( xcDxJ  ,        (1)  

where diffusion flux, J, is proportional to the change in the spatial concentration of 
cell, c. The proportionality constant is the diffusivity, D. The minus sign infers that 
any highly concentrated cell clusters spread out. With the divergence theorem, we 
deduce the formation of Fick’s second law which describes the temporal and spatial 
change of the solute concentration. Fick’s second law is solved numerically by the 
finite element method in Abaqus using linear mass diffusion elements. 
 
The support vector regression models are deployed to find the inverse of Fick’s 
second law, thus deriving the diffusivity from the concentration values. It formulates 
a decision boundary as in equation (2) by minimizing objective function (3) so this 
primal function is rewritten as a dual optimization problem using Lagrange 
multipliers [Campbell and Ying (2011)]. It has been shown by applying the Karush-
Kuhn-Tucker conditions, the solution lies on a saddle point. In equation (2), it is up to 
the user’s discretion to ensure the chosen dot product suits the problem. 

    RbXwbCwCf  ,,)(      (2)  

    2||||
2

1
min w      (3)  

Results 

The outcome from the transductive learning algorithm is an estimation of the 
diffusivity for each element in the PLLA scaffold. Figure 1 shows the iteration 
improvements on the estimation of the diffusivity values that lead to a better match 
between the simulation concentration values and the experimental concentration 
values. Specifically, concentration values from the experiment for PLLA are plotted 
on the top row, followed by the optimal simulation in the middle that provides the 
best match with the early initial guess at the bottom (improvements move from 
bottom to the top). The experiment shows the total living osteoblasts experience rise 
and falls in concentration over 3 weeks). It is reasonable to assume that the total 
osteoblast population is located on the surface because all scaffolds used were sliced 
thinly. It is worthy to note how the osteoblast concentration indeed varied both 
temporally and spatially, giving rise to an interesting pattern on how living 
osteoblasts migrate, proliferate, adhere on surfaces and grow. Osteoblasts appear to 
regroup: the highly concentrated neighborhood in earlier days no longer exists at the 
same spot in later days, and vice versa. Therefore, the concentration patterns are 
uneven not only spatially at each time point but also over the 3 week period. 
 
The improvements in cell concentration estimation from increasing the number of 
iterations were obvious. As the number of iteration rises, the simulated concentration 
values show both global and local matches to those seen in the experiment. It is 
worthwhile to note how the mean of the concentration was first matched and later the 
spatial clusters of osteoblasts are partially captured. Our approach thus shows 
promising results as the support vector regression models morph themselves in order 
to refine the estimate of the diffusivity values that approach the concentration values 
from the experiment. In addition to visual examination on the similarity between the 
simulated concentration values from the transductive learning and the concentration 
values found in the experiment, we introduce the use of the Pearson product-moment 
correlation coefficients as a way to determine how the two are linearly associated.  
Their coefficients inform how linear proportionality between the simulated and the 
experimental. Between the PLLA, the coefficient is 0.0228 with a p-value of 0.312. 
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Thus, despite the similar appearance between the simulated and the experimental, we 
have seen evidence that the two are unlikely to be associated. It is well known that 
biological behaviours are highly non-linear and may explain why the coefficient is 
low. 
 

 
Figure 1 A summary of the transductive learning algorithm. The top row shows the raw 

experimental osteoblast concentrations over 3 weeks. The bottom two rows show the 

convergence of the solution after 100+ iterations. The optimal solution shows a consistent trend 

to the experimental data but differs in spatial regions.  

Conclusions 

The proposed transductive learning may be useful in estimating diffusivity in 
scaffolds from cell viability data. The transductive learning algorithm estimates the 
osteoblast diffusion given spatial and temporal data from an experiment. Its estimate 
is driven by and uniquely suited to the biological data. This is done without prior 
expert knowledge or manual input. Its diffusion prediction partly matches the 
observed on all days and thereby gives us some degree of confidence about the 
validity of the simulated diffusion on other unobserved days. This additional 
information may shed light on some biological and engineering questions. 
Nevertheless, our results should be interpreted with the following limitations in mind. 
By the nature of the algorithm, it does not guarantee a global optimum solution. 
Because of its slow convergence rate, it is even difficult to reach a local optimal. The 
poor convergence rate comes hand in hand with the resolving Fick’s law and 
retraining the support vector regression models. The experimental data inform 
osteoblast behaviours on the specific days. However, the experiment data do not 
include further quantifiable information to accurately estimate the actual osteoblast 
concentration in the osteoblast-polymer construct. As part of the reconstruction of the 
osteoblast-polymer construct model, a possible improvement may be to weight “more 
recent” information as more salient and “less recent”, less salient. Thus, a weighting 
scheme in the temporal dimension may be applied.  
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