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Abstract

For structures with non-classical damping or closely distributed modes, it is not easy to apply the
traditional modal analysis method because the damping matrix is not diagonalized by the modal
matrix obtained from the mass and stiffness matrices. In this paper, a new mode decomposition
method for structures with non-classical damﬁing ratio and structures with very closely distributed
modes is proposed. This method defines the generalized modes in state space, and uses the
differential state variables estimated from measured acceleration responses to decompose modal
responses. A Kalman filtering is utilized to calculate the linear transformation matrix of governing
modes, and the linear transformation matrix is updated in the optimization process to maximize the
performance index cooperated with a power spectral density of a target mode. For the verification
of the proposed method, a numerical simulation is performed using a single degree of freedom
(SDOF) system coupled with a tuned mass damper (TMD) which represents a non-classically
damped system with closely distributed modes. The results from the simulations show that the
proposed method estimates the modal responses more precisely than conventional mode
decomposition methods such as the inde(zfendent component analysis (ICA) method and the proper
orthogonal decomposition (POD) method.

Keywords: Mode decomposition, Non-classical damping, Closely distributed mode, Linear
transformation matrix, Differential state variable, Averaged power spectrum

Introduction

The response of a linear multi-degree-of-freedom (MDOF) structure is often estimated using a few
governing mode responses after transforming the system into single-degree-of-freedom (SDOF)
systems in the modal space. The transformation into the modal space in the modal analysis requires
the modal matrix that is composed of mode shapes, and thereby it is necessary to obtain the mode
shapes primarily.

The mode shapes or modal matrix is generally obtained from the eigenvalue analysis using mass
and stiffness matrices of the finite element analysis model. The mass and stiffness matrices of the
actual structure, however, differ from those of the analysis model ?/ielding the discrepancy in the
dynamic characteristics and mode shapes. Further, it is not possible to separate modes using the
mode shapes obtained from the mass and stiffness matrices if a structure has non-classical damping
that is not proportional to mass and stiffness matrices or the structure has closely distributed modes.

In order to estimate the actual mode shapes for accurate modal separation, the mode decomposition
method using measured structural responses has been studied. In special, the mode separation
methods using the measured responses from appropriately numbered sensors have been developed
because the behavior of a building structure subjected to wind load is governed by a few lower
mode responses.

The proper orthogonal decomposition (POD) method is one of the mode decomposition methods
using the linear transformation of measured responses [Feeny (2002); Han and Feeny (2003)]. The
POD method, also called as the principal component analysis (PCA) method, Karhunen-Loeve
method, or the singular value decomposition (SVD) method (gGramaand and Subramanian (2014);
Khalil and Sarkar (2014)], transforms the higher order model into the lower order model with
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orthogonal basis minimizing the loss of higher order model information. The independent
component analysis (ICA) method is another mode decomposition method using the linear
transformation of measured responses based on the assumption that modes are independent each
other [Roberts and Everson (2001); Kerschen and Poncelet (2007)]. It is also possible to perform
the mode decomposition using the output-only method such as the stochastic subspace identification
(SSI) and frequency domain decomposition (FDD) methods, which estimates the modal
characteristics of a structure using the measured responses [Van Overschee and De Moor (1996);
Brincker et al. (2001); Ku et al. (2007)].

These mode decomposition methods are applicable to structures with classical damging, which is
proportional to mass and stiffness matrices. Further, they yield reliable results when buildings have
very small damping ratio and thereby possess the characteristics of structures with classical
damping. The ICA method, which is mostly close to the method proposed in this paper, assumes
that modes are separated enough to be independent each other. However, the damping matrix is not
proportional to mass and stiffness matrices of actual structures and it is not appropriate to assume
that the closely distributed modes are independent each other. Therefore, there exists a limit when
the previous mode decomposition methods are applied to structures with non-classical damping or
with closely distributed modes.

In this paper, the new mode decomposition method using only measured responses is presented for
structures with non-classical damping or with closely distributed modes. This mode decomposition
method applies the linear transformation to measured response for calculating the modal responses
similarly to the ICA method. The linear transformation matrix differs from that of the ICA method
such that it is obtained by optimizing the objective function. The objective function is given to
maximize the energy at the certain mode and to minimize the difference between averaged modal
response spectrum and the linear transformation matrix assuming that each mode possesses unique
pole with one natural frequency and one damping ratio.

For the verification of the proposed mode decomposition method, the numerical simulation of a two
DOF system with a tuned mass damper (TMD) that is a representative system with non-classical
damping and very closely distributed modes. It is assumed in the numerical simulation that the
external load has wide spectral range like wind loads and the only responses of the main structure
and TMD are measurable. The mode shapes and modal responses obtained from the measured
responses are compared to the analytical ones to verify the proposed mode decomposition method.

Mode decomposition in state-space domain

Estimation of unmeasured state variables

The mode decomposition of a structure with non-classical damping is not possible because the
damping matrix cannot be diagonalized using the mass and stiffness matrix. This requires having
linear combination of state-space variables to construct modal responses.

The mode shapes of an MDOF system whose governing equation is given in Eq. (1) are defined as
the linear combination as in Eq. (2). The mode separation is possible only when the damping matrix,
C, is diagonlaized by the mode shape matrix, @, in Eq. (3), which is obtained from the eigenvalue
analysis of mass matrix, M, and stiffness matrix, K.

MX + Cx + Kx = Ef (1)
X =Py (2)
ij+ @ CDp+ Q= DTES (3)

where f is the external force, E is the force location matrix, £ is the diagonal matrix with entries of
squared natural frequencies, and x and 7 are the response vectors in time domain and modal space,
respectively.

If the structure has non-classical damping, the term @'C; in Eq. (3) is not a diagonal matrix, and
thereby the mode decomposition is not attainable. Consequently, it Is required to expand the modal
responses into the state-space domain for the mode decomposition. Eq. (1) is transformed into Eq.
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(4) in state-space domain, and the state variable, z, can be transformed into modal space using the
newly defined modal responses in state-space domain, p, as in Egs. (5) and (6).

z=Az+ Bf (@)
z=Yp (5)
p=¥ APYPL vIBS (6)
where
0 I
A= 7
-M7K —M‘lc} ()
0
B= 8
-M 1E} ®)
and the mode shape in state-space domain, ¥, satisfies
A 0 I
A=V7AY = { } (9)
-Q -7

where Z = diag(2&iw;), dla%() is the diagonalization function, and &; and w; are the damping ratio and
natural frequency of the i-th mode, respectively.

All of state variable z of displacement and velocity or differential variable Z of velocity and
acceleration are necessary in order to obtain the modal responses in state-space domain of Eq. (5).
However, it is not practical to measure every state and it is often to measure acceleration responses
in practice. Therefore, it is assumed in this paper that the number of sensors is equal to the number
of governing modes and velocity and displacement responses are obtainable from the measured
acceleration using the Kalman filter.

Given that the order of Kalman filter is twice the number of sensors, the initial estimate of the
system matrix A is given as

A =S54 (10)
where A, is_the initial_estimate of the system matrix A, S, E[r zT] and S, zTJ
Multiplying Eq. (4) by z' and averaging yields Eq. (10). The external Torce term is |gnore smce it

is not known or measurable.

Since the velocity and displacement are required in Eg. (10), the following simple integrating filter

is introduced.
g 0 O\g 1

where X_ is the measured acceleration, and g and g are displacement and velocity integrated from
the measured acceleration, respectlvely

If the measured acceleration in Eqg. (11) is biased, the integrated displacement and velocity have
considerable amount of errors and often diverge during integration. In order to avoid the divergence
and to minimize the errors, the control variable, u, is added to Eq. ﬁll) as in Eq. (12) where the
control gain, G, of size 1x2 is decided to minimize the squared displacement and squared control

variable in Eg. (13).
(qj = {0 1}((1} + (OJX‘m + [O]u (12.a)
ol 0 O|\q 1 1



u= —Gm (12.b)
q

[ %(qu2 T Ru?)dt (13)

where Q; and R are weights. Note that the control variable u is equal to the difference between the
actual measured acceleration and the estimated one.

The control gain, G, can also be obtained by modifying weights Qi and R such that the difference
between the actual measured acceleration and the estimated one is in a certain range. The more
detailed process for control gain calculation including the Kalman filter method is omitted here
since it has been widely introduced in many references [Hwang et al. (2011)].

Obijective function for mode decomposition

Once the state variables are estimated from the measured acceleration responses using the Kalman
filter, the relationship between the state variables and the modal responses can be defined using Eq.
(5). Because the purpose is the mode decomposition using the measured responses, Eq. (5) is
rewritten as

p=WTz (14)

where WT =% . Since it is assume that the number of the sensors, n, is equal to the number of
governing modes, the transformation matrix, W, is a square matrix of 2n x 2n and its inverse matrix
exists.

It can be noted that the each column of the transformation matrix W is the combination of linear
transformation coefficients that separate certain modes from the measured state variables. Since the
measured acceleration and its integral value, velocity, are mostly used, Eq. (14) can be rewritten
using differentiated state variables as

p=W"'z (15)
where the entries of the transformation matrix W are constant and are not affected by differentiation.

From Eqg. (15), it can be noted that the number of differentiated state variable, z, is 2n and the
number of corresponding generalized modes is also 2n. The first n modes obtained from Eq. (15)
have relationship with the rest of modes defined as in Eq. (6). If the effect of external force is
negligible in Eq. (6), the relationship becomes velocity to acceleration. That is, the relationship
between i-th mode and (i+n)-th mode is velocity to acceleration, if i < n and the effect of external
force is negligible.

The i-th mode can be presented using the i-th column of W of Eq. (15) as
p =W, ) 2 (16)

In order for the i-th mode obtained from Eq. (16) to be decomposed into a true vibration mode with
single pole that consists of natural frequency, @, and damping raito, &, the modal power spectrum
obtained from Eq. (16) needs to have only one peak near the natural frequency when there is no
Sﬁecial poles in the external force. That is, the effect of other modes should not be appeared
showing no peaks near other modes.

In this paper, the following necessary conditions are defined for true mode decomposition described
above. These conditions also are the preconditions to define the objective function for mode
decomposition. Note that these conditions are not necessary and sufficient conditions for mode
decomposition and that other necessary conditions based on other idea can also be adopted.

Ne_cessarg condition 1: The total energy of decomposed modes is always constant. This condition is
SatIISerS by setting the integral value of modal response spectrum, which is equal to the variance
value, to be “1°,
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Necessary condition 2: The modal energy is max near its natural frequency. The corresponding
natural frequency can be obtained from the system matrix Ap in Eq. (10).

Necessary condition 3: The effect by neighboring modes is minimized. This condition can be
satisfied by minimizing the differences between the modal power spectrum and averaged power
spectrum at neighboring modal frequencies.

The objective function satisfying the above necessary conditions 1 and 2 can be defined as
1o =[S (@)deo+ A [ S (@)do-1)  (17)
12 -2 i o il
where A is a Lagrange multiplier for constraining the necessary condition 1, Aw is the infinitesimal

change of frequency, and S;i(w) is the power spectrum of the decomposed mode. S;i(w) is one-sided
spectrum given as

Sii (a)) = WiT Sva (a))W| (18&)
Sia (@) = 2(0)Z(®) (18.b)

where z(w) is the Fourier transformation of differential state variable, z(t) and Z(w) is the complex
conjugate of z(w). Substituting Eq. (18) into Eq. (17) simplifies the objective function of Eq. (17) as

Jip =Wi'S W, + A(W,'S,, W, —1) (19.9)
Spea = [ Sua(@)de> (19.b)
Sur = [, Sal®@)de (19.c)

Speak and Syar are readily obtainable from the differentiated state variables directly. Consequently,
the transformation matrix, W;, for the i-th mode that satisfies the condition 1 and 2 can be derived
by differentiating J1, of Eq. (19.a) with respect to W; and setting the resulting value to be ‘0’. The
result of differentiation is given as

(S, + A4S, )W, =0 (20.a)

pea

W, =-4S,,W, (20.b)

var 1

var

Speak
It can be noted from Eq. (20) that the value of ﬁ]—_ﬂ,) is the eigenvalue of two matrices, Speak and Syar,
while W; is the corresponding eigenvector. This means that the largest eigenvalue becomes the
maximum value of objective function and the corresponding eigenvector W; becomes the linear
transformation matrix.

If modes are separated enough to affect each other marginally, it is possible to perform the mode
decomposition accurately using the transformation matrix obtained from Eqg. (20). When modes are
closely distributed, the reciprocal effect between modes becomes significant. In that case, the
objective function that satisfies the necessary conditions 1 and 2 only cannot yields the accurate
mode decomposition. In order to minimize the effect of neighboring modes, the following objective
function that satisfies the necessary conditions 3 as well as 1 and 2 is defined.

["s (@)da

o, —Aw

‘]123 = 2
J‘Wk*'A(‘(IOg[ Sii (60) }] do
Ao Sy (w)

where Sy is the averaged power spectrum given as

[ su@do1) g




Sy (@) =S,|H(E) (22.2)

H(s) = > (22.b)

s% + 250, + a)iz

[ (@)do
Sy = (22.0)
j H () do

o, —Aw

where s is the Laplace variable, H(s) is the transfer function of velocity response from the external
force of a SDOF system, and S, is the constant that represents the ratio of the i-th modal power
spectrum to the transfer function near the i-th mode frequency.

The difference between Egs. (17) and (21) is that the logarithmic ratio of the i-th modal spectrum to
the averaged spectrum near the frequency of neighboring mode, ax, is included in the denominator.
Minimizing the ratio in the denominator maximizes the objective function, while the logarithmic
ratio accentuates the difference between two spectrums. The objective function in Eq. (21) can be
simplified using W; as

I = WS g W, +AWTS,, W, —1)
L:kj:}('og (\NiT d; ()W, ))2 de T (23)
where
_ Sii (@)
0; () = —SH (@) (24)

The natural frequency, @, in Eq. (22.b) can be directly obtained from the system matrix of Eq. (10)
while ehe damping ratio, & obtained from the system matrix has large error. Therefore, the damping
ratio needs to be selected such that S, of Eq. (22.c) satisfies the following relationship derived from
the necessary condition 1.

j:so(gi)|H(s)|2da>—1=j:s"(w)dw—1=o (25)

Once the values of all variables in Eq. (23) are calculated, the transformation matrix, W;, can be
obtained by differentiating the objective function with respect to W;. However, the closed-form
similar to one in Eq. (20) cannot be derived due to the nonlinearity. Therefore, the sensitivity of
objective function is utilized in the optimization process to obtain the transformation matrix, W;.

Validation of the proposed method

Example structure and its modal characteristics

A numerical simulation using an example structure with non-classical damping and very closely
distributed modes is carried out to verify the proposed mode decomposition method. The example
structure is a two-DOF system with a TMD which is a representative system with non-classical
damping and very closely distributed modes. The dynamic characteristics of the structure and
external load are summarized in Table 1. It is assumed that the low-pass filtered white noise is
applied to the main structure only.

In Tables 2 and 3, the mass and stiffness matrices along with the corresponding mode shapes are
presented in time and state-space domains, respectively. These mode shapes will be compared to
ones obtained using the proposed mode decomposition method. It can be noted that the damping
matrix is not diagonalized by the mode shape obtained from the eigenvalue analysis of mass and
stiffness matrices in time domain from Table 2, while modes are apparently separated in state-space
domain from Table 3.



Table 1. Dynamic characteristics of the example structure

Description Value Remark
i Natural frequency of the main
Main structure mass (ms) 100 kg structure (fo) = 0.2 Hz
Mass ratio of TMD mass to
TMD mass (m) L kg main structure mass = 0.01
Structure | Main structure stiffness (Ks) 157.9137 N/m
TMD stiffness (Ky) 1.5635 N/m
Main structure damping 2.5133 N-s/m Malrlstructure damping ratio
(&) =0.01
TMD damping 0.1250 N-s/m TMD damping ratio (&) = 0.05
External Filter Low pass filter Zeroto 4 Hz
load Sampling time 0.005 s. Sampling frequency = 200 Hz
Duration 3600 s.
Table 2. Analytically obtained modal properties in time domain
Matrix Symbol Value
M i M 100 O
ass matrix
0 1
Darmpi i c 2.6383 —0.1250
amping matrix 01250  0.1250
Stiff i K 159.4772 -1.5635
IHTESS Matrx 15635 15635

1% mode: 1.1925 (0.1898 Hz)

Natural frequencies o 2" mode: 1.3177 (0.2097 Hz)
—-0.0671 -0.0741
Mode shapes @ [_ 0.7415 0.6710 }
0.0682 -0.0503
Transformed damping matrix | @'Ca [—0.0503 0.0832 }

Damping ratio of diagonal terms = (0.0286 0.0316)

It can be noted that even though the transformed damping matrix in Table 2 is not a diagonal matrix,
the diagonal entrjes, (0.0682 0.0832), are very close to those of damping part of mode transformed
system matrix, A, in Table 3. It can be also noticed that the natural frequencies in time domain,
0.1898 Hz and 0.2097 Hz, and those in state-space domain, 0.1910 Hz and 0.2095 Hz, are very
close each other, while the difference between the first and second modes is only 0.02 Hz indicating
the very closely distributed modes.

In Table 3, the modal matrix, ¥, in state-space domain is shown in the ascending order of natural
frequencies, and its inverse matrix, i.e. the linear transformation matrix, W, 1s also provided.
Considering that the first two rows of load participation matrix, B, are zeros, it can be noted that the
first and second columns of modal responses in state-space domain are integral values of the third
and fourth columns, respectively, indicating the displacement-velocity and velocity-acceleration
relationships.



Table 3. Analytically obtained modal properties in state-space domain

Matrix Symbol Value
0 0 1 0
. 0 0 0 1
System matrix A 15948 00156 —0.0264 0.0013
15635 -1.5635 0.1250 -0.1250 |
Load participation matrices BT [0 0 001 0]
[-0.6367 —0.6543 —0.2392 0.2131 |
. —-7.4864 6.6730 —0.2046 0.1823
Modal matrix v 03431 —0.3670 —-0.6204 —0.6721
| 0.2934 -0.3139 -7.4725 6.6578 |
[—0.7306 —0.8195 0.0396 0.0380 |
. . ] —-0.0704 0.0707 —-0.0396 -0.0380
Linear transformation matrix W 0 0 07974 —0.8164
| 0.0253 0.0243 -0.0736 0.0676 |
0 0 1 0
Mode transformed system . 0 0 0 1
matrix A 14340 0  -00681 0
0 -1.7217 0 —0.0833
Natural frequency Damping ratio
Eigenvalues wand & | 1" mode  1.20 (0.1910 Hz) 2.85e-02
2" mode  1.31(0.2085Hz)  3.17e-02

Characteristics of mode decomposition depending on the objective function

A numerical analysis of the coupled main structure-TMD is performed to obtain the acceleration
responses. The external load presented in Table 1 is applied in the numerical analysis.

The displacement and velocity responses are obtained using the integral filter given in Eq. (12), and
the initial estimate of the system matrix is calculated using Eq. (10). Table 4 presents the covariance
matrices used for calculating the initial estimate of the system matrix along with the modal
characteristics.

Table 4 indicates that the natural frequencies obtained from the initial estimate of the system matrix
present insignificant error compared to the exact natural frequencies given in Table 2. The damping
ratios are, however, negative values indicating significant error. The modal matrix and linear
transformation matrices also differ from the exact ones while the correlationship of sign between
matrices is very large.

The linear transformation matrices obtained using the proposed mode decomposition method are
compared to the exact one in Table 5. First, the first mode linear transformation matrix that
maximizes the objective function Ji, in Eq. (19) is obtained using Eg. (20). The vector with norm
value of ‘1’ is also presented in Table 5 for easier comparison. It can be seen that the linear
transformation matrix obtained from the initial estimate of the system matrix is closer to the exact
one than one obtained using the objective function Ji,. The values in the first three rows show very
close results to exact ones while the value of the last row is about 2.5 times to that of exact one.



Table 4. Covariance matrices and modal characteristics of initial estimate of system matrix

Matrix Symbol Value
1751 21.86 0.01 105.39
Covariance matrix of state Sy, 21.86 866.02 -10530 0.8
variable 0.01 -105.30 27.15 20.09
105.39 0.18 20.09 133347
[ 001 -105.30 27.15  20.09
) ) 105.39 0.18 20.09 1333.47
Cross covariance matrix So1 9717 —20.17 001 —165.63
| -19.98 -1333.03 165.54  0.27
0 0 1 0
. ) ) 0 0 0 1
Initial estimate of system matrix Ao 15883 00321 01260 —0.0006
| 1.5635 -1.5635 0.1250 -0.1250
[-0.8265 —0.7677 —0.6655 0.5842 |
) —-8.2899 7.2777 -0.6621 0.5812
Modal matrix v 09368 -1.0098 —0.8268 —0.7675
| 0.9320 -1.0046 -8.2903 7.2780 |
[-0.5944 -0.6757 0.0815 0.0757 |
) ) ) —0.0555 0.0728 -0.0815 -0.0757
Linear transformation matrix W 0 0 05879 —0.6697
| 0.0521 0.0484 -0.0620 0.0668 |
Natural frequency Damping ratio
Eigenvalues wand & | 1" mode  1.19 (0.1894 Hz) -2.08e-04
2""mode  1.31 (0.2085 Hz) -1.74e-04

Table 5. Comparison of the first mode linear transformation matrix: values in parenthesis are
normalized vectors

Method Symbol Value

) 0.1705 -0.0164 0 0.0059
Exact solution A

0.1844 -0.0172 0 0.0162
(-0.9919 -0.0926 0 0.0870)

- ]
(-0.9948 —0.0959 0 0.0345)
- ]

Initial estimate of system matrix w,"

Objective function Ji, in Eq. [-0.1405 -0.0212 0.0001 0.0130]

.
(19) W, (-0.9847 -0.1485 0.0006 0.0914)

Objective function Ji»s in Eq. W [-0.1735 -0.0157 —0.0001 0.0055]
(23) ' (-0.9945 -0.0900 -0.0005 0.0316)

. [-0.0295 -0.0094 -0.0337 0.0010]

A W, (-0.6442 -0.2054 -0.7365 0.0212)




The first mode linear transformation matrix that maximizes the objective function Ji23 in Eq. (23? is
also presented in Table 5. It can be seen that the values of the first three rows are almost identical to
exact ones while the value of the last row has error of about 20%.

The optimization process for maximizing the objective function Ji23 is presented in Fig. 1. The
initial values used in the optimization iteration are the values that maximize the objective function
Jio. It can be seen from Fig.1 that the value of the objective function increases gradually as the
iteration number increases, and it converges to a certain value as the iteration number is about 200.
Among the various optimization methods, the simple gradient method is used in this paper. The
linear transformation matrix is updated at the i-th iteration as

W,., =W, +0.0016W (26)
where
W = —a‘] 123 (27)
oW,

Figure 1 also presents the iteration results of the denominator and numerator of Eq. (23) along with
the error between the estimated first mode linear transformation matrix and exact one. The error is

calculated as
| )| | Woae |}
(28)
(\ IthlH | W] |

where Weyat is the exact first mode linear transformation matrix presented in Table 5. It can be seen
that the error approaches to zero as the iteration numbers increases.

Figure 2 shows the damping ratio estimation process for the averaged power spectrum of Eq. (22)
used in the optimization of the objective function Ji»3. It can be noticed that the area of the power
spectral function becomes almost same to that of the averaged spectrum near the damping ratio of
0.026. Udsing this damping ratio and the first mode frequency, the objective function Jios is
optimized.

The first modal spectrums obtained from the different mode decomposition method are compared to
the exact one in Figure 3. It can be seen that the modal spectrums decomposed using the initial
estimate of the system matrix and the objective function J;, are distorted considerably near the
second mode frequency. In special, the decomﬁosed modal spectrum obtained using the objective
function Ji» is continuously smaller above the second mode frequency. On the contrary, the
dlecorlnposed modal spectrum obtained using the objective function Ji,3 matches the exact one
closely.

250
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S 150
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log(W q;W,)
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0 50 100 150 200 0 100 150 ©
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o
w

0.05

50 100 1%10 200 0 50 1(30 150 200 (()).01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03
Iteration No. Iteration No. Damping ratio
Figure 1. Iteration result Figure 2. Damping ratio estimation
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In order to compare the decomposed modal spectrum more closely, the ratios of decomposed modal
spectrums to exact one are presented in Figure 4. It can be noticed the more distinguished error in
the decomposed modal spectrum obtained using the initial estimate of the system matrix and the
objective function Ji,. The decomposed modal spectrum obtained using the objective function Ji3
shows the ratio near one meaning almost identical result except near the second mode frequency.
Therefore, it can be concluded that the objective function defined in this paper yields the
decomposed mode with minimum effect from the neighboring modes even when the structure has
very closely distributed modes.

For the comparison of the proposed method to the previous mode decomposition methods, the
decomposed first modal spectrum using the ICA method is compared in Figure 5. The modal
spectrum ratios to exact one are also compared in Figure 6. The corresponding linear transformation
matrix for the first mode is presented in Table 5.

It can be noticed that the modal spectrum ratio obtained using the ICA method is close to unity only
near the first mode frequency. However, the ratio abruptly decreases near the second mode
frequency and increases continuously above that frequency. This is because the ICA method
matches the spectral area in average sense trying to maximize the modal independency from the
neighboring modes. This feature of the ICA method leads the decrease or increase of the ratio
where the modal frequencies do not exist. The other decomposition methods such as the POD and
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PCA methods are also examined, but their results are provided here because their decomposition
resolutions are far less than the ICA method.

In addition to the first mode decomposition, the second to fourth mode decompositions are also
performed and their results are compared to exact ones. The results show that the mode
decomposition using the objective function Ji»3 also yields very close modal spectrums to exact
ones for higher modes. Since the results are almost identical to that of the first mode, they are not
presented here.

Conclusions

The new mode decomposition method is proposed and validated numerically. The proposed method
can improve the decomposition resolution for structures with non-classical damping and closely
distributed modes whose mode decomposition is difficult due to non-diagonalization of damping
matrix and strong correlation between neighboring modes.

The proposed method defines a generalized mode in state-space domain and performed the mode
decomposition using the state variable estimated from the measured responses. The numerical
simulation using a SDOF-TMD system indicates that the objective function using the averaged
spectrum with single pole yields the best mode decomposition results. Further, it is shown that the
proposed method yields the decomposed mode with minimum effect from the nei%hboring modes
even when the structure has very closely distributed modes compared to results to those of the ICA
and POD methods.
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