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Abstract 
For structures with non-classical damping or closely distributed modes, it is not easy to apply the 
traditional modal analysis method because the damping matrix is not diagonalized by the modal 
matrix obtained from the mass and stiffness matrices. In this paper, a new mode decomposition 
method for structures with non-classical damping ratio and structures with very closely distributed 
modes is proposed. This method defines the generalized modes in state space, and uses the 
differential state variables estimated from measured acceleration responses to decompose modal 
responses. A Kalman filtering is utilized to calculate the linear transformation matrix of governing 
modes, and the linear transformation matrix is updated in the optimization process to maximize the 
performance index cooperated with a power spectral density of a target mode. For the verification 
of the proposed method, a numerical simulation is performed using a single degree of freedom 
(SDOF) system coupled with a tuned mass damper (TMD) which represents a non-classically 
damped system with closely distributed modes. The results from the simulations show that the 
proposed method estimates the modal responses more precisely than conventional mode 
decomposition methods such as the independent component analysis (ICA) method and the proper 
orthogonal decomposition (POD) method.  
Keywords: Mode decomposition, Non-classical damping, Closely distributed mode, Linear 
transformation matrix, Differential state variable, Averaged power spectrum 

Introduction 
The response of a linear multi-degree-of-freedom (MDOF) structure is often estimated using a few 
governing mode responses after transforming the system into single-degree-of-freedom (SDOF) 
systems in the modal space. The transformation into the modal space in the modal analysis requires 
the modal matrix that is composed of mode shapes, and thereby it is necessary to obtain the mode 
shapes primarily. 
 
The mode shapes or modal matrix is generally obtained from the eigenvalue analysis using mass 
and stiffness matrices of the finite element analysis model. The mass and stiffness matrices of the 
actual structure, however, differ from those of the analysis model yielding the discrepancy in the 
dynamic characteristics and mode shapes. Further, it is not possible to separate modes using the 
mode shapes obtained from the mass and stiffness matrices if a structure has non-classical damping 
that is not proportional to mass and stiffness matrices or the structure has closely distributed modes. 
 
In order to estimate the actual mode shapes for accurate modal separation, the mode decomposition 
method using measured structural responses has been studied. In special, the mode separation 
methods using the measured responses from appropriately numbered sensors have been developed 
because the behavior of a building structure subjected to wind load is governed by a few lower 
mode responses.  
 
The proper orthogonal decomposition (POD) method is one of the mode decomposition methods 
using the linear transformation of measured responses [Feeny (2002); Han and Feeny (2003)]. The 
POD method, also called as the principal component analysis (PCA) method, Karhunen-Loeve 
method, or the singular value decomposition (SVD) method [Gramaand and Subramanian (2014); 
Khalil and Sarkar (2014)], transforms the higher order model into the lower order model with 
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orthogonal basis minimizing the loss of higher order model information.  The independent 
component analysis (ICA) method is another mode decomposition method using the linear 
transformation of measured responses based on the assumption that modes are independent each 
other [Roberts and Everson (2001); Kerschen and Poncelet (2007)]. It is also possible to perform 
the mode decomposition using the output-only method such as the stochastic subspace identification 
(SSI) and frequency domain decomposition (FDD) methods, which estimates the modal 
characteristics of a structure using the measured responses [Van Overschee and De Moor (1996); 
Brincker et al. (2001); Ku et al. (2007)]. 
 
These mode decomposition methods are applicable to structures with classical damping, which is 
proportional to mass and stiffness matrices. Further, they yield reliable results when buildings have 
very small damping ratio and thereby possess the characteristics of structures with classical 
damping. The ICA method, which is mostly close to the method proposed in this paper, assumes 
that modes are separated enough to be independent each other. However, the damping matrix is not 
proportional to mass and stiffness matrices of actual structures and it is not appropriate to assume 
that the closely distributed modes are independent each other. Therefore, there exists a limit when 
the previous mode decomposition methods are applied to structures with non-classical damping or 
with closely distributed modes. 
 
In this paper, the new mode decomposition method using only measured responses is presented for 
structures with non-classical damping or with closely distributed modes. This mode decomposition 
method applies the linear transformation to measured response for calculating the modal responses 
similarly to the ICA method. The linear transformation matrix differs from that of the ICA method 
such that it is obtained by optimizing the objective function. The objective function is given to 
maximize the energy at the certain mode and to minimize the difference between averaged modal 
response spectrum and the linear transformation matrix assuming that each mode possesses unique 
pole with one natural frequency and one damping ratio.  
 
For the verification of the proposed mode decomposition method, the numerical simulation of a two 
DOF system with a tuned mass damper (TMD) that is a representative system with non-classical 
damping and very closely distributed modes. It is assumed in the numerical simulation that the 
external load has wide spectral range like wind loads and the only responses of the main structure 
and TMD are measurable. The mode shapes and modal responses obtained from the measured 
responses are compared to the analytical ones to verify the proposed mode decomposition method.  

Mode decomposition in state-space domain 

Estimation of unmeasured state variables 
The mode decomposition of a structure with non-classical damping is not possible because the 
damping matrix cannot be diagonalized using the mass and stiffness matrix. This requires having 
linear combination of state-space variables to construct modal responses.  
 
The mode shapes of an MDOF system whose governing equation is given in Eq. (1) are defined as 
the linear combination as in Eq. (2). The mode separation is possible only when the damping matrix, 
C, is diagonlaized by the mode shape matrix, Φ, in Eq. (3), which is obtained from the eigenvalue 
analysis of mass matrix, M, and stiffness matrix, K. 

EfKxxCxM =++       (1) 

Φηx =      (2) 

EfΦΩηηCΦΦη TT =++       (3) 

where f is the external force, E is the force location matrix, Ω is the diagonal matrix with entries of 
squared natural frequencies, and x and η are the response vectors in time domain and modal space, 
respectively.  
 
If the structure has non-classical damping, the term ηCΦΦT

  in Eq. (3) is not a diagonal matrix, and 
thereby the mode decomposition is not attainable. Consequently, it is required to expand the modal 
responses into the state-space domain for the mode decomposition. Eq. (1) is transformed into Eq. 
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(4) in state-space domain, and the state variable, z, can be transformed into modal space using the 
newly defined modal responses in state-space domain, p, as in Eqs. (5) and (6). 

BfAzz +=      (4) 

Ψpz =      (5) 

BfΨAΨΨΨp 11 −− +=      (6) 

where  
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and the mode shape in state-space domain, Ψ, satisfies  
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where Ζ = diag(2ξiωi), diag() is the diagonalization function, and ξi and ωi are the damping ratio and 
natural frequency of the i-th mode, respectively. 
 
All of state variable z of displacement and velocity or differential variable z of velocity and 
acceleration are necessary in order to obtain the modal responses in state-space domain of Eq. (5). 
However, it is not practical to measure every state and it is often to measure acceleration responses 
in practice. Therefore, it is assumed in this paper that the number of sensors is equal to the number 
of governing modes and velocity and displacement responses are obtainable from the measured 
acceleration using the Kalman filter. 
 
Given that the order of Kalman filter is twice the number of sensors, the initial estimate of the 
system matrix A is given as 

1
210

−= dvSSA      (10) 

where A0 is the initial estimate of the system matrix A, [ ]TzzES =21  and [ ]T
dv zzES = . 

Multiplying Eq. (4) by zT and averaging yields Eq. (10). The external force term is ignored since it 
is not known or measurable. 
 
Since the velocity and displacement are required in Eq. (10), the following simple integrating filter 
is introduced. 
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where mx is the measured acceleration, and q  and q are displacement and velocity integrated from 
the measured acceleration, respectively.  
 
If the measured acceleration in Eq. (11) is biased, the integrated displacement and velocity have 
considerable amount of errors and often diverge during integration. In order to avoid the divergence 
and to minimize the errors, the control variable, u, is added to Eq. (11) as in Eq. (12) where the 
control gain, G, of size 1x2 is decided to minimize the squared displacement and squared control 
variable in Eq. (13). 
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where Q1 and R are weights. Note that the control variable u is equal to the difference between the 
actual measured acceleration and the estimated one. 
 
The control gain, G, can also be obtained by modifying weights Q1 and R such that the difference 
between the actual measured acceleration and the estimated one is in a certain range. The more 
detailed process for control gain calculation including the Kalman filter method is omitted here 
since it has been widely introduced in many references [Hwang et al. (2011)]. 

Objective function for mode decomposition 
Once the state variables are estimated from the measured acceleration responses using the Kalman 
filter, the relationship between the state variables and the modal responses can be defined using Eq. 
(5). Because the purpose is the mode decomposition using the measured responses, Eq. (5) is 
rewritten as  

zWp T=      (14) 

where 1−=ΨW T . Since it is assume that the number of the sensors, n, is equal to the number of 
governing modes, the transformation matrix, W, is a square matrix of 2n x 2n and its inverse matrix 
exists. 
 
It can be noted that the each column of the transformation matrix W is the combination of linear 
transformation coefficients that separate certain modes from the measured state variables. Since the 
measured acceleration and its integral value, velocity, are mostly used, Eq. (14) can be rewritten 
using differentiated state variables as 

zWp T
 =      (15) 

where the entries of the transformation matrix W are constant and are not affected by differentiation. 
 
From Eq. (15), it can be noted that the number of differentiated state variable, z , is 2n and the 
number of corresponding generalized modes is also 2n. The first n modes obtained from Eq. (15) 
have relationship with the rest of modes defined as in Eq. (6). If the effect of external force is 
negligible in Eq. (6), the relationship becomes velocity to acceleration. That is, the relationship 
between i-th mode and (i+n)-th mode is velocity to acceleration, if i ≤ n and the effect of external 
force is negligible. 
 
The i-th mode can be presented using the i-th column of W of Eq. (15) as 

( ) zWp T
ii  =      (16) 

In order for the i-th mode obtained from Eq. (16) to be decomposed into a true vibration mode with 
single pole that consists of natural frequency, ωi, and damping raito, ξi,  the modal power spectrum 
obtained from Eq. (16) needs to have only one peak near the natural frequency when there is no 
special poles in the external force. That is, the effect of other modes should not be appeared 
showing no peaks near other modes. 
 
In this paper, the following necessary conditions are defined for true mode decomposition described 
above. These conditions also are the preconditions to define the objective function for mode 
decomposition. Note that these conditions are not necessary and sufficient conditions for mode 
decomposition and that other necessary conditions based on other idea can also be adopted. 
 
Necessary condition 1: The total energy of decomposed modes is always constant. This condition is 
satisfies by setting the integral value of modal response spectrum, which is equal to the variance 
value, to be ‘1’. 
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Necessary condition 2: The modal energy is max near its natural frequency. The corresponding 
natural frequency can be obtained from the system matrix A0 in Eq. (10). 
 
Necessary condition 3: The effect by neighboring modes is minimized. This condition can be 
satisfied by minimizing the differences between the modal power spectrum and averaged power 
spectrum at neighboring modal frequencies. 
 
The objective function satisfying the above necessary conditions 1 and 2 can be defined as 
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where λ is a Lagrange multiplier for constraining the necessary condition 1, ∆ω is the infinitesimal 
change of frequency, and Sii(ω) is the power spectrum of the decomposed mode. Sii(ω) is one-sided 
spectrum given as 

iva
T

iii WSWS )()( ωω =      (18.a) 

)()()( ωωω zzSva =      (18.b) 

where z(ω) is the Fourier transformation of differential state variable, )(tz  and )(ωz  is the complex 
conjugate of z(ω). Substituting Eq. (18) into Eq. (17) simplifies the objective function of Eq. (17) as 
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∞
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Speak and Svar are readily obtainable from the differentiated state variables directly. Consequently, 
the transformation matrix, Wi, for the i-th mode that satisfies the condition 1 and 2 can be derived 
by differentiating J12 of Eq. (19.a) with respect to Wi and setting the resulting value to be ‘0’. The 
result of differentiation is given as 

0)( =+ ivarpeak WSS λ      (20.a) 

ivaripeak WSWS λ−=      (20.b) 

It can be noted from Eq. (20) that the value of )( λ−  is the eigenvalue of two matrices, Speak and Svar, 
while Wi is the corresponding eigenvector. This means that the largest eigenvalue becomes the 
maximum value of objective function and the corresponding eigenvector Wi becomes the linear 
transformation matrix. 
 
If modes are separated enough to affect each other marginally, it is possible to perform the mode 
decomposition accurately using the transformation matrix obtained from Eq. (20). When modes are 
closely distributed, the reciprocal effect between modes becomes significant. In that case, the 
objective function that satisfies the necessary conditions 1 and 2 only cannot yields the accurate 
mode decomposition. In order to minimize the effect of neighboring modes, the following objective 
function that satisfies the necessary conditions 3 as well as 1 and 2 is defined.  
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where SH is the averaged power spectrum given as 
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where s is the Laplace variable, H(s) is the transfer function of velocity response from the external 
force of a SDOF system, and So is the constant that represents the ratio of the i-th modal power 
spectrum to  the transfer function near the i-th mode frequency.  
 
The difference between Eqs. (17) and (21) is that the logarithmic ratio of the i-th modal spectrum to 
the averaged spectrum near the frequency of neighboring mode, ωk, is included in the denominator. 
Minimizing the ratio in the denominator maximizes the objective function, while the logarithmic 
ratio accentuates the difference between two spectrums. The objective function in Eq. (21) can be 
simplified using Wi as 
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where  
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ω
ω
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H
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Sq =      (24) 

The natural frequency, ωi, in Eq. (22.b) can be directly obtained from the system matrix of Eq. (10) 
while ehe damping ratio, ξi obtained from the system matrix has large error. Therefore, the damping 
ratio needs to be selected such that So of Eq. (22.c) satisfies the following relationship derived from 
the necessary condition 1.  

01)(1)()(
00

2 =−=− ∫∫
∞∞

ωωωξ dSdsHS iiio     (25) 

Once the values of all variables in Eq. (23) are calculated, the transformation matrix, Wi, can be 
obtained by differentiating the objective function with respect to Wi. However, the closed-form 
similar to one in Eq. (20) cannot be derived due to the nonlinearity. Therefore, the sensitivity of 
objective function is utilized in the optimization process to obtain the transformation matrix, Wi. 

Validation of the proposed method 

Example structure and its modal characteristics 
A numerical simulation using an example structure with non-classical damping and very closely 
distributed modes is carried out to verify the proposed mode decomposition method. The example 
structure is a two-DOF system with a TMD which is a representative system with non-classical 
damping and very closely distributed modes. The dynamic characteristics of the structure and 
external load are summarized in Table 1. It is assumed that the low-pass filtered white noise is 
applied to the main structure only. 
 
In Tables 2 and 3, the mass and stiffness matrices along with the corresponding mode shapes are 
presented in time and state-space domains, respectively. These mode shapes will be compared to 
ones obtained using the proposed mode decomposition method. It can be noted that the damping 
matrix is not diagonalized by the mode shape obtained from the eigenvalue analysis of mass and 
stiffness matrices in time domain from Table 2, while modes are apparently separated in state-space 
domain from Table 3.  
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Table 1. Dynamic characteristics of the example structure 
Description Value Remark 

Structure 

Main structure mass (ms) 100 kg Natural frequency of the main 
structure (f0) = 0.2 Hz 

TMD mass (mt) 1 kg Mass ratio of TMD mass to 
main structure mass = 0.01 

Main structure stiffness (Ks) 157.9137 N/m  
TMD stiffness (Kt) 1.5635 N/m  

Main structure damping 2.5133 N⋅s/m 
Main structure damping ratio 
(ξs) = 0.01 

TMD damping 0.1250 N⋅s/m TMD damping ratio (ξt) = 0.05 

External 
load 

Filter Low pass filter Zero to 4 Hz 
Sampling time 0.005 s. Sampling frequency = 200 Hz 

Duration 3600 s.  
 

Table 2. Analytically obtained modal properties in time domain 
Matrix Symbol Value 

Mass matrix M 







10
0100

 

Damping matrix C 







−

−
1250.01250.0
1250.06383.2

 

Stiffness matrix K 







−

−
5635.15635.1
5635.14772.159

 

Natural frequencies ω1 
ω2 

1st mode: 1.1925 (0.1898 Hz) 
2nd mode: 1.3177 (0.2097 Hz) 

Mode shapes Φ 







−

−−
6710.07415.0
0741.00671.0

 

Transformed damping matrix ΦTCΦ 







−

−
0832.00503.0
0503.00682.0

 

Damping ratio of diagonal terms = (0.0286 0.0316) 
 
It can be noted that even though the transformed damping matrix in Table 2 is not a diagonal matrix, 
the diagonal entries, (0.0682 0.0832), are very close to those of damping part of mode transformed 
system matrix, Â , in Table 3. It can be also noticed that the natural frequencies in time domain, 
0.1898 Hz and 0.2097 Hz, and those in state-space domain, 0.1910 Hz and 0.2095 Hz, are very 
close each other, while the difference between the first and second modes is only 0.02 Hz indicating 
the very closely distributed modes. 
 
In Table 3, the modal matrix, Ψ, in state-space domain is shown in the ascending order of natural 
frequencies, and its inverse matrix, i.e. the linear transformation matrix, W, is also provided. 
Considering that the first two rows of load participation matrix, B, are zeros, it can be noted that the 
first and second columns of modal responses in state-space domain are integral values of the third 
and fourth columns, respectively, indicating the displacement-velocity and velocity-acceleration 
relationships. 
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Table 3. Analytically obtained modal properties in state-space domain 
Matrix Symbol Value 

System matrix A 


















−−
−−

1250.01250.05635.15635.1
0013.00264.00156.05948.1
1000
0100

 

Load participation matrices BT [ ]001.000  

Modal matrix Ψ 


















−−
−−−

−−
−−−

6578.64725.73139.02934.0
6721.06204.03670.03431.0

1823.02046.06730.64864.7
2131.02392.06543.06367.0

 

Linear transformation matrix W 


















−
−−
−−−

−−

0676.00736.00243.00253.0
8164.07274.000
0380.00396.00707.00704.0

0380.00396.08195.07306.0

 

Mode transformed system 
matrix Â  



















−−
−−

0833.007217.10
00681.004340.1
1000
0100

 

Eigenvalues ωi and ξi 
Natural frequency    Damping ratio 

1st mode       1.20 (0.1910 Hz)          2.85e-02 
2nd mode      1.31 (0.2085 Hz)          3.17e-02 

 

Characteristics of mode decomposition depending on the objective function 
A numerical analysis of the coupled main structure-TMD is performed to obtain the acceleration 
responses. The external load presented in Table 1 is applied in the numerical analysis. 
 
The displacement and velocity responses are obtained using the integral filter given in Eq. (12), and 
the initial estimate of the system matrix is calculated using Eq. (10). Table 4 presents the covariance 
matrices used for calculating the initial estimate of the system matrix along with the modal 
characteristics.  
 
Table 4 indicates that the natural frequencies obtained from the initial estimate of the system matrix 
present insignificant error compared to the exact natural frequencies given in Table 2. The damping 
ratios are, however, negative values indicating significant error. The modal matrix and linear 
transformation matrices also differ from the exact ones while the correlationship of sign between 
matrices is very large. 
 
The linear transformation matrices obtained using the proposed mode decomposition method are 
compared to the exact one in Table 5. First, the first mode linear transformation matrix that 
maximizes the objective function J12 in Eq. (19) is obtained using Eq. (20). The vector with norm 
value of ‘1’ is also presented in Table 5 for easier comparison. It can be seen that the linear 
transformation matrix obtained from the initial estimate of the system matrix is closer to the exact 
one than one obtained using the objective function J12. The values in the first three rows show very 
close results to exact ones while the value of the last row is about 2.5 times to that of exact one.  
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Table 4. Covariance matrices and modal characteristics of initial estimate of system matrix 
Matrix Symbol Value 

Covariance matrix of state 
variable Sdv 



















−
−

47.133309.2018.039.105
09.2015.2730.10501.0

18.030.10502.86686.21
39.10501.086.2151.17

 

Cross covariance matrix S21 


















−−
−−−

−

27.054.16503.133398.19
63.16501.017.2017.27
47.133309.2018.039.105

09.2015.2730.10501.0

 

Initial estimate of system matrix Ao 


















−−
−−

1250.01250.05635.15635.1
0006.01260.00321.05883.1
1000
0100

 

Modal matrix Ψ 


















−−
−−−

−−
−−−

2780.72903.80046.19320.0
7675.08268.00098.19368.0

5812.06621.02777.72899.8
5842.06655.07677.08265.0

 

Linear transformation matrix W 


















−
−−
−−−

−−

0668.00620.00484.00521.0
6697.05879.000
0757.00815.00728.00555.0

0757.00815.06757.05944.0

 

Eigenvalues ωi and ξi 
Natural frequency    Damping ratio 

1st mode       1.19 (0.1894 Hz)          -2.08e-04 
2nd mode      1.31 (0.2085 Hz)          -1.74e-04 

 
Table 5. Comparison of the first mode linear transformation matrix: values in parenthesis are 

normalized vectors 
Method Symbol Value 

Exact solution TW1  
[ ]
( )0345.000959.09948.0

0059.000164.01705.0
−−
−−

 

Initial estimate of system matrix TW1  
[ ]
( )0870.000926.09919.0

0162.000172.01844.0
−−
−−

 

Objective function J12 in Eq. 
(19) 

TW1  
[ ]
( )0914.00006.01485.09847.0

0130.00001.00212.01405.0
−−
−−

 

Objective function J123 in Eq. 
(23) 

TW1  
[ ]
( )0316.00005.00900.09945.0

0055.00001.00157.01735.0
−−−
−−−

 

ICA TW1  
[ ]
( )0212.07365.02054.06442.0

0010.00337.00094.00295.0
−−−
−−−
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The first mode linear transformation matrix that maximizes the objective function J123 in Eq. (23) is 
also presented in Table 5. It can be seen that the values of the first three rows are almost identical to 
exact ones while the value of the last row has error of about 20%.  
 
The optimization process for maximizing the objective function J123 is presented in Fig. 1. The 
initial values used in the optimization iteration are the values that maximize the objective function 
J12. It can be seen from Fig.1 that the value of the objective function increases gradually as the 
iteration number increases, and it converges to a certain value as the iteration number is about 200. 
Among the various optimization methods, the simple gradient method is used in this paper. The 
linear transformation matrix is updated at the i-th iteration as 

WWW ii δ001.01 +=+      (26) 

where 

1

123

W
JW
∂
∂

=δ      (27) 

Figure 1 also presents the iteration results of the denominator and numerator of Eq. (23) along with 
the error between the estimated first mode linear transformation matrix and exact one. The error is 
calculated as 

( ) ( )
∑
=











−=

4

1 1

1

j exact

jexactj

W
W

W
W

e      (28) 

where Wexact is the exact first mode linear transformation matrix presented in Table 5. It can be seen 
that the error approaches to zero as the iteration numbers increases. 
 
Figure 2 shows the damping ratio estimation process for the averaged power spectrum of Eq. (22) 
used in the optimization of the objective function J123. It can be noticed that the area of the power 
spectral function becomes almost same to that of the averaged spectrum near the damping ratio of 
0.026. Using this damping ratio and the first mode frequency, the objective function J123 is 
optimized. 
 
The first modal spectrums obtained from the different mode decomposition method are compared to 
the exact one in Figure 3. It can be seen that the modal spectrums decomposed using the initial 
estimate of the system matrix and the objective function J12 are distorted considerably near the 
second mode frequency. In special, the decomposed modal spectrum obtained using the objective 
function J12 is continuously smaller above the second mode frequency. On the contrary, the 
decomposed modal spectrum obtained using the objective function J123 matches the exact one 
closely. 
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Figure 1. Iteration result                                   Figure 2. Damping ratio estimation 
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Figure 3. Modal spectrum comparison              Figure 4. Modal spectrum ratio to exact one 
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Figure 5. Modal spectrum comparison              Figure 6. Modal spectrum ratio to exact one 
 
In order to compare the decomposed modal spectrum more closely, the ratios of decomposed modal 
spectrums to exact one are presented in Figure 4. It can be noticed the more distinguished error in 
the decomposed modal spectrum obtained using the initial estimate of the system matrix and the 
objective function J12. The decomposed modal spectrum obtained using the objective function J123 
shows the ratio near one meaning almost identical result except near the second mode frequency. 
Therefore, it can be concluded that the objective function defined in this paper yields the 
decomposed mode with minimum effect from the neighboring modes even when the structure has 
very closely distributed modes. 
 
For the comparison of the proposed method to the previous mode decomposition methods, the 
decomposed first modal spectrum using the ICA method is compared in Figure 5. The modal 
spectrum ratios to exact one are also compared in Figure 6. The corresponding linear transformation 
matrix for the first mode is presented in Table 5.  
 
It can be noticed that the modal spectrum ratio obtained using the ICA method is close to unity only 
near the first mode frequency. However, the ratio abruptly decreases near the second mode 
frequency and increases continuously above that frequency. This is because the ICA method 
matches the spectral area in average sense trying to maximize the modal independency from the 
neighboring modes. This feature of the ICA method leads the decrease or increase of the ratio 
where the modal frequencies do not exist. The other decomposition methods such as the POD and 
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PCA methods are also examined, but their results are provided here because their decomposition 
resolutions are far less than the ICA method. 
 
In addition to the first mode decomposition, the second to fourth mode decompositions are also 
performed and their results are compared to exact ones. The results show that the mode 
decomposition using the objective function J123 also yields very close modal spectrums to exact 
ones for higher modes. Since the results are almost identical to that of the first mode, they are not 
presented here. 

Conclusions 
The new mode decomposition method is proposed and validated numerically. The proposed method 
can improve the decomposition resolution for structures with non-classical damping and closely 
distributed modes whose mode decomposition is difficult due to non-diagonalization of damping 
matrix and strong correlation between neighboring modes. 
 
The proposed method defines a generalized mode in state-space domain and performed the mode 
decomposition using the state variable estimated from the measured responses. The numerical 
simulation using a SDOF-TMD system indicates that the objective function using the averaged 
spectrum with single pole yields the best mode decomposition results. Further, it is shown that the 
proposed method yields the decomposed mode with minimum effect from the neighboring modes 
even when the structure has very closely distributed modes compared to results to those of the ICA 
and POD methods. 
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