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Abstract 
An effective second-order three-dimensional unstructured multimaterial arbitrary Lagrangian–
Eulerian (MMALE) method was presented for compressible fluid dynamics, which uses  Moment 
of Fluid (MOF) method to reconstruct material interface for immiscible fluids. It is of the explicit 
time-marching Lagrange plus remap type. Comparing with traditional ALE method, MMALE 
method permits multimaterials in a singel cell, thus has the extra advantage of accurately modeling 
problems involving severe mesh distortion as well as interface fragmentations and coalitions 
induced by strong shearing deformation. Because the stencil used in the staggered compatible 
discretization involves only the nearest neighbouring cells and the MOF algorithm does not need 
information from the neighboring cells, the MMALE method in this paper is suitable for parallel 
computation while keeps second-order accurate. Several numerical tests on three-dimensional 
structured and unstructured meshes have proved the accuracy and robustness of the present method.   
Keywords: MMALE method, MOF method, compatible Lagrangian method,  multimaterial fluid 
dynamics 

Introduction 
There are generally two kinds of numerical methods for the computation of fluid Dynamics 
according to the movement of the mesh during computation. The first one is Lagrangian method, in 
which the mesh is moving with material velocity. It has the advantage of capturing the material 
interface precisely and explicitly which is very important for moving boundary problems where 
material interfaces are of great concern, but with the limitation of severe grid distortion due to 
strong shear deformation which always stops the calculation. The second one is Eulerian method in 
which the mesh is fixed avoiding the problem of grid distortions but at the expense of precise 
material interface construction. In order to overcome the drawbacks of the two methods above, an 
arbitrary Lagrangian Eulerian (ALE) method was introduced to combine the advantages of both the 
Lagrangian and Eulerian approaches [Donea et al. (1982)]. In the ALE methodology, the mesh may 
be moved in some arbitrarily specified way to improve the resolution and enhance the robustness of 
the simulation. Most ALE algorithms consist of three phases, a Lagrangian phase in which the 
physical variables and mesh are updated, a rezoning phase for defining a new mesh with better 
quality, and a remapping phase wherein the physical variables are conservatively interpolated from 
the old Lagrangian mesh onto the new rezoned one. ALE algorithms have much more flexibilities to 
deal with multi-material problems such as strong fluid-structure interaction and inertial confinement 
fusion (ICF) problems.  
For the traditional ALE method, only one material is allowed to be contained in each mesh cell, so 
the material interface must be described explicitly by cell edges. When the mesh and the interface 
deform severely, it is very difficult to generate a new mesh with good quality. In some cases such as 
interface fragmentations and coalitions emerge due to strong shearing deformation, it is even 
impossible to perform rezoning successfully and the traditional ALE method often fails. Thus, a 
new approach called multimaterial ALE method (MMALE) was developed for these problems 
[Peery et al. (2000)]. The MMALE method is based on a flexible strategy. It allows for multiple 
materials in a single cell and therefore affords additional flexibility over the traditional ALE 
method. In other words, MMALE methods permit the interface to cut through cell edges and pass 
across the cells, and no material-interface-fitted mesh is required, thus the difficulty of mesh 
adjustment in the rezoning phase is decreased. With these flexibilities, the MMALE method can 
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accurately model problems involving severe mesh distortion as well as interface fragmentations and 
coalitions induced by strong shearing deformation.  
In this paper an effective second-order three dimensional unstructured grid MMALE method was 
developed for simulating multi-material compressible fluid flows involving strong shearing 
deformation [Jia et al. (2013)]. It combined the staggered compatible Lagrangian method and 
momentum of fluid (MOF) algorithm for interface reconstruction, which has the advantages of 
second-order accuracy and compact stencils. Numerical results of several test problems including 
Rayleigh-Taylor instability have shown the accuracy and robustness of the method.  

Numerical Method  
The flowchart of our MMALE method is displayed in Fig. 1. In the initialization stage, the 
distribution of all the physical variables over the initial mesh is defined. The volume fractions and 
positions of material centroids are initialized using the method which is an extension of [Aulisa et 
al. (2007)].  

 
Figure 1.  Flowchart of the multi-material ALE algorithm 

 
During the Lagrangian phase, the gas dynamics equations of the Lagrangian form are solved using 
the staggered compatible discretization, the velocity, density, internal energy, pressure and the 
Lagrangian mesh are updated. For mixed cells, Tipton’s pressure relaxation model is used to define 
a thermodynamic closure. The material centroids are updated using a method which can be seen as 
an extension from 2D to 3D of the method presented in [Kucharik et al. (2010)]. The interface 
reconstruction is performed using MOF algorithm [Ahn et al. (2007)]. In the rezoning phase, the 
quality of the Lagrangian mesh is improved by means of mesh smoothing using Winslow’s 
algorithm [Winslow (1997)]. Finally, in the remapping phase, all the physical variables are 
conservatively interpolated from the Lagrangian mesh onto the new rezoned mesh using a cell 
intersection based second-order remapping method. 
In the Lagrangian phase, it is assumed that the computational frame is following the material 
motion. For pure cells which contain just one material, staggered compatible discretization for 
Lagrangian gas dynamics is used to update the velocity and  position of the node for the movement 
of the  mesh [Caramana et al. (1998)]. For mixed cells containing more than one material, a 
thermodynamic closure model is needed to define how the volume fractions and the thermodynamic 
states of the individual materials evolve during the Lagrangian step. 
There are several closure models in the literature. The first one is the mean strain rate model 
[Benson (1992); (1997)] in which each material in the mixed cell takes the mean strain rate of the 
cell. Actually, it simply assumes that the volume fraction of each material remains unchanged 
during the Lagrangian step, which may produce nonphysical results in some cases. The second one 
is the pressure equilibration model [Benson et al. (2004)]. It imposes instantaneous equilibration of 
the pressure at the cell level. The equilibration problem is nonlinear and sophisticated iteration 
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schemes are necessary for a robust implementation. The third one is the pressure relaxation model 
[Tipton (1989); Kamm and Shashkov(2010)]. In this model, a relaxation mechanism like viscosity 
is introduced to make the pressure within a mixed cell move toward pressure equilibration. The 
forth one is the bulk modulus weighting model [Miller et al. (2007)]. In this model, when the mixed 
cell is in compression, the bulk modulus weighting algorithm is used; but the volume fraction keeps 
unchanged when the mixed cell is expanding. The fifth one is the contact mixture model, which was 
developed to permit slip and separation by solving the jump conditions for the stress and the strain 
rate across each interface [Benson (1997)]. The sixth one is a one-dimensional model called the 
sub-cell dynamics model [Barlow (2001)]. In this model, one first estimates the velocity normal to 
the interface between materials using the acoustic Riemann solver and then approximates the 
change of volume fraction for each material. In general, the first and the second closure models are 
very simple and only thermodynamic state dependent while the third and the fourth models are path 
or process dependent. The fifth and sixth models are more complex and more realistic which are 
wave structures dependent.  
Among these models, the pressure relaxation model is used in this paper because it is more efficient 
and more effective for three-dimensional MMALE computation. 
When the MOF interface reconstruction algorithm is coupled to a Lagrangian hydrodynamics 
scheme in MMALE methods, it is required that the positions of material centroids in mixed cells be 
updated during the Lagrangian phase. Following the idea of the constant parametric coordinate 
method presented in [Kucharik et al. (2010) ], it is assumed that the parametric coordinates of the 
material centroids keep unchanged during the Lagrangian phase. It is proved in  [Kucharik et al. 
(2010) ] that this method gives a second-order approximation provided that the time step is small 
enough. Here we extend the method from 2D to 3D, and present a new approach to compute the 
parametric coordinates in a hexahedron [Jia et al. (2013)]. In this approach, a good approximation 
for the initial value of the parametric coordinates is given at first, and then Newton iteration is used 
to obtain accurate value of it. The convergence of this algorithm is quite fast. 
Under the assumption that the materials of the fluid are immiscible, MOF algorithm is used to 
reconstruct the interface in mixed cells. MOF algorithm is second-order accurate. This method uses 
information not only about volume fraction but also about position of the centroid for each material. 
Also it provides automatic ordering of the materials in the process of interface reconstruction. In the 
case of three-dimensional unstructured meshes, the reconstructed interface is a plane which is 
chosen to match exactly the volume fraction and to provide the best possible approximation to the 
centroid positions of the materials.For more details about the numerical implementation refer to 
[Ahn and Shashkov (2007); Anbarlooei and Mazaheri(2009); Dyadechko and Shashkov (2008)]. 
In the remapping phase, the physical variables are interpolated from the Lagrangian mesh onto the 
rezoned mesh. In this paper, by simplifying and improving the method in [Goncharov and  Yanilkin 
(2004)], we develop a second-order accurate remapping method on three-dimensional unstructured 
mesh [Jia et al. (2013)]. It is a cell-intersection-based method which calculates the volume and 
centroid of the intersection polyhedron between the old and new cells. It is suitable for remapping 
between two meshes with different topology. 

Numerical Examples  

Example 1   3D Periodic Vortex Problem 
The three dimensional periodic vortex problem is constructed following the idea of manufactured 
analytical solution [Salari and Knupp (2000)]. It is the extension of the two-dimensional periodic 
vortex problem in [Shu (1998); Jia et al. (2013)]. The numerical results proved  that MMALE 
method reaches second-order with mesh refinement.   

Example 2   3D Noh Problem 
The Noh problem [Noh (1987)] has been used extensively to validate Lagrangian and ALE schemes 
in the regime of strong shock waves. A perfect gas with γ = 5/3 is given an initial unit inward radial 
velocity. The initial thermodynamic state is given by ρ =1and p=0. A spherical shock wave is 
generated at the origin and moves with constant speed 1/3. At time t =0.6, the shock wave has radial 
coordinate 0.2. The density behind shock is ρ =64. The initial domain is [0, 1] ×[0, 1] ×[0, 1] 
decomposed with a 48×48×48 orthogonal mesh. At the initial time, in the vicinity of the spherical 
x2+ y2+z2= 1/4, we place a layer of mixed cells. We note that in these mixed cells the two materials 
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are indeed perfect gases with the same polytropic index γ,  and that we treat them as mixed cells to 
compare the numerical solutions obtained by the MMALE method with the analytical solutions. To 
run this test we do not need MMALE strategy, traditional pure Lagrangian schemes usually 
performs well. However, we run this test with MMALE method just for the sake of validation. 
The mesh and the interface at t = 0.6 obtained by Lagrangian computation (left) and by MMALE 
computation (right) are shown in Fig. 2. It can be seen that the final meshes obtained by Lagrangian 
computation and by MMALE computation both have good quality, the position of interface for both 
methods are almost the same. The density distributions at t =0.6 are shown in Fig. 3. The peak 
densities obtained by Lagrangian computation and by MMALE computation reach the value 
52.6785 and 60.0365, respectively. It is obvious that MMALE result is better.   
More numerical results can be found in reference [Jia et al. (2013)]. 

 

Figure 2. mesh and the interface of Noh problem (Left ,Lagrangian ;  Right MMALE)      
 

       
Figure 3. Density distribution  at t=0.6 of Noh problem (Left ,Lagrangian ;  Right MMALE) 

                              

Concluding Remark 
A second order three dimensional unstructured MMALE method is presented in this paper, which 
uses MOF interface reconstruction for simulating multi-material compressible fluid flows involving 
strong shearing deformation. Numerical test proved the method is of second-order accuracy for 
continuous solutions. The application for 3D Noh Problem has shown the effectiveness and robust 
of the MMALE method.   
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