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Abstract 

Hydroelasticity has been included in ship seakeeping assessment for more than three decades, and it 
has finally become an essential tool in the marine industry for design of some ship types.  In the 35 
years of evolution, the hydroelasticity methods applied in the marine and offshore energy industries 
have grown from two-dimensional to three- dimensional and now feature  linear analysis models in 
the frequency domain and nonlinear models in the time domain. In this paper, we present the three-
dimensional hydroelasticity theory model in the frequency domain and time domain, show the 
difference in the approach, and discuss their applications in wave-structure interaction.  

Keywords:  Hydroelasticity, Springing, Frequency domain, Time domain, Boundary element 
method, Linear, Nonlinear. 

Introduction 

In the design process for floating structures, like ships and offshore structures, hydrodynamic 
analysis of wave-structure interaction is the first important step.  The methods of rigid-body based 
seakeeping analysis have been applied successfully in this type of work for many decades, but 
suffer failures on some of latest mega-ships, like a container ship over 350 meters in length.  It has 
been found that the predicted fatigue life of a large container ship based on a rigid-body approach is 
significantly longer than when the effects of elastic body responses are taken into account.  The 
elastic-body based analysis method explicitly allows for the interaction of water waves and elastic 
structures.  An ultimate hydroelasticity solution comes from a CFD approach, but this is too 
expensive to be applied for routine work; for example, the number of required regular wave cases 
will typically be 3,000 to 5,000 in a design process, and coupled with a few hundred combinations 
of ship speed, wave headings and sea states, leads to hundreds of thousands of hours of real time 
simulation.  The boundary element hydroelasticity model remains the only tool practical for routine 
work.  In this paper, a general approach for 3D hydroelasticity is presented.  Differences between 
the rigid-body approach and the hydroelasticity approach are discussed.  We also look into the 
theoretical details of the frequency domain hydroelasticity model orientated for conditions of low 
and moderate sea state, and that of the time domain hydroelasticity model orientated for high sea 
state conditions. 
  

Methodology of Hydroelasticity 

Accurate prediction of hydrodynamic structural load is key to a successful strength assessment for a 
structure operated in waves.  The hydrodynamic pressure is determined by the location and velocity 
of the wetted surface of the structure.  A rigid-body approach will be accurate enough if the elastic 
deformation of the structure’s wetted surface is small compared to that induced by rigid-body 
motion.  Elastic deformation needs to be considered in the boundary condition of the boundary 
value problem of flow solution for ships or structures with less stiffness, such as a container ship 
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longer than 350 meters.  The Hydroelasticity Method has been developed for the interaction of 
waves and elastic structures.  Due to the interaction of the flow and the structure’s motion and 
deformation, the hydrodynamic problem and structural dynamic problem is coupled together and 
needs to be solved simultaneously.  Direct finite element structural analysis can be combined with a 
flow solver like RANS or BEM in time domain to form a robust nonlinear tool for hydroelastic 
assessment, but it will be too expensive to be practical for routine design assessment.  FEM based 
modal analysis is usually used for the structural assessment portion, and its solution, eigen-values 
and eigen vectors are used with a boundary element method for hydrodynamic analysis, and this 
forms the so-called hydroelasticity method for seakeeping analysis.  The first 2D  frequency domain 
hydroelastic method was proposed by Bishop and Price in 1979.  In their method, a ship was 
represented by a Timoshenko beam and discretized to a number of 2D beam elements for structural 
analysis, and the wave flow solution around the ship was determined by strip theory.  This 
hydroelasticity method has continued evolving, now supporting a fully 3D structural FEM model 
with 3D BEM model for the hydrodynamic solution in both frequency domain and time domain. 
 
In a finite element model of a structure, stress in an element can be estimated by the displacement 
of the node points of the element.  A vector of model node displacements, U , can be determined 
from the model elastic motion equation  
 

              GFPUKUBUM   ,    (1) 
 
where   M ,  B  and  K  are the matrix of model mass, structural damping and stiffness;  P  is the 

vector of external surface force;  F  is the vector of external concentrated force, and  G  the vector 
of external mass force.  Dot represents the gradient w.r.t time.   
 
Introducing the homogenous solution of the node displacement vector,     tie   DU  and ignoring 
structural damping and all external forcing terms from equation (1), solution of equation 
 

       0DKM    2 ,     (2) 
 
gives the eigen value r  and eigen vector  rD  that define the dry eigenmodes.  The number of 

eigenmodes of a FEA model will be the same as the number of degrees of freedom, being six times 
of the number of node points.  Displacement at point  zyx ,,  can be expressed by those dry 
eigenmodes in terms of summary 
 

            
r

rr tqzyxtzyxtzyx  ,, ,,;,, DqDU    (3) 

where  tqr  is the amplitude of mode r , the so-called general coordinate, and  
 

     Tjrrrrrr

T

j
rrj

r wvu  ,,,,,, 


uD       (4) 

 
is the displacement of point j  induced by mode r with unit modal amplitude. 
 

Multiplying  TD on each term of equation (1), and right multiplying  D  on the matrix of model 
mass, damping and stiffness, we have an equation to determine the modal amplitude 
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              gfpqkqbqm         ,    (5) 
  
One of the advantages of using the dry eigenmode approach is the modal orthogonally.  For any 
elastic dry modes r and s, using Kronecker delta, we have   
 

     rsrss
T
r mDMD     and        rsrss

T
r kDKD      (6) 

 
where rrm  and rrk  are the modal mass and modal stiffness. 
 
We can solve the modal amplitude by applying a location and velocity given by equation (3) on the 
wetted surface in a hydrodynamic analysis model and expressing and estimating the three forcing 
terms in the hydrodynamic model. 
 
In a boundary element hydrodynamic model, linearized boundary surface condition for unsteady 

velocity potential U  can be given by the surface displacement  ,u  and the steady flow velocity 
W  

   2
unWuW

u
O

tn

U





 





 


.   (7) 

 

Here n   is the surface normal vector, and surface displacement  ,u  can be estimated from the 
shape functions, or eigen vectors, of the model.  
  
Another fact worth noting in a hydroelastic model is that the eigenmode with nonzero displacement 
on the wetted surface will receive hydrodynamic pressure force, and we call these modes the 
“wettable modes”.  All other modes, “non-wettable modes”, have no external force from 
hydrodynamic pressure.  The wettable modes will be coupled to each other through hydrodynamic 
pressure force, which means the motion of the i-th wettable mode will induce a surface forcing term 
on j-th wettable mode.  On the other hand, non-wettable modes are uncoupled.   In a hydroelastic 
model, we only need to consider those wettable modes, usually only the first few wettable modes in 
practice.  
 
Another difference between a rigid structure and an elastic structure is on the location of the center 
of gravity, COG.  The COG of a rigid structure is a point fixed with the structure when it oscillates 
in waves.  On the other hand, the COG is changing due to elastic deformation and not fixed with the 
elastic structure when it oscillates in waves.  This difference leads to a much complicated equation 
for the rigid body motion mode of the elastic case. 
 
Let’s introduce two Cartesian coordinate systems: 1) the body-fixed frame, HMF,  zyxo ~~~~   with 

axis~ x pointing to the bow, yxo ~~~   coordinate plane lying on the undisturbed water surface when the 
ship has no oscillations, and axis~ z  positive upward; 2) the moving reference frame, HRF,  xyzo  , 
which is an inertial frame moving at the constant ship speed U and which is identical with the body-
fixed frame if the ship has no oscillations. The coordinates of the body-fixed frame origin, o~ , in the 
reference frame HMF, namely  321 ,,  


 define the translational motion of the ship, so called 

Surge, Sway and Heave. Three Euler angles  654 ,,   between the body-fixed frame zyxo ~~~~   and 

the reference frame xyzo   define the rotational motion of the ship, also referred to as Roll, Pitch 
and Yaw.  Supposing zyxo ~~~~   rotates from the position of xyzo   with the angle 6  about 
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axis~ z first, then the angle 5  about axis~ y , and finally the angle 4  about axis~ x , we will have 
the relation between zyxo ~~~~   and xyzo   as follow 
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      (8) 

 
where R is the mapping matrix defined by the three Euler angles. 
 
By setting the origin on the gravitational center of the structure with zero elastic deformation, the 
equations for rigid body motion modes, translational and rotational, can be given by  
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where M and J are the total mass and moment of mass inertia of the structure; s  the amplitude of 

the s-th elastic mode; w the vector of rotational velocity; g
sr

~ , sM , and sJ  are the modal mass 

center, modal mass vector and  modal mass moment of the s-th elastic mode defined by 
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 s
s 


I  is the modal moment of mass inertia and represents the effect due to the elastic rotational 

deformation of the s-th elastic mode 
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Boundary Element Hydroelasticity Method in the Frequency Domain 

In a linearized frequency domain model, the external disturbance, the wave, is assumed “small” and 
responses induced by this small disturbance follow the time function ti ee   . Where the encounter 
frequency e  is a function of incident wave frequency  , ship speed U , and wave heading   

 
 cosUke  ,       (13) 

 
where wave number gk /2 , g is the gravitational acceleration,  for deep water, and o0  
represents the following sea, the moving ship and propagating wave have the same direction, and  

o180  represents the head sea condition.  
 
Unsteady flow velocity potential is defined by 
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where L is the number of system freedoms. L is 6 for the rigid-body model and 6 plus the number 
of involved elastic eigenmodes of the Hydroelasticity model.     ti

jj
eet   Re  is the 

displacement of mode j at time t,  and j  is the complex mode amplitude containing information for 

amplitude and phase.  a is the amplitude of the incident wave and its space velocity potential for 
deep water is given by  

]})(sin)[(cosexp{),,( yxikezyx kz
I   .         (15) 

 
The first responsibility of the hydroelastic model is determination of the diffraction potential )(rD  

and radiation potential )(rj  for each system freedom. Both diffraction and radiation potential 

satisfy the Laplace equation 0)(2  r  and linearized free surface condition  
 

0 surface water calmon        ,0
2



















 







z
tn

g W .   (16) 

 
Additionally, the radiation condition requires the diffraction and radiation wave due to the existence 
of the ship propagating outward.  The velocity potential in the fluid domain and on the boundary 
surface can be estimated by an integration of a singularity distribution on the wetted hull surface hS  
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 qpG rr ,  is the Green’s function that satisfies the Laplace equation, free surface condition and 

radiation condition.  The strength of singularity   can be solved from the boundary integral 
equation 
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And  pr  is the interior solid angle of field point pr  on the wetted hull surface hS .  The required 

surface condition for the diffraction problem is 
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       (19) 

 
and for the radiation problem of j-th motion/elastic mode 
 

j
e

j
j m

i
n

n 
 1





      (20) 

 
Modal normal component jn , the so-called n-term,  and m-term can be estimated by 
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Hydrodynamic pressure on wetted hull surface comes from Benoulli’s equation using velocity 
potential and its gradient.  Its linearized form is of 
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The hydrodynamic force on mode i can be computed by integration 
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After an order analysis of the perturbation expansion of this theoretical approach, this surface modal 
force can be expressed in terms of modal amplitude 
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and the modal wave exciting force iE , modal wave making added-mass and damping coefficient 

ijA  and ijB  is computed as follows 
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The modal restoring coefficient ijC  has a similar, but more lengthy, integration formula. 
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The modal amplitude for a model without concentrated force can then be solved from 
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including the linearized equation of rigid body motion 
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These formulae are expressed in a hydrodynamic reference coordinate system.  This system is on 
the calm water surface and moving at the constant speed U toward the ship moving direction.  
Therefore it is an inertial coordinate system and the dynamic mass modal force is nil, as the existing 
mass force is gravity and it is a constant in time in this coordinate system.  In this 
deformation/motion equation, V

ijB  is the coefficient of viscous flow induced damping which is 

important to those modes having small wave making damping, such as roll motion mode.  It is 
possible to involve nonlinear viscous flow damping in the analysis.  ijb  is the coefficient of 

structural modal damping, which is still a challenge for structural engineers to estimate reliably.  So 
far, this coefficient is mainly determined from model tests and/or sea trials.    
 
In most of the available tools, the structural analysis is performed in a ship fixed coordinate system 
that leads to nonzero mass modal force with two components, one being induced by the inertial 
acceleration of the rigid body ship motion, and the other coming from the dynamic gravitational 
acceleration in this ship fixed coordinate system.  This mass modal force will excite every non-
wettable mode and therefore those modes may need to be involved in structural assessment.  
 

Boundary Element Hydroelasticity Method in Time Domain 

As described in the previous section, the frequency domain hydroelastic BEM model combines 
linear structural FEA, linear hydrodynamic BEM with linear or nonlinear deformation/motion 
equations.  It is basically a linear Hydroelasticity approach.  This frequency domain approach works 
well for a ship or offshore structure in low and moderate sea conditions, but it becomes unreliable 
for large wave cases and a nonlinear model is required.  For ship or offshore structures in large 
waves, the dominant nonlinear factors in hydrodynamic problems are the vertical shape change of 
the hull surface, i.e. the hull flare, and high wave itself.  A cheaper and more efficient time domain 
hydroelastic BEM model could be considered instead of the ultimate CFD model.  The time domain 
BEM model simulates responses in waves by using a retardation function, the response function to 
an impulse disturbance and carries the memory effects of disturbances in the past.  The retardation 
function in this time domain BEM model can be determined either by time domain Green’s function 
or by the Fourier transformation of hydrodynamic results obtained from frequency domain analysis.  
Compared to the first approach, the second approach usually takes less computing time and requires 
much less computer memory and it is the method we will use in this paper.  The important 
difference between the frequency domain hydroelastic BEM model and the time domain model is 
that the small wave restriction is removed in the time domain model, and it leads to large responses 



8 
 

like structural motion/deformation, internal load and so on. The nonlinear terms need to be involved 
in the computation of motion/deformation equations and internal loads. 
 
One of the main differences from the linearized frequency domain model is that the rigid-body 
motion mode can have large amplitude, and equation (9) and (10) are adopted.  Also in the time 
domain model, the modal surface force, i.e. the hydrodynamic force, will be determined by 
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restoring force due to hydrostatic pressure; and others
iF  represents the force due to all other external 

effects like mooring, viscous damping, tank sloshing,  maneuvering, etc.  In contrast with the 
frequency domain model, the maneuvering force on rigid-body motion mode for a ship with 
forward speed is a mandatory factor in the time domain simulation.  Similarly the mooring force or 
position stationary force for a floating offshore platform is also important. 
 
The radiation force on mode i that is induced by the motion/deformation of the structure is 
determined by the convolution 
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 tj  is the displacement of mode j at time t,  

ijijij CBA  and  , is the coefficient of wave making 

added-mass, damping and restoring force at infinite encounter frequency.   tij  is the retardation 

function and can be estimated from 
 

      



 
0

sin2
e

e

e
eijijij dAA 







   or        



0

cos
2

eeijeijij dBB 


           (31) 

 
The diffraction modal force can be expressed in a similar way 
 

   




  dtF D
i

dif
i  0 ,      (32) 

and 

            




 eee
D
iee

D
i

D
i dtEtEt 


  sinImcosRe

2

1
   (33) 

 
Accuracy of the retardation function for radiation and diffraction modal force will directly affect the 
analysis results and development of a reliable algorithm for the infinite integration is one of the 
challenges in this time domain model. 
 
In time domain hydroelastic BEM model, nonlinear rigid body motion equations, (9) and (10), are 
applied.  The nonlinear terms in modal force computation needs to be consistently involved as well. 
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Examples of Application 

Two hydroelasticity codes have been developed in Lloyd’s Register, HydroE-FD for the frequency 
domain model and HydroE-TD for the time domain model.  The results of frequency domain 
hydroelastic analysis are compared against the results of Lloyd’s Register’s rigid body frequency 
domain code WAVELOAD-FD.  The structural analysis was performed by using Lloyd’s Register’s 
FEA code, Trident.  
 

Example 1 - Linear frequency domain hydroelasticity 

 
A container ship was selected as an analysis example.  Particulars of this vessel, including ship 
dimensions, draft at fore and aft perpendicular, displacement, COG and radii of gyrations, are 
shown in Table 1. The full ship global FEA model and hydroelastic panel model are shown in 
Figure 1.  A one meter sized panel model was selected to capture the responses in the high wave 
frequency range.  Figure 2 and 3 plot the shape of first 10 wettable elastic dry eigenmodes and their 
n-term. The n-term of rigid motion mode roll and pitch are also presented in Figure 3.  It can be 
observed that modes 9, 21 and 28 are the first three vertical bending modes, all the other modes are 
horizontal modes representing bending, torque or their combinations. 
 

Table 1:   Particulars of container ship model 

Lbp ( m ) 325.0 

B ( m ) 43.8 

T_fp ( m ) 11.075 

T_ap ( m ) 11.405 

Displacement ( 3m ) 94428 

Wetted hull area ( 2m ) 14910 

LOG ( m ) 154.5 

VOG ( m ) 15.342 

Kxx ( m ) 16.088 

Kyy ( m ) 78.235 

Kzz ( m ) 78.343 

Kxz ( m ) 6.112 
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Figure 1:    FEA model (left) and hydroelastic panel model (right) of the container vessel. 

 
Figure 4 shows the first key result, being the comparison of the vessel deformation due to the 
hydrostatic pressure and gravitational force when the vessel is floating in calm water. The upper 
plot is the result by a direct static 3D FEM analysis and the lower one is the result by HydroE-FD 
using the modal pressure force due to the hydrostatic pressure and modal mass force due the 
gravitation. Static modal amplitudes from HydroE-FD are given in Table 2.  The main contribution 
to the static deformation was from the three vertical bending modes as the model is very close to a 
symmetric case.  The ship is in a static hogging state and maximum static deformation by direct 
FEA using Trident was 324 mm while that from HydroE-FD was 323 mm, so they correlate very 
well. 

Table 2:   Static mode amplitude by Hydro-FD 

Mode 07 08 09 10 19 20 21 27 28 31 
S
j  7.975 11.30 -101.0 0.2505 -0.1286 1.077 -39.87 -0.689 25.46 -0.03120 

 
The natural frequency of each elastic eigenmode is one of most important results in a structural 
assessment and the results of the “dry natural frequency” and “wave making natural frequency” are 
listed in Table 3.  The “dry natural frequency” represents the natural frequency when the structure 
oscillates in air or "in vacuum" and these are the eigen values calculated by the whole ship FEA. 
The “wave making natural frequency” is the natural frequency when the structure oscillates in water 
and generates the so-called radiation waves.  The restoring force and encounter frequency 
dependent wave making added-mass are considered together with the modal mass and stiffness.  
From the results, we can see that the wave making effect always decreases the natural frequency 
and it can even change the sequence of some eigenmodes.  In this example, the first vertical 
bending mode is the third elastic eigenmode (09) in the original dry eigenmode list, but it jumps up 
to the second elastic mode in the wave making list due to the significant increase of mass due to the 
wave making added-mass associated with this modal shape.   For ocean waves, the typical wave 
period is on the order of 10 seconds and in general waves of this period do not directly excite 
resonant oscillation for those eigenmodes with a wave making frequency higher than 5 rad/sec.  
Waves with higher frequency  (> 2 rad/sec) can excite eigenmodes of natural frequency larger than 
5 rad/sec. But those shorter waves have smaller amplitude and are usually ignored in many 
analyses. 
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Figure 2:    Wetted surface of the first 10 elastic mode of the container ship model. 
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Figure 3:    The n-term of roll, pitch, and the first 10 elastic dry eigenmodes. 
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Figure 4:    Static displacement of the model by Trident (upper) and HydroE-FD (lower). 
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Table 3:   Natural frequency of the container ship 
Eigen 
Mode 

Dry natural frequency 
from FEA  
(rad/sec) 

Wave making natural 
frequency from 

HydroE-FD (rad/sec) 
07 2.823 2.655 

08 4.151 3.754 

09 4.689 3.501 

10 7.327 6.851 

19 13.21 12.38 

20 14.18 11.27 

21 14.78 10.11 

27 18.58 17.83 

28 18.69 13.11 

31 20.35 19.04 

 

Table 4:   Rayleigh coefficients of structural modal damping for S8100R model 

Mode 07 08 09 10 19 20 21 27 28 31 

% 1.27 3.29 2.28 1.15 0.67 14.3 1.13 0.0 2.82 0.0 

 
 
Structural modal damping applied in this example is listed in Table 4.   
 
RAO curves (Response Amplitude Operator curves which represent the response amplitude induced 
by a wave of 1 meters amplitude) of rigid-body motion (modes 1 to 6) and elastic deformation 
(modes 7 to N) over a range of incident wave frequency 0.0 to 1.2 rad/sec and 150 degree heading 
at three ship speeds are plotted in Figure 5.  The modal amplitude of the elastic eigenmodes over a 
wave frequency range 0 to 5 rad/sec at the same ship speed and heading are shown in Figure 6,  and 
the resonant responses of modes 7, 8 and 9 can be found. 
 
Distribution of hydrodynamic pressure RAO is shown in Figure 7 in a resonant condition of the 3rd 
elastic eigenmode, the first vertical bending mode.  Compared to the rigid-body analysis results, 
hydroelastic analysis received much higher pressure in this case.  Note the n-term pattern shown in 
Figure 3, from this we can find that the pattern of the pressure distribution is similar to that of the n-
term of the resonant eigenmode, and the radiation pressure is the dominant component in this case. 
 
The modal resonant is determined by two factors, frequency and strength of external excitation. For 
the case of a ship, an elastic structural eigenmode can be excited when the incident wave has an 
encounter frequency close to its modal natural frequency.  The scale of this resonant eigen response 
is determined strongly by the pattern of external exciting pressure, including pressure of incident 
waves and diffraction waves as well as the radiation waves of other modes. The third elastic 
eigenmode, the 1st vertical bending mode, has a resonant amplitude around 6.5 for the zero speed 
case at a wave frequency of 3.5 rad/sec where the incident wave length is very short, around 5 
meters; see Figure 6, top graph. When the wave length increases to 28 meters in 20 the knots case, a 
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wave frequency of 1.5 rad/sec, the amplitude of this eigenmode jumps up to a level of 50 times 
larger than that of zero ship speed. 

     

      

      
       

Figure 5:    RAO of rigid-body motion and elastic deformation in waves of 150  

1st row: U= 0 knots; 2nd row: U= 10 knots, 3rd row: U= 20 knots  

1st column: rigid body motion modes; 2nd column: elastic deformation modes.  
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Figure 6:    RAO of elastic deformation in waves of 150  

1st column: U=0 knots; 2nd column: U=10 knots; 3rd column: U=20 knots 
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Figure 7:    RAO of hydrodynamic pressure of rigid body model (upper) and hydroelasticity 
model (lower) for condition knots 12U , 150  and rad/s 875.1 . 

 
The internal load values, shear forces, bending moments and torsional moments, are obtained by 
summation the hydrodynamic pressure and ship motion inertial loads. To check the effects of elastic 
deformation, internal load results of tension force, horizontal shear force and vertical shear force on 
a section at 25% of ship length from aft perpendicular are shown on the left column of Figure 8. 
The torque, vertical bending moment and horizontal bending moment on the mid-ship section are 
shown in the right column of Figure 8.  Blue lines show the results of the frequency domain 
hydroelasticity model and the results from a rigid-body hydrodynamic analysis are shown as red 
diamond marks.  From this figure, we can see that the internal loads calculated by a hydroelastic 
analysis method will be close to the results from a rigid-body analysis method when the ship is in 
waves with encounter frequencies well away from its structural natural frequencies. When the ship 
is in waves with encounter frequencies close to the structural natural frequencies, then significant 
feedback can be expected from the internal loads and those resonant internal loads will induce 
structural vibration, so-called springing, which ultimately may lead to early onset of damage to the 
ship structure.  For curtain types of ship or floating structures, the fatigue life on some structural 
components based on hydroelasticity assessment can be more than 50% shorter than that by a rigid-
body based analysis.  A hydroelastic assessment will definitely be required for such cases. 
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Figure 8:    Non-dimensional RAO of internal load in condition of U=20 knots and 150 . 
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Example 2 - Nonlinear time domain hydroelasticity 

From analyses of frequency domain hydroelastic results, one can see the reasons for considering 
hydroelasticity and what impact a hydroelasticity analysis can have on an engineering assessment. 
We should bear in mind that the frequency domain hydroelasticity is based on a “linear response” 
condition and works well for cases of waves with small wave steepness.  A time domain 
hydroelasticity model needs to be considered for large wave cases.   
 
We present some results of time domain hydroelasticity analysis for the same ship model below.  
Time trace of four rigid-body motion modes is shown in Figure 10, for a case in waves of 120 
degree heading, 0.375 rad/sec of frequency, 20 meter wave height and ship speed of 10 knots.  We 
can see the time domain model predicts larger motion and nonlinear characteristics for pitch in this 
extremely high wave condition. The differences in results from the frequency domain analysis and 
time domain analysis are caused mainly by the so-called geometry nonlinear problem, i.e. the effect 
of “flare bow” and “flat stern” for the present model above the mean waterline and the lack of 
buoyancy at both ends below the mean waterline.  The frequency domain model and time domain 
will have similar responses if the wettable surface of the structure has a purely vertical shape, but 
this is not the case for most ships.  Another reason for this difference is the large nonlinear rotation 
motions.  For example, the roll motion amplitude of the present case goes up to 20 degrees, and this 
roll motion will affect the yaw motion.  The effects of roll on yaw in the nonlinear rotation term 

)(wJw   and mapping matrix R  are ignored in a frequency domain model therefore coupling 
between rotation motions are weaker there. 
 

 

Figure 9:    Amplitude of some rigid-body motion modes in condition U=10 knots, 120 , 
375.0  rad/sec and wave height = 20 meters. 
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Figure 10:    Pressure distribution by frequency domain model (top) and time domain model 
(bottom) in condition U=5.75 knots, 0 , 44.0  rad/sec and wave height = 24.2 meters, 

in a hogging state (left) and a sagging state (right)  

 
The most obvious difference between the frequency domain and the time domain approaches is the 
pressure distribution, as illustrated in Figure 10.  The hydrodynamic pressure only acts on the mean 
wetted surface of the ship in the frequency domain mode and changes in a pure sinusoidal style.  
From the top row of Figure 10, labelled "Total pressure distribution without intermittent," showing 
the linear frequency domain results with the addition of the hydrostatic pressure, we can see that 
there is no pressure on the mean dry hull surface and the total pressure on the bow can have a 
negative value in a frequency domain model. On the other hand, the total combined hydrostatic and 
hydrodynamic pressure calculated by a time domain model has no such problem and the pressure 
distribution looks much closer to reality, as shown in the bottom row of Figure 10 labelled "Total 
pressure distribution with intermittent".   
 
A problem in the frequency domain model is the “symmetric vertical load”.  The magnitude of the 
dynamic vertical bending moment and shear force will be the same for both the hogging and 
sagging conditions, but this is clearly not the case due to "intermittent" pressure effects which can 
become significant for higher waves.  For a conventional ship, the dynamic vertical load in a 
sagging wave condition is normally always larger than in a hogging wave condition.  In a time 
domain model we simulate the instantaneous wetted surface and solve the pressure on this surface, 
and as a consequence the vertical loads become much closer to reality.  The dynamic and total 
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vertical shear force on a section at ¼ of ship length are presented in the top row of Figure 11, and 
those for the vertical bending moment on a mid-ship section are presented in the bottom row.  This 
shows that for this example, the dynamic vertical bending moment in the sagging wave case is 
about twice of that of the hogging wave case.  The vertical shear force has similar tendency.  It is 
worth noting that the results of this extreme wave case are for demonstration of the difference of the 
frequency and time domain models, and we would not expect the ship to be operated at 20 knots in 
a 20 meters wave environment.  The asymmetric ratio of vertical load in sagging/hogging condition 
will decrease as the wave height becomes smaller. 
 

 

 

Figure 11:    Vertical shear force and bending moment in condition U=20 knots, 180 , 
475.0  rad/sec and wave height = 20 meters  

 
 
The last result presented is the time trace of the first elastic eigenmode, which is an almost pure 
torque mode for the present ship model, shown in the left of Figure 12, and the time trace of torque 
load on the mid-ship section. The amplitude of the first elastic mode predicted by the time domain 
model is smaller than that predicted by the frequency domain, but the torque load predicted by both 
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methods are almost the same due to the effect of the intermittent and nonlinear pressure correction 
in the time domain approach. 

 

Figure 12:    Time trace of first elastic eigenmode amplitude and dynamic torque at mid-ship 
in condition U=20 knots, 150 , 250.1  rad/sec (resonant frequency of the 1st (torque 

only) mode) and wave height = 2.82 meters  

 

Conclusions 

The theory of hydroelasticity is outlined for both the linear frequency domain approach and non-
linear time domain approach.  Results of a container ship of 320 meters in length are used to 
demonstrate the improvement for hydrodynamic analysis going from rigid-body to elastic body and 
from frequency domain to time domain.  Those results also prove the importance of considering the 
application of hydroelastic analysis for assessment of ships or structures where structural vibration 
plays a dominant role.  
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