Mass-redistributed method in the evaluation of eigenfrequency of solid systems
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Abstract

Due to overly-stiff effect, standard Finite Element Method (FEM) using triangular and
tetrahedral elements gives upper bound solution of natural frequencies. In order to improve the
simulation results using low-order elements, one approach is to soften the overly-stiff of stiffness
matrix to simulate the exact system, and the other is to match the mass matrix to the overly-stiff
system. In this paper, the mass-redistributed method is further extended to analyse the eigenfrequency
of solid systems. The mass-redistributed method is to modify the mass matrix of the discrete systems
by shifting the integration points away from the Gaussian locations, while ensuring the mass
conservation. Numerical examples including 2D and 3D problems have verified that Gaussian
integration point in the mass matrix has a significant effect in the evaluation of eigenfrequency.
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1. Introduction

The overly-stiff finite element method predicts upper bound solution of eigenfrequency
[1]. In order to soften the overly-stiff effect, smoothed finite element method (SFEM) is
developed [2]. With different types of smoothing domain, edge-based smoothed finite
element method (ES-FEM) [3-9], node-based smoothed finite element method (NS-FEM)
[10], alpha finite element method (aFEM) [11-13] and hybrid smoothed finite element
method (HS-FEM) [14-17] have been formulated and applied to heat transfer, biomechanics,
acoustic problems. The SFEM with right softened effect is able to achieve a close to exact
stiffness, which provides more accurate solution of eigenfrequencies compared with finite
element method.

Alternatively, the balance of discrete model between mass and stiffness can be achieved
with modification of mass matrix. For example, a weighted average of the consistent and
lumped mass matrices has been proposed by Marfurt in the computation of the mass matrix
for acoustic and elastic wave propagation problems [18]. In addition, a new modified
integration rules in the calculation of the mass and stiffness for acoustic problems for
quadrilateral mesh is developed by Murthy [19]. He et al have further proposed mass-
redistributed method to reduce the dispersion error in acoustic problems [20]. The re-
distribution of mass matrix of the discrete systems will be modified by shifting the integration
points away from the usual Gaussian locations [20]. In this paper, we further extend mass-
redistributed method in the analysis of eigenfrequency.

The paper is organized as follows: Section 2 briefly describes the formulation of mass-
redistributed method in the computation of eigenfrequency. Numerical examples including
2D and 3D are presented in Section 3 to investigate the effect of Gaussian integration point
on eigenfrequency using mass-redistributed method. Finally the conclusions from the
numerical results are made in Section 4.
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2. Materials and Methods

2.1. 2D Mass-redistributed method
The standard FEM behaves stiffer than the exact system, which causes larger
eigenvalues compared to exact one.
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Figure 1: Transformation of triangular mesh

In the formulation of 2D mass-redistributed method, the first step is to transform parent
mesh to regular mesh as shown in Fig. 1 [20]. Hence, the integration of stiffness and mass
matrix is transformed into the natural coordinate system as follows:
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At the same time, the linearly shape function N, (x)can be written in the area coordinates
form as shown in Fig. 2.

Figure 2: Area coordinates for a linear triangular element

With connection t to three vertices 1, 2, 3, three sub-areas A; A, and Az corresponding to
the triangles tAC, tBC and tBA, respectively can be determined for any given point t within
the element. Using area coordinates, the shape functions for each node are expressed as
follows:
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With Gauss quadrature rule, Eq. (1) can be evaluated:
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where ng is the number of Gauss points, w; are the weights and & ,# are the local coordinates
of Gauss points. Then the generalized stiffness and mass matrix can be obtained by the
integration rule.

K®=w (VN(&.7)) (VN(&.7,))det(3)
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From Eq. (4), we can notice that the gradient of shape function using triangular mesh is
constant within the elements and thus the integration of stiffness matrix in Eq.(4) equals to
the constant multiplied by the Jacobi.
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The consistent mass matrix is evaluated by three Gauss points with w; =1/3.

point1:& =2/3,n, =1/6point 2: & =1/6, i, =2/3point 3: & =1/6,7, =1/6

()
On the other hand, the lumped mass matrix is formed with the following points:
point 1: & =1,7 =0point 2: & =1/6, n, =2/3point 3: & =1/6,1, =1/6 ©6)
The generalized mass matrix is evaluated by introducing a variable integration point t:
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Figure 3: Modified integration point for the mass matrix of linear triangular element

It is noticed that the integration point will move from a triangular vertex to midpoint of the
edge opposite to the vertex, as shown in Fig. 3 as t varies from 0 to 1.
Using these three sampling points, the mass matrix can be expressed in terms of parameter
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The summation of all matrix elements of M*equals to the area of the element regardless of
value of t:
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The eigenvalues are determined by the stiffness and mass matrix:
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where 4, ~ 4,, are the eigenvalues of stiffness matrix K, 4, ~ 4,,, are the eigenvalues of
mass matrix.

2.2. 3D Mass-redistributed method

In the formulation of 3D mass-distributed method using linear tetrahedral element, the
mapping from a parent tetrahedral mesh to the regular tetrahedral mesh is based on volume
coordinates. Thereby, the integration of stiffness and mass matrix is transformed into the
natural coordinate system as follows:

e +1 p+1 p+1 T
K= 1, L JOVN) (VN) det (9)dgdndy,
M* =" [N"Ndet()déddc,
Similarly, the linearly shape functions is expressed in the volume coordinates form as
shown in Fig. 4.

Four sub-volumesV; V, Vsand V, corresponding to the tetrahedron tBCD, tACD, tABD and
tABC, respectively can be determined for any given point t within the element. Hence, the
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shape function is formulated as follows:
leygﬁdﬂfé_n_g; Nf:wMng;

VABCD VABCD
(12)
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Figure 4: Volume coordinate using tetrahedral mesh

Similar to 2D case, the Gaussian integration point t controls the formulation of 3D mass
matrix. For example, the consistence mass matrix is evaluated by using following four Gauss

points with weightw, =1/4:
pointl: & =0.5854102, 7, =0.1381966 , ¢; =0.1381966,

point 2: & =0.1381966 , 77, = 0.5854102 , £; =0.1381966
point 3: & =0.1381966, 77, =0.1381966 , ¢; =0.5854102
point 4: & =0.1381966, 77, = 0.1381966 , £; =0.1381966

Using the following four Gauss points with weightw, =1/4 , the lumped mass matrix is
obtained:

point1: & =1,77=0,4;=0, point2:§=0,n=1,4,=0
point3: & =0,7 =0 ,4; =1, point4:£=0,7=0,4,=0

Here, the general formulation of mass matrix with a variable Gaussian integration point t is
written as follows:

1-t 1-t

point1:§i=t,77i=T = (13)



point 2: &, 21%,7% =t,¢; :1_t

point 3: £ :1—:,77i zl_t &=t

point 4:¢, =1L =0 ¢ =
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In Eq. (11), weight W, =1/4 so that > w, =1, andte[0,1]. Using these four sampling
i=1

points, the mass matrix can be formulated as:

0O b, 0 0 b, 0 0 b, 0 0 by, O

0 by 0 b O b 0 by,
b41 b44 O b47 O b410 O
b, 0 0 b, 0 O b, 0 0 b, O
. 1.0 by O O by O O by, 0 0 h
M :*V 63 66 69 612 (14)
4 |b, 0 b, 0 0 b, 0 0 by, 0 0

blOl 0 0 b104 0 O b107 O 0 blOlO 0 0

where

1-t)°
b11:b22:b33:b44:b55:b66:b77:bzas:bgg:blo:bn:blz:tz"‘(—s)

(1-t) 2(1-t)’

The remaining parameters in Eq. (14) equal to 2t 3 + 5

The summation of all matrix elements of M*®equals to the volume of the element regardless

of value of t:
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(15)
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total mass of the element

3. Numerical examples
In this section, some examples will be analysed to demonstrate the properties of the present
method. The triangular elements in 2D and tetrahedral elements in 3D are used.



4.1 2D examples
The first 2D cantilever beam with length I=1m and width d=0.2m is studied, which is

subjected to fixed boundary condition at left hand side as outlined in Fig. 5
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Figure 5: 2D cantilever beam

4.1.1 Effect of Gaussian integration point

As shown in Fig. 6, the effect of Gaussian integration point on the computation of
eigenfrequency using FEM is presented. In order to show the applicability of the proposed
method, mode shape 1 and 4 are studied. It is easily observed that the Gaussian integration
point controls the value of eigenfrequency.
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Figure 6: Effect of Gaussian integration point on eigenfrequency using FEM

As shown in Fig. 6, it is seen that t=1/3 provides the maximum eigenfrequency. As t=1 is
corresponding to lumped mass matrix, the minimum eigenfrequency is obtained. While the
eigenfrequency from t=2/3 which gives consistent mass matrix is less than value for t=1/3,
but greater than the one using lumped mass matrix.

The convergence rate of eigenfrequency for mode shape 7 and 20 using different Gaussian
integration point is presented in Fig. 7. It is clearly indicated that FEM with lumped mass
matrix gives the most accurate results compared with consistent mass matrix. In addition, it is
noticed that Gaussian integration t=1/3 always gives the maximum eigenfrequency.
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Figure 7: Convergence rate for different Gaussian integration point using FEM
4.2 3D examples

In this section, the mass-redistributed method is further extended to 3D problem.

4.2.1 Effect of Gaussian integration point

As shown in Fig. 8, a three dimensional cantilever beam with dimension 1x0.2x0.2m
subjected to fixed boundary condition is studied. The eigenfrequency is computed to analyze
the performance of mass-redistributed method.
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Figure 8: 3D cantilever beam

As outlined in Fig. 9, it is seen that the consistent mass matrix is corresponding to t=0.585.
The minimum eigenfrequency is obtained as t equals to 1 (t=1 formulates the lumped mass
matrix). It is seen that t=1/4 always provides the largest eigenfrequency as presented in Fig.9.
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Figure 9: Effect of Gaussian integration point on mode shape using FEM



To further investigate the effect of mass-redistributed method in the evaluation of
eigenfrequency, the convergence rate for mode shape 5 and 20 using different Gaussian
integration point is shown in Fig. 10. Again, it is found that the lumped mass matrix always
predicts much better solution compared with consistent mass matrix. The Gaussian
integration point t=1/4 gives the largest solution of eigenfrequency. The solution from
consistent mass matrix is always between the Gaussian integration point t=1 (corresponding
to lumped mass matrix) and t=1/4.
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Figure 10: Convergence rate for different Gaussian integration point using FEM
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4. Conclusion

In this paper, a mass-redistributed method is further developed for solving eigenfrerquency
by modification of Gaussian integration point in the computation of mass matrix. In the
present mass-redistributed method, the alternation of Gaussian integration point always
ensures the mass conservation. The triangular and tetrahedral elements are focused in this
study. Both theoretical and numerical results have demonstrated that the Gaussian integration
point in the mass matrix has a significant effect on the prediction of eigenfrequency, and the
following conclusions can be summarized:

a) With adjustment of Gaussian integration point, the eigenfrequency of systems can be
modified.

b) The t=1/3 gives the maximum eigenfrequency in the 2D model; while t=1/4 results in
the maximum eigenfrequency of 3D model

c) Due to the correct balance between the stiffness and mass matrix, the lumped mass
matrix has the best solution in the computation of eigenfrequency.
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