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Abstract 

Due to overly-stiff effect, standard Finite Element Method (FEM) using triangular and 

tetrahedral elements gives upper bound solution of natural frequencies.  In order to improve the 

simulation results using low-order elements, one approach is to soften the overly-stiff of stiffness 

matrix to simulate the exact system, and the other is to match the mass matrix to the overly-stiff 

system. In this paper, the mass-redistributed method is further extended to analyse the eigenfrequency 

of solid systems. The mass-redistributed method is to modify the mass matrix of the discrete systems 

by shifting the integration points away from the Gaussian locations, while ensuring the mass 

conservation. Numerical examples including 2D and 3D problems have verified that Gaussian 

integration point in the mass matrix has a significant effect in the evaluation of eigenfrequency.  

 

key words: Mass-redistributed Method; Finite Element Method; Eigenfrequency 

1. Introduction 
The overly-stiff finite element method predicts upper bound solution of eigenfrequency 

[1]. In order to soften the overly-stiff effect, smoothed finite element method (SFEM) is 

developed [2]. With different types of smoothing domain, edge-based smoothed finite 

element method (ES-FEM) [3-9], node-based smoothed finite element method (NS-FEM) 

[10], alpha finite element method (αFEM) [11-13] and hybrid smoothed finite element 

method (HS-FEM) [14-17] have been formulated and applied to heat transfer, biomechanics, 

acoustic problems. The SFEM with right softened effect is able to achieve a close to exact 

stiffness, which provides more accurate solution of eigenfrequencies compared with finite 

element method. 

Alternatively, the balance of discrete model between mass and stiffness can be achieved 

with modification of mass matrix. For example, a weighted average of the consistent and 

lumped mass matrices has been proposed by Marfurt in the computation of the mass matrix 

for acoustic and elastic wave propagation problems [18]. In addition, a new modified 

integration rules in the calculation of the mass and stiffness for acoustic problems for 

quadrilateral mesh is developed by Murthy [19]. He et al have further proposed mass-

redistributed method to reduce the dispersion error in acoustic problems [20]. The re-

distribution of mass matrix of the discrete systems will be modified by shifting the integration 

points away from the usual Gaussian locations [20]. In this paper, we further extend mass-

redistributed method in the analysis of eigenfrequency. 

The paper is organized as follows: Section 2 briefly describes the formulation of mass-

redistributed method in the computation of eigenfrequency. Numerical examples including 

2D and 3D are presented in Section 3 to investigate the effect of Gaussian integration point 

on eigenfrequency using mass-redistributed method. Finally the conclusions from the 

numerical results are made in Section 4. 
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2. Materials and Methods 

2.1. 2D Mass-redistributed method 

The standard FEM behaves stiffer than the exact system, which causes larger 

eigenvalues compared to exact one.  

A B

C

a

b

c

 

Field node

Parent mesh Regular mesh

 

 Figure 1: Transformation of triangular mesh 

In the formulation of 2D mass-redistributed method, the first step is to transform parent 

mesh to regular mesh as shown in Fig. 1 [20]. Hence, the integration of stiffness and mass 

matrix is transformed into the natural coordinate system as follows:  
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At the same time, the linearly shape function  iN x can be written in the area coordinates 

form as shown in Fig. 2.  

With connection t to three vertices 1, 2, 3, three sub-areas A1, A2, and A3 corresponding to 

the triangles tAC, tBC and tBA, respectively can be determined for any given point t within 

the element. Using area coordinates, the shape functions for each node are expressed as 

follows: 
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Figure 2: Area coordinates for a linear triangular element 
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With Gauss quadrature rule, Eq. (1) can be evaluated: 
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(3) 

where ng is the number of Gauss points, wi are the weights and ξ ,η are the local coordinates 

of Gauss points. Then the generalized stiffness and mass matrix can be obtained by the 

integration rule. 
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(4) 

From Eq. (4), we can notice that the gradient of shape function using triangular mesh is 

constant within the elements and thus the integration of stiffness matrix in Eq.(4) equals to 

the constant multiplied by the Jacobi.  

The consistent mass matrix is evaluated by three Gauss points with 1/ 3iw  . 

point 1: 2 / 3i  , 1/ 6i  point 2: 1/ 6i  , 2 / 3i  point 3: 1/ 6i  , 1/ 6i   (5) 

On the other hand, the lumped mass matrix is formed with the following points: 

point 1: 1i  , 0i  point 2: 1/ 6i  , 2 / 3i  point 3: 1/ 6i  , 1/ 6i   (6) 

The generalized mass matrix is evaluated by introducing a variable integration point t: 
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where  0,1t , and weight 1/ 3iw   so that 
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Figure 3: Modified integration point for the mass matrix of linear triangular element 

It is noticed that the integration point will move from a triangular vertex to midpoint of the 

edge opposite to the vertex, as shown in Fig. 3 as t varies from 0 to 1.  

Using these three sampling points, the mass matrix can be expressed in terms of parameter 
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11 13 15

22 24 26

31 33 35e

42 44 46

51 53 55

62 64 66

0 0 0

0 0 0

0 0 01

0 0 03

0 0 0

0 0 0

e

a a a

a a a

a a a
A

a a a

a a a

a a a

 
 
 
 

  
 
 
 
  

Μ  (8) 

where 

 
2

2

11 22 33 44 55 66

1

2

t
a a a a a a t


        

 
 

2

13 15 24 26 31 35 42 46 51 53 62 64

1
1

4

t
a a a a a a a a a a a a t t


               

The summation of all matrix elements of e
Μ equals to the area of the element regardless of 

value of t: 

36

total area of the element1

1

6

e e e

i

i

A A


 Μ
 

(9) 

The eigenvalues are determined by the stiffness and mass matrix: 
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where  are the eigenvalues of stiffness matrix ，  are the eigenvalues of 

mass matrix. 

2.2. 3D Mass-redistributed method 

In the formulation of 3D mass-distributed method using linear tetrahedral element, the 

mapping from a parent tetrahedral mesh to the regular tetrahedral mesh is based on volume 

coordinates. Thereby, the integration of stiffness and mass matrix is transformed into the 

natural coordinate system as follows:  
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Similarly, the linearly shape functions is expressed in the volume coordinates form as 

shown in Fig. 4.  

Four sub-volumesV1, V2, V3 and V4 corresponding to the tetrahedron tBCD, tACD, tABD and 

tABC, respectively can be determined for any given point t within the element. Hence, the 

1 ~k kn  K 1 ~m mn 
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shape function is formulated as follows: 
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Figure 4: Volume coordinate using tetrahedral mesh 

 

Similar to 2D case, the Gaussian integration point t controls the formulation of 3D mass 

matrix. For example, the consistence mass matrix is evaluated by using following four Gauss 

points with weight 1/ 4iw  : 

point1: 0.5854102i  , 0.1381966i   , 0.1381966i  , 

point 2: 0.1381966i  , 0.5854102i   , 0.1381966i   

point 3: 0.1381966i  , 0.1381966i   , 0.5854102i   

point 4: 0.1381966i  , 0.1381966i   , 0.1381966i   

Using the following four Gauss points with weight 1/ 4iw  , the lumped mass matrix is 

obtained: 

  point 1: 1i  , 0i   , 0i  ,   point 2: 0i  , 1i   , 0i   

   point 3: 0i  , 0i   , 1i  ,   point 4: 0i  , 0i   , 0i   

Here, the general formulation of mass matrix with a variable Gaussian integration point t is 

written as follows: 
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3. Numerical examples 
In this section, some examples will be analysed to demonstrate the properties of the present 

method. The triangular elements in 2D and tetrahedral elements in 3D are used.  
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4.1 2D examples 
The first 2D cantilever beam with length l=1m and width d=0.2m is studied, which is 

subjected to fixed boundary condition at left hand side as outlined in Fig. 5 

1 0.2

 
Figure 5: 2D cantilever beam 

 

4.1.1 Effect of Gaussian integration point 

As shown in Fig. 6, the effect of Gaussian integration point on the computation of 

eigenfrequency using FEM is presented. In order to show the applicability of the proposed 

method, mode shape 1 and 4 are studied. It is easily observed that the Gaussian integration 

point controls the value of eigenfrequency.  
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(b) Mode shape 4 

Figure 6: Effect of Gaussian integration point on eigenfrequency using FEM 
 

 

As shown in Fig. 6, it is seen that t=1/3 provides the maximum eigenfrequency. As t=1 is 

corresponding to lumped mass matrix, the minimum eigenfrequency is obtained. While the 

eigenfrequency from t=2/3 which gives consistent mass matrix is less than value for t=1/3, 

but greater than the one using lumped mass matrix. 

The convergence rate of eigenfrequency for mode shape 7 and 20 using different Gaussian 

integration point is presented in Fig. 7. It is clearly indicated that FEM with lumped mass 

matrix gives the most accurate results compared with consistent mass matrix. In addition, it is 

noticed that Gaussian integration t=1/3 always gives the maximum eigenfrequency. 
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(a) Mode shape 7 (b) Mode shape 20 

Figure 7: Convergence rate for different Gaussian integration point using FEM 

4.2 3D examples 
In this section, the mass-redistributed method is further extended to 3D problem. 

4.2.1 Effect of Gaussian integration point 

As shown in Fig. 8, a three dimensional cantilever beam with dimension 1 0.2 0.2m   

subjected to fixed boundary condition is studied. The eigenfrequency is computed to analyze 

the performance of mass-redistributed method. 
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Figure 8: 3D cantilever beam 

 

As outlined in Fig. 9, it is seen that the consistent mass matrix is corresponding to t=0.585. 

The minimum eigenfrequency is obtained as t equals to 1 (t=1 formulates the lumped mass 

matrix). It is seen that  t=1/4 always provides the largest eigenfrequency as presented in Fig.9. 
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Figure 9: Effect of Gaussian integration point on mode shape using FEM 
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To further investigate the effect of mass-redistributed method in the evaluation of 

eigenfrequency, the convergence rate for mode shape 5 and 20 using different Gaussian 

integration point is shown in Fig. 10. Again, it is found that the lumped mass matrix always 

predicts much better solution compared with consistent mass matrix. The Gaussian 

integration point t=1/4 gives the largest solution of eigenfrequency. The solution from 

consistent mass matrix is always between the Gaussian integration point t=1 (corresponding 

to lumped mass matrix) and t=1/4. 

 
(a) Mode shape 5 

 
(b) Mode shape 20 

Figure 10: Convergence rate for different Gaussian integration point using FEM 

4. Conclusion 
In this paper, a mass-redistributed method is further developed for solving eigenfrerquency 

by modification of Gaussian integration point in the computation of mass matrix. In the 

present mass-redistributed method, the alternation of Gaussian integration point always 

ensures the mass conservation. The triangular and tetrahedral elements are focused in this 

study. Both theoretical and numerical results have demonstrated that the Gaussian integration 

point in the mass matrix has a significant effect on the prediction of eigenfrequency, and the 

following conclusions can be summarized: 

a) With adjustment of Gaussian integration point, the eigenfrequency of systems can be 

modified. 

b) The t=1/3 gives the maximum eigenfrequency in the 2D model; while t=1/4 results in 

the maximum eigenfrequency of 3D model 

c) Due to the correct balance between the stiffness and mass matrix, the lumped mass 

matrix has the best solution in the computation of eigenfrequency. 
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