Accurate Computations of Matrix Multiplication with Level 3 Operation in BLAS

Katsuhisa Ozaki¹*, Takeshi Ogita²

¹ Department of Mathematical Sciences,
Shibaura Institute of Technology,
307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan

² Division of Mathematical Sciences,
Tokyo Woman's Christian University,
2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan

March 12, 2015

Abstract

This talk is concerned with accurate computation of a product of two matrices whose entries are represented by floating-point numbers as defined by IEEE 754. Recently, we developed an error-free transformation of matrix multiplication [1]. This transforms the product of two matrices into a sum of several floating-point matrices by using only floating-point arithmetic. It is very useful to obtain an accurate approximation of the matrix multiplication. Moreover, since level 3 fraction (the relative amount of matrix multiplication in a given algorithm) is very high, the method can achieve high performance with high parallelism. In this talk, we succeeded to improve the error-free transformation and give a validation method with diagonal scaling. The details of the method and numerical results will be presented in the presentation.

Keyword: floating-point arithmetic; matrix multiplication; accurate computations.

^{*}ozaki@sic.shibaura-it.ac.jp

References

[1] K. Ozaki, T. Ogita, S. Oishi, S. M. Rump: Error-Free Transformation of Matrix Multiplication by Using Fast Routines of Matrix Multiplication and its Applications, Numerical Algorithms, Vol. 59:1 (2012), pp. 95-118.