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Abstract

The Laplace transformation has been applied for analyzing viscoelastic behaviors of composite
laminated shells. The constitutive equation in integral can be reduced to linear stress-strain
relationship in Laplace domain. Therefore, the formulation such as displacement field, can be
expressed similarly with elastic one. In order to describe accurately the viscoelastic behaviors of
laminated shells, the efficient higher-order shell theory (EHOST) has employed. The general tensor
formulation is used for accurate description and arbitrary shell. The time-dependent results of strain,
stress distributions through the thickness of the shell are obtained by converting back to real time
domain for creep and relaxation process.
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Introduction

Due to the time-dependent effects of matrix, viscoelastic behavior is one of important factors in
the analysis of composite structures. These responses significantly depend on the applied loading
and environmental conditions such as temperature or moisture. Nonetheless, the Botlzmann’s
superposition principle in integral form of viscoelastic analysis is much more complicate than
Hook’s law of elastic one [Yi and Hilton (1995); Venkat et al. (2012)]. Consequence, the
computation costs extremely expensive for thick laminates. It needs to find a method which satisfies
both efficiency and accuracy.

Some researcher have employed the Laplace or Fourier transforms to avoid above limitation [Lin
and Hwang (1989); Chen (1995)]. The converted constitutive equation of viscoelastic materials in
Laplace domain is very similar to the Hook’s laws of elastic one. However, all of formulation
procedures are done in Laplace domain. Finally, the results in real time domain are obtained by
inversion Laplace transforms [Hassanzadeh and Pooladi-Darvish (2007); Dubner and Abate (1968)].
Hence, these methods are effective for long-term problems of viscoelastic analysis.

On the other hand, plates and shells more and more are popular structures, especially in
aerospace engineering such as wings and fuselages. Because of potential application, various plate
and shell theories have been developed to improve the accuracy as well as efficiency [Reddy
(2004); Pagano (1969); Cho and Parmerter (1993; 1994); Kim and Cho (2003); Nguyen et al.
(2015)]. To express adequately viscoelastic behaviors and the advance of present method, EHOST
is good choice which can predict accurately and efficiently strain stress distribution through the
thickness of composite laminated shell [Kim and Cho (2003)].

The present study aims to develop EHOST for viscoelastic composite laminates. Besides, the
Laplace transform is employed to reduce the mortal formulation and save an expanse computation
amount. Thus, this study provides a powerful tool for investigating the time-dependent response of
composite laminated shell with the advantage of accuracy and efficiency.



Mathematical Formulation
1. Constitutive equation for viscoelastic material and Laplace transform

The constitutive equation for a linear viscoelastic materials can be expressed, as follows:
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where ¢ denotes time, ¢’ is a dummy variable for integration, Qji(?) is relaxation modulus which can
be well represented by a series of decaying exponentials, as Prony series.

By applying Laplace transform, the above complex equation can be reduced as linear relationship in
Laplace domain as follows:
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where ( )* denotes parameters in the Laplace domain. Therefore, the procedures of viscoelastic
composite laminated shell analysis in Laplace domain is the same to elastic counterpart in time
domain.

Finally, the viscoelastic responses in real time domain can be obtained by using inverse Laplace

techniques. In present study, the Fourier series algorithm is employed to convert the strain, stress
values back into the real time domain as follows:

()= {%F(a)+Re§:F(a+ jkTﬂj(—l)k} (3)

where F{(s) is a function in the Laplace domain that need to converted, f{¢) is the converted function
in real time domain, and a and » are the parameters that must be optimized for accuracy.

2. Efficient higher-order shell theory for viscoelastic composite laminates

The composited shells are considered, consisting of # orthotropic layers with uniform thickness
h in a curvilinear orthogonal coordinate system x* as shown in Fig. 1. (x!, x?, x’=0) represents
curvature of the mid-surface which is chosen as the reference surface. The position vector R can be
expressed by position vector r pointing to reference surface and unit vector @®, which is
perpendicular to the surface at the point x% as follows:
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where x° is the distance from the reference surface to the material point. The covariant base vector
is defined as:
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Fig. 1. Geometry and coordinates of the rectangular Fig 2. Geometry and loading of cylindrical shell

laminated shell.



where g°=a’® and ai=r are vector tangent to the surface coordinate curves. Hence, the displacement
vector of the shell can be expressed as follows:
V(x')=V,8“+V,8° =U,d* +Uyd® ®
Vo=gUp,  Va=Us

where a;, g; are covariant base vectors and a, g1 are contravariant base vectors; ,uaf’ denote the shifter
tensor which is expressed as follows:

g, =pla, =(of —x°b )a, (7)
The metric tensor a.p and surface tensor byp are defined from first and second fundamental forms
respectively, as follows:
ds® = d~dri = a,dx" dx”
dF sdiiy = —b,pdx" dx’ = b dx dx,
The in-plane displacement fields of laminated shells are assumed as the one of the original

EHOST, which superimposes linear zigzag displacements, with different slope in each layer, as
follows:
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where u, and w are displacements defined at the mid-surface, and H(x’- x°() is the Heaviside unit
step function. The requirement that the transverse stress should be vanished at the top and bottom
surface, and continuous through the thickness of the shells are employed to reduce the number of

unknown primary variables. Due to the advantage of Laplace transform, this work can be executed
conveniently in Laplace domain, and the displacements can be obtained as follows:
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where ", K" and (@) * denote the matrices in Laplace domain which depend on the material
properties and the thickness of each ply.

Then, the converted virtual work principle () in Laplace domain is employed and integrated by
part to obtain the equilibrium (), as follows:
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where the stress resultants will be shown in final version.
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3. Cylindrical bending for cylindrical shell

For cylindrical bending problem for cylindrical shallow shell as shown in Fig. 2, the coordinates
are specified as (xl,xz,x3 ) =(x,0,z), the curvature teams will be reduced as follows:
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The sinusoidal loading is applied on the upper surface of laminated shell, as follows:
P. (x,@,t)zf’z(t)sin(ﬁ] (16)
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The simply supported boundary conditions can be satisfied by the following forms of

displacements:
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where ¢ is chosen as 7/3.

Substituting the form of displacement in Eq. () into Eq. () with the help of resultants-
displacements relations, we can obtain the algebraic relations between the primary variables and the
external force in the Laplace domain as follows:
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where K" is the stiffness matrix in Laplace domain. The detail formulation of stiffness matrix will
be given in the presentation. After solving the above equation, the primary variables as well as the
deflection, in-plane displacements, stress distributions in real time domain can be obtained by
applying the numerical inverse Laplace transform £-!.

Results and discussion

To compare with previous studies, the laminated shell (90/0/90), assumed to be made of
Graphite/Epoxy GY70/339 at reference condition (T=75°C, M=0.1%), is chosen as numerical
example with elastic properties are shown as follows:

E, =2.89x10°MPa E, =6.063x10° MPa
G,, = 4.134x10° MPa G, =2.067x10° MPa (19)
Vi =V =031

where L denotes a fiber direction and 7 denotes a perpendicular direction to the fiber. The time-
dependent function ¢(¢) for GY70/339 determined by mastering curve Crossman’s experimental
data is omitted because of limited space [14]. In present study, for the static creep process, the
applied force is kept as constant p(#)=1.0. For the relaxation process, after the force p|.=o =1.0 is
applied, the deflection will be kept as constant as the time go by. In this version, the in-plane
displacement distribution U is represented; the other stress-strain distributions through the
thickness of the shell will be shown in the presentation.

The Fig. 3 shows the distribution of in-plane displacement U- through the thickness for creep
process. The viscoelastic solution at initial time is the same to elastic solution. Then, it changes as
the time goes by, but still have good agreement with elastic one. Due to the decay of the stiffness of
composite matrix, the amplitude of U increases respect to time. The increment at upper and lower
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through the thickness of creep process through the thickness of relaxation process

is smaller because of dominant elastic fiber. These responses make the structures in risks with larger
deformation.

The Fig. 4 shows the distribution of in-plane displacement U> through the thickness for
relaxation process. The viscoelastic solution at initial time is the same as elastic solution. Then,
similar with 1-D viscoelastic response of relaxation, the amplitude of U, changes insignificantly.
The amplitude lightly decreases at top and bottom of shell, and lightly increases at interface surface.

Conclusion

The viscoelastic response of laminated composite plate of EHOST has been analyzed with the
help of Laplace transform without any integral transformation or any time step scheme. The
accuracy and efficiency of the analysis are retained since the viscoelastic EHOST formulation was
made in the linear elastic regime in the Laplace transformed domain. The numerical results for
composite laminated shell, which are converted by employing inversion Laplace transform,
adequately show the change of time-dependent mechanical behaviors for creep process as well as
relaxation process.
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