Evaluation of dynamic stress intensity factors using *i*XFEM

*Longfei Wen^{1,2}, †Rong Tian³

¹University of Chinese Academy of Sciences, No. 19A Yuquan Rd, Haidian District, Beijing 100049, China ² Institute of Computing Technology, Chinese Academy of Sciences, Kexueyuan Nanlu 6, Haidian, Beijing 100190, China.

³ Software Center for High Performance Numerical Simulation, Institute of Applied Physics and Computational Mathematics, No. 6 Huayuan Rd, Haidian District, Beijing 100190, China.

*Presenting author: wenlongfei@ncic.ac.cn †Corresponding author: tian.rong@icloud.com

Abstract

Compared with the existing XFEMs [Belytschko and Black (1999); Moes et al. (1999)], the new XFEM has been developed recently targeting at three aspects of improvement: (1) to overcome the linear dependence and the ill-conditioning issues of the standard and the corrected XFEMs; (2) to get rid of the extra dofs introduced in crack tip enrichment; (3) to be interpolating at enriched nodes. The paper is to present the performance of the new method in dynamic crack problems. At first, the improved XFEM is introduced in short. Then around crack tip, different mass lumping techniques such as the row-sum and the equal mass splitting are compared to find out the optimal mass lumping in dynamic analyses. At last, the emphasis is placed on accuracy comparison/studies of dynamic stress intensity factor between the new and the existing XFEMs. Selected numerical examples for typical elastic dynamic crack problems are provided to demonstrate the numerical performance of the new XFEM in dynamic analyses.

Keywords: improved XFEM, mass lumping technology, dynamic stress intensity factor, crack

References

Rong Tian. (2013) Extra-dof-free and linearly independent enrichments in GFEM. Computer Methods in Applied Mechanics & Engineering 266: 1-22.

Rong Tian, Longfei Wen. (2015) Improved XFEM—An extra-dof free, well- conditioning, and interpolating XFEM. *Computer Methods in Applied Mechanics and Engineering* **285**: 639-658.

Longfei Wen, Rong Tian. (2014) An extra dof-free and well conditioned XFEM. *The 5th International Conference on Computational Methods*, Cambridge.

Rong Tian, (2013) Meshfree/GFEM in hardware-efficiency prospective. *Interaction and multiscale mechanics*. DOI:10.12989/imm. 2013.6.2.000.

Rong Tian, Wu ZD, Wang CW. (2013) Scalable FEA on non-conforming assembly mesh. *Computer Methods in Applied Mechanics & Engineering* **266**: 98-111

Rong Tian. (2014) Simulation at Extreme-Scale: Co-Design Thinking and Practices. *Archive of Computational Methods in Engineering*, DOI 10.1007/s11831-014-9095-y.

Rong Tian, Chaowei Wang. (2013) Large scale simulation of ductile fracture process of microstructured materials. *Progresses on Nuclear Sciences and Technologies* 2011.

Rong Tian, Albert C. To, Wing Kam Liu. (2011) Conforming local meshfree method. *International Journal for Numerical Methods in Engineering* **86**: 335-357.