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Abstract 

If a new system of computational logic would be entirely based on the application of a true unified 
computational-based analytical theory of integration then what better way of validating such a  
system of mathematical logic then through the complete development of a unified theory of physics.  
The outcome of having successfully arrived at such a monumental theory in physics would 
represent a much greater expansion of our knowledge in terms of engineering science.  This would 
be the direct consequence of having analytically resolved under one unified theory of analytical 
integration the vast majority of  PDEs  some of which would prove very similar in appearance to 
those encountered in theoretical physics. 
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0. Introduction 

The new development for the physical science begins with the introduction of what appears to be a 
computational-based unified theory of analytical integration.  This would eventually lead to the 
formation of some type of a new physical ideology by which a unified theory of physics could 
eventually be constructed over time. 

Even  Albert Einstein  who has always claimed that  God  never plays with dices would have 
conceded if he were alive today,  that somewhere out there in the vast realm of mathematics there 
has to exist some form of an algebraic system capable of addressing all of physics under one unified 
theory of   "computation". 

And I would like to quote from the ending of his book  The meaning of Relativity [Einstein (1974)]: 

" This does not seem to be in accordance with continuum theory, and must lead to an attempt to 
find a purely algebraic theory for the description of reality. But nobody knows how to obtain the 
basis of such a theory ". 

With a unified theory of integration now possibly well within our grasp, this would  represent a 
very important step towards becoming much less dependent on experimental scientific and 
engineering methods of analysis.  As a result of this, we would be adopting a far more theoretical 
approach towards every aspect of the physical sciences on a much wider universal scale than ever 
thought possible under existing traditional methods of analysis

" The greatest problem in having to rely on traditional methods of mathematical analysis is 
mainly due to a severe lack of universality as a direct consequence of not having uncovered a 
unified theory of analytical integration in the past. " 

Throughout the remaining of this article,  I will first and foremost attempt to briefly summarize in 
more layman's term an entirely new mathematical  ideology.   Next,  I will proceed to demonstrate 
how such a very powerful new ideology in mathematics can be mutated into a whole new branch of 
physics that I would like to introduce everyone as an   "idealistic physics". 

As a direct consequence of what appears to be a unified theory of analytical integration, I would 
like to address the importance of arriving at some unified theory of physics for a much greater 
expansion of our knowledge in terms of engineering science.  

1. First and foremost, the new mathematical ideology

What gives the new ideology its own and very unique flavor in mathematics is that all analysis 
pertaining to anti-differentiation whether in the form of a  DE  or an  integral  is always performed 
at the differential  level.   The main reason for this is to insure that the concept of continuity be 
preserved throughout the entire anti-differentiation process.  Because the laws of algebra apply 
equally well to finite quantities as they do to differential quantities without regards to any limiting 
process near zero, there is never a risk of violating any known mathematical principles.  The type of 
continuity I am referring to can ideally be described by a  DE  or a system of   DEs.   

Under  the new proposed mathematical ideology when it comes to solving for any type of  DE or 
system of DEs, rather than working with complete mathematical equations, we instead only become 
interested in working with complete  differential form representations. 

This is where the new  mathematical ideology now begins to deviate from the old traditional 
thinking of  Calculus. 

If we were to have complete access to every imaginable type of mathematical equations just from 
the computed values alone that would originate from the application of some very unique mathe- 
matical ideology then this would certainly represent a very significant discovery in mathematics.  
This would no doubt represent an extremely valuable tool for completely eliminating our most 
fundamental problem of not being able to select the most suitable type of  mathematical equation 
for handling all aspects of the physical and biological sciences under one "unified theory of 
computation".   Over time, this would inevitably lead towards the development of some form of a 
unified theory of physics by which some type of a "theory of everything" would be constructed 
from. 
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The very first place we might want to look for the possible existence of such a potentially formi- 
dable mathematical theory of integration is in the following very simple integral equation: 

𝑡 =    ∫
𝑑𝑦

𝑎𝑦2 + 𝑏𝑦 + 𝑐
 (1.001) 

Everyone would certainly agree that only because "y(t)" was initially presented in its complete 
differential form, this has provided us with the capability of defining a wide range of mathematical 
expressions just by varying the numerical values present inside this integral.  From this very simple 
observation in Calculus, we can immediately deduce that differential forms could at least 
potentially represent a very powerful link between numerical computation  and complete mathe- 
matical expressions.   

So our primary objective now is to determine what possible variations in terms of differential form 
representations can we expect for including  "all"  types of mathematical equations regardless of the 
degree of complexity involved.  Such mathematical equations would be constructed from the use of 
algebraic and elementary basis functions that would involve the presence of composite functions 
with no limit whatsoever as to each of their degree of composition.  Furthermore, there would be no 
restriction whatsoever on the number of dependent and independent variables involved and finally, 
the entire mathematical equation may be expressible not only in explicit form but also in implicit 
form as well. 

Such an ideal universal differential expansion form can only be described mathematically in terms 
of  two  fundamental parts that would involve the use of multivariate polynomials  as well as com- 
plete differentials of multivariate polynomials. 

For a general system of  "k"  number of implicitly defined multivariate mathematical equations in 

the form of  "𝑓𝑘(𝑧𝑚, 𝑥𝑛) = 0"  that consist of  "m"  number of  dependent variables and  "n"  

number of  independent variables this may be described as follow: 

 

(1).  Primary Expansion: 

𝐹𝑖(𝑊𝑗)  =   0 =   ∑  𝑎𝑖,𝑟 (∏ 𝑊𝑗

𝐸𝑖,𝑠

𝑝

𝑗

)             (1 ≤ 𝑖 ≤ 𝑘) 

𝑟

 (1.002) 

where "𝑊𝑗" are auxiliary variables,  "p" is the total number of such auxiliary variables each of 

which are raised to some floating point value and  "r"  is the total number of terms present in each 

of the  "k"  number of implicitly defined multivariate polynomial equations. 

(2).  Secondary Differential Expansion: 

𝑑𝑧𝑖  =   𝑑𝑊𝑖                                        ( 1 ≤ 𝑖 ≤ 𝑚) (1.003) 

  𝑑𝑥𝑖  =   𝑑𝑊𝑚+𝑖                                   (1 ≤ 𝑖 ≤ 𝑛)    (1.004) 
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∑ 𝑁𝑖(𝑚+𝑛+1)−𝑚−𝑛−1+𝑡𝑑𝑧𝑡   +    ∑ 𝑁𝑖(𝑚+𝑛+1)−𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

  

 

                                       =   𝑁𝑖(𝑚+𝑛+1)𝑑𝑊𝑗          [1 ≤ 𝑖 ≤ 𝑝 − 𝑚 − 𝑛]  [𝑚 + 𝑛 + 1 ≤ 𝑗 ≤ 𝑝]    (1.005) 

𝑁𝑐(𝑊𝑗)   =  ∑ 𝑏𝑐,𝑡 (∏ 𝑊𝑗

𝐸𝑐,𝑠
′

𝑝

𝑗

)        

𝑐𝑟

𝑡=(𝑐−1)𝑟+1

 (1.006) 

                                                                             [1 ≤ 𝑐 ≤ 𝑖(𝑚 + 𝑛 + 1)]  [1 ≤ 𝑖 ≤ 𝑝 − 𝑚 − 𝑛]   

 

There is at present no other possible differential form capable of representing all mathematical 
equations with such a high degree of  universality then the one suggested above.   

In complete expanded form we would write this as follow: 

 

(1).  Primary Expansion: 

 𝐹1  =   0  =    𝑎1,1𝑊1
𝑚11𝑊2

𝑚12 ∙∙∙ 𝑊𝑝

𝑚1𝑝  +     𝑎1,2𝑊1

𝑚1,𝑝+1𝑊2

𝑚1,𝑝+2 ∙∙∙ 𝑊𝑝

𝑚1,2𝑝    +  … +      

                                                             + … +     𝑎1,𝑟𝑊1

𝑚1,𝑝(𝑟−1)+1𝑊2

𝑚1,𝑝(𝑟−1)+2 ∙∙∙ 𝑊𝑝

𝑚1,𝑟𝑝      (1.007) 

𝐹2  =   0  =    𝑎2,1𝑊1

𝑚2,1𝑊2

𝑚2,2 ∙∙∙ 𝑊𝑝

𝑚2,𝑝  +     𝑎2,2𝑊1

𝑚2,𝑝+1𝑊2

𝑚2,𝑝+2 ∙∙∙ 𝑊𝑝

𝑚2,2𝑝    +  … +    

                                                             + … +     𝑎2,𝑟𝑊1

𝑚2,𝑝(𝑟−1)+1𝑊2

𝑚2,𝑝(𝑟−1)+2 ∙∙∙ 𝑊𝑝

𝑚2,𝑟𝑝      (1.008) 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

 

𝐹𝑘  =   0  =    𝑎𝑘,1𝑊1

𝑚𝑘,1𝑊2

𝑚𝑘,2 ∙∙∙ 𝑊𝑝

𝑚𝑘,𝑝  +     𝑎𝑘,2𝑊1

𝑚𝑘,𝑝+1𝑊2

𝑚𝑘,𝑝+2 ∙∙∙ 𝑊𝑝

𝑚𝑘,2𝑝    +  … +      

                                                             + … +     𝑎𝑘,𝑟𝑊1

𝑚𝑘,𝑝(𝑟−1)+1𝑊2

𝑚𝑘,𝑝(𝑟−1)+2 ∙∙∙ 𝑊𝑝

𝑚𝑘,𝑟𝑝      (1.009) 
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 (2).  Secondary Differential Expansion: 

𝑑𝑧𝑖  =   𝑑𝑊𝑖                                        ( 1 ≤ 𝑖 ≤ 𝑚 ) (1.010) 

  𝑑𝑥𝑖  =   𝑑𝑊𝑚+𝑖                                   ( 1 ≤ 𝑖 ≤ 𝑛 )    (1.011) 

[ 𝑁1𝑑𝑧1 +   𝑁2𝑑𝑧2  +  … +  𝑁𝑚𝑑𝑧𝑚 ]   +   [ 𝑁𝑚+1𝑑𝑥1  +  𝑁𝑚+2𝑑𝑥2   +  … +     

                                                                         + … +   𝑁𝑚+𝑛𝑑𝑥𝑛 ]    =   𝑁𝑚+𝑛+1𝑑𝑊𝑚+𝑛+1   (1.012) 

 [ 𝑁𝑚+𝑛+2𝑑𝑧1  +   𝑁𝑚+𝑛+3𝑑𝑧2   +  … +   𝑁2𝑚+𝑛+1𝑑𝑧𝑚]   +    [ 𝑁2𝑚+𝑛+2𝑑𝑥1   +      

                             +  𝑁2𝑚+𝑛+3𝑑𝑥2    +  … +   𝑁2(𝑚+𝑛+1)−1𝑑𝑥𝑛 ]    =   𝑁2(𝑚+𝑛+1)𝑑𝑊𝑚+𝑛+2   (1.013) 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

                         .                                                     .                                                     . 

[ 𝑁(𝑝−1)(𝑚+𝑛+1)+1𝑑𝑧1  +  𝑁(𝑝−1)(𝑚+𝑛+1)+2𝑑𝑧2   +  … +   𝑁(𝑝−1)(𝑚+𝑛+1)+𝑚𝑑𝑧𝑚 ]   +  

 

 +  [ 𝑁(𝑝−1)(𝑚+𝑛+1)+𝑚+1𝑑𝑥1  +   𝑁(𝑝−1)(𝑚+𝑛+1)+𝑚+2𝑑𝑥2    +  … +  𝑁𝑝(𝑚+𝑛+1)−1𝑑𝑥𝑛 ]    = 

                                                                                                                             =   𝑁𝑝(𝑚+𝑛+1)𝑑𝑊𝑝   (1.014) 

 

Assuming a system of implicitly defined mathematical equations consisting of 3 dependent 
variables and  5 independent variables with a total number of  12  auxiliary variables. 

We will determine the correct index value for each of the multivariate polynomials present inside 
the Secondary Differential Expansion that would be responsible for defining the complete expres- 
sion for the  10

th
  auxiliary variable: 
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Starting with equation (1.005): 

∑ 𝑁𝑖(𝑚+𝑛+1)−𝑚−𝑛−1+𝑡𝑑𝑧𝑡   +    ∑ 𝑁𝑖(𝑚+𝑛+1)−𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

  

 
 

                     =   𝑁𝑖(𝑚+𝑛+1)𝑑𝑊𝑗         [1 ≤ 𝑖 ≤ 𝑝 − 𝑚 − 𝑛]  [𝑚 + 𝑛 + 1 ≤ 𝑗 ≤ 𝑝] (1.015) 

 

The results are for  "p=12", "m=3", "n=5"  we have  "i = 12 - 10 = 2"  and   "j = 10": 

     ∑ 𝑁2(3+5+1)−3−5−1+𝑡𝑑𝑧𝑖   +   ∑ 𝑁2(3+5+1)−5−1+𝑡𝑑𝑥𝑖

5

𝑡=1

   =     𝑁2(𝑚+𝑛+1)𝑑𝑊10    

3

𝑡=1

 (1.016) 

 

     [ 𝑁10𝑑𝑧1  +  𝑁11𝑑𝑧2  +  𝑁12𝑑𝑧3 ]   +    [ 𝑁13𝑑𝑥1 +  𝑁14𝑑𝑥2  +   𝑁15𝑑𝑥3  +   
 

 

                                                +   𝑁16𝑑𝑥4  +  𝑁17𝑑𝑥5 ]   =    𝑁18𝑑𝑊10   (1.017) 

 

 

Before proceeding any further, a few simple mathematical definitions need to be in order. 

The first one, the actual process of transforming a complete mathematical equation in terms of the 
above universal differential form representation is referred to as taking its Multivariate Polynomial 
Transform.   

Next, the complete reverse process of going from a differential form representation back to its ori- 
ginal complete mathematical equation would be referred to as taking the inverse of a Multivariate 
Polynomial Transform. This would require following a very unique integration process to be des- 
cribed later for determining the complete analytical expression corresponding to each auxiliary 
variable "𝑊𝑗".  They each in turn would be substituting back into the  Primary Expansion  for 
arriving at the complete original expression that we started with being in the form of   
"𝑓𝑘(𝑧𝑚, 𝑥𝑛) = 0". 

As we are dealing mainly with multivariate polynomials and complete differentials of multivariate 
polynomials, new types of coefficients are being introduced along the way.   During the process of 
inverting from a differential form back to the original complete mathematical equation, some of 
these coefficients would be entirely responsible for defining the basis functions by which the 
complete mathematical equation was originally constructed from.  These particular types of 
coefficients are present only in the  Secondary Differential Expansion  of a  Multivariate 
Polynomial Transform.   The remaining types of coefficients will be described in more detail later 
on. 
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Example (1.1).  Let us consider the simplest two dimensional case which would correspond to the 
case for  "𝑘 = 𝑚 = 𝑛 = 1"  and by replacing the dependent variable  "z"  with  "y",  we arrive at 
the following corresponding  general  Multivariate Polynomial Transform  for  "𝑦(𝑥)" : 
 

 

(1).  Primary Expansion: 

                                         𝐹(𝑊𝑗)  =   0                             [1 ≤ 𝑗 ≤ 𝑝]   (1.018) 

(2).  Secondary Differential Expansion: 

𝑑𝑥 =   𝑑𝑊1 (1.019) 

𝑑𝑦 =   𝑑𝑊2 (1.020) 

                                 𝑁3𝑖−2𝑑𝑥 +   𝑁3𝑖−1𝑑𝑦 =   𝑁3𝑖𝑑𝑊𝑗          [1 ≤ 𝑖 ≤ 𝑝 − 2]  [3 ≤ 𝑗 ≤ 𝑝] (1.021) 

 

For this general univariate two dimensional case, the Secondary Differential Expansion may be 
written in the following more general format upon replacing each auxiliary variable on the left hand 
side with the dependent and independent variables: 

𝑀(𝑥, 𝑦)𝑑𝑦  +   𝑁(𝑥, 𝑦)𝑑𝑥  =  𝑃(𝑊𝑗)𝑑𝑊𝑗 (1.022) 

The left hand side of this equation appears in exactly the same format by which all first order ODEs 
are written prior to applying Euler's method for specifically targeting those that are considered as 
exact differentials.  

This test is well known in Calculus and is defined by: 

𝜕𝑀

𝜕𝑦
 =   

𝜕𝑁

𝜕𝑥
    

(1.023) 

When this condition is met than Euler's general integral formula can then be applied and the result 
is a vastly simplified integration process. 

The formula has two equivalent form. 

The first: 

∫ 𝑀𝑑𝑥  +    ∫ (𝑁 −   
𝜕

𝜕𝑦
∫ 𝑀𝑑𝑥) 𝑑𝑦   =   𝐶   (1.024) 

and the second one: 

∫ 𝑁𝑑𝑦  +    ∫ (𝑀 −   
𝜕

𝜕𝑥
∫ 𝑁𝑑𝑦) 𝑑𝑥   =   𝐶   (1.025) 
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Example (1.2). We will apply the concept of an exact differential for demonstrating in detail the 
exact process involved for inverting the following Multivariate Polynomial Transform  
corresponding to a univariate implicitly defined equation in two dimension.  
 

(1).  Primary Expansion: 

𝐹(𝑊1, 𝑊2, 𝑊3  𝑊4 )  =   0 =   𝑊4  +   2𝑊2   (1.026) 

 (2).  Secondary Differential Expansion: 

                                     𝑑𝑥   +   0 ∙ 𝑑𝑦  =   𝑑𝑊1                                     (1.027) 

                               0 ∙ 𝑑𝑥   +         𝑑𝑦  =   𝑑𝑊2                                    (1.028) 

                         −2𝑊1𝑑𝑥    +   0 ∙ 𝑑𝑦  =   𝑊3𝑑𝑊3                               (1.029) 

                            2𝑊1𝑑𝑥    −   𝑊3𝑑𝑦  =   𝑊3(𝑊2  +   𝑊3)𝑑𝑊4       (1.030) 

The first step is to naturally begin by integrating in ascending order of complexity each first order 

ODE  that is present in the  Secondary Differential Expansion  for the expression of  each auxiliary 

variable. 

 

We begin first by defining   "𝑊1(𝑥)  =   𝑥"   and   "𝑊2(𝑦)  =   𝑦". 

For  "𝑊3(x)",  we integrate equation (1.029) by parts to arrive at: 

𝑊3(𝑥)  =   ± √𝐶3 − 2𝑥2 (1.031) 

For  "𝑊4(x, y)", the corresponding first order ODE to integrate is obtained by substituting the 

expression for  "𝑊1(𝑥)" and "𝑊2(𝑦)"  into (1.030)  to afterwards rearrange the resultant equation in 

the form of: 

2𝑥 𝑑𝑥 

𝑊3(𝑦 + 𝑊3)
   −    

𝑑𝑦

𝑦 + 𝑊3
  =   𝑑𝑊4 

(1.032) 

Let: 

𝑀(𝑥, 𝑦)  =    
2𝑥

𝑊3(𝑦 +  𝑊3)
 (1.033) 

so that since  "𝑊3 =  𝑊3(𝑥)" : 

           
𝜕𝑀

𝜕𝑦
   =    

−2𝑥

𝑊3(𝑦 +   𝑊3)2
   (1.034) 

Next, define: 

𝑁(𝑥, 𝑦)  =   
−1

(𝑦 +  𝑊3)
        (1.035) 

so that: 
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𝜕𝑁

𝜕𝑥
 =   

1

(𝑦 +   𝑊3 )2
  

𝑑𝑊3

𝑑𝑥
 (1.036) 

From equation (1.029): 

      
𝑑𝑊3

𝑑𝑥
  =   

−2𝑊1

𝑊3
  =   

−2𝑥

𝑊3
 (1.037) 

Substituting this equation into equation (1.036), we get: 

        
𝜕𝑁

𝜕𝑥
 =   

−2𝑥

𝑊3(𝑦 +   𝑊3)2
 

(1.038) 

Since:  

                         
𝜕𝑀

𝜕𝑦
 =   

𝜕𝑁

𝜕𝑥
 =   

−2𝑥

𝑊3(𝑦 +   𝑊3)2
   (1.039) 

it follows that equation (1.030) is an exact  differential whose solution may be obtained using any 

one of Euler's integral formula mentioned earlier in equation (1.024) and (1.025). 

 

The following general form will be used: 

∫ 𝑁𝑑𝑦  +    ∫ (𝑀 −   
𝜕

𝜕𝑥
∫ 𝑁𝑑𝑦) 𝑑𝑥   =   𝐶   (1.040) 

For the first integral: 

∫ 𝑁𝑑𝑦  =    ∫
−𝑑𝑦

𝑦 + 𝑊3
  =  − ln(𝑦 +  𝑊3)  (1.041) 

For the second integral: 

𝜕

𝜕𝑥
∫ 𝑁𝑑𝑦  =    − 

𝜕

𝜕𝑥
ln(𝑦 + 𝑊3)  =   − 

1

𝑦 +  𝑊3
  

𝑑𝑊3

𝑑𝑥
     (1.042) 

From the differential that defined the third auxiliary variable as given by equation (1.029), we can 

write: 

𝑑𝑊3

𝑑𝑥
 =   

−2𝑥

𝑊3
 (1.043) 

Thus equation (1.042) may be rewritten as follow: 
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𝜕

𝜕𝑥
∫ 𝑁𝑑𝑦   =  − 

1

𝑦 +  𝑊3
  

𝑑𝑊3

𝑑𝑥
  =     

2𝑥

𝑊3(𝑦 + 𝑊3)
  =   𝑴(𝒙, 𝒚)       (1.044) 

so that : 

∫ (𝑀 −   
𝜕

𝜕𝑥
∫ 𝑁𝑑𝑦) 𝑑𝑥  =   ∫(𝑀 −   𝑴) 𝑑𝑥  =   0 (1.045) 

Euler's integral formula may now be rewritten in the following final form: 

∫ 𝑁𝑑𝑦  +    ∫ (𝑀 −  
𝜕

𝜕𝑥
∫ 𝑁𝑑𝑦) 𝑑𝑥   =   ∫ 𝑁𝑑𝑦  =    ∫

−𝑑𝑦

𝑦 + 𝑊3
  =  − ln(𝑦 +  𝑊3)  (1.046) 

The complete exact solution of the differential form that define  "𝑊4"  is obtained by integrating 

equation (1.030) using the above integral solution. 

The results are: 

                     − ln(𝑦 +   𝑊3)  =   𝑊4  +   𝐾 (1.047) 

Substituting the expression for  "𝑊3(𝑥)"  as defined by equation (1.031) into the above equation, 

we obtain: 

−  ln( 𝑦  ±   √𝐶3  −   2𝑥2 )    =    𝑊4  +   𝐾  (1.048) 

Solving for "𝑊4" : 

𝑊4(𝑥, 𝑦)  =   𝐶4  −   ln( 𝑦  ±   √𝐶3  −   2𝑥2 ) (1.049) 

 

The complete inverse Multivariate Polynomial Transform of the given implicitly defined equation 

is obtained by substituting the expression for "𝑊1(𝑥)", "𝑊2(𝑦)", "𝑊3(𝑥)" and "𝑊4(𝑥, 𝑦)" into the 

Primary Expansion defined by equation (1.026). 
 
The results are: 

𝑓(𝑥, 𝑦) =   0 =   𝐶4  −   ln ( 𝑦  ±   √𝐶3  −   2𝑥2 )  +   2𝑦 (1.050) 

where the constants of integration defined by  "𝐶3"  and  "𝐶4"  are each determined from the initial 

condition of   "𝑓(𝑥, 𝑦) = 0". 
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In higher dimension than two, the basic principle behind the main test for exactness is still 
applicable but requires some very minor modifications in order to account for the multivariate 
nature of the corresponding general differential form representation. 

In view of equation (1.002) through (1.006), an example of a  single  first order multivariate  ODE  

that can be present inside a  Secondary Differential Expansion may be expressed in the following 

general form: 

( 𝑀1𝑑𝑧1  +   𝑀2𝑑𝑧2  +  … +  𝑀𝑚𝑑𝑧𝑚 )   +  ( 𝑀𝑚+1𝑑𝑥1  +   𝑀𝑚+2𝑑𝑥2  +  … +   

 

                                                       + … +   𝑀𝑚+𝑛𝑑𝑥𝑛 )   =   𝑀𝑚+𝑛+1𝑑𝑊𝑗  (1.051) 

where as by eliminating each auxiliary variable in terms of the dependent and independent variables 
on the left hand side of this equation, we can also define: 
 

                                         𝑀𝑖  =   𝑀𝑖(𝑧1, 𝑧2, … , 𝑧𝑚,  𝑥1, 𝑥2, … , 𝑥𝑛)           (1 ≤ 𝑖 ≤ 𝑚 + 𝑛) (1.052) 

The right hand side of this equation can be expressed only in terms of the auxiliary variable  "𝑊𝑗"  

so that: 

         𝑀𝑖  =   𝑀𝑖(𝑊𝑗)                    (𝑖 = 𝑚 + 𝑛 + 1)     

 

(1.053) 

The auxiliary variable  "𝑊𝑗"   is actually a  "multivariate composite function" and  is to be  deter-

mined assuming of course that an exact expression for each of the auxiliary variables "𝑊1, 𝑊2  , …  ,
𝑊𝑗−1"   have all been previously obtained in ascending order of complexity. 

 

Equation (1.051) may be rewritten as: 

𝑑𝐻1  =   𝑑𝐻2 (1.054) 

where: 

𝑑𝐻1  =   ( 𝑀1𝑑𝑧1  +   𝑀2𝑑𝑧2  + … +   𝑀𝑚𝑑𝑧𝑚 )   +   ( 𝑀𝑚+1𝑑𝑥1  +   𝑀𝑚+2𝑑𝑥2  + … +   
 

 

                                                                                                        + … +  𝑀𝑚+𝑛𝑑𝑥𝑛  ) (1.055) 

and where:  

𝑑𝐻2  =   𝑀𝑚+𝑛+1𝑊𝑗 (1.056) 

 

If each side of equation (1.054) is an exact differential then from the chain rule: 

𝑑𝐻1  =   ∑
𝜕𝐻1

𝜕𝑧𝑘
𝑑𝑧𝑘  +     ∑

𝜕𝐻1

𝜕𝑥𝑘
𝑑𝑥𝑘  

𝑛

𝑘=1

 

𝑚

𝑘=1

 
(1.057) 
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and since  "𝐻2 = 𝐻2(𝑊𝑗)"  : 

𝑑𝐻2  =   
𝜕𝐻2

𝜕𝑊𝑗
𝑑𝑊𝑗 

(1.058) 

 

It follows from equation (1.055) and (1.057) that : 

𝑀1  =   
𝜕𝐻1

𝜕𝑧1
 (1.059) 

𝑀2  =   
𝜕𝐻1

𝜕𝑧2
 

(1.060) 

                                                                            .     . 

                                                                            .     . 

                                                                            .     . 

 𝑀𝑚     =   
𝜕𝐻1

𝜕𝑧𝑚
  (1.061) 

𝑀𝑚+1  =   
𝜕𝐻1

𝜕𝑥1
 

(1.062) 

               𝑀𝑚+2  =   
𝜕𝐻1

𝜕𝑥2
 

(1.063) 

                                                                            

                                                                            .     . 

                                                                            .     . 

                                                                            .     . 

 

𝑀𝑚+𝑛  =   
𝜕𝐻1

𝜕𝑥𝑛
 

(1.064) 

 

It also follows from equation (1.056) and (1.058) that: 

𝑀𝑚+𝑛+1  =   
𝜕𝐻2

𝜕𝑊𝑗
 

(1.065) 

 



13 

 

From multivariate calculus, the condition that  both  sides of equation (1.054) each define an exact 

differential is of course when: 

𝜕𝑀1

𝜕𝑧2
 =   

𝜕𝑀2

𝜕𝑧1
 ,     

𝜕𝑀1

𝜕𝑧3
 =   

𝜕𝑀3

𝜕𝑧1
 ,   

𝜕𝑀1

𝜕𝑧4
 =   

𝜕𝑀4

𝜕𝑧1
 ,   …   ,

𝜕𝑀1

𝜕𝑧𝑚
  =   

𝜕𝑀𝑚

𝜕𝑧1
  

(1.066) 

𝜕𝑀1

𝜕𝑥1
 =   

𝜕𝑀𝑚+1

𝜕𝑧1
 ,     

𝜕𝑀1

𝜕𝑥2
 =   

𝜕𝑀𝑚+2

𝜕𝑧1
 ,   …   ,

𝜕𝑀1

𝜕𝑥𝑛
  =   

𝜕𝑀𝑚+𝑛

𝜕𝑧1
 

(1.067) 

𝜕𝑀2

𝜕𝑧3
 =   

𝜕𝑀3

𝜕𝑧2
 ,     

𝜕𝑀2

𝜕𝑧4
 =   

𝜕𝑀4

𝜕𝑧2
 ,   

𝜕𝑀2

𝜕𝑧5
 =   

𝜕𝑀5

𝜕𝑧2
 ,   …   ,

𝜕𝑀2

𝜕𝑧𝑚
  =   

𝜕𝑀𝑚

𝜕𝑧2
  

(1.068) 

𝜕𝑀2

𝜕𝑥1
 =   

𝜕𝑀𝑚+1

𝜕𝑧2
 ,     

𝜕𝑀2

𝜕𝑥2
 =   

𝜕𝑀𝑚+2

𝜕𝑧2
 ,   …   ,

𝜕𝑀2

𝜕𝑥𝑛
  =   

𝜕𝑀𝑚+𝑛

𝜕𝑧2
 

(1.069) 

                                                   ∙                         ∙                         ∙                          ∙                                                

 

                                                ∙                         ∙                         ∙                          ∙                                            

 

                                                ∙                         ∙                         ∙                          ∙                                            

𝜕𝑀𝑚

𝜕𝑥𝑛
  =   

𝜕𝑀𝑚+𝑛

𝜕𝑧𝑚
 

(1.070) 

 

If each of the above conditions are met then the solution for  "𝐻1"  and  "𝐻2"  is obtained as follow: 

 

For  "𝐻1", we integrate equation (1.059) : 

𝐻1  =   ∫ 𝑀1(𝑧1, 𝑧2, … , 𝑧𝑚,  𝑥1, 𝑥2, … , 𝑥𝑛)  𝑧1 (1.071) 

where in this case,  𝑧𝑖   and  𝑥𝑗   for   1 < 𝑖 ≤ 𝑚,  1 ≤ 𝑗 ≤ 𝑛   and   𝑖 ≠ 1  are all treated as 

constants when evaluating this indefinite integral. 
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We can also use as another alternative: 

𝐻1  =   ∫ 𝑀𝑘(𝑧1, 𝑧2, … , 𝑧𝑚,  𝑥1, 𝑥2, … , 𝑥𝑛) 𝑧𝑘 (1.072) 

where in this case, 𝑧𝑖  and  𝑥𝑗  for   2 ≤ 𝑖 ≤ 𝑚,  1 ≤ 𝑗 ≤ 𝑛   and  𝑖 ≠ 𝑘   are all treated as constants 

when evaluating this indefinite integral. 

 
 

Other alternatives for the same expression of  "𝐻1"  can also be obtained from: 

𝐻1  =   ∫ 𝑀𝑚+𝑘(𝑧1, 𝑧2, … , 𝑧𝑚,  𝑥1, 𝑥2, … , 𝑥𝑛) 𝑥𝑘 
(1.073) 

where in this case, 𝑧𝑖  and  𝑥𝑗  for   1 ≤ 𝑖 ≤ 𝑚,  1 ≤ 𝑗 ≤ 𝑛   and  𝑗 ≠ 𝑘   are all treated as constants 

when evaluating this indefinite integral. 

 

As for the expression of  "𝐻2"  defined by equation (1.056), it can be determined using the 

following integral : 

𝐻2  =   𝐻2(𝑊𝑗)   =   ∫ 𝑀𝑚+𝑛+1(𝑊𝑗) d𝑊𝑗 (1.074) 

because  "𝑊𝑗  =   𝑊𝑗(𝑧1, 𝑧2, … , 𝑧𝑚,  𝑥1, 𝑥2, … , 𝑥𝑛)"  is a multivariate composite function. 

 

The complete exact solution of the first order multivariate ODE  defined by equation (1.054) that 

would be present inside a  Secondary Differential Expansion is: 

𝐻1(𝑧1, 𝑧2, … , 𝑧𝑚,  𝑥1, 𝑥2, … , 𝑥𝑛)   −   𝐻2(𝑊𝑗)   =    0 (1.075) 

from which  "𝑊𝑗"  can be obtained explicitly whenever possible. 

Once the complete expression for each auxiliary variable is obtained, they can afterwards be 

substituted along with each of their initial condition(s) into the  Primary Expansion  for arriving at 

the required system of implicitly defined equations in the form of   "𝑓𝑘(𝑧𝑖, 𝑥𝑗) = 0"  for  1 ≤ 𝑖 ≤ 𝑚  

and  1 ≤ 𝑗 ≤ 𝑛 .   

The initial condition(s) that belong to each auxiliary variable all take part in satisfying the initial 
condition(s) of a system implicitly defined equations that can be used for completely representing 
the exact or approximate analytical solution of  a  system of  PDEs. 

 

For  inverting a Multivariate Polynomial Transform defined in much higher dimension follows 
the same type of logic as for the simple two dimensional case.  The following example illustrates 
this in greater detail. 



15 

 

Example (1.3).  Assuming the following Secondary Differential Expansion as a part of a large 
Multivariate Polynomial Transform that would correspond to some large  system of implicitly 
defined equations involving several dependent variables and one single independent variable.  
Furthermore, for the sake of simplicity, let us assume that every first order ODE present in the 
Secondary Differential Expansion would satisfy the condition for exactness everywhere and thus 
readily integrable using the method described earlier. 

 

Secondary Differential Expansion: 

               𝑑𝑥 +   0 ∙ 𝑑𝑦1   +  0 ∙ 𝑑𝑦2    +   0 ∙ 𝑑𝑦3   =  𝑑𝑊1  (1.076) 

         0 ∙ 𝑑𝑥 +         𝑑𝑦1   +  0 ∙ 𝑑𝑦2    +   0 ∙ 𝑑𝑦3   =  𝑑𝑊2 (1.077) 

         0 ∙ 𝑑𝑥 +   0 ∙ 𝑑𝑦1   +        𝑑𝑦2    +   0 ∙ 𝑑𝑦3   =  𝑑𝑊3 (1.078) 

         0 ∙ 𝑑𝑥 +   0 ∙ 𝑑𝑦1   +  0 ∙ 𝑑𝑦2    +         𝑑𝑦3   =  𝑑𝑊4 (1.079) 

        𝑊1
2𝑑𝑥 +  𝑊2

2𝑑𝑦1  +   𝑊3
2𝑑𝑦2   +   𝑊4

2𝑑𝑦3  =   𝑊5
2𝑑𝑊5 (1.080) 

         𝑊1𝑑𝑥 +   𝑊2𝑑𝑦1  +   𝑊3𝑑𝑦2   +   0 ∙ 𝑑𝑦3   =   𝑊6𝑑𝑊6 (1.081) 

𝑊1𝑊6
−1𝑑𝑥 +   (𝑊2𝑊6

−1 + 2𝑊3)𝑑𝑦1  +   (𝑊3𝑊6
−1 + 2𝑊2)𝑑𝑦2   +   0 ∙ 𝑑𝑦3   =  

                                                                                                                                    =    
𝑑𝑊7

1 +   𝑊7
2  (1.082) 

subjected to  "𝑦1(𝑥0)",  "𝑦2(𝑥0)"  and  "𝑦3(𝑥0)" 

 

We will now determine its complete inverse where it is assumed that for the sake of simplicity each 

first order  ODE  present in the above Secondary Differential Expansion have already been factored 

out in order to filter out any unnecessary multivariate polynomials.  These do not contribute in any 

manner on the overall integration process as they would tend to naturally cancel each other out by 

computation. 

 

The first step is to naturally begin by integrating in ascending order of complexity each first order 

ODE  present in the  Secondary Differential Expansion for an expression of  each auxiliary variable. 

 

 

The results are: 

For "𝑊1",   𝑊1(𝑥)   =  𝑥    (1.083) 

For "𝑊2",   𝑊2(𝑦1) =  𝑦1   (1.084) 

For "𝑊3",   𝑊3(𝑦2) =  𝑦2 (1.085) 

For "𝑊4",   𝑊4(𝑦3) =  𝑦3 (1.086) 
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For   "𝑊5(𝑥, 𝑦1, 𝑦2, 𝑦3)",  this is more involved. 

Equation (1.080) can be rewritten as: 

       𝑀1𝑑𝑥 +   𝑀2𝑑𝑦1  +   𝑀3𝑑𝑦2  +   𝑀4𝑑𝑦3   =   𝑀5𝑑𝑊5 (1.087) 

where: 

𝑀1  =   𝑊1
2  =   𝑥2 (1.088) 

𝑀2  =   𝑊2
2  =   𝑦1

2 (1.089) 

𝑀3  =   𝑊3
2  =   𝑦2

2 (1.090) 

𝑀4  =   𝑊4
2  =   𝑦3

2 (1.091) 

𝑀5  =    𝑊5
2             (1.092) 

Since  "𝑀1 = 𝑀1(𝑥)",  "𝑀2 = 𝑀2(𝑦1)",  "𝑀3 = 𝑀3(𝑦2)",  and  "𝑀4 = 𝑀4(𝑦3)",  our test for 

exactness using equation (1.066) through (1.070) reveals that: 

𝜕𝑀2

𝜕𝑥
  =    

𝜕𝑀1

𝜕𝑦1
  =  0 (1.093) 

𝜕𝑀3

𝜕𝑥
  =    

𝜕𝑀1

𝜕𝑦2
  =  0 (1.094) 

𝜕𝑀4

𝜕𝑥
  =    

𝜕𝑀1

𝜕𝑦3
  =  0 

(1.095) 

𝜕𝑀3

𝜕𝑦1
  =    

𝜕𝑀2

𝜕𝑦2
  =  0 (1.096) 

𝜕𝑀4

𝜕𝑦1
  =    

𝜕𝑀2

𝜕𝑦3
  =  0 (1.097) 

𝜕𝑀4

𝜕𝑦2
  =    

𝜕𝑀3

𝜕𝑦3
  =  0 

(1.098) 

 

so that equation (1.087) is an exact differential equation with solution: 

∫(𝑥2𝑑𝑥 +   𝑦1
2𝑑𝑦1  +   𝑦2

2𝑑𝑦2  +   𝑦3
2𝑑𝑦3)   =    ∫ 𝑊5

2𝑑𝑊5 (1.099) 
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or: 

𝑊5  =   √𝑥3  +   𝑦1
3  +   𝑦2

3  +   𝑦3
3  +   𝑐5

3
 

 

(1.100) 

For   "𝑊6(𝑥, 𝑦1, 𝑦2)",   equation (1.081) can be rewritten as: 

       𝑀1𝑑𝑥 +   𝑀2𝑑𝑦1  +   𝑀3𝑑𝑦2   =   𝑀4𝑑𝑊6 (1.101) 

where: 

𝑀1  =   𝑊1  =   𝑥 (1.102) 

 𝑀2  =   𝑊2  =   𝑦1 (1.103) 

 𝑀3  =   𝑊3  =   𝑦2 (1.104) 

           𝑀4  =    𝑊6                       (1.105) 

 

Since  "𝑀1 = 𝑀1(𝑥)",  "𝑀2 = 𝑀2(𝑦1)"  and  "𝑀3 = 𝑀3(𝑦2)",  our test for exactness using equation 

(1.066) through (1.070) reveals that: 

𝜕𝑀2

𝜕𝑥
  =    

𝜕𝑀1

𝜕𝑦1
  =  0 (1.106) 

𝜕𝑀3

𝜕𝑥
  =    

𝜕𝑀1

𝜕𝑦2
  =  0 (1.107) 

𝜕𝑀3

𝜕𝑦1
  =    

𝜕𝑀2

𝜕𝑦2
  =  0 (1.108) 

so that equation (1.101) is an exact differential equation with solution: 

∫(𝑥𝑑𝑥 +   𝑦1𝑑𝑦1  +   𝑦2𝑑𝑦2)   =    ∫ 𝑊6𝑑𝑊6 (1.109) 

or: 

𝑊6  =   √𝑥2  +   𝑦1
2  +   𝑦2

2  +   𝑐6 

 

 

 

(1.110) 
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For   "𝑊7(𝑥, 𝑦1, 𝑦2)",   equation (1.082) can be rewritten as: 

𝑑𝐻1  =   𝑑𝐻2 (1.111) 

where:  

𝑑𝐻1  =   𝑀1𝑑𝑥 +   𝑀2𝑑𝑦1  +  𝑀3𝑑𝑦2 (1.112) 

𝑀1  =   𝑊1𝑊6
−1 (1.113) 

                𝑀2  =   𝑊2𝑊6
−1  +   2𝑊3 (1.114) 

                𝑀3   =   𝑊3𝑊6
−1  +   2𝑊2 (1.115) 

 

 and: 

            𝑑𝐻2  =   𝑀4(𝑊7) 𝑑𝑊7               (1.116) 

     𝑀4  =     
1

1 +   𝑊7
2 (1.117) 

 

It follows that: 

𝜕𝑀1

𝜕𝑦1
  =    

𝜕𝑊1

𝜕𝑦1
 𝑊6

−1  +   𝑊1(−𝑊6
−2)

𝜕𝑊6

𝜕𝑦1
   =   0 −  𝑊1𝑊6

−2(𝑊2𝑊6
−1) (1.118) 

                                                            =  −𝑊1𝑊2𝑊6
−3 (1.119) 

𝜕𝑀1

𝜕𝑦2
 =    

𝜕𝑊1

𝜕𝑦2
 𝑊6

−1  +   𝑊1(−𝑊6
−2)

𝜕𝑊6

𝜕𝑦2
   =   0 −  𝑊1𝑊6

−2(𝑊3𝑊6
−1) (1.120) 

                                                           =  −𝑊1𝑊3𝑊6
−3 (1.121) 

𝜕𝑀2

𝜕𝑥
 =    

𝜕𝑊2

𝜕𝑥
 𝑊6

−1  +   𝑊2(−𝑊6
−2)

𝜕𝑊6

𝜕𝑥
  +   2

𝜕𝑊3

𝜕𝑥
  =   0 −   𝑊2𝑊6

−2(𝑊1𝑊6
−1)  +   0 (1.122) 

                                                                    =  −𝑊1𝑊2𝑊6
−3 (1.123) 

𝜕𝑀2

𝜕𝑦2
 =    

𝜕𝑊2

𝜕𝑦2
 𝑊6

−1  +   𝑊2(−𝑊6
−2)

𝜕𝑊6

𝜕𝑦2
 +   2

𝜕𝑊3

𝜕𝑦2
  =   0 −  𝑊2𝑊6

−2(𝑊3𝑊6
−1)  +  2 (1.124) 

                                                                               =  −𝑊2𝑊3𝑊6
−3  +   2 (1.125) 

𝜕𝑀3

𝜕𝑥
 =    

𝜕𝑊3

𝜕𝑥
 𝑊6

−1  +   𝑊3(−𝑊6
−2)

𝜕𝑊6

𝜕𝑥
 +   2

𝜕𝑊2

𝜕𝑥
  =   0 −   𝑊3𝑊6

−2(𝑊1𝑊6
−1) +   0 (1.126) 

                                                                    =  −𝑊1𝑊3𝑊6
−3 (1.127) 
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𝜕𝑀3

𝜕𝑦1
 =    

𝜕𝑊3

𝜕𝑦1
 𝑊6

−1  +   𝑊3(−𝑊6
−2)

𝜕𝑊6

𝜕𝑦1
 +   2

𝜕𝑊2

𝜕𝑦1
  =   0 −  𝑊3𝑊6

−2(𝑊2𝑊6
−1)  +   2 (1.128) 

                                                                              =  −𝑊2𝑊3𝑊6
−3  +   2 (1.129) 

Our test for exactness using equation (1.066) and (1.070) reveals that: 

𝜕𝑀2

𝜕𝑥
 =   

𝜕𝑀1

𝜕𝑦1
 =  −𝑊1𝑊2𝑊6

−3 
(1.130) 

𝜕𝑀3

𝜕𝑥
 =   

𝜕𝑀1

𝜕𝑦2
 =  −𝑊1𝑊3𝑊6

−3 
(1.131) 

          
 𝜕𝑀3

𝜕𝑦1
 =   

𝜕𝑀2

𝜕𝑦2
 =  −𝑊2𝑊3𝑊6

−3  +   2 (1.132) 

Furthermore: 

𝑀4  =   𝑀4(𝑊7) (1.133) 

so that equation (1.112) is an exact differential equation with solution: 

∫ 𝑑𝐻1  =   ∫ 𝑀1 𝜕𝑥 =   ∫
𝑊1

𝑊6
𝜕𝑥               (1.134) 

                                =   ∫
𝑥

√𝑥2 +  𝑦1
2 +  𝑦2

2  +   𝐶6 
 𝜕𝑥                 

(1.135) 

Solving for "𝐻1 ": 

                                   𝐻1  =   √𝑥2 +  𝑦1
2 +   𝑦2

2  +   𝐶6    +   𝑓1(𝑦1, 𝑦2) (1.136) 

=   𝑊6  +   𝑓1(𝑦1, 𝑦2) (1.137) 

 

We can also define as a second alternative for  "𝐻1"  the following integral equation: 

∫ 𝑑𝐻1  =   ∫ 𝑀2 𝜕𝑦1  =   ∫ (
𝑊2

𝑊6
 +   2𝑊3) 𝜕𝑦1               (1.138) 

                        =   ∫ (
𝑦1

√𝑥2 +  𝑦1
2 +  𝑦2

2 +  𝐶6

 +  2𝑦2 ) 𝜕𝑦1                 (1.139) 
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so that: 

                              𝐻1  =   √𝑥2 +  𝑦1
2 +   𝑦2

2  +   𝐶6  +  2𝑦1𝑦2  +   𝑓2(𝑥, 𝑦2) (1.140) 

=   𝑊6  +   2𝑊2𝑊3  +  𝑓2(𝑥, 𝑦2) (1.141) 

A third alternative for  "𝐻1"  can be derived from: 

∫ 𝑑𝐻1  =   ∫ 𝑀3 𝜕𝑦2  =   ∫ (
𝑊3

𝑊6
 +   2𝑊2) 𝜕𝑦2               (1.142) 

                        =   ∫ (
𝑦2

√𝑥2 +  𝑦1
2 +  𝑦2

2 +  𝐶6

 +  2𝑦1 ) 𝜕𝑦2                 (1.143) 

 

 

 

 

so that: 

                              𝐻1  =   √𝑥2 +  𝑦1
2 +   𝑦2

2  +   𝐶6  +  2𝑦1𝑦2  +   𝑓3(𝑥, 𝑦2) (1.144) 

=   𝑊6  +   2𝑊2𝑊3  +   𝑓3(𝑥, 𝑦1) (1.145) 

 

From equation (1.140) and (1.144) we arrive at the conclusion that: 

𝑓2(𝑥, 𝑦2) =   𝑓3(𝑥, 𝑦1) (1.146) 

The only condition for this equation to be satisfied is of course when: 

𝑓2  =   𝑓3  =   𝐹(𝑥) (1.147) 

because   "𝑦1   ≠   𝑦2". 
 

Substituting equation (1.147) into equation (1.145), we obtain: 

𝐻1  =   𝑊6  +   2𝑊2𝑊3  +   𝐹(𝑥) (1.148) 

Since  "𝑓1(𝑦1, 𝑦2)"   in equation (1.137) is not a function of   "𝑥"  then it is safe to assume in 

equation (1.147) that: 

𝐹(𝑥)  =   0 (1.149) 

Substituting the expression for  "𝑊2 ", "𝑊3 ", "𝑊6 "  and  "𝐹(𝑥)"  into equation (1.148), the                             

expression for  "𝐻1"  can now be completely defined as: 
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𝐻1  =   𝑊6  +   2𝑦1𝑦2  +   0 
(1.150) 

                                      =   √𝑥2 +  𝑦1
2 +  𝑦2

2  +   𝐶6    +   2𝑦1𝑦2 
(1.151) 

The expression for  "𝐻2"  can be determined by integrating equation (1.116) using equation (1.117): 

𝐻2  =   ∫ 𝑀4𝑑𝑊7  =   ∫
𝑑𝑊7

1 +   𝑊7
2   =   tan−1(𝑊7)  +   𝐾 (1.152) 

 
Since from equation (1.111)  "𝐻1 = 𝐻2"  we thus arrive at the following complete expression for  

"𝑊7": 

√𝑥2 +  𝑦1
2 +   𝑦2

2  +   𝐶6   +   2𝑦1𝑦2   =   tan−1(𝑊7)  +   𝐾 (1.153) 

or: 

𝑊7  =   tan (√𝑥2 + 𝑦1
2  + 𝑦2

2  +  𝑐6    +   2𝑦1𝑦2  +   𝑐7) (1.154) 

 

The complete inverse of the Multivariate Polynomial Transform whose Secondary Differential 

Expansion is defined by equation (1.076) through (1.082) is obtained by substituting each of the 

expression for the auxiliary variables "𝑊1(𝑥)", "𝑊2(𝑦1)", "𝑊3(𝑦2)", "𝑊4(𝑦3)", "𝑊5(𝑥, 𝑦1, 𝑦2, 𝑦3)", 

"𝑊6(𝑥, 𝑦1, 𝑦2)"  and  "𝑊7(𝑥, 𝑦1, 𝑦2)"  into a Primary Expansion that could be described in the 

following general form: 

                                           𝐹𝑘(𝑊𝑗)   =   0          (1 ≤ 𝑘 ≤ 3)  (1 ≤ 𝑗 ≤ 7) (1.155) 

 
 
 
 

2. Complete analytical theory of integration under one universal system of computational logic 
 

The universal representation of all mathematical equations presented in the differential expansion 
form described by equation (1.002) through (1.006) should really be referred to as a general initially 
assumed Multivariate Polynomial Transform (IAMPT) when it comes to solving for DEs and 
systems of  DEs.  The only difference between traditional methods of series expansion and the one 
presented here, is that ours can succeed in arriving at complete  exact  analytical solution to any 
type of  DEs  and systems of  DEs.  All other known traditional methods of series solutions are 
incapacitated right from the beginning for arriving at exact  analytical solutions since they were 
originally meant only to be utilized as part of some functional approximation theory.  This being the 
direct consequence for all tradition methods of series solutions for not having originated from the 
application of some form of a unified theory of integration. 
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For those functional expressions that are present inside a DE or a system of  DEs, they somehow 
would have to be totally accounted for in our initially assumed Multivariate Polynomial Transform.  
This is made possible only if we append at the end of our initially assumed expansion the 
Multivariate Polynomial Transform of each  functional expression by introducing additional new 
supplemental auxiliary variables.  Each of these additional auxiliary variables in turn are most likely 
to reappear in the final analytical solution of the  DE or  system of  DEs.  This would thus providing 
us with a real sense of measure in the manner by which such individual functional expressions can 
succeed in influencing the complete behavior of a physical system. 

For including these types of  DEs and systems of  DEs, our general initially assumed Multivariate 
Polynomial Transform would have to be modified accordingly as follow: 

 

(1).  Primary Expansion: 

𝐹𝑖(𝑊𝑗)  =   0  =   ∑  𝑎𝑖,𝑟 (∏ 𝑊𝑗

𝐸𝑖,𝑠

𝑝+𝑞

𝑗

)      (1 ≤ 𝑖 ≤ 𝑘)  

𝑟

 (2.01) 

where "𝑊𝑗" are auxiliary variables,  "q" is the total number of auxiliary variables required for 

defining the  Multivariate Polynomial Transform  of each functional expression that is present in a 

DE or a system of DEs.  The total number of auxiliary variables now grows from  "p"  to "𝑝 + 𝑞"  

when functional expressions are present in these types of DEs.   Each of the "p" number of auxiliary 

variables are always assumed raised to some floating point value and finally, "r" is the total number 

of terms present in each of the  "k"  number of implicitly defined multivariate polynomial equations. 

 (2).  Secondary Differential Expansion: 

𝑑𝑧𝑖  =   𝑑𝑊𝑖                                        (1 ≤ 𝑖 ≤ 𝑚) (2.02) 

 𝑑𝑥𝑖  =   𝑑𝑊𝑚+𝑖                                   (1 ≤ 𝑖 ≤ 𝑛)    (2.03) 

∑ 𝑁𝑖(𝑚+𝑛+1)−𝑚−𝑛−1+𝑡𝑑𝑧𝑡   +    ∑ 𝑁𝑖(𝑚+𝑛+1)−𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

  

 

                                         =   𝑁𝑖(𝑚+𝑛+1)𝑑𝑊𝑗          [1 ≤ 𝑖 ≤ 𝑝 − 𝑚 − 𝑛]  [𝑚 + 𝑛 + 1 ≤ 𝑗 ≤ 𝑝]    (2.04) 

𝑁𝑐(𝑊𝑗)   =  ∑ 𝑏𝑐,𝑡 (∏ 𝑊𝑗

𝐸𝑐,𝑠
′

𝑝+𝑞

𝑗

)        

𝑐𝑟

𝑡=(𝑐−1)𝑟+1

  

                                                                                      [1 ≤ 𝑐 ≤ 𝑖(𝑚 + 𝑛 + 1)]  [1 ≤ 𝑖 ≤ 𝑝 − 𝑚 − 𝑛]     

 

(2.05) 
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∑ 𝑇𝑖(𝑚+𝑛+1)−𝑚−𝑛−1+𝑡𝑑𝑧𝑡   +    ∑ 𝑇𝑖(𝑚+𝑛+1)−𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

  

 

                                                         =   𝑇𝑖(𝑚+𝑛+1)𝑑𝑊𝑗         [1 ≤ 𝑖 ≤ 𝑞]  [𝑝 ≤ 𝑗 ≤ 𝑝 + 𝑞]    (2.06) 

where  "𝑇𝑔(𝑊𝑗)"  are the special multivariate polynomials that would be reserved exclusively for 

only representing those functional expressions that would be present inside a DE  or system of  

DEs. 

 

Just as we can represent any mathematical equation in universal differential form, we can also 
express and type of   DE  and system of   DEs  also in complete universal differential form. 
 

The Primary Expansion representation for the following general system of   DEs: 

𝑔𝑘 (  𝑧𝑖 ,  𝑥𝑗 ,   


x𝑢
( 
𝑧𝑟

𝜕𝑥𝑣
)    )   =   0 

(2.07) 

can be defined as follow: 

                                                             𝐺𝑘 (𝑊𝑡 ,   
𝑃𝑟𝑢𝑣

𝑄𝑟𝑢𝑣
)   =   0               [1 ≤ 𝑡 ≤ 𝑚 + 𝑛 + 𝑞] (2.08) 

where: 
𝑃𝑟𝑢𝑣

𝑄𝑟𝑢𝑣
  =   



x𝑢
( 
𝑧𝑟

𝜕𝑥𝑣
)   (2.09) 

As for the Secondary Differential Expansion representation, it becomes exactly identical to the one  
present inside the initially assumed Multivariate Polynomial Transform that would have been 
selected for solving the general system of   DEs. 
 

Example (2.1).  The following system of  second order  ODEs  is used to describe the motion of a 

dumbbell of length  "L"  in space consisting of masses  "𝑚1"  and  "𝑚2"   both rigidly attached at its 

extremities and free to rotate under the influence of gravity: 

(𝑚1  +   𝑚2)
𝑑2𝑥1

𝑑𝑡2
  −    𝑚2𝐿

𝑑2𝜃

𝑑𝑡2
sin(𝜃)   −    𝑚2 𝐿 (

𝑑𝜃

𝑑𝑡
)

2

cos(𝜃)    =    0                          (2.10) 

(𝑚1  +   𝑚2)
𝑑2𝑦1

𝑑𝑡2
  −   𝑚2𝐿

𝑑2𝜃

𝑑𝑡2
cos(𝜃)   −   𝑚2 𝐿 (

𝑑𝜃

𝑑𝑡
)

2

sin(𝜃)   =    −(𝑚1  +  𝑚2)𝑔 (2.11) 

𝐿
𝑑2𝜃

𝑑𝑡2
   −    

𝑑2𝑥1

𝑑𝑡2
sin(𝜃)    +    

𝑑2𝑦1

𝑑𝑡2
cos(𝜃)    =    −𝑔 cos(𝜃)                                                 (2.12) 
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For this system of equations,  " 𝑥𝑖 "  and  "𝑦𝑖 "  represent the horizontal and vertical linear 

displacements of mass  "𝑚𝑖"  respectively and  "𝜃"  is the angle of rotation of the dumbbell with 

respect to the X-axis. We will assume for the sake of simplicity that the mass of the rod is 

negligible compared to mass  "𝑚1"  and  "𝑚2". 

The complete  Multivariate Polynomial Transform  of the system of  second order  ODEs  will now 
be determine. 
 
For the sake of simplicity, we will need to express the Sine and Cosine function as a rational 
combination of the  Tangent  function by selecting: 

ℎ1  =   tan(𝜃/2) (2.13) 

so that: 

sin 𝜃  =   
2 tan(𝜃/2)

1 +  tan2(𝜃/2)
  =    

2ℎ1

1 +   ℎ1
2 (2.14) 

and 

cos 𝜃  =    
1 −   tan2(𝜃/2)

1 +   tan2(𝜃/2)
  =    

1 −  ℎ1
2

1 +  ℎ1
2 

(2.15) 

We can arbitrarily select each auxiliary variable as:  

 𝑊1   =   𝑥1 (2.16) 

 𝑊2   =   𝑦1 (2.17) 

𝑊3   =   𝜃 (2.18) 

           𝑊4   =  tan (
𝜃

2
) (2.19) 

The Multivariate Polynomial Transform of the single external input  "ℎ1"  as defined by equation 

(2.13) is: 

 
(1).  Primary Expansion: 

𝐻1  =   𝑊4  (2.20) 

 (2).  Secondary Differential Expansion: 

0 ∙ 𝑑𝑥1  +   0 ∙ 𝑑𝑦1  +  (1 +  𝑊4
2)𝑑𝜃 =   2 𝑑𝑊4 (2.21) 

 
 
Using our standard notation in equation (2.08) and (2.09), we can now define the complete  
Multivariate Polynomial Transform of this entire system of second order  ODEs  starting with the  
Primary Expansion as: 
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 (1).  Primary Expansion: 

 

𝐺1  =   (𝑚1 +  𝑚2) (
𝑃21

𝑄21
)  −   𝑚2𝐿 (

𝑃23

𝑄23
) (

2𝑊4

1 +   𝑊4
2)  −    

                                                                                    −   𝑚2𝐿 (
𝑃13

𝑄13
)

2

(
1 −   𝑊4

2

1 +   𝑊4
2)   =   0   (2.22) 

𝐺2  =   (𝑚1 +  𝑚2) (
𝑃22

𝑄22
)   −   𝑚2𝐿 (

𝑃23

𝑄23
) (

1 − 𝑊4
2

1 + 𝑊4
2)  −  𝑚2𝐿 (

𝑃13

𝑄13
)

2

(
2𝑊4

1 +   𝑊4
2)   

                                                                                                        +  (𝑚1  +   𝑚2)𝑔  =   0   (2.23) 

𝐺3  =   𝐿 (
𝑃23

𝑄23
) −   (

𝑃21

𝑄21
) (

2𝑊4

1 +   𝑊4
2)   +   (

𝑃22

𝑄22
) (

1 −   𝑊4
2

1 +   𝑊4
2)   +  𝑔 (

1 −  𝑊4
2

1 +  𝑊4
2)  =   0 (2.24) 

 

 

Where: 

𝑃𝑛1

𝑄𝑛1
  =   

𝑑𝑛𝑥1

𝑑𝑡𝑛
 (2.25) 

𝑃𝑛2

𝑄𝑛2
  =   

𝑑𝑛𝑦1

𝑑𝑡𝑛
 (2.26) 

𝑃𝑛3

𝑄𝑛3
  =   

𝑑𝑛𝜃

𝑑𝑡𝑛
 (2.27) 

 

The complete Secondary Differential Expansion of this system of  second order ODEs  is the 

combination of  the Secondary Differential Expansion of  "ℎ1" as defined by equation (2.21) and 

the same one present inside the initially assumed Multivariate Polynomial Transform that would 

have been selected for solving this particular system of second order  ODEs. 
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Example (2.2).  For the following system of  second order  PDEs,  

𝑧2

𝜕𝑧1

𝜕𝑥1
  +   sin(2𝑥2)

𝜕

𝜕𝑥1
(

𝜕𝑧2

𝜕𝑥2
)   +  𝑥1𝑥2   =   0                                 (2.28) 

(
𝜕2𝑧1

𝜕𝑥2
2 ) (

𝜕2𝑧2

𝜕𝑥1
2 )  +   (

𝜕𝑧1

𝜕𝑥1
)

2

 +   (
𝜕𝑧2

𝜕𝑥2
)

2

 +   𝑥1
2  +   𝑥2

2    =   6𝑧1𝑒𝑥1   (2.29) 

 

we can define each external input as: 

ℎ1  =   𝑧1 (2.30) 

ℎ2  =   𝑧2 (2.31) 

ℎ3  =   𝑥1 (2.32) 

ℎ4  =   𝑥2 (2.33) 

            ℎ5  =   sin(2𝑥2) (2.34) 

     ℎ6  =   6𝑒𝑥1 (2.35) 

We can also select each auxiliary variable as: 

 

𝑊1  =   𝑧1 (2.36) 

𝑊2  =   𝑧2 (2.37) 

𝑊3  =   𝑥1 (2.38) 

𝑊4  =   𝑥2 (2.39) 

          𝑊5  =   tan(𝑥2) (2.40) 

  𝑊6  =   𝑒𝑥1 (2.41) 

 

The  Multivariate Polynomial Transform  of the first external input  "ℎ1"  is: 

 
(1).  Primary Expansion: 

𝐻1  =   𝑊1 (2.42) 

 (2).  Secondary Differential Expansion: 

𝑑𝑧1   +   0 ∙ 𝑑𝑧2   +   0 ∙ 𝑑𝑥1   +   0 ∙ 𝑑𝑥2   =   𝑑𝑊1 
(2.43) 
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The  Multivariate Polynomial Transform  of the second external input  "ℎ2"  is: 

 
(1).  Primary Expansion: 

𝐻2   =   𝑊2 
(2.44) 

 (2).  Secondary Differential Expansion: 

0 ∙ 𝑑𝑧1   +  𝑑𝑧2   +   0 ∙ 𝑑𝑥1   +   0 ∙ 𝑑𝑥2   =   𝑑𝑊2 
(2.45) 

 

 

The  Multivariate Polynomial Transform  of the third external input  "ℎ3"  is: 

 

(1).  Primary Expansion: 

𝐻3  =   𝑊3 (2.46) 

 (2).  Secondary Differential Expansion: 

0 ∙ 𝑑𝑧1   +  0 ∙ 𝑑𝑧2   +  𝑑𝑥1   +   0 ∙ 𝑑𝑥2   =   𝑑𝑊3 
(2.47) 

 

 

The  Multivariate Polynomial Transform  of the fourth external input  "ℎ4"  is: 

 

(1).  Primary Expansion: 

𝐻4   =   𝑊4 (2.48) 

 (2).  Secondary Differential Expansion: 

0 ∙ 𝑑𝑧1   +  0 ∙ 𝑑𝑧2   +  0 ∙ 𝑑𝑥1   +  𝑑𝑥2   =   𝑑𝑊4 
(2.49) 

 

 

The  Multivariate Polynomial Transform  of the fifth external input  "ℎ5"  is: 

 

(1).  Primary Expansion: 

𝐻5   =   
2𝑊5

1 +   𝑊5
2  

(2.50) 

(2).  Secondary Differential Expansion: 

0 ∙ 𝑑𝑧1   +   0 ∙ 𝑑𝑧2   +   0 ∙ 𝑑𝑥1   +  (1 + 𝑊5
2)𝑑𝑥2   =   𝑑𝑊5 (2.51) 

The  Multivariate Polynomial Transform  of the sixth external input  "ℎ6"  is: 
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(1).  Primary Expansion: 

𝐻6   =   6𝑊6 (2.52) 

 (2).  Secondary Differential Expansion: 

0 ∙ 𝑑𝑧1   +  0 ∙ 𝑑𝑧2   + 𝑊6𝑑𝑥1   +  0 ∙ 𝑑𝑥2   =   𝑑𝑊6 (2.53) 

 

Using the notation defined in equation (2.08) and (2.09), the complete  Multivariate Polynomial 

Transform of the entire system of second order  PDEs  may now be completely defined as: 

 
(1).  Primary Expansion: 

            𝐺1  =   𝐻2 (
𝑃110

𝑄110
) +  𝐻5 (

𝑃212

𝑄212
) +   𝐻3𝐻4  =   0                                                                 

(2.54) 

 𝐺2  =   (
𝑃122

𝑄122
) (

𝑃211

𝑄211
) +   (

𝑃110

𝑄110
)

2

+  (
𝑃201

𝑄201
)

2

+  𝐻3
2  +   𝐻4

2  −   𝐻1𝐻6  =   0 (2.55) 

 
The complete Secondary Differential Expansion of this system of second order  PDEs  is the com- 

bination of  the  Secondary Differential Expansion of  "ℎ1" through  "ℎ6" and the same one present 

inside an initially assumed Multivariate Polynomial Transform that would have been selected for 

solving this particular system of  second order  PDEs. 

 

 
 

By substituting an initially assumed Multivariate Polynomial Transform into any type of  DE or 
system of  DEs would always result into defining a complete system of Nonlinear Simultaneous 
Equations to solve for.  Each exact numerical solution set obtained will always define a complete 
exact analytical solution of the DE or system of  DEs by inverting the corresponding initially 
assumed Multivariate Polynomial Transform.  This is provided of course that each of the first order  
ODEs  present inside the  Secondary Differential Expansion have all been determined as being 
exact differentials and therefore always completely integrable.  

Some of the unknown coefficients  present inside an initially assumed Multivariate Polynomial 
Transform would be reserved exclusively for defining all the basis function that  are to be present 
inside the analytical solution of a DE  or a system of  DEs.  Others would be mainly responsible for 
assuring that the boundary conditions of the  DE  or system of  DEs  would be completely satisfied.   

As a consequence of the fundamental laws of algebra, a completely differentiable mathematical 
equation as well as its many equivalent differential form representation in terms of a Multivariate 
Polynomial Transform can always appear in various disguise form.   That is, any mathematical 
equation as well as its equivalent differential form representation can always have many alternative 
equivalent representations.  However, to an observer each may appear quite distinct from one 
another and yet are completely identical with each other purely from a computational point of view. 

Such a unique mathematical property about equations in general would guarantee that there will 
always be an infinite number of numerical solution sets of the  Nonlinear Simultaneous Equations  
corresponding to a  DE  or a system of  DEs.  As a result of this, we acquire the ability of being able 
to select among an infinite number of numerical solution sets obtained only those that would 
translate into defining much simpler Secondary Differential Expansion to integrate. This would 
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have the effect of significantly facilitating the entire  integration process involved in the Secondary 
Differential Expansion when attempting to invert an initially assumed Multivariate Polynomial 
Transform for acquiring an exact analytical solution to a DE  or a system of  DEs. 

No analytical method of integration has ever been devised in the history of  Calculus  that could 
offer us with this much flexibility for selecting out of an infinite  number of integrals only those that 
are considered more friendly to evaluate then others while in the process of attempting to solve for a 
DE or a system of DEs.  Other well known traditional methods of analytical integration have shown 
weaknesses in that area mainly as a result of some major integrability issues due to a very restricted 
number of  integrals that could be resolved in the end while leaving behind a vast majority of them 
as completely unsolved. 

When the  Nonlinear Simultaneous Equations  cannot be solved in terms of an exact numerical 
solution set, this in turn would indicate that the exact analytical solution of the  DE  or system 
of  DEs  in question cannot be resolved as some exact combination of algebraic and elementary 
basis functions whether explicitly or implicitly defined.  It is then always possible to establish some 
form of a measure on the degree of accuracy that a particular numerical solution set can satisfy a 
system of  Nonlinear Simultaneous Equations  by using various well known methods of 
optimization techniques.   This in turn would provide us with some real measure of accuracy on 
how well the resultant analytical solution obtained can satisfy the  DE  or system of  DEs.   Of 
course only when an  exact  numerical solution set  of the Nonlinear Simultaneous Equations  has 
been found then this would automatically indicate that the  DE  or system of  DEs  in question can 
be completely resolved in terms of an  exact analytical solution.   All of this is provided of course 
that each first order ODE present in the Secondary Differential Expansion are determined to be 
exact and thus always completely integrable. 

The simplicity in appearance for the analytical solution of a particular  DE  or a system of  DEs  is 
very crucial towards a complete understanding of a physical system so that only those appearing in 
its simplest form would be of greatest interest to the physical science.  If we were to apply this very 
general principle directly into the world of physics under the new proposed unified theory of 
integration, then  Albert  Einstein's  assertion that   "God does not play with dices"  could certainly 
be put to the real test with potential major historical implications ! 

 

3. A universal method of proof for the quadratic equation and the superposition theorem 

As a direct consequence of having established a unified theory of integration, a universal method of 
proof can be devised for proving a variety of classical theorems that were once proven under old 
traditional methods of pure mathematical logic.  Only those theorems that can be formulated 
through some form of a  DE  or a system of  DEs  would be included.   

The simple quadratic formula would fall into such category of theorems since it can always be 
reformulated computationally using a method that is based entirely on the use of successive partial 
differentiation.  In this case, the unique computational method of proof for the quadratic equation 
begins by first computing the various partial derivatives of an initially assumed Multivariate 
Polynomial Transform  that has been selected solely on the basis of representing only the class of  
multivariate mathematical equations  that are defined in  explicit  form only. 

This would correspond to the case for  "k = 𝑚 =  1"  in equation (1.002) through (1.006) such that 

instead of assuming a Primary Expansion in the form of  "𝑓(𝑧𝑖, 𝑥𝑗) = 0",  we would instead assume 

an explicit version in the form of  "𝑧 =  𝑧(𝑥𝑗)"  as being a ratio of two general multivariate 

polynomials.  Note that since an explicitly defined equation is just a special case of an implicitly 

defined equation, we could have selected the original implicit form representation in the Primary 

Expansion and still arrive at an explicitly defined analytical solution in the end. 
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(1).  Primary Expansion: 

𝑧(𝑊𝑗)  =   
𝑃(𝑊𝑗)

𝑄(𝑊𝑗)
                                       (1 ≤ 𝑗 ≤ 𝑝)  (3.01) 

where "P"  and  "Q"  are each multivariate polynomials each consisting of a total number of  "p"  
auxiliary variables each of which are raised to some floating point value. 

(2).  Secondary Differential Expansion: 

𝑑𝑧  =   𝑑𝑊1                                         (3.02) 

            𝑑𝑥𝑖  =   𝑑𝑊𝑖+1                       (1 ≤ 𝑖 ≤ 𝑛)    (3.03) 

 

  ∑ 𝑁𝑖(𝑛+2)−𝑛−2+𝑡𝑑𝑧 

1

𝑡=1

  +    ∑ 𝑁𝑖(𝑛+2)−𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

  =                          
 

                                            =   𝑁𝑖(𝑛+2)𝑑𝑊𝑗          [1 ≤ 𝑖 ≤ 𝑝 − 1 − 𝑛]  [𝑛 + 2 ≤ 𝑗 ≤ 𝑝]    (3.04) 

  

𝑁𝑐(𝑊𝑗)   =  ∑ 𝑏𝑐,𝑡 (∏ 𝑊𝑗

𝐸𝑐,𝑠
′

𝑝

𝑗

)        

𝑐𝑟

𝑡=(𝑐−1)𝑟+1

   (3.05) 

                                                            [1 ≤ 𝑐 ≤ 𝑖(𝑛 + 2)]  [1 ≤ 𝑖 ≤ 𝑝 − 1 − 𝑛]  

 

The computed values for the various partial derivatives of  "𝑍 =  𝑍(𝑊𝑗)"  would then be equated 

with the various partial derivatives that are calculated based entirely on a very unique change of 

variables involving the coefficients and the root of the quadratic equation.   

This unique change of variable would include the root of the quadratic equation “r = r(A,B,C)"  that 
would be regarded as the  dependent  variable while the coefficients  A, B  and  C  would be defined 
as the independent variables.   This would correspond to "𝑚 = 1"  and  "𝑛 = 3" in the above 
differential expansion form representation.  We would setup our complete system of  Nonlinear 
Simultaneous Equations to solve for by simply equating the various partial derivatives of  
"r(A,B,C)"  with respect to each of the coefficient  A,  B  and  C with the various partial derivatives 
of our initially assumed  Multivariate Polynomial Transform that was setup to only represent all 
multivariate mathematical equations defined in explicit form only.   We can also apply the same 
logic for determining the root formulas corresponding to higher degree polynomials. 

By restricting our initially assumed Multivariate Polynomial Transform  to represent all mathe- 
matical equations in explicit form, this will guarantee the presence of exact numerical solution sets 
corresponding to the Nonlinear Simultaneous Equations to solve for.  Each of these exact numerical 
solution sets obtained would lead towards the formation of many complete snapshots of the actual 
general formula such that by some very special algebraic manipulations, will enable confirmation of 
its very unique existence.  The type of algebraic manipulation involved that is to be conducted will 
be referred to in the following section as being a special type of mathematical interpolation. 
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Another and far more interesting example mainly for the physical sciences is arriving at the 
famous  superposition theorem by once again beginning with an initially assuming Multivariate 
Polynomial Transform.  This time we would be selecting our differential expansion strictly in terms 
of  representing all  univariate  mathematical equations defined in  explicit  form only.   

This would correspond to the case for  "k = m = 𝑛 = 1"  in equation (1.002) through (1.006) such 

that instead of assuming a Primary Expansion in the form of  "𝑓(𝑧𝑖, 𝑥𝑗) = 0",  we would instead 

assume the explicit version of  "𝑦 =  𝑦(𝑥)"   as being a ratio of two general multivariate poly- 

nomials: 

 

(1).  Primary Expansion: 

𝑦(𝑊𝑗)  =   
𝑃(𝑊𝑗)

𝑄(𝑊𝑗)
                                       (1 ≤ 𝑗 ≤ 𝑝)  (3.06) 

where "P"  and  "Q"  are each multivariate polynomials each consisting of a total number of  "p"  
auxiliary variables each of which are raised to some floating point value.  

(2).  Secondary Differential Expansion: 

𝑑𝑥 =   𝑑𝑊1 (3.07) 

𝑑𝑦 =   𝑑𝑊2 (3.08) 

𝑁3𝑖−2𝑑𝑥 +   𝑁3𝑖−1𝑑𝑦 =   𝑁3𝑖𝑑𝑊𝑗         [1 ≤ 𝑖 ≤ 𝑝 − 2]  [3 ≤ 𝑗 ≤ 𝑝] (3.09) 

𝑁𝑐(𝑊𝑗)   =  ∑ 𝑏𝑐,𝑡 (∏ 𝑊𝑗

𝐸𝑐,𝑠
′

𝑝

𝑗

)        

𝑐𝑟

𝑡=(𝑐−1)𝑟+1

   (3.10) 

                                                                              [1 ≤ 𝑐 ≤ 3𝑖)]  [1 ≤ 𝑖 ≤ 𝑝 − 2]    

 

We would define the   Nonlinear Simultaneous Equations  to solve for by substituting  the above 
generally assumed Multivariate Polynomial Transform  into the following general class of second 
order  ODEs.  

ℎ1(𝑥)
𝑑2𝑦

𝑑𝑥2
  +   ℎ2(𝑥)

𝑑𝑦

𝑑𝑥
  +   ℎ3(𝑥)𝑦  =   ℎ4(𝑥)  (3.11) 

Next, we would be performing a very complete and detailed analysis on all computational results 
obtained by solving for the corresponding  Nonlinear Simultaneous Equations. 

The generalized form of this second order  ODE  would have been selected purely on the basis of its 
reoccurrence in describing various types of  linear mechanical and electrical models. 
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As in the case of the quadratic equation, by restricting our initially assumed Multivariate 
Polynomial Transform  to represent all mathematical equations in explicit form only, the presence 
of exact numerical solution sets corresponding to the  Nonlinear Simultaneous Equations  to solve 
for will confirm the unique explicit nature of the superposition theorem.  It is with some very 
special type of algebraic manipulations to be discussed in the next section that we will succeed in 
identifying a number of  subclasses  of  ODEs  by which the general explicitly defined analytical 
solution obtained would be applicable to.  By method of conjecture this would eventually lead us 
directly towards a purely computational proof of the famous  superposition theorem thereby 
completely bypassing all forms of non-computationally based mathematical methods of analysis ! 
 
 

 
4.  A new form of mathematical interpolation as a means of establishing a main pathway 

by which a unified theory of physics may be obtained 

Only from the relentless application of the new unified theory of integration on a very large scale 
over a substantial class of DEs and systems of  DEs can we expect to begin slowly unravelling 
many potentially new and yet undiscovered theorems similar to the superposition theorem.  It is 
only from the long term cumulative effect of gathering a large collection of such universal theorems 
that can only lead towards the development of some unified theory of physics.  This would be the 
result of having meticulously consolidate each of the most fundamental theorems ever discovered 
into one  gigantic universal theory of physics. 

All existing experimentally based methods of physics could never succeed in achieving such a 
monumental objective for the physical sciences.  That is because during the process of gathering the 
physical data there would be a severe loss of continuity that only mathematical equations are 
capable of maintaining throughout. 

There are of course more advanced examples that can be selected other than the ones involving the 
computational proof of the quadratic equation and the superposition theorem especially from 
someone with a remarkable understanding of mathematics and the physical sciences.  But no matter 
what example in whatever subject matter anyone decides to choose from, the bottom line is that by 
following a very unique brand of mathematical ideology such as the one being proposed in this 
article, the new unified theory of integration will always computationally arrive at the same  
mathematical equations that all traditional methods have succeeded in arriving at in the past.  By 
doing so, this would undoubtedly provide just the ideal fertile testing ground for any real future 
software development related to the unified theory of integration.  

It is expected that we would be following an extremely long computational trajectory for achieving 
in some cases the same exact results as with traditional methods of analysis.  However, it should be 
very obvious to everyone of the enormous potential benefits involved especially on a long term 
basis. 

"Our unique computational  approach  will always certainly succeed  in  solving  those "other" 
problems by  which  classical  methods  of  analysis  have  completely  failed  as  a  result  of  not  
having provided an adequate solution to certain key  DEs  or  systems  of  DEs" . 

So in order to take full advantage of what the unified theory of integration can offer to everyone, it 
must be implemented in a very methodological manner.  That is, each  DE  and system of  DEs  that 
is being solved for must absolutely undergo a very thorough examination in terms of determining 
the best analytical solution that can be extracted from the relentless numerical application of the 
initially assumed Multivariate Polynomial Transform described in equation (1.002) through 
(1.006).  All boundary conditions related to the  DE  or  system of  DEs must also become included 
as part of this gigantic computational process.   

 

We would therefore need to construct some form of a very unique presentation by which a very 
special type of mathematical database would have to be created for storing all empirical results 
obtained.  This would then be entirely converted in the form of pure mathematical equations.  
Beyond this computational stage, much further scrutiny would then be necessary for potentially 
recognizing certain key fundamental theorems that over time would eventually contribute towards 
the complete development of some unified theory of physics. 
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The exact nature of such a presentation that would be applicable for solving  all types of  DEs  and 
systems of  DEs under the new unified theory of integration can be described through the following 
general mathematical template. 

 

 

𝑔 (𝑥, 𝑦,
𝑑𝑦

𝑑𝑥
)  =   0 

 

 

Initial                                            Coefficient                         Exact analytical solution 

Condition                                      Values                               obtained using the Multivariate         

                                                                                                Polynomial Transform method 

 

𝑥0, 𝑦0                                                   𝑎0, 𝑏0, 𝑐0, …                                𝑈1(𝑥, 𝑦)  =   0 
 

𝑥0, 𝑦0                                                   𝑎1, 𝑏0, 𝑐0, …                                𝑈2(𝑥, 𝑦)  =   0 
 

𝑥1, 𝑦1                                                   𝑎0, 𝑏2, 𝑐2, …                                𝑈3(𝑥, 𝑦)  =   0 
 

𝑥1, 𝑦1                                                   𝑎3, 𝑏0, 𝑐0, …                                𝑈4(𝑥, 𝑦)  =   0 
 

𝑥2, 𝑦2                                                   𝑎4, 𝑏3, 𝑐2, …                                𝑈5(𝑥, 𝑦)  =   0 
  

.   .   .                                                 .    .    .                                        .    .    . 

.   .   .                                                 .    .    .                                        .    .    . 

.   .   .                                                 .    .    .                                        .    .    . 

 

 

 

Table 4.1 

 

This tailored designed template was produced to accommodate only first order ODEs.   However 
due to the universality nature of the fundamental logic behind introducing such a new type of 
template in mathematics, it can easily be modified to accommodate other far more complex types of  
DEs  and systems of  DEs. 

In the following example, we have included a very simple live demonstration by which the 
proposed unified theory of integration would succeed in resolving a randomly selected  "general"  
first order  ODE  uniquely in terms of a complete  "general"  analytical solution.    

Only by following this example very closely would it become very apparent that our unique 
mathematical template has succeeded in developing a more generalized approach for arriving at 
general analytical solutions to any type of  DEs  and systems of  DEs.   This would certainly go a 
long way towards uncovering the many well hidden potential mathematical theorems that lay very 
deep beneath many unresolved DEs  and  systems of  DEs. 
 
"It is only by being in complete possession of a very large collection of  powerful mathematical 
theorems that can succeed in carving a whole new pathway by which a unified theory of physics 
can eventually be uncovered. " 
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Example (4.1).  Starting with the following general first order  ODE,  

𝑥
𝑑𝑦

𝑑𝑥
 +   𝑎𝑦 +   𝑏𝑥𝑛𝑦2  =   0 

(4.01) 

we can begin by constructing the following table: 

 

 

𝑥
𝑑𝑦

𝑑𝑥
 +   𝑎𝑦 +   𝑏𝑥𝑛𝑦2  =   0 

 

 

Initial                                            Coefficient                         Exact analytical solution 

Condition                                      Values                               obtained using the Multivariate         

                                                                                                Polynomial Transform method 

 

𝑥0 = 1                                                  𝑎 = 1.0                              (−3𝑥 +   𝑥−1)𝑦 +   2 =  0 

𝑦0 = 1                                                  𝑏 = 1.0                                           
                                                               𝑛 = −1.0                                           

𝑥0 = 1                                                  𝑎 = 1.2                              (1.4𝑥1.2  −  𝑥2)𝑦 −   0.80 =   0 

𝑦0 = 2                                                  𝑏 = −1.0                                           
                                                               𝑛 = 2.0                                           

𝑥0 = 1                                                   𝑎 = 1.2                            (1.7𝑥1.2 +  1.5−2)𝑦 +  3.2 =   0  
𝑦0 = −1                                                𝑏 = 1.5                                           
                                                                𝑛 = −2.0                                           

𝑥0 = 1                                                   𝑎 = 2.0                             𝑥2𝑦(0.5 −   ln(𝑥))  −   1  =   0  
𝑦0 = 2                                                   𝑏 = −1.0                                           
                                                                𝑛 = 2.0                                           

𝑥0 = 1                                                   𝑎 = 1.5                             (−2.75𝑥1.5 +   2𝑥3)𝑦 −  1.5 =   0  
𝑦0 = −2                                                𝑏 = 2.0                                           
                                                                𝑛 = 3.0                                           

𝑥0 = 1                                                   𝑎 = 1.0                             𝑥𝑦(1 +   ln(𝑥))  −   1.0  =   0  
𝑦0 = 1                                                   𝑏 = 1.0                                           
                                                                𝑛 = 1.0                                           
                                

𝑥0 = 1                                                   𝑎 = −1.0                      𝑥−1𝑦(−1 +   1.5 ln(𝑥))  −   1.0 =  0 

𝑦0 = −1                                                𝑏 = 1.5                                           
                                                                𝑛 = −1.0                                           
 

 

Table 4.2 
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The evidence gathered purely by observation from this table suggests by conjecture that: 

𝑓1(𝑥, 𝑦) =   0 =   (𝐴𝑥𝐵  +   𝐶𝑥𝐷)𝑦 +   𝐸 (4.02) 

and: 

𝑓2(𝑥, 𝑦) =   0 =   𝑥𝐴𝑦(𝐵 +   𝐶 ln(𝑥))  +   𝐷 (4.03) 

both appear to be perfect candidates for the general exact solution of the ODE where the 

coefficients  "A", "B", "C", "D" and "E"  are to be expressed in terms of the coefficients  "a", "b", 

"n" and the initial condition of the  ODE. 

 
For the first expression defined by  "𝑓1(𝑥, 𝑦) = 0",  we substitute this equation into the  ODE  and 

equate like terms to zero. 

 
The first derivative of equation (4.02) is defined as: 

𝑑𝑦

𝑑𝑥
 =   −

𝜕𝑓1

𝜕𝑥

𝜕𝑓1

𝜕𝑦
⁄   =   

−𝑦(𝐴𝐵𝑥𝐵−1  +   𝐶𝐷𝑥𝐷−1)

𝐴𝑥𝐵  +   𝐶𝑥𝐷
 (4.04) 

─── 
Substituting this equation into the  ODE  defined by equation (4.01), we obtain: 

−𝑥𝑦(𝐴𝐵𝑥𝐵−1  +   𝐶𝐷𝑥𝐷−1)

𝐴𝑥𝐵  +   𝐶𝑥𝐷
  +   𝑎𝑦 +   𝑏𝑥𝑛𝑦2   =    0 (4.05) 

From equation (4.02): 

𝑦  =    
−𝐸

𝐴𝑥𝐵  +   𝐶𝑥𝐷
 

(4.06) 

Substituting this equation into equation (4.05) and simplifying the results we arrive at the following 

general expression: 

𝐴(𝑎 −   𝐵)𝑥𝐵   +   𝐶(𝑎 −   𝐷)𝑥𝐷  −   𝑏𝐸𝑥𝑛   =    0 (4.07) 

Based  purely on empirical observations only, we can conjecture from entry  1, 2, 3  and  5  of  

table (4.2)  and equation (4.02) that:  

𝐵 =  𝑎 
(4.08) 

and: 

𝐷 =  𝑛 (4.09) 

Under this purely hypothetical assumption based entirely on the empirical data obtained, equation 

(4.07) can now be rewritten as: 

 

𝐴(𝑎 −   𝐵)𝑥𝑎   +   𝐶(𝑎 −   𝐷)𝑥𝑛  −   𝑏𝐸𝑥𝑛   =    0 (4.10) 
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Since the initial condition of the ODE is always known in advance, we can also include the 

following additional equation by substituting  "𝐵 = 𝑎",  "𝐷 = 𝑛",  "𝑥 =  𝑥0"  and "𝑦 = 𝑦0"  into 

equation (4.02). 

  

The results are: 

(𝐴𝑥0
𝑎   +   𝐶𝑥0

𝑛)𝑦0  +   𝐸  =    0 (4.11) 

The complete system of nonlinear simultaneous equations to solve for where the unknown 

coefficients are now reduced to "A", "C" and "E", can now be obtained by equating like terms to 

zero in equation (4.10) and by including equation (4.11) for satisfying the initial condition of the  

ODE.  

 

The results are: 

𝐴(𝑎 −   𝐵)                          =   0 (4.12) 

𝐶(𝑎 −   𝑛) −   𝑏𝐸             =   0 (4.13) 

(𝐴𝑥0
𝑎  +   𝐶𝑥0

𝑛)𝑦0  +   𝐸   =   0 (4.14) 

One complete solution set to this system of three nonlinear equations in four unknowns is: 

𝐴  ≠   0 (4.15) 

𝐵 =   𝑎 (4.16) 

                               𝐶  =    
−𝐴𝑏𝑥0

𝑎𝑦0

𝑎 +   𝑏𝑥0
𝑛𝑦0 −   𝑛

 (4.17) 

and from equation (4.13): 

                                                               𝐸  =    
(𝑎 −   𝑛)𝐶

𝑏
                            (𝑎 ≠ 𝑛) (4.18) 

where in equation (4.02),  we can set the  "A"  coefficient as arbitrary defined provided that it is not 

equal to zero.  Note that the expression for  "C"  in equation (4.17) was derived by multiplying both 

sides of equation (4.14) with "b",  adding the result with equation (4.13) and finally solving for  

"C". 

If for example, we select   "𝐴 =  −2.75", "𝑎 = 1.5", "𝑏 = 2", "𝑛 = 3","𝑥0 = 1"  and  "𝑦0 = −2" 

then using equation (4.15) through (4.18) we find that: 

  

      𝐵  =   𝑎  =   1.5 (4.19) 

𝐶 =    
−𝐴𝑏𝑥0

𝑎𝑦0

𝑎 +   𝑏𝑥0
𝑛𝑦0 −   𝑛

  =    
−(−2.75)(2)11.5(−2)

1.5 +   2(1)3.0(−2) −  3
  =   

−11

−5.5
 =   𝟐 ← (4.20) 

𝐷 =  𝑛 =  3 (4.21) 

and: 
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𝐸 =   
(𝑎 −   𝑛)𝐶

𝑏
  =   

(1.5 −   3)(2)

2
  =  −𝟏. 𝟓 ← (4.22) 

 

Substituting these coefficient values into equation (4.02), we arrive at the same expression as the 

one defined in the fifth entry of  table (4.2).  

 

Equation (4.02) represents an exact solution that appears to only satisfy a limited range of values for 

the coefficients present in the ODE.  However, evidence suggests from table (4.2) that the exact 

solution obtained in entries 4, 6 and 7 are not in the same format as in equation (4.02). 

 

As a result of this observation, more digging is required before a more complete general exact 

solution satisfying all the initial conditions and the coefficients present in the  ODE  is obtained. 

 
For the second candidate  "𝑓2(𝑥, 𝑦) = 0"  as defined by equation (4.03), a relationship for the 

coefficients  "𝐴", "𝐵", "𝐶"  and  "𝐷" expressed in terms of the coefficients  "𝑎", "𝑏", "𝑛" and the 

initial condition of the  ODE  can be determined by simply substituting equation (4.03) into the  

ODE  and equating like terms to zero. 

 

The first derivative of equation (4.03) is defined as: 

𝑑𝑦

𝑑𝑥
 =   −

𝜕𝑓2

𝜕𝑥

𝜕𝑓2

𝜕𝑦
⁄    =   

−𝑦(𝐴𝐵𝑥𝐴−1  +   𝐴𝐶𝑥𝐴−1 ln(𝑥)  +   𝐶𝑥𝐴−1)

𝑥𝐴(𝐵  +   𝐶 ln(𝑥))
 (4.23) 

 
Substituting this equation into the  ODE  we get: 

[
−𝑥𝐴𝑦(𝐴𝐵 +   𝐴𝐶 ln(𝑥)  +   𝐶

𝑥𝐴(𝐵 +   𝐶 ln(𝑥))
]   +   𝑎𝑦  +   𝑏𝑥𝑛𝑦2   =   0 (4.24) 

From equation (4.03): 

𝑦  =    
−𝐷

𝑥𝐴(𝐵 +   𝐶 ln(𝑥))
 (4.25) 

Substituting this equation into equation (4.24) and simplifying the results we arrive at the following 

general expression to solve for: 

𝑦[(−𝐴𝐵 +   𝑎𝐵 −   𝐶)𝑥𝐴 +   𝐶(𝑎 −   𝐴)𝑥𝐴 ln(𝑥)  −   𝑏𝐷𝑥𝑛]   =   0 (4.26) 

based purely on empirical observations, we can conjecture from the fourth, sixth and seventh entry 

of  table (4.2) that: 

𝐴 =  𝑛 (4.27) 

Thus, on the basis of this purely hypothetical assumption, equation (4.26) becomes: 

 

𝑦[(−𝑛𝐵 +   𝑎𝐵 −   𝐶 −   𝑏𝐷)𝑥𝑛  +   𝐶(𝑎  −   𝑛)𝑥𝑛 ln(𝑥)]   =   0 (4.28) 
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Since the initial condition of the ODE is always known in advance, we can also include the 

following additional equation by substituting  "𝑥 =  𝑥0 ", "𝑦 =  𝑦0"  and  "𝐴 = 𝑛" into equation 

(4.03). 

The results are: 

𝑥0
𝑛𝑦0(𝐵 +   𝐶 ln(𝑥0))   +   𝐷  =   0 (4.29) 

The complete system of nonlinear simultaneous equations to solve for where the unknown 

coefficients are B, C and D can be obtained by equating like terms to zero in equation (4.28) and by 

including equation (4.29) for satisfying the initial condition of the  ODE. 

 

The results are: 

𝐵(𝑎 −   𝑛) −   𝐶 −   𝑏𝐷        =   0 (4.30) 

𝐶(𝑎 −   𝑛)                                  =   0 (4.31) 

𝑥0
𝑛𝑦0(𝐵 +   𝐶 ln(𝑥0))  +   𝐷  =   0 (4.32) 

Equation (4.31) is a critical equation that specifies under which condition for the parameters in the  

ODE  are  "𝑓1(𝑥, 𝑦) = 0"  and  "𝑓2(𝑥, 𝑦) = 0"  a valid exact solution. This condition is clearly 

visible since from equation (4.31), we know that  "𝐶 ≠ 0"  which ultimately leads us to conclude 

that "𝑛 = 𝑎". 

Thus as a result of equation (4.31), 

𝑓2(𝑥, 𝑦)   =   0  =   𝑥𝐴𝑦(𝐵 +   𝐶 ln(𝑥))   +   𝐷 
(4.33) 

satisfies the ordinary differential equation   IF AND ONLY IF    "𝑛 = 𝑎".  

 

By extending table (4.2) to include additional exact solutions corresponding to a different set of 

values for the initial conditions and the coefficients present in the ODE, we can easily deduce that: 

𝑓1(𝑥, 𝑦)  =   0  =   (𝐴𝑥𝐵  +   𝐶𝑥𝐷)𝑦  +   𝐸 (4.34) 

satisfies the  ODE  when  "𝑛 ≠ 𝑎". 

 

 

The complete solution set of this system of three equations in three unknowns is: 

     𝐷  ≠   0 
(4.35) 

          𝐶   =  −𝑏𝐷 (4.36) 

𝐵  =   
−𝐷

𝑥0
𝑛𝑦0

  −   𝐶 ln(𝑥0)    =   
 −𝐷  −   𝐶𝑥0

𝑛𝑦0 ln(𝑥0)

𝑥0
𝑛𝑦0

 
(4.37) 

where from equation (4.33), we can set the  "D"  coefficient as arbitrary defined provided that it is 

not equal to zero. 
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If we select for example, "D = -1", "a = 2", "b = -1", "n = a = 2", "𝑥0 = 1" and "𝑦0 = 2" then using 

equation (4.27), (4.36) and (4.37), we find that: 

𝐴 =   𝑛 =   𝟐 ← (4.38) 

𝐶 =  −𝑏𝐷 =  −1(−1)(−1) =  −𝟏 ← (4.39) 

and: 

𝐵 =   
−𝐷 −   𝐶𝑥0

𝑛𝑦0 ln(𝑥0)

𝑥0
𝑛𝑦0

   =     
−(−1) −   (−1)(1)2(2) ln(1)  

(1)2(2)
 =   𝟎. 𝟓𝟎 ←   (4.40) 

 

Substituting these coefficient values into equation (4.33), we arrive at the same expression as the 
one defined in the fourth entry of table (4.2). 

 
 

The results of having performed such an indebt computational analysis from the application of a 
unified theory of integration on this particular general first order  ODE  has provided a very 
substantial amount of detailed information.  In fact, this would go much further beyond the 
capability of  any traditional  non-universal method of computational analysis. 
  
A typical report that a numerical analyst might be presenting to management would appear as 
follow: 
 

"… thus, our empirical findings has indicated to us that for this first order  ODE there are two 

recognizable general exact solutions.  The first one is for the case when  "𝑛 = 𝑎"  and the other is 

when  "𝑛 ≠ 𝑎".  The general exact solutions obtained can be expressed as a combination of 

algebraic and elementary basis functions defined only in explicit form.  Furthermore, we have 

established that there is according to the empirical results presented in table (4.2) an explicit 

relationship involving the initial condition (𝑥0, 𝑦0)  of the ODE, the coefficients (𝑎, 𝑏, 𝑛)  of the  

ODE  and the coefficients in our two initially assumed general exact solutions." 

  
It is expected that many such reporting systems applied on a very large variety of  DEs and systems 
of DEs would inevitably lead to the discovery of many new fundamental theorems similar to the 
superposition theorem. 
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5.  A universal system of implicit numerical interpolation 

Finite and infinite expansion series were traditional used for many centuries as a means of 
approximating certain types of functions.  Many forms of approximation were developed in the past 
but the Taylor's and Fourier's expansion series still remain the most widely used today. 

We have described an entirely new  universal  differential expansion form capable of representing 
far more complex mathematical functions than what is possible under the Taylor's and Fourier's 
expansion series method. It now becomes a matter of much further and deeper investigation to 
determine how well can such a type of  new differential expansion form succeed in approximating a 
general mathematical equation. 

There are two major requirements for an initially assumed Multivariate Polynomial Transform to be 
used as a practical method of approximation.  The first, is of course that there must be some type of  
DE  or system of  DEs  associated in the process of completely defining the mathematical equation 
that is being approximated.  The second, is that the Secondary Differential Expansion  must become 
completely integrable upon having successfully arrived at some fairly good approximate numerical 
solution set  of the relevant system of  Nonlinear Simultaneous Equations. 

When both of these conditions are met then this could potentially open the door for achieving a far 
more complex system of  approximations than what other traditional methods can offer in mathe- 
matics.  In our case, we would go much beyond the use of the more conventional types of 
approximation series by allowing only the computational aspect of our  initially assumed 
Multivariate Polynomial Transform decide what basis functions are contained in the approximation 
solution and also whether it is explicit or implicit by nature.  This would also include 
computationally  arriving at the correct combination of composite functions without imposing any 
limits whatsoever on each of their degree of composition. 

We demonstrate in the following example a case by which a simple exponential function was being 
successfully approximated by a very complex implicitly defined mathematical equation consisting 
of at least one high degree composite function.   It must be emphasized that the exact nature of the 
composite function and the very implicit nature of the entire approximation solution obtained  were 
entirely established purely my method of computational analysis only. 

  

Example (5.1).  If we substitute the following initially assumed Multivariate Polynomial Trans-

form: 

 (1).  Primary Expansion:  

          𝑌 =   
𝑎1𝑊1   +   𝑎2 

𝑎3𝑊1   +   𝑎4
 

(5.01) 

 (2).  Secondary Differential Expansion: 

               𝑑𝑋 =   
𝑏1𝑊1  +  𝑏2

𝑏3𝑊1  +   𝑏4
  𝑑𝑊1 

(5.02) 

into the first order  ODE  that define the following exponential function: 

𝑦 =   1.5𝑒−0.5𝑥 (5.03) 

then by solving for the relevant system of nonlinear simultaneous equations, we arrive at the 
following initially assumed  Multivariate Polynomial Transform  to invert: 
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 (1).  Primary Expansion: 

𝑌 =   
−0.16301958 𝑊1   +    0.26986711

   1.82320996 𝑊1   +    0.07715033
 (5.04) 

 (2).  Secondary Differential Expansion: 

         𝑑𝑋 =   
   0.83816740 𝑊1   +    1.31793167 

0.64312753 𝑊1   +    0.0271196
  𝑑𝑊1 (5.05) 

 

The complete inverse  Secondary Differential Expansion can be obtained by first integrating both 

sides of equation (5.05) for  "𝑊1(𝑥)"  using the following general integral formula for partial 

fractions: 

∫  
𝑎𝑢 +  𝑏 

𝑝𝑢 + 𝑞  
𝑑𝑢    =     

𝑎𝑢

𝑝
   +    [

𝑏𝑝 − 𝑎𝑞

𝑝2
] ln (𝑝𝑢 + 𝑞) 

(5.06) 

The next step afterwards is to substitute the expression obtained for  "𝑊1(𝑥)"  into the  Primary 

Expansion defined by equation (5.04). 
 

The solution of equation (5.05) using the above integral formula is written as: 

𝑥 =   [
0.838𝑊1

0.6431
]    +   [

{1.318(0.643) −   0.838(0.0271)}

0.6432
] ln(0.643𝑊1  +   0.0271)   +    

                                                                                                                            +     𝐾  (5.07) 

  =   1.303𝑊1   +   2.00 ln(0.643𝑊1  +  0.0271)   +   𝐾 (5.08) 

where: 

𝐾  =   𝑥0 −   1.303𝑊01  −   2.00 ln(0.643𝑊01  +   0.0271) 

 

(5.09) 

It can be shown that if: 

𝑦 =   
𝐴1𝑊1  +   𝐴2

𝐴3𝑊1  +  𝐴4
 

(5.10) 

then: 

𝑊1  =   
−𝐴4𝑦  +   𝐴2

    𝐴3𝑦  −   𝐴1
 

(5.11) 

so that from our  Primary Expansion  as defined by equation (5.04), we can directly express  "𝑊1"  

as a function of  "𝑦"  to obtain 
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𝑊1  =   𝑊1(𝑦)  =    
−0.0771503𝑦  +   0.26986711 

1.82320996𝑦  +   0.16301958
 

(5.12) 

where: 

𝐴1  =  −0.16301958,                         𝐴2  =   0.26986711 

𝐴3  =  1.82320996,                            𝐴4  =   0.07715033 

 

It follows that: 

𝑊01  =   𝑊1(𝑦0)    =    
−0.0771503𝑦0   +   0.26986711 

1.82320996𝑦0   +   0.16301958
   

(5.13) 

                                   =    
−0.077(1.5)  +  0.270

   1.823(1.5)  +  0.163
  =   

0.1545

2.8975
 (5.14) 

  =   0.0533                    
(5.15) 

The constant of integration defined by equation (5.09) may now be evaluated as: 

                      𝐾 =   0 − 1.303(0.0533) −   2.00 ln[(0.643)(0.0533) +   0.0271] (5.16) 

=   0 −   0.0694 −   2.00 ln(0.06137)  =   5.512 (5.17) 
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By substituting equation (5.12) into equation (5.08) and simplifying the results, we arrive at an 

implicitly defined equation in the form of: 
 

𝑓(𝑥, 𝑦)  =   0 =   1.303 [
−0.077𝑦  +   0.270 

1.823𝑦  +   0.163
]   +    

                                                            +   2.0 ln [
0.178

1.823𝑦 +   0.163
]   −    𝑥  +    5.512 (5.18) 

𝑥 𝑦𝑒𝑥𝑎𝑐𝑡 𝑤1 𝑓(𝑥, 𝑦𝑒𝑥𝑎𝑐𝑡)  

-5.0 

-4.5 

-4.0 

-3.5 

-3.0 

-2.5 

-2.0 

-1.5 

-1.0 

-0.5 

 0.0 

 0.5 

 1.0 

 1.5 

 2.0 

 2.5 

 3.0 

 3.5 

 4.0 

 4.5 

18.273741 

14.231604 

11.083584 

8.631904 

6.722534 

5.235514 

4.077423 

3.175500 

2.473082 

1.926038 

1.500000 

1.168201 

0.909796 

0.708550 

0.551819 

0.429757 

0.334695 

0.260661 

0.203003 

0.158099 

 -0.034049 

 -0.031716 

 -0.028729 

-0.024910 

-0.020031 

-0.013808 

-0.005885 

0.004179 

0.016924 

0.033003 

0.053192 

0.078390 

0.109606 

0.147920 

0.194418 

0.250076 

0.315614 

0.391310 

0.476811 

0.570992 

 -5.861676E-003 

 -5.583780E-003 

 -5.233661E-003 

 -4.795080E-003 

 -4.249876E-003 

 -3.579069E-003 

 -2.765262E-003 

 -1.797217E-003 

 -6.780194E-004 

  5.611024E-004 

  1.838294E-003 

  2.985896E-003 

  3.697588E-003 

  3.452581E-003 

  1.412990E-003 

 -3.704934E-003 

 -1.377577E-002 

 -3.140153E-002 

 -5.999799E-002 

 -1.037754E-001 

                                   Table 5.1 

 

 

 

Many of the numerical solution sets obtained not shown here satisfied the relevant system of  
Nonlinear Simultaneous Equations  to a fairly high degree of accuracy.  In fact so much so that we 
decided to conduct a more indebt numerical analysis by comparing the results with the implicitly 
defined equation obtained from having inverting the corresponding initially assumed Multivariate 
Polynomial Transform.  This has created just the perfect environment by which an implicitly 
defined analytical solution was able to approximate to a fairly reasonable level of accuracy the 
simple ordinary exponential function defined by equation (5.03). 
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6. Mathematica’s own approach to analytical  integration 

Mathematica  is a very popular software package that maintains a collection of symbolic and 
numerical methods for dealing with the entire aspect of differentiation and integration. Their 
general approach to integration is nowhere near the one described in this article which is based 
entirely on the application of multivariate polynomials as well as the differential of multivariate 
polynomials for finding analytical solutions to all types of  DEs  that would also include systems of  
DEs  as well.  Their online documentation does not present a single instance by which multivariate 
polynomials and the differential of multivariate polynomials have ever being applied for solving 
any particular type of  DE or system of  DEs. 

Wolfram's general symbolic approach to solving  DEs  has the greatest drawback that it cannot be 
applied universally right across all types of  DEs  and  systems of  DEs.  Under the new proposed 
unified theory of integration presented in this article,  all  DEs  and systems of  DEs are first 
subjected to a very rigorous computational process designed specifically for acquiring the type of 
data that would be transformed in terms of analytical solutions involving the algebraic and 
elementary basis functions only. Depending on the nature of the data acquired, each analytical 
solution obtained would be expressed in either explicit or in implicit form involving the use of 
composite functions with no limit whatsoever on each of their degree of composition. 

The exact computational process involved would be the result of substituting the  initially assumed 
Multivariate Polynomial Transform described by equation (1.002) through (1.006) into a DE or a 
system of DEs and afterwards solving for the relevant system of  Nonlinear Simultaneous 
Equations that are generated from this process.  Each numerical solution set of the  Nonlinear 
Simultaneous Equations  become the data by which all analytical solutions are constructed from.   

As part of the general procedure, this would always involve the exact integration of a series of first 
order ODEs  that are present in the Secondary Differential Expansion of an initially assumed 
Multivariate Polynomial Transform as described by equation (1.003) through (1.006).   They will 
always appear as first order  ODEs  regardless of the type of  DE or system of  DEs that is being 
solved for.  Since only first order ODEs are always involved then each are subjected to passing the 
fundamental test of exactness for determining whether or not any one of them is an exact 
differential.  If so, then the integration process becomes considerably simplified for all those 
differentials that succeed in passing the critical test of exactness.  

The final stage of the process would require that exact analytical solutions obtained from this 
unique integration  process be substituted into the Primary Expansion as defined by equation 
(1.002).  It is at this point that the various boundary conditions of the original DE or system of  DEs 
are being matched with the ones that are naturally present throughout the complete integration 
process of the Secondary Differential Expansion of an initially assumed Multivariate Polynomial 
Transform. 

With Mathematica  you cannot just simply enter any type of  DE or system of  DEs, especially of 
the  PDE  type and  expect that an analytical solution whether exact or approximate be returned to 
you in either explicit or in implicit form.  Also, you cannot expect an analytical solution to be 
constructed entirely from composite functions with no limits on each of their degree of composition 
just from the use of the algebraic and elementary basis functions.   "That is only possible under a 
true unified analytical theory of integration which is currently not present anywhere within all of 
Mathematica".  So in no way does Wolfram appear to follow this type of ideology in mathematics 
mainly because the computational complexities involved would also have been far too 
overwhelming for execution on just a regular PC.  

By writing a general computer program for implementing such a proposed unified theory of 
integration in a complete automated setting would represent a far better alternative than using 
Mathematica's general non-universal approach to analytical integration.   
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7. The development of a new type of  physics for maintaining  uniform continuity 
throughout 

The new proposed mathematical ideology restricts all analysis on mathematical equations at the 
differential level in order to insure that the concept of continuity be always maintained 
throughout.  This would suggest that the application of a true unified  theory of integration for 
solving any type of  DEs  or system of  DEs  could hypothetically lead us towards the creation of 
some infinitely perfect universe over its entire composition.  This is provided of course that we are 
able to maintain complete continuity in mathematical equations throughout the entire process of 
finding analytical solutions to DEs  and systems of  DEs.   Such an infinitely perfect and continuous 
universe would be quite feasible to construct but only on the general assumption that   "the 
mathematical properties of a straight line equation will always remain the same regardless of your 
exact physical location inside this perfect universe and regardless to what time frame you are 
specifically referring to". 

A true unified analytical theory of integration will guarantee that every type of  DE  or system of  
DEs has some analytical solution behind it whether considered as being exact or approxi- 
mate.   Furthermore, if the theory is to retain all the basic features of universality then it must be 
applicable to all cases involved without any exceptions whatsoever.  The only way for this to be 
entirely possible is that such a  unified  analytical  theory of integration  must  absolutely be 
"computationally-base" for arriving at complete  analytical solutions  to  any type of  DE  and 
systems of  DEs.  So at this point there can be no doubt that  the new proposed mathematical 
ideology being presented in this article does indeed appear to define some sort of a unified theory of 
integration. 

This very powerful assertion made about analytical integration in general has mutated itself into a 
new kind of physics that I would like to introduce everyone as being an  "idealistic physics".   

The fundamental principle behind this new type of physics is that we can use an infinitely perfect 
universe for modelling our own imperfect physical universe as long as we are able to maintain 
complete continuity in mathematical equations by solving all  DEs  and systems of  DEs  under a 
single unified theory of integration.  Other imperfect physical universes similar to our own may be 
modeled like clay from the same infinitely perfect controlled universe.  Each would then differ from 
one another only in terms of some mathematical variation representing a measure on how energy is 
being distributed within the basic atomic structure of matter  

Without some way of maintaining complete continuity in  mathematical equations  it would 
virtually become impossible to establish some very fundamental links that can exists between 
mathematical equations.  It's only through the complete consolidation of each of these fundamental 
links between mathematical equations that in the end would play a vital role for arriving at some 
unified theory of physics.  All of this of course becomes absolutely invisible under any form of 
experimentally based theory. 

In an idealistic physics, discrete variables would have no meaning whatsoever since everything 
would exist inside an infinitely perfect dynamical structure involving infinitesimal measurements of 
space and time.  All forms of navigation inside this perfect universe would be moving along a 
pathway of  DEs  with the new mathematical ideology acting as the main propulsion engine.  The 
only access entry point inside such an infinitely perfect universe is by computation and not based 
entirely on the use of our imperfect sense of human physical observation that everyone was 
expecting to succeed during the complete historical development of classical and modern physics.   

" To always remain a part of this reality, we need to listen very attentively to what mathematics is 
telling us and not what we always want to hear. " 

The complete understanding of our own imperfect physical universe could never become reality 
unless we take advantage of the basic tools offered by the new proposed mathematical and physical 
ideology being introduced in this article.   Under this new system of logic, all references made from 
within this infinitely perfect universe would be driven strictly by computation which would 
virtually eliminate any risk of encountering the type of contradictions that today are so prevalent 
everywhere in classical and quantum physics. 
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If we were to succeed in arriving at some unified theory of physics then no doubt we would have at 
our fingertips a complete and very detailed understanding of our own physical universe that maybe 
one day might bring us one step closer to its original creator. 

and so ...  

"what we are able to understand could give us the capacity to change it  for the better." 

 

8. The complete unification of all of physics under one  computer software development

A unified theory of physics has true meaning only in relation to some unified theory of analytical 
integration.   It is based on the general assumption that everything in this physical universe can be 
described by the use of  DEs and systems of  DEs.    They in turn would be completely solvable as 
some exact or approximate algebraic combination of elementary and algebraic basis functions by 
following a very unique system of  computational logic such as the one being introduced in this 
article.   

Such a grand theory of physics would be constantly referring to the existence of some type of a 
gigantic universal algebraic system, the very same one in which  Albert Einstein  himself always 
believed had to exist for completely describing reality.   It would stand up at the very top of the 
hierarchy of all other know existing theories of physics that would include the theory of general 
relativity, quantum physics and including string theory as well. 

All traditional theories in physics lack a great deal of universality, the type that can only lead to the 
unification of all physics under a single unified theory of integration.  By following the same 
common mathematical ideology that would be entirely based on the fundamental continuity 
property of all mathematical equations,  there would be no risk of encountering any type of 
contradictions whatsoever.  That is because everything would be presented on a computational 
platform driven entirely from the relentless application of the fundamental laws of differentiation 
from which the proposed unified theory of integration is entirely based on. 

Methods of computation are so important in our everyday lives.  The current existing global 
monetary structure which drives our  entire world economy completely depends on it just as much 
as our technology could not exists without it.   None of this would be possible without the use 
of  some form of  a  "system of computational logic"  applied to mathematical equations that would 
have originated from the application of some type of a mathematical ideology. 

A highly automated computer software program can always be written for the complete 
implementation of the process involved in solving for any type of  DEs  and systems of  DEs  that 
would be entirely based on the application of the new proposed mathematical ideology.  Such a new 
type of software development would undoubtedly be regarded as being  "the complete unified 
theory of physics"  but only in its most raw state.   Human intervention would then only be 
necessary for complete translation of all computer results that would appear in the form of exact 
numerical computations into practical decipherable mathematical equations.  They in turn would be 
used exclusively for describing the very fundamental structure of our entire physical universe. 

Everyone would have complete access to this computer software over the internet for execution on 
the most advanced super computers of our time.   This software would then be regarded as the main 
pillar by which all of theoretical physics may now be  reconstructed  without leaving the impression 
that we are attempting to reinvent the wheel.  This I believe is possible since we would be finding 
ourselves moving along a pathway that would be describing an entirely new ideology in both 
mathematics and physics, the type that has never been investigated by anyone in the past.  Much 
along the same line of reasoning as  CERN  was built around every part of experimental nuclear 
physics.  In our case, we would be implementing a very unique technology by which every part of 
theoretical physics would now be investigated under a single common unified theory of integration.   
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This may perhaps one day have a very profound effect in the manner by which the prestigious 
Nobel Prize would be being presented for major contributions into physics.  There would be two 
such major prizes offered instead of one.  The first, would be for exceptional contributions to all 
aspects of experimental physics while the other, for outstanding new contributions into all aspects 
of the new proposed idealistic physics under a  complete unified theory of integration.  Eventually 
at some point in time, both types of physics will be expected to intersect at the same common point 
of intersection by which a theory of everything may one day become reality for all of mankind. 

9. Engineering science under one universal system of computational logic 

The new proposed mathematical ideology can also be transformed into a very unique method of 
engineering analysis by which all  DEs  and systems of  DEs  may now be more closely scrutinized 
for arriving at a much greater variety of analytical solutions.  This would not be feasible by  
following any other existing traditional methods of analysis since the vast majority of analytical 
solutions obtained are generally limited to very simple functional expressions that are mostly 
expressed in explicit form. 

Today, methods of solving for  DEs  and  systems of  DEs  particularly of the  PDE  type are mostly 
based on the use of various forms of finite element methods of computational analysis.  Under the 
new proposed mathematical ideology, all forms of engineering analysis would be initiated from the 
direct application of the initially assumed Multivariate Polynomial Transform  that was defined by 
equation (1.002)  through (1.006)  above.   

So rather than presenting a solution to a particular physical problem as a part of some traditional 
numerical database, our very unique approach would consist of building an entirely new different 
type of database that would have been constructed on the principle of substituting an initially 
assumed Multivariate Polynomial Transform into  any type  of  DEs  and system of DEs.  The same 
computer program described earlier as representing the complete unified theory of physics in raw 
computational form would also be applicable for solving those well know DEs of engineering 
science that have proven very similar in appearance to those encountered in theoretical physics.  In 
both cases involved, the proposed initially assumed Multivariate Polynomial Transform would 
become the main center stage by which all forms of theoretical analysis would be conducted in the 
future. 

Most particularly important to the engineering science are the need for approximation methods of 
analysis that are based on the use of highly imperfect control volumes.  For these types of 
engineering problems, we would then be adopting a more  approximate  analytical method of 
analysis that would be sharing the same common principles as those introduced in section (5).   

It is expected that the same computer program originally built for handling all problems in 
theoretical physics would no doubt provide us with the greatest opportunity yet for revisiting all 
those problems in engineering science that have remained in cold storage.  They all have remained 
there for quite some time now mainly due to a lack of a unified theory of analytical integration  

 

10. Conclusions 

You have now all witness a very unique circumstance by which a new mathematical ideology has
mutated itself into some form of a new ideology for the physical sciences.  The new proposed 
mathematical ideology is entirely computational-based so that the entire process of arriving at some 
analytical solution for resolving  any   DEs  and systems of DEs can be entirely automated 
through the development of a unified computer program.  The proposed initially assumed universal  
differential expansion as described by equation (1.002) through (1.006) is a testament that all forms 
of pure analytical integration may now be handled under one gigantic unified computational-based 
algebraic theory. The development of such a unified theory of integration would not have been 
possible without the complete preservation of the fundamental continuity property of all 
mathematical equations.  It is only through the use of differential expansion forms defined in the 
very special format as described by equation (1.002) through (1.006) that we are able to maintain 
complete  continuity of all mathematical equations throughout the entire process of solving for any 
type of  DEs  and systems of  DEs.   Since virtually all of theoretical physics is founded on 
mathematical equations, it would be safe to assume that a universal computer program that would 
be build around such a proposed unified theory of integration would have to be regarded as 
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being some sort of a "unified theory of physics"  in its most raw numerical state.   Human 
intervention would then only be necessary for translating all computer results that would appear in 
the form of exact numerical computations into practical decipherable mathematical equations.  The 
very unique computational structure of our standard initially assumed differential expansion form 
would offer an unlimited variety of mathematical equations for conducting all forms of exact 
theoretical analysis not only in the field of theoretical physics but also in the engineering and bio- 
logical sciences as well.    
 
It would be conducted on a scale never imagined possible under any other known traditional 
methods of analysis.  Such a new exact method of analysis could one day offer the best hope yet for 
arriving at some unified theory of physics without the risk of incurring any form of contradictions 
that are so prevalent in modern physics today.   Also, by introducing such a unified theory of 
integration into the physical sciences, it is expected in the long term that both physicists and 
engineers would become much less dependent on pure experimental method of analysis for 
achieving much greater design reliability of commercial products. 
 
 
 
 

Mathematics  has  no  boundaries;  its  really  our  inability  to  understand  it  that  creates  such  boundaries  (12/14/97). 
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