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Abstract

If a new system of computational logic would be entirely based on the application of a true unified
computational-based analytical theory of integration then what better way of validating such a
system of mathematical logic then through the complete development of a unified theory of physics.
The outcome of having successfully arrived at such a monumental theory in physics would
represent a much greater expansion of our knowledge in terms of engineering science. This would
be the direct consequence of having analytically resolved under one unified theory of analytical
integration the vast majority of PDEs some of which would prove very similar in appearance to
those encountered in theoretical physics.
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0. Introduction

The new development for the physical science begins with the introduction of what appears to be a
computational-based unified theory of analytical integration. This would eventually lead to the
formation of some type of a new physical ideology by which a unified theory of physics could
eventually be constructed over time.

Even Albert Einstein who has always claimed that God never plays with dices would have
conceded if he were alive today, that somewhere out there in the vast realm of mathematics there
has to exist some form of an algebraic system capable of addressing all of physics under one unified
theory of '‘computation™.

And | would like to quote from the ending of his book The meaning of Relativity [Einstein (1974)]:

" This does not seem to be in accordance with continuum theory, and must lead to an attempt to
find a purely algebraic theory for the description of reality. But nobody knows how to obtain the
basis of such a theory ™.

With a unified theory of integration now possibl?/ well within our grasp, this would represent a
very important step towards becoming much less dependent on experimental scientific and
engineering methods of analysis. As a result of this, we would be adopting a far more theoretical
approach towards every aspect of the physical sciences on a much wider universal scale than ever
thought possible under existing traditional methods of analysis.

" The greatest problem in having to rely on traditional methods of mathematical analysis is
mainly due to a severe lack of universality as a direct consequence of not having uncovered a
unified theory of analytical integration in the past. **

Throughout the remaining of this article, | will first and foremost attempt to briefly summarize in
more layman's term an entirely new mathematical ideology. Next, | will proceed to demonstrate
how such a very powerful new ideology in mathematics can be mutated into a whole new branch of
physics that | would like to introduce everyone as an "idealistic physics".

As a direct consequence of what appears to be a unified theory of analytical integration, | would
like to address the |mPortan_ce of arriving at some unified theory of physics for a much greater
expansion of our knowledge in terms of engineering science.

1. First and foremost, the new mathematical ideology

What gives the new ideology its own and very unique flavor in mathematics is that all analysis
pertaining to anti-differentiation whether in the form of a DE or an integral is always performed
at the differential level. The main reason for this is to insure that the concept of continuity be
preserved throughout the entire anti-differentiation process. Because the laws of algebra apply
equally well to finite quantities as they do to differential quantities without regards to any limiting
process near zero, there is never a risk of violating any known mathematical principles. The type of
continuity I am referring to can ideally be described by a DE or a system of DEs.

Under the new proposed mathematical ideology when it comes to solving for any type of DE or
system of DEs, rather than working with complete mathematical equations, we instead only become
interested in working with complete differential form representations.

This is where the new mathematical ideology now begins to deviate from the old traditional
thinking of Calculus.

If we were to have complete access to every imaginable type of mathematical equations just from
the computed values alone that would originate from the application of some very unique mathe-
matical 1deology then this would certainly represent a very significant discovery in mathematics.
This would no doubt represent an extremely valuable tool for completely eliminating our most
fundamental problem of not being able to select the most suitable type of mathematical equation
for handling all aspects of the physical and biological sciences under one *‘unified theory of
computation™.  Over time, this would inevitably lead towards the development of some form of a
?nifled theory of physics by which some type of a ""theory of everything" would be constructed
rom.
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The very first place we might want to look for the possible existence of such a potentially formi-
dable mathematical theory of integration is in the following very simple integral equation:

;= fd—y (1.001)
ay?+by +c

Everyone would certainly agree that only because "y(t)" was initially presented in its complete
differential form, this has provided us with the capability of defining a wide range of mathematical
expressions just by varying the numerical values present inside this integral. From this very simple
observation in Calculus, we can immediately deduce that differential forms could at least
potentially represent a very powerful link between numerical computation and complete mathe-
matical expressions.

So our primary objective now is to determine what possible variations in terms of differential form
representations can we expect for including "all" types of mathematical equations regardless of the
degree of complexity involved. Such mathematical equations would be constructed from the use of
algebraic and elementary basis functions that would involve the presence of composite functions
with no limit whatsoever as to each of their degree of composition. Furthermore, there would be no
restriction whatsoever on the number of dependent and independent variables involved and finally,
;tche entire rnathematical equation may be expressible not only in explicit form but also in implicit
orm as well.

Such an ideal universal differential expansion form can only be described mathematically in terms
of two fundamental parts that would involve the use of multivariate polynomials as well as com-
plete differentials of multivariate polynomials.

For a general system of "k" number of implicitly defined multivariate mathematical equations in

the form of "f,(z,, x,) = 0" that consist of "m" number of dependent variables and "n"
number of independent variables this may be described as follow:

(1). Primary Expansion:

p
F(W) = 0= z iy HV%-E"'S (I<i<k) (1.002)
J

T

where "W;" are auxiliary variables, "“p" is the total number of such auxiliary variables each of

which are raised to some floating point value and "r" is the total number of terms present in each
of the "k" number of implicitly defined multivariate polynomial equations.

(2). Secondary Differential Expansion:

dx; = AW, (1<i<n) (1.004)



m n
Z Ni(m+n+1)—m—n—1+tdzt + Z Ni(m+n+1)—n—1+tdxt =
t=1 t=1

= Nim+n+1)dW; [l<i<p-m-n] [m+n+1<j<p] (1.005)

14
N(W,) = Z b, HMG.EC'S (1.006)
J

t=(c-1r+1

[I<c<im+n+1] [1<i<p-—-m-—n]

There is at present no other possible differential form capable of representing all mathematical
equations with such a high degree of universality then the one suggested above.

In complete expanded form we would write this as follow:

(1). Primary Expansion:

_ _ MmqqyrMiz |, yp7 P
F,F =0 = a1,1W1 VV2 w

M1,p+11,,M1,p+2 my,2
D + alleVl P W P W P + +

2 P

Mypr-1)+11,,Mpr-1+2 Mrp 1.007
+ ot oa, W W, A ( )

— — Moy, M22 | 107M2p Mop+1y.,M2p+2 | ma,2p
F, = 0 = ay, W ™'W, W, P+ ap, W, PN, w, + ot

Mo p(r—-1)+11,, M2, p(r-1)+2 __, Marp 1.008
+ ot ay, W W, A ( )

_ _ M1, Mi2 a7 Mkp Mep+1y0,Mkp+2 | 147 Mk2D
Fo =0 = ag W W, WP+ g, W, W, w, SRS

+ .+ ak,rvvlmk,p(r—l)+1M/ka,p(r—l)+2 Vmek,rp (1009)



(2). Secondary Differential Expansion:

dx; = dW,,,; (1<i<n) (1.011)

[N1d21+ NZdZZ + .. + deZm] + [Nm+1dx1 + Nm+2de + ... +

+ ..+ Nm+ndxn] = Nm+n+1dWm+n+1 (1-012)

[Nm+n+2dzl + Nm+n+3d22 + ..+ N2m+n+1dzm] + [N2m+n+2dx1 +

+ Nominszdxz + .+ Nz(m+n+1)—1dxn] = NZ(m+n+1)dWm+n+2 (1-013)

[N(p—l)(m+n+1)+1dzl + N(p—l)(m+n+1)+2dZZ + ..+ N(p—l)(m+n+1)+mdzm] +

+ [N(p—l)(m+n+1)+m+1dx1 + N(p—l)(m+n+1)+m+2dx2 + ..+ Np(m+n+1)—1dxn] =

= p(m+n+1)dVVp (1.014)

Assuming a system of implicitly defined mathematical equations consisting of 3 dependent
variables and 5 independent variables with a total number of 12 auxiliary variables.

We will determine the correct index value for each of the multivariate polynomials present inside
the Secondary Differential Expansion that would be responsible for defining the complete expres-
sion for the 10" auxiliary variable:



Starting with equation (1.005):

m n
Z Ni(m+n+1)—m—n—1+tdzt + Z Ni(m+n+1)—n—1+tdxt =
t=1 t=1

= NignnsndW; [1<i<p-m-n] [m+n+1<j<p] (1.015)

The results are for "p=12","m=3","n=5" we have "i=12-10=2" and "j=10":

3 5
ZN2(3+5+1)—3—5—1+tdZi + ZN2(3+5+1)—5—1+tdxi = NZ(m+n+1)dW10 (1.016)

t=1 t=1

+ N16dX4, + N17de] = ngdWw (1017)

Before proceeding any further, a few simple mathematical definitions need to be in order.

The first one, the actual process of transforming a complete mathematical equation in terms of the
above universal differential form representation is referred to as taking its Multivariate Polynomial
Transform.

Next, the complete reverse process of goin? from a differential form representation back to its ori-
ginal complete mathematical equation would be referred to as taking the inverse of a Multivariate
Polynomial Transform. This would require following a very unique integration process to be des-
cribed later for determining the complete analytical expression corresponding to each auxiliary
variable "w;". They each In turn would be substituting back into the Primary Expansion for
arriving at the complete original expression that we started with being in the form of

“fi(Zm, xn) = 0"

As we are dealing mainly with multivariate polynomials and complete differentials of multivariate
polynomials, new types of coefficients are being introduced along the way. During the process of
inverting from a differential form back to the original complete mathematical equation, some of
these coefficients would be entirely responsible for defining the basis functions b?/ which the
complete mathematical equation was originally constructed from. These particular types of
coefficients are present only in the Secondary Differential Expansion of a Multivariate
Polynomial Transform. The remaining types of coefficients will be described in more detail later
on.



Example (1.1). Let us consider the simplest two dimensional case which would correspond to the
case for "k =m =n = 1" and by replacing the dependent variable "z" with "y", we arrive at
the following corresponding general Multivariate Polynomial Transform for "y(x)":

(1). Primary Expansion:

F(w;)) = 0 [1<j<p] (1.018)

(2). Secondary Differential Expansion:

dx = dW; (1.019)

dy = dW, (1.020)

N3;_pdx + N3i_1dy = Nz;dW; [1<i<p-2][3<j<p] (L0O21)

For this general univariate two dimensional case, the Secondary Differential Expansion may be

written in the following more general format upon replacing each auxiliary variable on the left hand
side with the dependent and independent variables:

M(x,y)dy + N(x,y)dx = P(W;)dW; (1.022)

The left hand side of this equation appears in exactly the same format by which all first order ODEs
are written prior to applying Euler's method for specifically targeting those that are considered as
exact differentials.
This test is well known in Calculus and is defined by:
6_M _ a_N (1.023)
dy  ox

When this condition is met than Euler's general integral formula can then be applied and the result
is a vastly simplified integration process.

The formula has two equivalent form.

The first:
0
fde + f(N - 5fde)dy = C (1.024)

and the second one;:

dey + f(M — aa—fody)dx = C (1.025)



Example (1.2). We will apply the concept of an exact differential for demonstrating in detail the
exact process involved for inverting the following Multivariate Polynomial Transform
corresponding to a univariate implicitly defined equation in two dimension.

(1). Primary Expansion:

F(Wl,Wz,W3 W4) == O == W4_ + 2W2 (1026)

(2). Secondary Differential Expansion:

dx + 0-dy = dWw; (1.027)
0-dx + dy = dW, (1.028)
—2Widx + 0-dy = WidW; (1.029)
2Wydx — Wady = Ws(W, + W5)dW, (1.030)

The first step is to naturally begin by integrating in ascending order of complexity each first order
ODE that is present in the Secondary Differential Expansion for the expression of each auxiliary
variable.

We begin first by defining "W;(x) = x" and "W,(y) = y".

For "W5(x)", we integrate equation (1.029) by parts to arrive at:

Ws(x) = £+/C5 — 2x2 (1.031)

For "W,(x, y)", the corresponding first order ODE to integrate is obtained by substituting the
expression for "W, (x)" and "W, (y)" into (1.030) to afterwards rearrange the resultant equation in
the form of:

2x dx dy (1.032)
- = dW4
Ws(y + Ws) y+ Ws
Let:
2x
M(x, = —_——— (1.033)
32 Wiy + W3)
so that since "W5; = W5 (x)":
oM _ —2x (1.034)
ay Wiy + Ws3)?
Next, define:
-1
N(x,y) = —— (1.035)
S o+ )
so that:



oN 1 dW,

— = (1.036)
dx (y + W3)? dx
From equation (1.029):
aws _ 2W o2 (1.037)
dx Wy Wy
Substituting this equation into equation (1.036), we get:
N —2x (1.038)
ax Wiy + Ws)?
Since:
oM _ ON _ —2x (1.039)

E_ ax Wiy + Ws)?

it follows that equation (1.030) is an exact differential whose solution may be obtained using any
one of Euler's integral formula mentioned earlier in equation (1.024) and (1.025).

The following general form will be used:

4]
dey + j(M — ﬁdey>dx = C (1.040)
For the first integral:
[way = [ = <+ w) (L041)
y+ W

For the second integral:

1 dw,

STV d (1.042)
3

ajzvd - e wy) =
dx Yy = ax“y 3/ =

From the differential that defined the third auxiliary variable as given by equation (1.029), we can
write:

aws _ —2x (1.043)
dx Ws

Thus equation (1.042) may be rewritten as follow:



) 1 dw, 2x
— | Ndv = — - = — = M(x, (1.044)
8xf Y y+ W; dx Wi (y + Ws) *xy)

so that :

f(M - ;—fody)dx = f(M - M)dx =0 (1.045)

Euler's integral formula may now be rewritten in the following final form:

dey + f(M — aa—fody) dx = dey = fy:_dng = —In(y + W,)  (1.046)

The complete exact solution of the differential form that define "W," is obtained by integrating
equation (1.030) using the above integral solution.

The results are:
—In(y + W3) = W, + K (1.047)

Substituting the expression for "W5(x)" as defined by equation (1.031) into the above equation,
we obtain:

— In(y £ G — 2x%) = W, + K (1.048)
Solving for "W," :
Wy(x,y) = C, — In(y + C3 — 2x?) (1.049)

The complete inverse Multivariate Polynomial Transform of the given implicitly defined equation
is obtained by substituting the expression for "W, (x)", "W, (y)", "W5(x)" and "W, (x,y)" into the
Primary Expansion defined by equation (1.026).

The results are:
f,y)= 0= C, — ln(y + JC; — 2x2) + 2y (1.050)

where the constants of integration defined by "C5;" and "C," are each determined from the initial
condition of "f(x,y) =0".
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In higher dimension than two, the basic principle behind the main test for exactness is still
applicable but requires some very minor modifications in order to account for the multivariate
nature of the corresponding general differential form representation.

In view of equation (1.002) through (1.006), an example of a single first order multivariate ODE
that can be present inside a Secondary Differential Expansion may be expressed in the following
general form:

(Mldzl + MZdZZ + ... + Mmdzm) + (Mm+1dx1 + Mm+2de + ... +

t ot Mypyndxy) = MopyperdW (1.051)

where as by eliminating each auxiliary variable in terms of the dependent and independent variables
on the left hand side of this equation, we can also define:

M; = M;(2,2Z2, ) Zm, X1, X2, ey Xp) 1 <i<m+n) (1.052)

The right hand side of this equation can be expressed only in terms of the auxiliary variable "W;"
so that:
M; = M;(W)) (i=m+n+1) (1.053)

The auxiliary variable "W;" is actually a "multivariate composite function" and is to be deter-

mined assuming of course that an exact expression for each of the auxiliary variables "W;, W, , ... ,
W;_1" have all been previously obtained in ascending order of complexity.

Equation (1.051) may be rewritten as:

where:
dH, = (Mydz; + M,dz, + ... + M,dz,,) + (Mpy1dx; + My ,dx, + ... +

F ot Mpandxy, ) (1.055)

and where:
dH, = My ina Wi (1.056)

If each side of equation (1.054) is an exact differential then from the chain rule:

Z " OH, (1.057)

de dxk

11



and since "H, = H,(W;)" :

0H, (1.058)
dH, = 6_Wde’
It follows from equation (1.055) and (1.057) that :
0H,
- 1 1.059
M= 5 (L.059)
_0H, (1.060)
M2 —_— a_ZZ
0H,
= — 1.061
M, oo (1.061)
0H (1.062)
My = a_xll
0H (1.063)
My = a_le
0H (1.064)
Mypyn = a_x;
It also follows from equation (1.056) and (1.058) that:
0H, (1.065)
Mypynsr = a_VV]

12



From multivariate calculus, the condition that both sides of equation (1.054) each define an exact
differential is of course when:

oM, oM, oM, M, oM, oM, oM, oM, (1.066)

0z, 0z, "0z, = 0z,

oM, OMyyy  OMy  OMy, oMy, My (1.067)
axl N aZl ’ axZ N aZl T 'axn N aZl
oM, M, OM, oM, OM,  OMs oM, oMy, (1.068)
aZ3 N (322 ’ 624 N aZZ ’ aZ5 N aZZ T ‘azm N aZZ
oMy, My  OMy  OMy,, oMy OMys (1.069)
ox, 0z, ' dx, 0z, ' T 'ox, = 0z,
My My (1.070)
ax,  0zp,

If each of the above conditions are met then the solution for "H;" and "H," is obtained as follow:

For "H,", we integrate equation (1.059) :

H1 = fMl(Zl,Zz,...,Zm, xl,xZ,...,xn) 6Z1 (1071)

where in this case, z; and x; for 1<i <m, 1<j<n and i#1 are all treated as
constants when evaluating this indefinite integral.
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We can also use as another alternative:
H, = f M (21,29, oy Ziyy X1, X2y ey Xpy) OZ) (1.072)

where inthis case, z; and x; for 2<i <m, 1<j <n and { # k are all treated as constants
when evaluating this indefinite integral.

Other alternatives for the same expression of "H;" can also be obtained from:

H1 = _I-Mm+k(Z1;Zz; v Zmy X1, X2, ""xn) axk (1-073)

where inthis case, z; and x; for 1<i <m, 1<j <n and j # k are all treated as constants
when evaluating this indefinite integral.

As for the expression of "H," defined by equation (1.056), it can be determined using the
following integral :

Hy = H(W) = [ My () aW; (L.074)

because "W; = W;(z1,2z) ) Zm, X1, X2, ..., Xp)" IS @ multivariate composite function.

The complete exact solution of the first order multivariate ODE defined by equation (1.054) that
would be present inside a Secondary Differential Expansion is:

Hy (21,23 ) Zimy X1, X, o Xn) — Ho(Wj) = 0 (1.075)

from which "W;" can be obtained explicitly whenever possible.

Once the complete expression for each auxiliary variable is obtained, they can afterwards be
substituted along with each of their initial condition(s) into the Primary Expansion for arriving at

the required system of implicitly defined equations in the form of "f(z;,x;) = 0" for 1<i<m
and 1<j<n.

The initial condition(s) that belong to each auxiliary variable all take part in satisfying the initial
condition(s) of a system implicitly defined equations that can be used for completely representing
the exact or approximate analytical solution of a system of PDEs.

For inverting a Multivariate Polynomial Transform defined in much higher dimension follows
the same type of logic as for the simple two dimensional case. The following example illustrates
this in greater detail.
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Example (1.3). Assuming the following Secondary Differential Expansion as a part of a large
Multivariate Polynomial Transform that would correspond to some large system of implicitly
defined equations involving several dependent variables and one single independent variable.
Furthermore, for the sake of simplicity, let us assume that every first order ODE present in the
Secondary Differential Expansion would satisfy the condition for exactness everywhere and thus
readily integrable using the method described earlier.

Secondary Differential Expansion:

0-dx + dy, + 0-dy, + 0-dy; = dW, (1.077)
W2dx + Widy, + Widy, + W2dy; = WidWs (1.080)
Wldx + Wszﬁ + W3dy2 + Ody3 = WédW6 (1081)

W1W6_1dx + (W2W6_1 +2W3)dy1 + (W3W6_1 +2W2)dy2 + OdY3 =

_ W (1082)

14+ W2
subjected to "y;(xg)", "v2(x0)" and "ys(xo)"

We will now determine its complete inverse where it is assumed that for the sake of simplicity each
first order ODE present in the above Secondary Differential Expansion have already been factored
out in order to filter out any unnecessary multivariate polynomials. These do not contribute in any
manner on the overall integration process as they would tend to naturally cancel each other out by
computation.

The first step is to naturally begin by integrating in ascending order of complexity each first order
ODE present in the Secondary Differential Expansion for an expression of each auxiliary variable.

The results are:

For "W,", Wi(x) = x (1.083)
For "W,", W,(y1) = » (1.084)
For "Ws5", Ws(y2) = ¥, (1.085)
For "W,", W,(y3) = y3 (1.086)
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For "Ws(x,y1,¥2,¥3)", thisis more involved.

Equation (1.080) can be rewritten as:

Mldx + MZdY1 + M3dy2 + M4_dy3 = MSdWS (1087)
where:
M, = WE = x? (1.088)
My, = Wi = yi (1.089)
My = W} = 3 (1.090)
M, = W2 = 3 (1.091)
Ms = W2 (1.092)

Since "Ml = Ml(x)", "MZ = MZ(yl)"1 "M3 = M3(y2)", and "M4 = M4,(:V3)", our test fOI’
exactness using equation (1.066) through (1.070) reveals that:

oM, _ oM, _ (1.093)
dx dy,

oM _ oMy _ 0 (1.094)
d0x ay,

oM, oM, 0 (1.095)
ox  dy;

oMs _ oM, _ (1.096)
oy 9y,

M, _ oMy _ (1.097)
on dys3

oM, 0Ms, (1.098)

= = 0
9y, 0y3

so that equation (1.087) is an exact differential equation with solution:

j(xzdx + y2dy, + yidy, + yidy;) = JWSZdWS (1.099)
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or:

W5=3\/x3+yf+yz3+y33+65

For "Wg(x,y1,y2)", equation (1.081) can be rewritten as:

Mldx + Mzdyl + M3dy2 == M4_dW6

where:

Since "M; = M;(x)", "M, = M,(y;)"
(1.066) through (1.070) reveals that:

=W1=

Y1
Y2

(1.100)

(1.101)

(1.102)

(1.103)
(1.104)
(1.105)

and "M; = M;(y,)", our test for exactness using equation

oM, oM,
ox oy,
oM;  0M,
ax 9y,
oM;  OM,
dy, 0y,

so that equation (1.101) is an exact differential equation with solution:

f(de + yidy; + ypdy,) = fwsdwe

or:

W6=\/x2+y12+y22+c6

(1.106)

(1.107)

(1.108)

(1.109)

(1.110)
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For "W,(x,y1,y2)", equation (1.082) can be rewritten as:

where:
dH1 = Mldx + Mzdyl + Mgdyz (1112)
M1 - W1W6_1 (1113)
MZ - W2W6_1 + 2W3 (1114)
M3 - W3W6_1 + 2W2 (1115)
and:
1
V. - (1.117)
* 1+ W2
It follows that:
oM, ow, oW,
— = — W'+ Wi(=WD) = 0 — WWr(w,wgh) (1.118)
ay1 ayl 6 1 6 ay1 1¥%e6 2VVe
= —W,W,Wg3 (1.119)
oM, oW, oW,
— = Wt + Wy (—wg?) = 0 — WaWi(W,wgh) (1.120)
ayz ayz 6 1 6 ayz 1YVe6 3VWe
= —W,WWg3 (1.121)
oM, oW, . L W OWs , .
972 _ - _W2)—6 7 o - - - 0 (1.122)
ax ox We' + Wo(=Wg*) ) ) 0 Wo,Wg (W Wg ) +
= —W,w,w;3 (1.123)
oM, oW, oW, oW,
= Wet + Wo(—Wg?) + 2 = 0 — W,W2wawgh) + 2 (1.124)
oy, 0y, ° 270 Doy, 3y, 2 AT
= —W,W,W;3 + 2 (2.125)
oMs oW, oW, oW,
— = W WD) —=— + 2—— = 0 — WaW2w,wghH+ o (1.126)
ox ox Wet + Wi(—Wg )ax + ) W “(WiWg ™) +
= —W,WaWw;3 (2.127)
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aW, aw,
+ 2
0y, 0y,

M, B oW,
0y, 0y,

Wt + Wi (=wg?)

== _W2W3W6_3 + 2

Our test for exactness using equation (1.066) and (1.070) reveals that:

oM, oM,

— = — = W W,W:3

Ox EI 1W2We

0M, oM,

— = — = W, WaW;?

Ox 9y, 1¥W3We

oM _ My _ W,W,W.3 + 2
0y, 0y, 27sTe

Furthermore:
M, = M4(W7)

so that equation (1.112) is an exact differential equation with solution:

de —fMa —lea
1 = 1x— W6X

X
= ax
VxE+ 2+ yE+ G

Solving for "H; ™:

H, = Jx2+ 3’12"‘ 3’22 + C + fi(yuy2)

= We + i1, Y2)

We can also define as a second alternative for "H;" the following integral equation:

w,
del = fMZ ayl = f(W + 2W3) ayl
6

y
= f( 21 - +2y2)6y1
VX2 + yf + yi + Co

= 0 — WaW2(W,wgt) + 2

(1.128)

(1.129)

(1.130)

(1.131)

(1.132)

(1.133)

(1.134)

(1.135)

(1.136)

(1.137)

(1.138)

(1.139)
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so that:

H, = Jx2+ yvi+ ¥z + Cs + 2y1y; + f2(x,y2)

= We + 2W, W5 + fo(x,y2)

A third alternative for "H;" can be derived from:

Ws
del = fM:; ayz = ‘I‘(M + ZWZ)ayz

y
= j( 22 > +2y1>6y2
VX2 + yi+ yi+ Ce

so that:

H, = \/x2+ yi+ vi + Co + 2y1y, + f3(x,y2)

= We + 2W, W5 + f3(x,y1)

From equation (1.140) and (1.144) we arrive at the conclusion that:
(6, y2) = f3(x,y1)

The only condition for this equation to be satisfied is of course when:

fo = f3 = Fx)

because "y; # y,".

Substituting equation (1.147) into equation (1.145), we obtain:

H1 = W6 + 2W2W3 + F(X)

Since "f;(y1,y2)" inequation (1.137) is not a function of "x" then it is safe to assume in

equation (1.147) that:
F(x) = 0

(1.140)

(1.141)

(1.142)

(1.143)

(1.144)

(1.145)

(1.146)

(1.147)

(1.148)

(1.149)

Substituting the expression for "W,", "W3", "Wg" and "F(x)" into equation (1.148), the

expression for "H;" can now be completely defined as:
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(1.151)
= Jx2+ yi+ vy + Co + 2y1y;

The expression for "H," can be determined by integrating equation (1.116) using equation (1.117):

aw.
H2 = fM4dW7 = J‘T:/VZ = tan_l(W7) + K (1152)
7

Since from equation (1.111) "H,; = H," we thus arrive at the following complete expression for
IIW7II:

\/x2_|_ i+ y; + Co + 2yy, = tan (W) + K (1.153)

or:

W, = tan (sz +yf +yi + e + 2yiy, + c7> (1.154)

The complete inverse of the Multivariate Polynomial Transform whose Secondary Differential
Expansion is defined by equation (1.076) through (1.082) is obtained by substituting each of the
expression for the auxiliary variables "W, (x)", "Wy (y1)", "W3(y2)", "W4(y3)", "Ws(x, ¥1, V2, ¥3)",
"We(x,y1,¥2)" and "W, (x,y1,y2)" into a Primary Expansion that could be described in the
following general form:

F(W) =0 (1<k<3)(1<j<7) (1.155)

2. Complete analytical theory of integration under one universal system of computational logic

The universal representation of all mathematical equations presented in the differential expansion
form described by equation (1.002? through (1.006) should really be referred to as a general initially
assumed Multivariate Polynomial Transform (IAMPT) when it comes to solving for DEs and
systems of DEs. The only difference between traditional methods of series expansion and the one
presented here, is that ours can succeed in arriving at complete exact analytical solution to any
type of DEs and systems of DEs. All other known traditional methods of series solutions are
incapacitated right from the beginning for arriving at exact analytical solutions since they were
originally meant only to be utilized as part of some functional approximation theory. This being the
direct consequence for all tradition methods of series solutions for not having originated from the
application of some form of a unified theory of integration.
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For those functional expressions that are present inside a DE or a system of DEs, they somehow
would have to be totally accounted for in our initially assumed Multivariate Polynomial Transform.
This is made possible only if we append at the end of our initially assumed expansion the
Multivariate Polynomial Transform of each functional expression by introducing additional new
supplemental auxiliary variables. Each of these additional auxiliary variables in turn are most likely
to reappear in the final analytical solution of the DE or system of DEs. This would thus providing
us with a real sense of measure in the manner by which such individual functional expressions can
succeed in influencing the complete behavior of a physical system.

For including these types of DEs and systems of DEs, our general initially assumed Multivariate
Polynomial Transform would have to be modified accordingly as follow:

(1). Primary Expansion:

p+q

F(w) = 0 = Z iy HM;E"’S (1<i <k) (2.01)
j

r

where "W;" are auxiliary variables, "g" is the total number of auxiliary variables required for
defining the Multivariate Polynomial Transform of each functional expression that is present in a
DE or a system of DEs. The total number of auxiliary variables now grows from "p" to "p + q"
when functional expressions are present in these types of DEs. Each of the "p" number of auxiliary
variables are always assumed raised to some floating point value and finally, "r" is the total number
of terms present in each of the "k™ number of implicitly defined multivariate polynomial equations.

(2). Secondary Differential Expansion:

dx; = AWy (I<isn) (2.03)

m
Z Ni(m+n+1)—m—n—1+tdzt +

n
Ni(m+n+1)—n—1+tdxt =

t=1 t=1
= Nignsn+1)dW; [1<i<p-m-n] [m+n+1<j<p] (2.04)
cr pt+q
Ee,s :
N(W) = Z bes 1_[ W, (2.05)
t=(c-1)r+1 j

[1<c <im+n+D] [1<i<p—-m—n]
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m n
ZTi(m+n+1)—m—n—1+tdZt + ZTi(m+n+1)—n—1+tdxt =

t=1 t=1
= Tigman+ndW; [1<i<q]l[p<j<p+dq] (2.06)
where "Tg(I/I/j)" are the special multivariate polynomials that would be reserved exclusively for

only representing those functional expressions that would be present inside a DE or system of
DEs.

Just as we can represent any mathematical equation in universal differential form, we can also
express and type of DE and system of DEs also in complete universal differential form.

The Primary Expansion representation for the following general system of DEs:

0 [0z (2.07)
sz 5(5) ) =0
can be defined as follow:
P
Ge(We 222) =0 [stsmeniq @09
ruv
where:
P _ 0 (azr> (2.09)
QT‘LLU aXu axv

As for the Secondary Differential Expansion representation, it becomes exactly identical to the one
present inside the initially assumed Multivariate Polynomial Transform that would have been
selected for solving the general system of DEs.

Example (2.1). The following system of second order ODEs is used to describe the motion of a
dumbbell of length "L" in space consisting of masses "m;" and "m," both rigidly attached at its
extremities and free to rotate under the influence of gravity:

i 20 oy’ (2.10)
(m, + mZ)W - mzLWsm(H) — mZL(E) cos() = 0
d?y d?o doy®
(m; + mZ)le - mzLWCOS(H) - m2L<E> sin() = —(m; + my)g (2.11)
d?6 d?x d?
@~ gEh® + pes®) = —geos() (2.12)
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For this system of equations, "x;" and "y;" represent the horizontal and vertical linear
displacements of mass "m;" respectively and "6" is the angle of rotation of the dumbbell with
respect to the X-axis. We will assume for the sake of simplicity that the mass of the rod is
negligible compared to mass "m," and "m,".

The complete Multivariate Polynomial Transform of the system of second order ODEs will now
be determine.

For the sake of simplicity, we will need to express the Sine and Cosine function as a rational
combination of the Tangent function by selecting:

h, = tan(8/2) (2.13)
so that:
_ B 2tan(6/2) B 2h, (2.14)
sing = 1+ tan2(6/2) 1 + h?
and
1 — tan?(8/2) 1 — h? (2.15)
cosf = =

1+ tan2(6/2) 1 + h?

We can arbitrarily select each auxiliary variable as:

Wy = x (2.16)

w, = y, (2.17)

W, = 6 (2.18)

W, = tan (€> (2.19)
2

The Multivariate Polynomial Transform of the single external input "h;" as defined by equation
(2.13) is:

(1). Primary Expansion:

(2.20)

(2). Secondary Differential Expansion:

Using our standard notation in equation (2.08) and (2.09), we can now define the complete
Multivariate Polynomial Transform of this entire system of second order ODEs starting with the
Primary Expansion as:
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(1). Primary Expansion:

G, = (my + my) ((%11) — my,L (gzzz) <1 -ZI_W;I/42> _

_mL(E)Zl—_""f _ 0
2 Q13 14+ W2

Py Py (1 — W2 P\2 [ 2W,
.= o mol(2) - ma(2) () - mall2) (25
2 = ot ma) (G ) — mlg N\t wz) — ™) \T+ wp

+ (my + myg = 0

P. P. 2W, P. 1 — WP 1 — W2
G3=L(£)—(21) 42 +<22) 42 +g 42 - 0
Q23 Q21/\1 + W Q22/\1 + W 1+ W

Where:
Py d'x
in B dtn
Pra _ @
an dtn
P, _ are
Qn3 B dtn

The complete Secondary Differential Expansion of this system of second order ODEs

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

is the

combination of the Secondary Differential Expansion of "h;" as defined by equation (2.21) and
the same one present inside the initially assumed Multivariate Polynomial Transform that would

have been selected for solving this particular system of second order ODEs.
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Example (2.2). For the following system of second order PDEs,

dz,

9]
ﬁ + sin(2x2) - (ﬁ
2

d
“2 dx, dx,

azzl aZZZ aZl 2 622 2 2 2 x
Z o) === - £ = 1
<8x§>(axf> * (axl) * <6x2) ot bze

we can define each external input as:

)+x1x2=0

hy = z

h, = z,

hs = x

hy = x;

hs = sin(2x,)
he = 6e*1

Wy =z
W, = z,
Wy = x
Wy = x;
Ws = tan(x,)
Wy = e*t

The Multivariate Polynomial Transform of the first external input "h;" is:

(1). Primary Expansion:

H = W,

(2). Secondary Differential Expansion:

le + O'de + O'dxl + O'dxz = dWl

(2.28)

(2.29)

(2.30)
(2.31)
(2.32)
(2.33)
(2.34)
(2.35)

(2.36)
(2.37)

(2.38)
(2.39)
(2.40)
(2.41)

(2.42)

(2.43)
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The Multivariate Polynomial Transform of the second external input "h," is:

(1). Primary Expansion:

H, = W, (2.44)
(2). Secondary Differential Expansion:
0-dz, +dz, + 0-dx, + 0-dx, = dW, (2.45)
The Multivariate Polynomial Transform of the third external input "h;" is:
(1). Primary Expansion:
(2). Secondary Differential Expansion:
0'd21 + O'dZZ + dx1 + O'de == dW3 (247)
The Multivariate Polynomial Transform of the fourth external input "h," is:
(1). Primary Expansion:
H, = W, (2.48)
(2). Secondary Differential Expansion:
0 'le + O 'de + O 'dX1 + de = dW4 (249)
The Multivariate Polynomial Transform of the fifth external input "hs" is:
(1). Primary Expansion:
2Ws (2.50)
H5 = —2
1+ We
(2). Secondary Differential Expansion:
0-dz; + 0:dz, + 0-dx; + (1 +WHdx, = dWs (2.51)

The Multivariate Polynomial Transform of the sixth external input "hg" is:
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(1). Primary Expansion:

He = 6W; (2.52)

(2). Secondary Differential Expansion:

0 'le + 0 'dZZ + Wﬁdxl + 0 'dxz = dW6 (253)

Using the notation defined in equation (2.08) and (2.09), the complete Multivariate Polynomial
Transform of the entire system of second order PDEs may now be completely defined as:

(1). Primary Expansion:

P P. 2.54
G, = H2<110)+H5<212)+H3H4= 0 (2:54)
Q110 Q212
P P Pi1o)> Pyo1\?
G, = ( 122)( 211) N ( 110) n ( 201) + H2 + H? — HyHg = 0 (2.55)
Q1227 \Q211 Q110 Q201

The complete Secondary Differential Expansion of this system of second order PDEs is the com-
bination of the Secondary Differential Expansion of "h;" through "h¢" and the same one present
inside an initially assumed Multivariate Polynomial Transform that would have been selected for
solving this particular system of second order PDEs.

By substituting an initially assumed Multivariate Polynomial Transform into any type of DE or
system of DEs would always result into defining a complete system of Nonlinear Simultaneous
Equations to solve for. Each exact numerical solution set obtained will always define a complete
exact analytical solution of the DE or system of DEs by inverting the corresponding initially
assumed Multivariate Polynomial Transform. This is provided of course that each of the first order
ODEs present inside the Secondary Differential Expansion have all been determined as being
exact differentials and therefore always completely integrable.

Some of the unknown coefficients present inside an initially assumed Multivariate Polynomial
Transform would be reserved exclusively for defining all the basis function that are to be present
inside the analytical solution of a DE or a system of DEs. Others would be mainly responsible for
assuring that the boundary conditions of the DE or system of DEs would be completely satisfied.

As a consequence of the fundamental laws of algebra, a completely differentiable mathematical
equation as well as its many equivalent differential form representation in terms of a Multivariate
Polynomial Transform can always appear in various disguise form. That is, any mathematical
equation as well as its equivalent differential form representation can always have many alternative
equivalent representations. However, to an observer each may appear quite distinct from one
another and yet are completely identical with each other purely from a computational point of view.

Such a unique mathematical property about equations in general would guarantee that there will
always be an infinite number of numerical solution sets of the Nonlinear Simultaneous Equations
corresponding to a DE or a system of DEs. As a result of this, we acquire the ability of being able
to select among an infinite number of numerical solution sets obtained only those that would
translate into defining much simpler Secondary Differential Expansion to integrate. This would
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have the effect of significantly facilitating the entire integration process involved in the Secondary
Differential Expansion when attempting to invert an initially assumed Multivariate Polynomial
Transform for acquiring an exact analytical solution to a DE or a system of DEs.

No analytical method of integration has ever been devised in the history of Calculus that could
offer us with this much flexibility for selecting out of an infinite number of integrals only those that
are considered more friendI?]/ to evaluate then others while in the process of attempting to solve for a
DE or a system of DEs. Other well known traditional methods of analytical integration have shown
weaknesses in that area mainly as a result of some major integrability Issues due to a very restricted
number of integrals that could be resolved in the end while leaving behind a vast majority of them
as completely unsolved.

When the Nonlinear Simultaneous Equations cannot be solved in terms of an exact numerical
solution set, this in turn would indicate that the exact analytical solution of the DE or system
of DEs in question cannot be resolved as some exact combination of algebraic and elementary
basis functions whether explicitly or implicitly defined. It is then always possible to establish some
form of a measure on the degree of accuracy that a particular numerical solution set can satisfy a
system of Nonlinear Simultaneous Equations by using various well known methods of
optimization techniques. This in turn would provide us with some real measure of accuracy on
how well the resultant analytical solution obtained can satisfy the DE or system of DEs. Of
course only when an exact numerical solution set of the Nonlinear Simultaneous Equations has
been found then this would automatically indicate that the DE or system of DEs in question can
be completely resolved in terms of an exact analytical solution. All of this is provided of course
that each first order ODE present in the Secondary Differential Expansion are determined to be
exact and thus always completely integrable.

The simplicity in appearance for the analytical solution of a particular DE or a system of DEs is
very crucial towards a complete understanding of a physical system so that only those appearing in
its simi)lest form would be of greatest interest to the physical science. If we were to apply this very
general principle directly into the world of ﬂhysms under the new proposed unified theory of
Integration, then Albert Einstein's assertion that "God does not play with dices" could certainly
be put to the real test with potential major historical implications !

3. A universal method of proof for the quadratic equation and the superposition theorem

As a direct consequence of having established a unified theory of integration, a universal method of
proof can be devised for proving a variety of classical theorems that were once proven under old
traditional methods of pure mathematical logic. Only those theorems that can be formulated
through some form of a DE or a system of DEs would be included.

The simple quadratic formula would fall into such category of theorems since it can always be
reformulated computationally using a method that is based entirely on the use of successive partial
differentiation. In this case, the unique computational method of proof for the quadratic equation
begins by first computing the various partial derivatives of an initially assumed Multivariate
Polynomial Transform that has been selected solely on the basis of representing only the class of
multivariate mathematical equations that are defined in explicit form only.

This would correspond to the case for "k = m = 1" in equation (1.002) through (1.006) such that
instead of assuming a Primary Expansion in the form of "f(zi, xj) = 0", we would instead assume
an explicit version in the form of "z = z(xj)" as being a ratio of two general multivariate

polynomials. Note that since an explicitly defined equation is just a special case of an implicitly
defined equation, we could have selected the original implicit form representation in the Primary
Expansion and still arrive at an explicitly defined analytical solution in the end.
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(1). Primary Expansion:

P(W)
z(W)) = Q(Wj_)

(1<j<p) (3.01)

where "P" and "Q" are each multivariate polynomials each consisting of a total number of "p"
auxiliary variables each of which are raised to some floating point value.

(2). Secondary Differential Expansion:

dz = dw, (3.02)

dx; = dW,, (1<i<n) (3.03)

1 n
Z Ni(n+2)—n—2+tdZ + Z Ni(n+2)—n—1+tdxt =
t=1 t=1

p
N(W,) = z b, HM;E“ (3.05)
J

t=(c-1r+1

[1<c <in+2)][1<i<p—-1-n]

The computed values for the various partial derivatives of "Z = Z(W;)" would then be equated

with the various partial derivatives that are calculated based entirely on a very unique change of
variables involving the coefficients and the root of the quadratic equation.

This unique change of variable would include the root of the quadratic equation “r = r(A,B,C)" that
would be regarded as the dependent variable while the coefficients A, B and C would be defined
as the independent variables. This would correspond to "m = 1" and "n = 3" in the above
differential expansion form representation. We would setup our complete system of Nonlinear
Simultaneous Equations to solve for by simply equating the various partial derivatives of
"r(A,B,C)" with respect to each of the coefficient A, B and C with the various partial derivatives
of our initially assumed Multivariate Polynomial Transform that was setup to only represent all
multivariate mathematical equations defined in explicit form only. We can also apply the same
logic for determining the root formulas corresponding to higher degree polynomials.

By restricting our initially assumed Multivariate Polynomial Transform to represent all mathe-
matical equations in explicit form, this will guarantee the presence of exact numerical solution sets
corresponding to the Nonlinear Simultaneous Equations to solve for. Each of these exact numerical
solution sets obtained would lead towards the formation of man?/ complete snapshots of the actual
general formula such that by some very special algebraic manipulations, will enable confirmation of
Its very unique existence. The type of algebraic manipulation involved that is to be conducted will
be referred to in the following section as being a special type of mathematical interpolation.
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Another and far more interesting example mainly for the physical sciences is arriving at the
famous superposition theorem by once again beginning with an initially assuming Multivariate
Polynomial Transform. This time we would be selecting our differential expansion strictly in terms
of representing all univariate mathematical equations defined in explicit form only.

This would correspond to the case for "k =m =n = 1" in equation (1.002) through (1.006) such
that instead of assuming a Primary Expansion in the form of "f(z;,x;) = 0", we would instead

assume the explicit version of "y = y(x)" as being a ratio of two general multivariate poly-
nomials:

(1). Primary Expansion:

PW)
QW)

y(W;) = (1<j<p) (3.06)

where "P" and "Q" are each multivariate polynomials each consisting of a total number of "p"
auxiliary variables each of which are raised to some floating point value.

(2). Secondary Differential Expansion:

dx = dw, (3.07)
dy = dWw, (3.08)
N3l-_2dx + N3l'_1dy = N3l'dM/j [1 <i< P — 2] [3 S] < p] (309)

cr

p
N(W,) = z b, HM;E“ (3.10)
J

t=(c-1)r+1

[1<c<3)][1<i<p-2]

We would define the Nonlinear Simultaneous Equations to solve for by substituting the above
generally assumed Multivariate Polynomial Transform into the following general class of second
order ODEs.

d? d
hl(x)d_x}zl + hz(x)d—z + hy(x)y = hy(x) (3.11)

Next, we would be performing a very complete and detailed analysis on all computational results
obtained by solving for the corresponding Nonlinear Simultaneous Equations.

The generalized form of this second order ODE would have been selected purely on the basis of its
reoccurrence in describing various types of linear mechanical and electrical models.
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As in the case of the quadratic equation, by restricting our initially assumed Multivariate
Polynomial Transform to represent all mathematical equations in explicit form only, the presence
of exact numerical solution sets corresponding to the Nonlinear Simultaneous Equations to solve
for will confirm the unique explicit nature of the superposition theorem. It is with some very
special type of algebraic manipulations to be discussed in the next section that we will succeed in
identifying a number of subclasses of ODEs by which the general explicitly defined analytical
solution obtained would be applicable to. By method of conjecture this would eventually lead us
directly towards a purely computational proof of the famous superposition theorem thereby
completely bypassing all forms of non-computationally based mathematical methods of analysis !

4. A new form of mathematical interpolation as a means of establishing a main pathway
by which a unified theory of physics may be obtained

Only from the relentless application of the new unified theory of integration on a very large scale
over a substantial class of DEs and systems of DEs can we expect to begin slowly unravelling
many potentially new and yet undiscovered theorems similar to the superposition theorem. It is
only from the long term cumulative effect of gathering a large collection of such universal theorems
that can only lead towards the development of some unified theory of physics. This would be the
result of having meticulously consolidate each of the most fundamental theorems ever discovered
into one gigantic universal theory of physics.

All existing experimentally based methods of physics could never succeed in achieving such a
monumental obf]ective for the physical sciences. That is because during the process of gathering the
physical data there would be a severe loss of continuity that only mathematical equations are
capable of maintaining throughout.

There are of course more advanced examples that can be selected other than the ones involving the
computational proof of the quadratic equation and the superposition theorem especially from
someone with a remarkable understanding of mathematics and the physical sciences. But no matter
what example in whatever subject matter anyone decides to choose from, the bottom line is that by
following a very unique brand of mathematical ideology such as the one being proposed in this
article, the new unified theor?/ of integration will always computationally arrive at the same
mathematical equations that all traditional methods have succeeded in arriving at in the past. By
doing so, this would undoubtedly provide just the ideal fertile testing ground for any real future
software development related to the unified theory of integration.

It is expected that we would be following an extremely long computational trajectory for achieving

in some cases the same exact results as with traditional methods of analysis. However, it should be

\t;ery obvious to everyone of the enormous potential benefits involved especially on a long term
asls.

"Our unique computational approach will always certainly succeed in solving those "other"
Eroblems by which classical methods of analysis have completely failed as a result of not
aving provided an adequate solution to certain key DEs or systems of DEs™ .

So in order to take full advantage of what the unified theory of integration can offer to everyone, it
must be implemented in a very methodological manner. That is, each DE and system of DEs that
is being solved for must absolutely undergo a very thorough examination in terms of determining
the best analytical solution that can be extracted from the relentless numerical application of the
initially assumed Multivariate Polynomial Transform described in equation (1.002) through
(1.006). All boundary conditions related to the DE or system of DEs must also become included
as part of this gigantic computational process.

We would therefore need to construct some form of a very unigue presentation by which a very
special type of mathematical database would have to be created for storing all empirical results
obtained. This would then be entireIE]/ converted in the form of pure mathematical equations.
Beyond this computational stage, much further scrutiny would then be necessary for potentially
recognizing certain key fundamental theorems that over time would eventually contribute towards
the complete development of some unified theory of physics.
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The exact nature of such a presentation that would be applicable for solving all types of DEs and
systems of DEs under the new unified theory of integration can be described through the following
general mathematical template.

(or ) = ¢
IV ) =

Initial Coefficient Exact analytical solution
Condition Values obtained using the Multivariate
Polynomial Transform method

X0, Yo ag, by, Co) - Ui(x,y) = 0

X0, Vo as, by, cg, - Uy,(x,y) = 0

X1, Y1 agy, by, C3, ... Us(x,y) = 0

X1, Y1 as, by, co, - Uy(x,y) = 0

X2,V a4, b3, Cy, ... Us(x,y) = 0
Table 4.1

This tailored designed template was produced to accommodate only first order ODEs. However
due to the universality nature of the fundamental logic behind introducing such a new type of
template in mathematics, it can easily be modified to accommodate other far more complex types of
DEs and systems of DEs.

In the following example, we have included a very simple live demonstration by which the
proposed unified theory of integration would succeed in resolving a randomly selected "general”
first order ODE uniquely in terms of a complete "general™ analytical solution.

OnIK by following this example very closely would it become very apparent that our unique
mathematical template has succeeded in developing a more generalized approach for arriving at
general analytical solutions to any type of DEs and systems of DEs. This would certainly go a
long way towards uncovering the many well hidden potential mathematical theorems that lay very
deep beneath many unresolved DEs and systems of DEs.

"It is only by being in complete possession of a very large collection of powerful mathematical

theorems that can succeed In carving a whole new pathway by which a unified theory of physics
can eventually be uncovered. **
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Example (4.1). Starting with the following general first order ODE,

d 4.01
x%+ ay + bx"y? = 0 (4.01)

we can begin by constructing the following table:

dy
_7 bx™ 2 0
X + ay + bx"y
Initial Coefficient Exact analytical solution
Condition Values obtained using the Multivariate
Polynomial Transform method
X0 =1 a=1.0 (-3x+ xHy+ 2=0
yO = 1 b - 1.0
n=-1.0
xo =1 a=12 (1.4x*? — x¥)y — 080 = 0
Vo =2 b=-10
n=20
xo =1 a=12 (1.7x2 4+ 152y +32 =0
Vo = -1 b=1.5
n=-2.0
xXo=1 a=2.0 x%y(05 — In(x)) — 1 =0
n=20
xo=1 a=15 (—2.75x* + 2x3)y — 1.5 = 0
Yo = —2 b =20
n=23.0
Xo=1 a=1.0 xy(1 + In(x)) — 1.0 = 0
yo =1 b=1.0
n=1.0
Xo =1 a=-10 x"1y(-1 + 15In(x)) — 1.0 = 0
n=-1.0
Table 4.2
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The evidence gathered purely by observation from this table suggests by conjecture that:
fitx,y)= 0 = (AxB + CxP)y + E (4.02)
and:
f2(x,y)= 0 = x4 (B + Cln(x)) + D (4.03)
both appear to be perfect candidates for the general exact solution of the ODE where the
coefficients "A", "B", "C", "D" and "E" are to be expressed in terms of the coefficients "a", "b",

"n" and the initial condition of the ODE.

For the first expression defined by "f;(x,y) = 0", we substitute this equation into the ODE and
equate like terms to zero.

The first derivative of equation (4.02) is defined as:

dy _ afl afl _ _y(ABxB_l + CDXD_l) (404)
dx  ox/ oy AxB + CxP

Substituting this equation into the ODE defined by equation (4.01), we obtain:

—xy(ABxB~1 + CDxP~1)

n,2  — (4.05)
2P + CxD + ay + bx"y 0
From equation (4.02):
_ _ E (4.06)
Y T AxB + CxP

Substituting this equation into equation (4.05) and simplifying the results we arrive at the following
general expression:

A(a — B)x® + C(a — D)xP — bEx™ = 0 (4.07)

Based purely on empirical observations only, we can conjecture fromentry 1, 2,3 and 5 of
table (4.2) and equation (4.02) that:

5= 4 (4.08)

and:
D=n (4.09)

Under this purely hypothetical assumption based entirely on the empirical data obtained, equation
(4.07) can now be rewritten as:

A(a — B)x* + C(a — D)x™ — bEx™ = 0 (4.10)
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Since the initial condition of the ODE is always known in advance, we can also include the
following additional equation by substituting "B = a", "D =n", "x = x," and "y = y," into
equation (4.02).

The results are:
(Ax§ + Cx{)yo + E = 0 (4.11)

The complete system of nonlinear simultaneous equations to solve for where the unknown
coefficients are now reduced to "A", "C" and "E", can now be obtained by equating like terms to
zero in equation (4.10) and by including equation (4.11) for satisfying the initial condition of the
ODE.

The results are:

A(a — B) =0 (4.12)
Cla — n)— bE =0 (4.13)
(Ax§ + CxB)yo + E =0 (4.14)
One complete solution set to this system of three nonlinear equations in four unknowns is:
A # 0 (4.15)
B = a (4.16)
_ a
c - Abx Yo 4.17)
a+ bxgyo— n
and from equation (4.13):
- C

where in equation (4.02), we can set the "A" coefficient as arbitrary defined provided that it is not
equal to zero. Note that the expression for "C" in equation (4.17) was derived by multiplying both
sides of equation (4.14) with "b", adding the result with equation (4.13) and finally solving for
"C".

If for example, we select "A = —2.75","a = 1.5","b = 2","n = 3","x, = 1" and "y, = —2"
then using equation (4.15) through (4.18) we find that:

B =a =15 (4.19)
_ a —(— 150 _ —
_ Abx&y, _ (=275@)1°(=2) _ 11 _ 2 (4.20)
a+ bxjy,— n 1.5 + 2(1)39(-2) — 3 —-5.5
D=n=23 (4.21)

and:
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_(a-mC (15— 3)(2) _

1. (4.22)
5 5 1.5 «

E

Substituting these coefficient values into equation (4.02), we arrive at the same expression as the
one defined in the fifth entry of table (4.2).

Equation (4.02) represents an exact solution that appears to only satisfy a limited range of values for
the coefficients present in the ODE. However, evidence suggests from table (4.2) that the exact
solution obtained in entries 4, 6 and 7 are not in the same format as in equation (4.02).

As a result of this observation, more digging is required before a more complete general exact
solution satisfying all the initial conditions and the coefficients present in the ODE is obtained.

For the second candidate "f,(x,y) = 0" as defined by equation (4.03), a relationship for the
coefficients "A", "B", "C" and "D" expressed in terms of the coefficients "a", "b", "n" and the
initial condition of the ODE can be determined by simply substituting equation (4.03) into the
ODE and equating like terms to zero.

The first derivative of equation (4.03) is defined as:

dy  0f, j0f, _ —y(ABx*™' + ACx*'In(x) + Cx"™")
dx  ox/ dy x4(B + ClIn(x)) (4.23)
Substituting this equation into the ODE we get:
—x4y(AB + ACIn(x) + C
bx™?2 = 0 (4.24)
l x4(B + Cln(x)) toay + bxy
From equation (4.03):
y = D (4.25)

x4(B + Cln(x))

Substituting this equation into equation (4.24) and simplifying the results we arrive at the following
general expression to solve for:

y[(=AB + aB — C)x*+ C(a — A)x%In(x) — bDx™] = 0 (4.26)

based purely on empirical observations, we can conjecture from the fourth, sixth and seventh entry
of table (4.2) that:

A=n (4.27)
Thus, on the basis of this purely hypothetical assumption, equation (4.26) becomes:
y[(=nB + aB — C — bD)x™ + C(a — n)x"In(x)] = 0 (4.28)
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Since the initial condition of the ODE is always known in advance, we can also include the
following additional equation by substituting "x = x, ", "y = y," and "A =n" into equation
(4.03).

The results are:

The complete system of nonlinear simultaneous equations to solve for where the unknown
coefficients are B, C and D can be obtained by equating like terms to zero in equation (4.28) and by
including equation (4.29) for satisfying the initial condition of the ODE.

The results are:
B(a — n)— C — bD 0 (4.30)
Cla — n) =0 (4.31)
x3yo(B + Cln(xg)) + D = 0 (4.32)

Equation (4.31) is a critical equation that specifies under which condition for the parameters in the
ODE are "fi(x,y) =0" and "f,(x,y) = 0" a valid exact solution. This condition is clearly
visible since from equation (4.31), we know that "C # 0" which ultimately leads us to conclude
that "n = a".

Thus as a result of equation (4.31),

£,(6y) = 0 = x4 (B + Cln(x)) + D (4.33)

satisfies the ordinary differential equation IF AND ONLY IF "n = a".

By extending table (4.2) to include additional exact solutions corresponding to a different set of
values for the initial conditions and the coefficients present in the ODE, we can easily deduce that:

fit,y) = 0 = (AxB + CxP)y + E (4.34)

satisfies the ODE when "n # a".

The complete solution set of this system of three equations in three unknowns is:

D = 0 (4.35)

C = -bD (4.36)

-D —D — Cx%y,l 4.37

B = — ~ Cln(x,) = nxoyo n(xo) ( )
X0 Yo X0 Yo

where from equation (4.33), we can set the "D" coefficient as arbitrary defined provided that it is
not equal to zero.
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If we select for example, "D =-1","a=2","b=-1","n=a=2","x, = 1" and "y, = 2" then using
equation (4.27), (4.36) and (4.37), we find that:

A=n=2c (4.38)
C=—bD = —1(-1)(=1) = -1 « (4.39)
and:
LoD - Odyeln(r) | —(-D— (~D@ADIn)  uw
b= o = D2 = 0.50

Substituting these coefficient values into equation (4.33), we arrive at the same expression as the
one defined in the fourth entry of table (4.2).

The results of having performed such an indebt computational analysis from the application of a
unified theory of integration on this particular general first order ODE has provided a very
substantial amount of detailed information. In fact, this would go much further beyond the
capability of any traditional non-universal method of computational analysis.

f\lltypical report that a numerical analyst might be presenting to management would appear as
ollow:

"... thus, our empirical findings has indicated to us that for this first order ODE there are two
recognizable general exact solutions. The first one is for the case when "n = a"™ and the other is
when "n # a". The general exact solutions obtained can be expressed as a combination of
algebraic and elementary basis functions defined only in explicit form. Furthermore, we have
established that there is according to the empirical results presented in table (4.2) an explicit
relationship involving the initial condition (x,,y,) of the ODE, the coefficients (a, b,n) of the
ODE and the coefficients in our two initially assumed general exact solutions.”

It is expected that many such reporting systems applied on a very large variety of DEs and systems
of DEs would inevitably lead to the discovery of many new fundamental theorems similar to the
superposition theorem.
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5. A universal system of implicit numerical interpolation

Finite and infinite expansion series were traditional used for many centuries as a means of
approximating certain types of functions. Many forms of aﬂproxmatl_on were developed in the past
but the Taylor's and Fourier's expansion series still remain the most widely used today.

We have described an entirely new universal differential expansion form capable of representing
far more complex mathematical functions than what is possible under the Taylor's and Fourier's
expansion series method. It now becomes a matter of much further and deeper investigation to
determine how well can such a type of new differential expansion form succeed in approximating a
general mathematical equation.

There are two major requirements for an initially assumed Multivariate Polynomial Transform to be
used as a practical method of approximation. The first, is of course that there must be some type of
DE or system of DEs associated in the process of completely defining the mathematical equation
that is being approximated. The second, is that the Secondary Differential Expansion must become
completely integrable upon having successfully arrived at some fairly good approximate numerical
solution set of the relevant system of Nonlinear Simultaneous Equations.

When both of these conditions are met then this could potentially open the door for achieving a far
more complex system of approximations than what other traditional methods can offer in mathe-
matics. In our case, we would go much beyond the use of the more conventional types of
approximation series by allowing only the computational aspect of our initially assumed
Multivariate Polynomial Transform decide what basis functions are contained in the approximation
solution and also whether it is explicit or implicit by nature. This would also include
computationally arriving at the correct combination of composite functions without imposing any
limits whatsoever on each of their degree of composition.

We demonstrate in the following example a case by which a simple exponential function was being
successfully approximated by a very complex implicitly defined mathematical equation consisting
of at least one high degree composite function. It must be emphasized that the exact nature of the
composite function and the very implicit nature of the entire approximation solution obtained were
entirely established purely my method of computational analysis only.

Example (5.1). If we substitute the following initially assumed Multivariate Polynomial Trans-
form:

(1). Primary Expansion:

y = a W, + a, (5.01)
(2). Secondary Differential Expansion:
b1W1 + bZ (502)
dX = —— dW,
bW, + b, '

into the first order ODE that define the following exponential function:

y = 1.5e705% (503)

then by solving for the relevant system of nonlinear simultaneous equations, we arrive at the
following initially assumed Multivariate Polynomial Transform to invert:
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(1). Primary Expansion:

, _ 016301958 W, + 0.26986711 (5.04)
T 1.82320996 W, + 0.07715033 '

(2). Secondary Differential Expansion:

oy _ _083816740W; + 131793167 (5.05)
T 0.64312753W, + 0.0271196 1 '

The complete inverse Secondary Differential Expansion can be obtained by first integrating both
sides of equation (5.05) for "W,(x)" using the following general integral formula for partial
fractions:

(5.06)

au+ b au bp —
[autd g o o, o
p

In(pu +
—— - ](p q)

The next step afterwards is to substitute the expression obtained for "W;(x)" into the Primary
Expansion defined by equation (5.04).

The solution of equation (5.05) using the above integral formula is written as:

_ [0.838W1 4 {1.318(0.643) — 0.838(0.0271)} In(0.643W, + 0.0271) +
* = 06431 0.6432 nis- 1T o
+ K (5.07)
= 1.303W; + 2.00In(0.643W; + 0.0271) + K (5.08)
where:
K = x,— 1.303W, — 2.00In(0.643W,, + 0.0271) (5.09)
It can be shown that if;
AW+ A4 (5.10)
YT aw, + 4,
then:
—A + A )
W, = 4y 2 (5.11)
Azy — Ay

so that from our Primary Expansion as defined by equation (5.04), we can directly express "W;"
as a function of "y" to obtain
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—0.0771503y + 0.26986711

w, = W. =

1 1) = 157320996y + 0.16301958
where:

A; = —0.16301958, A, = 0.26986711

A; = 1.82320996, A, = 0.07715033
It follows that:

—0.0771503y, + 0.26986711
Wor = Wi(yo)

1.82320996y, + 0.16301958

—0.077(1.5) + 0.270 _ 0.1545
1.823(1.5) + 0.163  2.8975

= 0.0533

The constant of integration defined by equation (5.09) may now be evaluated as:

K = 0 —1.303(0.0533) — 2.00In[(0.643)(0.0533) + 0.0271]

= 0 — 0.0694 — 2.00In(0.06137) = 5.512

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)
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By substituting equation (5.12) into equation (5.08) and simplifying the results, we arrive at an
implicitly defined equation in the form of:

—0.077y + 0.270
1.823y + 0.163

flx,y) = 0 = 1.303[

[ 0.178
1.823y + 0.163

+ 2.0ln — x + 5.512 (5.18)

X yexact Wl f(x' yexact)
-5.0 18.273741 -0.034049 -5.861676E-003
-4.5 14.231604 -0.031716 -5.583780E-003
-4.0 11.083584 -0.028729 -5.233661E-003
-3.5 8.631904 -0.024910 -4.795080E-003
-3.0 6.722534 -0.020031 -4.249876E-003
-2.5 5.235514 -0.013808 -3.579069E-003
-2.0 4.077423 -0.005885 -2.765262E-003
-1.5 3.175500 0.004179 -1.797217E-003
-1.0 2.473082 0.016924 -6.780194E-004
-0.5 1.926038 0.033003 5.611024E-004

0.0 1.500000 0.053192 1.838294E-003

0.5 1.168201 0.078390 2.985896E-003

1.0 0.909796 0.109606 3.697588E-003

1.5 0.708550 0.147920 3.452581E-003

2.0 0.551819 0.194418 1.412990E-003

2.5 0.429757 0.250076 -3.704934E-003

3.0 0.334695 0.315614 -1.377577E-002

3.5 0.260661 0.391310 -3.140153E-002

4.0 0.203003 0.476811 -5.999799E-002

4.5 0.158099 0.570992 -1.037754E-001

Table 5.1

Many of the numerical solution sets obtained not shown here satisfied the relevant system of
Nonlinear Simultaneous Equations to a fairly high degree of accuracy. In fact so much so that we
decided to conduct a more indebt numerical analysis by comparing the results with the implicitly
defined equation obtained from having inverting the corresponding initially assumed Multivariate
Polynomial Transform. This has created just the perfect environment by which an implicitly
defined analytical solution was able to approximate to a fairly reasonable level of accuracy the
simple ordinary exponential function defined by equation (5.03).
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6. Mathematica’s own approach to analytical integration

Mathematica is a very CFopular software package that maintains a collection of symbolic and
numerical methods for dealing with the entire aspect of differentiation and integration. Their
general approach to integration is nowhere near the one described in this article which is based
entirely on the application of multivariate polynomials as well as the differential of multivariate
polynomials for finding analytical solutions to all types of DEs that would also include systems of
DEs as well. Their online documentation does not present a single instance by which multivariate
polynomials and the differential of multivariate polynomials have ever being applied for solving
any particular type of DE or system of DEs.

Wolfram's general symbolic approach to solving DEs has the greatest drawback that it cannot be
applied universally right across all types of DEs and systems of DEs. Under the new proposed
unified theory of integration presented in this article, all DEs and systems of DEs are first
subjected to a very rigorous computational process designed specifically for acquiring the type of
data that would be transformed in terms of analytical solutions involving the algebraic and
elementary basis functions only. Depending on the nature of the data acquired, each analytical
solution obtained would be expressed in either explicit or in implicit form involving the use of
composite functions with no limit whatsoever on each of their degree of composition.

The exact computational process involved would be the result of substituting the initially assumed
Multivariate Polynomial Transform described by equation (1.002) through (1.006) into a DE or a
system of DEs and afterwards solving for the relevant system of Nonlinear Simultaneous
Equations that are generated from this process. Each numerical solution set of the Nonlinear
Simultaneous Equations become the data by which all analytical solutions are constructed from.

As part of the general procedure, this would always involve the exact integration of a series of first
order ODEs that are present in the Secondary Differential Expansion of an initially assumed
Multivariate Polynomial Transform as described by equation (1.003) through (1.006). They will
always appear as first order ODEs regardless of the type of DE or system of DEs that is being
solved for. Since only first order ODEs are always involved then each are subjected to passing the
fundamental test of exactness for determining whether or not any one of them is an exact
differential. If so, then the integration process becomes considerably simplified for all those
differentials that succeed in passing the critical test of exactness.

The final stage of the process would require that exact analytical solutions obtained from this
unique integration process be substituted into the Primary Expansion as defined by equation
(1.002). Itis at this point that the various boundary conditions of the original DE or system of DEs
are being matched with the ones that are naturally present throughout the complete integration
procesfs of the Secondary Differential Expansion of an initially assumed Multivariate Polynomial
Transform.

With Mathematica you cannot just simply enter any type of DE or system of DEs, especially of
the PDE type and expect that an analytical solution whether exact or approximate be returned to
you in either explicit or in implicit form. Also, you cannot expect an analytical solution to be
constructed entirely from composite functions with no limits on each of their degree of composition
just from the use of the algebraic and elementary basis functions. "That is only possible under a
true unified analytical theory of integration which is currently not present anywhere within all of
Mathematica”. So in no way does Wolfram appear to follow this tyi)e of ideology in mathematics
mainly because the computational complexities involved would also have been far too
overwhelming for execution on just a regular PC.

By writing a general computer program for implementing such a proposed unified theory of
mtec};}ratlor] in a complete automated setting would represent a far better alternative than using
Mathematica's general non-universal approach to analytical integration.
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7. The development of a new type of physics for maintaining uniform continuity
throughout

The new proposed mathematical ideolog%/ restricts all analysis on mathematical equations at the
differential level in order to insure that the concept of continuity be always maintained
throughout. This would suggest that the application of a true unified theory of integration for
solving any t?/pe of DEs or system of DEs could hypothetically lead us towards the creation of
some infinitely perfect universe over its entire composition. This is provided of course that we are
able to maintain complete continuity in mathematical equations throughout the entire process of
finding analytical solutions to DEs and systems of DEs. Such an infinitely perfect and continuous
universe would be quite feasible to construct but only on the general assumption that “the
mathematical Iproperties of a straight line equation will always remain the same regardless of your
exact physical location inside this perfect universe and regardless to what time frame you are
specifically referring to".

A true unified analytical theory of integration will guarantee that every type of DE or system of
DEs has some analytical solution behind it whether considered as being exact or approxi-
mate. Furthermore, If the theory is to retain all the basic features of universality then it must be
applicable to all cases involved without any exceptions whatsoever. The only way for this to be
entirely possible is that such a unified analytical theory of integration must absolutely be
"computationally-base" for arriving at complete analytical solutions to any type of DE and
systems of DEs. So at this point there can be no doubt that the new proposed mathematical
ideology being presented in this article does indeed appear to define some sort of a unified theory of
integration.

This very powerful assertion made about analytical integration in general has mutated itself into a
new kind of physics that | would like to introduce everyone as being an "idealistic physics".

The fundamental principle behind this new type of (physics is that we can use an infinitely perfect
universe for modelling our own im‘perfect physical universe as long as we are able to maintain
complete continuity in mathematical equations by solving all DEs and systems of DEs under a
single unified theory of integration. Other imPerfect physical universes similar to our own mafy be
modeled like clay from the same infinitely perfect controlled universe. Each would then differ from
one another only in terms of some mathematical variation representing a measure on how energy is
being distributed within the basic atomic structure of matter.

Without some way of maintaining complete continuity in mathematical equations it would
virtually become impossible to establish some very fundamental links that can exists between
mathematical equations. It's only through the complete consolidation of each of these fundamental
links between mathematical equations that in the end would play a vital role for arriving at some
unified theor?/ of pr(liysics. All of this of course becomes absolutely invisible under any form of
experimentally based theory.

In an idealistic physics, discrete variables would have no meaning whatsoever since everything
would exist inside an infinitely perfect dynamical structure involving infinitesimal measurements of
space and time. All forms of navigation inside this perfect universe would be moving along a
pathway of DEs with the new mathematical ideology acting as the main propulsion engine. The
only access entry point inside such an infinitely perfect universe is by computation and not based
entirely on the use of our imperfect sense of human physical observation that everyone was
expecting to succeed during the complete historical development of classical and modern physics.

" To always remain a part of this reality, we need to listen very attentively to what mathematics is
telling us and not what we always want to hear. *

The complete understanding of our own imperfect ph%/sical universe could never become reality
unless we take advantage of the basic tools offered by the new proposed mathematical and physical
ideology being introduced in this article. Under this new system of logic, all references made from
within this infinitely perfect universe would be driven strictly by computation which would
virtually eliminate any risk of encountering the type of contradictions that today are so prevalent
everywhere in classical and quantum physics.
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If we were to succeed in arriving at some unified theory of physics then no doubt we would have at
our fingertips a complete and very detailed understanding of our own physical universe that maybe
one day might bring us one step closer to its original creator.

and so ...
"what we are able to understand could give us the capacity to change it for the better.”

8. The complete unification of all of physics under one computer software development

A unified theory of physics has true meaning only in relation to some unified theory of analytical
integration. It is based on the general assumption that everything in this physical universe can be
described by the use of DEs and systems of DEs. They in turn would be completely solvable as
some exact or approximate algebraic combination of elementary and algebraic basis functions by
foI_Iolvving a very unique system of computational logic such as the one being introduced in this
article.

Such a grand theory of physics would be constantly referring to the existence of some type of a
gigantic universal algebraic system, the very same one in which Albert Einstein himself always
believed had to exist for completely describing reality. It would stand up at the very top of the
hierarchy of all other know existing theories of physics that would include the theory of general
relativity, quantum physics and including string theory as well.

All traditional theories in physics lack a great deal of universality, the type that can only lead to the
unification of all physics under a single unified theory of integration. By following the same
common mathematical ideology that would be entirely based on the fundamental continuity
property of all mathematical equations, there would be no risk of encountering any type of
contradictions whatsoever. That is because everything would be presented on a computational
platform driven entirely from the relentless application of the fundamental laws of differentiation
from which the proposed unified theory of integration is entirely based on.

Methods of computation are so important in our everyday lives. The current existing global
monetary structure which drives our entire world economy completely depends on it just as much
as our technolo?y could not exists without it. None of this would be possible without the use
of some form of a "system of computational logic" applied to mathematical equations that would
have originated from the application of some type of a mathematical ideology.

A highly automated computer software program can always be written for the complete
implementation of the process involved in solving for any type of DEs and systems of DEs that
would be entirely based on the application of the new proposed mathematical ideology. Such a new
type of software development would undoubtedly be regarded as being *‘the complete unified
theory of physics™ but onI?/ in its most raw state. Human intervention would then only be
necessary for complete translation of all computer results that would appear in the form of exact
numerical computations into practical decipherable mathematical equations. They in turn would be
used exclusively for describing the very fundamental structure of our entire physical universe.

Everyone would have complete access to this computer software over the internet for execution on
the most advanced super computers of our time. This software would then be regarded as the main
pillar by which all of theoretical physics may now be reconstructed without leaving the impression
that we are attempting to reinvent the wheel. This I believe is possible since we would be finding
ourselves moving along a pathway that would be describing an entirely new ideology in both
mathematics and physics, the type that has never been investigated by anyone in the past. Much
along the same line of reasoning as CERN was built around every part of experimental nuclear
physics. In our case, we would be implementing a very unique technology by which every part of
theoretical physics would now be investigated under a single common unified theory of integration.
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This may perhaps one day have a very profound effect in the manner by which the prestigious
Nobel Prize would be being presented for major contributions into physics. There would be two
such major prizes offered instead of one. The first, would be for exceptional contributions to all
aspects of experimental physics while the other, for outstanding new contributions into all aspects
of the new proposed idealistic physics under a complete unified theory of integration. Eventually
at some point in time, both types of physics will be expected to intersect at the same common point
of intersection by which a theory of everything may one day become reality for all of mankind.

9. Engineering science under one universal system of computational logic

The new proposed mathematical ideology can also be transformed into a very unique method of
engineering analysis by which all DEs and systems of DEs may now be more closely scrutinized
for arriving at a much greater variety of analytical solutions. This would not be feasible by
following any other existing traditional methods of analysis since the vast majority of analytical
solutions obtained are generally limited to very simple functional expressions that are mostly
expressed in explicit form.

Todag/, methods of solving for DEs and systems of DEs particularly of the PDE type are mostly
based on the use of various forms of finite element methods of computational analysis. Under the
new proposed mathematical ideology, all forms of engineering analysis would be initiated from the
direct application of the initially assumed Multivariate Polynomial Transform that was defined by
equation (1.002) through (1.006) above.

So rather than presenting a solution to a particular physical problem as a part of some traditional
numerical database, our very unique approach would consist of building an entirely new different
type of database that would have been constructed on the principle of substituting an initially
assumed Multivariate Polynomial Transform into any type of DEs and system of DEs. The same
computer pro?ram described earlier as representing the complete unified theory of physics in raw
computational form would also be applicable for solving those well know DEs of engineering
science that have proven very similar in aPpearance to those encountered in theoretical physics. In
both cases involved, the proposed initially assumed Multivariate Polynomial Transform would
?ecome the main center stage by which all forms of theoretical analysis would be conducted in the
uture.

Most particularly important to the engineering science are the need for approximation methods of
analysis that are based on the use of highly imperfect control volumes. For these tyﬁes of
engineering problems, we would then be adopting a more approximate analytical method of
analysis that would be sharing the same common principles as those introduced in section (5).

It is expected that the same computer program originally built for handling all problems in
theoretical physics would no doubt provide us with the greatest opportunity yet for revisiting all
those problems in engineering science that have remained in cold storage. They all have remained
there for quite some time now mainly due to a lack of a unified theory of analytical integration

10. Conclusions

You have now all witness a very unique circumstance b%/ which a new mathematical ideology has
mutated itself into some form of a new ideology for the physical sciences. The new proposed
mathematical ideology is entirely computational-based so that the entire process of arriving at some
analytical solution for resolving any type of DEs and systems of DEsS can be entirely automated
through the development of a unified computer program. The proposed initially assumed universal
differential expansion as described by equation (1.002) through (1.006) is a testament that all forms
of pure analytical integration may now be handled under one gi%antic unified computational-based
algebraic theory. The development of such a unified theory of integration would not have been
possible without the complete preservation of the fundamental continuity property of all
mathematical equations. It is only through the use of differential expansion forms defined in the
very special format as described by equation (1.002) through (1.006) that we are able to maintain
complete continuity of all mathematical equations throughout the entire process of solving for any
type of DEs and systems of DEs. Since virtually all of theoretical physics is founded on
mathematical equations, it would be safe to assume that a universal computer program that would
be build around such a proposed unified theory of integration would have to be regarded as

47



being some sort of a "unified theory of physics™ in its most raw numerical state. Human
intervention would then only be necessary for translating all computer results that would appear in
the form of exact numerical computations into practical decipherable mathematical equations. The
very unigue computational structure of our standard initially assumed differential expansion form
would offer an unlimited variety of mathematical equations for conducting all forms of exact
theoretical analysis not only in the field of theoretical physics but also in the engineering and bio-
logical sciences as well.

It would be conducted on a scale never imagined possible under any other known traditional
methods of analysis. Such a new exact method of analysis could one day offer the best hope yet for
arriving at some unified theory of physics without the risk of incurring any form of contradictions
that are so prevalent in modern physics today. Also, by introducing such a unified theory of
integration into the physical sciences, it is expected in the long term that both physicists and
engineers would become much less dependent on i)ure experimental method of analysis for
achieving much greater design reliability of commercial products.

Mathematics has no boundaries; its really our inability to understand it that creates such boundaries (12/14/97).
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