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Abstract

This paper presents a fast transient solver suitable for the simulation of incom-
pressible flows. The main characteristic of the solver is that it is based on the
projection method and requires only one pressure and momentum solve per time
step. Furthermore, advantage of using the projection method in the formulation is
the particularly efficient form of the pressure equation that has the Laplacian term
depending only on geometric quantities. This form is highly suitable for the high
performance computing that utilises the Algebraic Multi-grid Method (AMG) as
the coarse levels produced by the algebraic multi-grid can be stored if the grid is
not changing. Fractional step error near the boundaries is removed by utilising
the incremental version of the algorithm. The solver is implemented using version
5.04 of the open source library, Caelus [Applied CCM (2015)]. Accuracy of the
solver was investigated through several validation cases. The results indicate the
solver is accurate and has good computational efficiency.

Keywords: Projection Method; Fractional Step Algorithm; Algebraic Multi-grid
Solver; Transient solutions; Validation

Introduction

Fast transient solution of incompressible turbulent flows still occupy a dominant
place in engineering computations. Majority of the solvers that use finite volume
method on unstructured meshes with the arbitrary number of faces use either tran-
sient SIMPLE [Patankar and Splading (1972)] or PISO algorithm [Issa (1985)].
While these algorithms are known to produce spatially and temporally accurate
solutions, they are not particularly efficient due to algorithmic constraints. Typi-
cally they require a multiple solution of the pressure equation (PISO algorithm)
or multiple momentum and pressure solves per time step (SIMPLE algorithm).

∗Corresponding author: d.stephens@appliedccm.com.au
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Multiple solutions of the pressure pressure and/or momentum equation per time
step removes the fractional step error due to splitting of equations and recovers the
time accuracy. Unlike SIMPLE and PISO algorithms, the projection algorithm
introduced originally by [Chorin (1967)], does not require multiple pressure and
momentum solves per time step. In this paper we describe an efficient implemen-
tation of the projection algorithm that utilises the Algebraic Multi-grid Method
for the pressure equations suitable for high fidelity transient solutions.

Governing equations and boundary conditions

Incompressible Navier-Stokes equations are given by the following set of partial
differential equations:

∂tui + uj∂jui = −∂ip̂+ ν∂iiui. (1)

It should be noted that the density is absorbed in the pressure field since it
is considered to be constant in incompressible flow, i.e. p̂ = p/ρ. Discretization
in time of Eq. (1) yields time discretized Navier-Stokes equations with ignored
pressure term

δ∗,n
t ui = −unj ∂juni + ν∂iiu

n
i . (2)

Here symbol δ∗,n
t is a finite difference applied in time coordinate

δ∗,n
t ui = u∗ − un

4t
, (3)

where u∗ is the intermediate velocity field from which the pressure effects were
removed, and superscript n denotes the previous time level. This step is called a
momentum predictor step or simply predictor step in the language of fractional
step methods. Introduction of the intermediate velocity u∗ is the part of the
algorithm in which the Hodge decomposition was performed in order to compute
solenoidal free velocity field. The Hodge decomposition in this case becomes

u∗ = usol + uirrot = un+1 +∇φ, (4)

where usol = un+1 is the incompressible flow field we are solving for and uirrot = ∇φ
is the irrotational part of the flow field that is computed from the scalar potential.

The scalar potential φ is obtained using the second part of the fractional
step algorithm in which pressure gradient is brought to bare on the intermediate
velocity field:

δn+1,∗
t ui = ∂ip̂

n+1, (5)

where δn+1,∗
t denotes the following finite difference in time

δn+1,∗
t ui = un+1 − u∗

4t
. (6)

The Hodge decomposition now becomes

u∗ = un+1 +4t∂ip̂n+1. (7)
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Since the field un+1 is solenoidal, application of the divergence operator to
Eq. (7) produces the equation for the scalar potential

∂iip̂
n+1 = 1

4t
∂iu

∗
i . (8)

Eq. (8) is used to compute the pressure field that can be used used in the
corrector step to produce the solenoidal field field un+1:

un+1 = u∗ −4t∂ip̂n+1. (9)
Therefore, the scalar potential φ in the Hodge decomposition in Eq. (7) is

identified to be

φ = 4tp̂n+1. (10)
The fractional step error near the boundaries of the computational domian is

removed by reintroducing the pressure in the discretized momentum equation:

δ∗,n
t ui = −unj ∂juni + ν∂iiu

n
i − ∂ip̂n. (11)

This practice is commonly called incremental pressure method and is shown
to remove the fractional step errors near the boundaries [Strikwerda and Lee
(1999)].

Method of solution

With the fractional steps identified above, the solution algorithm takes the fol-
lowing form:

1. Compute intermediate velocity field u∗
i according to Eq. (2) (momentum

predictor step)

2. Compute pressure field p̂ from Eq. (8)

3. Compute divergence free velocity field un+1
i according to Eq. (9)

4. Repeat the process in the next time step

The most expensive part of the projection algorithm corresponds to the linear
solution of the pressure equation given by Eq. (8). The structure of the pressure
equation is strongly elliptic thus requiring the multi-level solver such as Algebraic
Multi-grid Method (AMG) for efficiency reasons. The expensive part of the al-
gorithm corresponds to the agglomeration procedure in which the coarse matrix
hierarchy is created using the heuristic rules for determining the link strengths
among fine equations. One advantage of the projection algorithm is that the
coefficients in the Laplacian in Eq. (8) are purely geometrical. Discretization co-
efficients entering the discrete matrix on fixed grids are constant thus allowing
the coarse hierarchy to be computed only once. Since the geometric coefficients
do not depend on any other variables in the discretization process, this does not
constitute any approximation beyond the usual approximations associated with
the discretization process.

Given the geometric nature of the Laplacian in Eq. (8), the algorithm can be
modified as follows:
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1. Compute coarse mesh hierarchy for Eq. (8) and store it for the duration of
the simulation

2. Compute intermediate velocity field u∗
i according to Eq. (2) (momentum

predictor step)

3. Compute pressure field p from Eq. (8) by using the stored hierarchy of coarse
matrices. The only change from time step to time step is in the right-hand-
side of Eq. (8).

4. Repeat the process in the next time step starting from the step 2

The above algorithm termed the Semi-Linear Implicit Method (SLIM) is im-
plemented as a solver using version 5.04 of the Caelus [Applied CCM (2015)]
library. The origin of the name can be traced to the fact that the coefficients of
the Laplacian are always stored and only the right-hand-side changes.

Furthermore, additional efficiency can be gained if the momentum predictor
equations are solved using explicit time stepping thus avoiding any need for creat-
ing and storing matrices for the momentum equations. With the stored hierarchy
for the Laplacian and explicit time stepping for the momentum equations, the al-
gorithm would completely avoid creation of matrices and computationally would
perform close to the fully explicit algorithms that are pervasive in compressible
flow computations.

Results and discussions

In the following section, several validation cases are presented for conditions rang-
ing from attached to separated flow. Whilst the SLIM algorithm is by nature a
time accurate solver, both steady state and transient cases have been considered
under laminar and turbulent flows to fully investigate the performance of the
algorithm and its implementation.

Laminar flat plate

In this case, steady, incompressible, laminar flow over a two-dimensional sharp-
leading edge flat-plate at zero angle of incidence was investigated. The flow gen-
erates a laminar boundary layer and the computational results are compared with
the Blasius solution for incompressible flow. Blasius, in his work [ Blasius (1908)]
obtained the solution to the Boundary Layer Equations using a transformation
technique. Here, equations of continuity and momentum in two-dimensional form
are converted into a single ordinary differential equation (ODE). The solution to
this ODE can be numerically obtained and is regarded as the exact solution to
the boundary layer equations. One of the highlights of Blasius solution is the
analytical expression for the skin friction coefficient (cf ) distribution along the
flat-plate given by

cf ≈
0.644√
Rex

, (12)

where Rex is the local Reynolds number defined as
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Rex = ux

ν
, (13)

u is the freestream velocity, x is the distance starting from the leading edge and
ν is the kinematic viscosity.

This case is based on the validation work carried out by the [NASA NPARC
Alliance (2008)] for flow over a flat plate using the same conditions in the in-
compressible limit. A schematic of the geometric configuration is shown in Fig. 1.
The length of the plate is L = 0.3048 m wherein, x = 0 is the leading edge, the
Reynolds number of the flow based on the length of the plate is 200,000 and u
is the velocity in the x-direction. Assuming the inlet flow is at a temperature
of 300 K, the kinematic viscosity (1.58963× 10−5 m2/s) can be determined from
dynamic viscosity and density of the fluid. The value of dynamic viscosity is ob-
tained from the Sutherland viscosity formulation [Sutherland (1893)]. Using the
Reynolds number, plate length and kinematic viscosity, the freestream velocity
evaluates to u = 10.4306 m/s. As we have assumed the flow incompressible, the
density (ρ) remains constant. In addition, since the fluid temperature is not con-
sidered, the viscosity remains constant. For incompressible flows, the kinematic
forms of pressure and viscosity are always used in Caelus 5.04.

Figure 1: Flat plate computational domain

The computational domain is a rectangular block encompassing the flat-plate.
Fig. 1 shows the details of the boundaries used in two-dimensions (x − y plane).
The region of interest extends between 0 ≤ x ≤ 0.3048 m and has a no-slip bound-
ary condition. Upstream of the leading edge, a slip boundary is used to simulate
freestream uniform flow approaching the flat-plate. However, downstream of the
plate, there is an additional no-slip wall a further three plate lengths. This ensures
that the boundary layer in the vicinity of the trailing edge is not influenced by the
outlet boundary. Since the flow is subsonic, disturbances cause the pressure to
propagate both upstream and downstream. Therefore, placement of the inlet and
outlet boundaries were chosen to have minimal effect on the solution. The inlet
boundary is placed at start of the slip-wall (x = −0.06 m) and the outlet at the
end of the second no-slip wall (x = 1.2192 m). Both inlet and outlet boundaries
are between 0 ≤ y ≤ 0.15 m. A slip-wall condition is used for the entire top
boundary. At the inlet a fixed uniform velocity u = 10.4306 m/s in x direction
and zero pressure gradient is applied and at the outlet a fixed uniform pressure
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p = 0 m2/s2 and zero gradient velocity are applied. The simulation is initialised
with a constant velocity u = 10.4306 m/s in the x direction and uniform zero
pressure field.

A 3D hexahedral mesh was generated using [Pointwise (2014)] by extruding
the 2D quadralteral mesh in the x − y plane. The two x − y planes obtained as
a result of grid extrusion need boundary conditions to be specified. As the flow
over a flat-plate is generally 2D, we do not need to solve the flow in the third
dimension. This is achieved in Caelus by specifying an empty boundary condition
for each plane. Although, no flow is computed in the z direction, a velocity of
w = 0 has to be specified for the velocity boundary condition as indicated above.

Figure 2: Computational mesh for the flat plate domain.

Fig. 2 shows the mesh in the x − y plane. As can be seen, the grid is re-
fined perpendicular to the wall in order to resolve the viscous effects. To ensure
that the gradients in boundary layer are well resolved, about 50 grid nodes are
placed between the wall and the boundary layer edge. Grid refinement is also
added at the leading edge so that the growth of the boundary layer is also well
resolved. In this particular case, 399 cells were used in the streamwise (x) direc-
tion (x ≤ 0 ≤ 0.3048 m) and 297 in the wall normal (y) direction. For the
no-slip wall beyond x > 0.3048, a similar distribution is used, resulting in a total
cell count of 217,998.

A time-dependent solution was obtained using the SLIM solver. The flow was
simulated sufficiently long (several plate length flow times) such that steady flow
was established. For the discretization of time-dependent terms, the first-order
Euler scheme was used. Pressure and velocity gradients were calculated using
the Gauss method. A 2nd order linear upwind discretization was used for the
divergence of velocity.

In Fig. 3, the skin-friction distribution along the flat-plate obtained from the
SLIM solver is compared with that of the Blasius analytical solution. Here, the
distance x is normalised with the length of the plate (L). Excellent agreement is
observed along the entire length of the flat-plate. At the exit plane of the flat-
plate at x = 0.3048 m, velocity data was extracted across the boundary layer
and compared with the Blasius analytical solution. This is shown in Fig. 4 where
the velocity profile is plotted using similarity variables from the Blasius solution.
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Here, η is the non-dimensional distance from the wall to the boundary layer edge
and Ue is the velocity at the boundary layer edge. Similar to skin-friction, the
velocity profile also exhibits excellent agreement with the Blasius solution.

Figure 3: Skin-friction comparison between SLIM and Blasius solutions.

Figure 4: Non-dimensional velocity profile comparison between SLIM
and Blasius solutions.

7



ICCM2015, 14–17th July, Auckland, NZ

Tee junction

In this validation case, laminar, incompressible flow through a two-dimensional
90◦ tee junction was investigated. Due to the presence of the side branch, the flow
separates and forms a recirculation region. The recirculating region influences the
mass flow through the main and side branches. The numerically computed mass
flow ratio was calculated and compared with experiment. A comprehensive study
of flow through planar branches has been carried out by [Hayes et al. (1989)] due
to its prevalence in the bio-mechanical industry.

Fig. 5 shows the schematic of the tee-junction. Here, L = 3.0 m and
W = 1.0 m respectively, the Reynolds number based on the width is 300, and v
is the velocity in the y-direction. For simplicity, we have assumed the velocity,
v = 1 m/s. Using these values the resulting kinematic viscosity was 0.00333 m2/s.
Since this is an internal flow problem, the computational domain is contained
within tee-junction geometry. All tee-junction walls have a no-slip boundary con-
dition. At the inlet, a fully developed laminar flow parabolic profile is applied
with a mean velocity v = 1.0 m/s, otherwise a much longer main branch would
be required for the flow to develop. The domain has two outlets, one at the end
of the main channel and the other at the end of side branch. Exit pressures at the
two outlets are equal (p = 0 m2/s2) and a zero gradient condition is applied to
the velocity. The simulation is initialised with uniform zero velocity and pressure
fields.

Figure 5: Computational domain representing tee-junction.

The computational mesh is shown in Fig. 6. The two x−y planes obtained as
a result of grid extrusion have empty boundary conditions applied to achieve 2D
flow. A total of 2,025 hexahedral cells comprise the tee-junction of which, 90 cells
are distributed along the height of the main channel, and 45 along the length of
the side branch. The distribution is such that a dimensional length of L = 1 m
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has a total of 45 cells, giving a distribution of 30 cells for the (2/3)L segment of
the main channel. The width, W , consists of 15 cells.

Figure 6: Structured grid for tee-junction domain.

A time-dependent solution was obtained using the SLIM solver. The flow was
simulated sufficiently long such that steady separated flow was established. To
ensure this, the shear-stress distribution was monitored on the lower wall of the
side branch. For the discretization of time-dependent terms, the first-order Euler
scheme was used. Pressure and velocity gradients were calculated using the Gauss
method. A 2nd order linear upwind discretization was used for the divergence of
velocity.

The mass flow rate was calculated at the inlet and at the main outlet (outlet-
1) and the ratio was subsequently calculated. Table 1 compares the SLIM result
with the experimental value. As can be noted, the agreement between the two is
excellent.
Table 1: Comparison of mass flow rate split for SLIM and experiment.

Experimental SLIM Percentage Difference
Flow Split 0.887 0.886 0.112 %

Triangular Cavity

This validation study concerns the laminar, incompressible flow inside a lid driven
triangular cavity. Here, the top wall of the cavity moves at a constant velocity
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initiating a recirculating motion within the cavity. Experiments on this configu-
ration have been reported in [Jyotsna and Vanka (1995)] for a Reynolds number
of 800. The main objective of this validation case was to compare the x velocity
distribution against experimental data.

A schematic of the triangular cavity is presented in Fig. 7 where the depth of
the cavity D = 4 m and the width W = 2 m. The Reynolds number based on
the cavity depth is 800 and the wall velocity is u = 2 m/s. Using the Reynolds
number, u, and D, kinematic viscosity was calculated to be 0.01 m2/s. The side
walls of the cavity have a no-slip boundary condition while the top wall, has a
uniform velocity in the x direction. The simulation is initialised with zero velocity
and pressure fields.

Figure 7: Computational domain of the triangular cavity.

The mesh in x−y plane is shown in Fig. 8. A hybrid mesh is employed for this
case with a total of 5,538 cells. Up to a depth of D = 1.35 m hexahedral elements
are used while below that value triangular prisms are used. The triangular prisms
are used in the bottom portion because they resulted in better cell quality. For
the hexahedral region, 39 cells are distributed across the width of the cavity and
39 along the depth. The cavity walls in the prism region have 100 cells along
each. The interface of the two regions is node matched and has 39 cells across the
width. The mesh close to the cavity lid was refined to better capture the shear
layer. The flow characteristics in the cavity can be assumed to be 2D and here it
has been solved with the same assumption.

A steady solution to the cavity was obtained using the SLIM solver. While a
time-dependent approach was used, the solution was simulated sufficiently long
so that steady flow was achieved. To determine when this occurred the velocity
distribution along the cavity centre-line was monitored with respect to time. For
the discretization of time-dependent terms, the first-order Euler scheme was used.
Pressure and velocity gradients were calculated using the Gauss method. A 2nd
order linear upwind discretization was used for the divergence of velocity. A linear
corrected scheme was used for Laplacian discretization to account for mesh non-
orthogonality.

In Fig. 9, the x velocity distribution along the cavity centre-line is compared
with that of the experimental data [Jyotsna and Vanka (1995)]. The y distance
is normalised with the cavity depth (D) which gives y/d = 0 at the cavity lid
and y/d = −1 at the bottom vertex. Similarly, the u velocity is normalised with
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Figure 8: Hybrid grid for the triangular cavity.

the velocity of the cavity lid (uL). As seen in Fig. 9 the comparison with the
experiment is excellent.

2D Circular Cylinder

In this validation study, laminar incompressible flow over a 2D circular cylinder is
investigated at a Reynolds number of 100. This classical configuration represents
flow over a bluff body dominated by a wake region. For flows having a low
Reynolds number (40 ≤ ReD ≤ 150), periodic vortex shedding occurs in the
wake. The phenomenon of vortex shedding behind bluff bodies is referred to as
the Karman Vortex Street [Roshko (1954)] and provides a transient case for CFD
code validation.

In his work, [Roshko (1954)] experimentally studied wake development be-
hind 2D circular cylinders from Reynolds number ranging from 40 to 10000. For
Reynolds numbers of 40 to 150, the so called the stable range [Roshko (1954)],
regular vortex streets are formed with no evidence of turbulence motion in the
wake. Therefore, at a Reynolds number of 100, the vortex shedding exhibits
smooth, coherent structures making it ideally suited for validating laminar CFD
calculations. The frequency associated with the oscillations of the vortex streets
can be characterised by the Strouhal Number (St). The Strouhal Number is a
non-dimensional number defined as
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Figure 9: Comparison of experimental and computational x velocity
distribution along the cavity’s centre-line.

St = fD

u
(14)

where, f is the frequency of oscillations of vortex shedding, D is the diameter of
the cylinder and u is the freestream velocity of the flow. Experimentally [Roshko
(1954)], it has been determined that for a Reynolds number based on the diameter
of the cylinder of 100, the Strouhal number St ≈ 0.16− 0.17. The main objective
of this study was to compare the St for the SLIM calculation to the experimental
data of [Roshko (1954)]. Provided the cylinder has a sufficient span length, the
flow characteristics can be assumed to be 2D as the experiments suggest.

Fig. 10 shows the schematic of the 2D circular cylinder. Here, the diameter
D = 2 m and is the characteristic length for the Reynolds number. For simplicity,
the freestream velocity was taken to be u = 1 m/s in the x-direction. Using
these values the kinematic viscosity was calculated to be 0.02 m2/s. The domain
extends by 5 diameters upstream and 20 diameters downstream. In the y direc-
tion, the domain extends 5 diameters on either side. From the figure, multiple
inlet boundaries to this domain can be seen, one at the upstream boundary and
the other two for the top and bottom boundaries. This type of configuration is
needed to appropriately model the inflow, similar to an undisturbed flow in an
experimental set-up. It is noted that for top and bottom boundaries, the flow
is in the x direction. The outlet is located at the downstream boundary. The
cylindrical wall is a no-slip boundary condition. The solution is initialised with a
uniform velocity u = 1.0 m/s and uniform zero pressure field.

The computational mesh was generated using Pointwise in the x−y plane and
subsequently extruded one cell in the z direction. The mesh consisted of 9,260
cells. An O-grid topology was constructed around the cylinder with 10 cells in the
radial direction and 84 cells in the circumferential direction. 31 cells were used
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Figure 10: Computational domain of a circular cylinder.

upstream of the O-grid, in the x direction while 100 cells were used downstream.
The region of interest is about 10 diameters downstream, where the grids are
refined. In the y direction, 21 cells were used above and below the O-grid region.

Figure 11: O-grid around the circular cylinder.

A time-dependent simulation was carried out using the SLIM solver. For the
discretization of time-dependent terms, the 2nd order backward scheme was used.
Pressure and velocity gradients were calculated using the Gauss method. A 2nd
order linear upwind discretization was used for the divergence of velocity. A linear
corrected scheme was used for Laplacian discretization to account for mesh non-
orthogonality.

To capture the transient start-up process, the simulation was started from
time t = 0 s and was simulated up to t = 360 s, while lift and drag forces over the
cylindrical surface were monitored at a frequency of 2 Hz. It was found that the
on-set of vortex shedding occurred after about t = 90 s which was then followed
by a steady shedding process. A Fast Fourier transformation (FFT) was carried
out on the lift force data and the peak frequency of vortex shedding occurred at
f = 0.0888 Hz. Based on this value, it takes about 7.8 cycles for the shedding
to start. Table 2 compares the computed value from SLIM with that of the
experiment. The agreement is good given that experimental uncertainty can be
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relatively high at low Reynolds numbers.

Table 2: Comparison of experimental and numerical frequency results
for the circular cylinder.

Frequency (Hz) Strouhal Number
Experimental 0.0835 0.167

SLIM 0.0888 0.177

Square cylinder

This case considers the turbulent, incompressible flow around a square cylinder,
as studied experimentally by [Lyn and Rodi (1994) and Lyn et al. (1995)]. The
side of the square cylinder (D) is 1 m and it extends along the width (4D) of
the channel. All distances are made non-dimensional with reference to D. The
mean velocity at the inlet, u, is assumed to be 0.214 m/s. All velocities are made
non-dimensional using the inlet velocity. The Reynolds number, based on u and
D is 21,400.

A rectangular computational domain in the x− y plane was constructed sur-
rounding the square cylinder as shown in Fig. 12. The domains extends in the
z direction a length of 4D. The domain extends by 5 diameters upstream and
14.5 diameters downstream. In the y direction, the domain extends 7 diameters
on either side. At the inlet a uniform velocity u = 0.214 m/s in x direction and
a zero pressure gradient are applied. At the outlet a uniform zero pressure and
zero velocity gradient conditions are applied. The top and bottom boundaries
have a slip condition applied to velocity and a zero gradient condition applied to
pressure. Cyclic boundaries conditions are used in the span wise direction and
a no-slip boundary on the cylinder. The simulation is initialised with a uniform
velocity u = 0.214 m/s in x direction and zero pressure field.

Figure 12: Computational domain of the square cylinder.

The non-uniform computational mesh shown in Fig. 13 was generated using
Pointwise and consisted of 216 x 150 x 21 (668,850) cells (being denser near the
cylinder). For the discretization of time-dependent terms, the 2nd order backward
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scheme was used. Pressure and velocity gradients were calculated using the Gauss
method. A 2nd order linear upwind discretization with multidmensional interpo-
lation linear scheme utilising Barth-Jespersen limiter [Berger at al. (2005)] was
used for the divergence of velocity.

Figure 13: Square cylinder mesh.

Large Eddy Simulation (LES) computes the large-scale motions of the flow
directly. The small-scale, dissipative motions of turbulence tend to more amenable
to modelling because of their more uniform character, whereas the large-scale
motions contain the majority of the energy and anisotropy. As a result, LES is
expected to be more accurate, particularly in complex flows where the assumptions
inherent to RANS models rarely exist. The drawback is that LES simulations are
always three-dimensional and unsteady. For this particular case, the Smagorinsky
SGS model [Smagorinsky (1963)] was chosen. The model is based on the SGS
kinetic energy k = 1

2

(
ũ2 − ũ2

)
where ũ is the filtered velocity. The following

assumptions for the SGS stress tensor (B) and the filtered deviatoric part of the
rate of strain tensor (D̃D) in incompressible flows are used

B =
[2
3kI− 2νD̃D

]
, (15)

D̃D =
[
D̃− 1

3
(
trD̃

)
I
]
, (16)

D̃ = 1
2
[
∇ũ +∇ũT

]
, (17)

15



ICCM2015, 14–17th July, Auckland, NZ

where I is the unit tensor. The Smagorinsky model is an algebraic model for the
SGS viscosity νSGS. Caelus 5.04 implements the SGS viscosity as

νSGS = ck
√

(kSGS)∆ (18)

where the kSGS is given by

kSGS = (ck∆2)
cε

∥∥∥D̃∥∥∥2
. (19)

and ∆ represents the top-hat filter with a characteristic filter width estimated
as the cubic root of the cell volume. The relationship between the classical Cs
constant and the constants ck and cε from the Smagorinsky model implementation
in Caelus 5.04 is

Cs =
(
c3
k

cε

)0.25

. (20)

In this work the value used for Cs was 0.1. In some circumstances the turbulent
viscosity near the wall is over predicted by the LES SGS model due to a lack of
constraint on the turbulent viscosity. To remedy this, damping is added to the
length scale (∆) using the [Van Driest (1956)] formulation. In Caelus 5.04 the
implementation takes the form

∆ = min
[
∆cr,

κy

C∆

(
1− e− y

y∗A+

)]
, (21)

where ∆cr is the filter width calculated from the cubic root of the cell volume,
y is the distance from the wall, C∆ , A+, κ are constants and y∗ is given by the
formula y∗ = ν/uτ . Here uτ is the wall friction velocity.

The simulation was started from time t = 0 s and was simulated up to
t = 1000 s using a fixed Courant number of 1, while lift and drag forces over the
cylindrical surface were monitored. It was found that the on-set of vortex shed-
ding occurred after about t = 100 s which was then followed by a steady shedding
process. The velocity field was spanwise and time averaged for the period be-
tween 200 ≤ t ≤ 1000 s. A Fast Fourier transformation (FFT) was carried
out on the lift force data and the peak frequency of vortex shedding occurred at
f = 0.028 Hz. Based on this value, it takes about 2.7 cycles for the shedding
to start. The most important time-averaged parameters are presented in Table
3, where they are compared to experimental and numerical data, available from
several authors from the ERCOFTAC database. The labels used are the same as
in [Voke (1997)]. The parameters compared are the recirculation length, Strouhal
number, the drag and lift coefficients and the R.M.S variation of the drag and lift
coefficients.

The values predicted by SLIM agree reasonably well with the corresponding
experimental and numerical data. The drag and lift coefficients are slightly greater
than experimental data but agree as well as other numerical data. Fig. 14 shows
the normalised time-averaged horizontal velocity along the centreline 10 diam-
eters downstream of the cylinder. The experiment shows the velocity reaching
approximately 0.6 of the freestream value and then leveling off thereafter. It can
be observed from this figure that there is a fair amount of disparity among the
numerical results. Some of the LES simulations, in particular UK1, UK3 and
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Table 3: Comparison among time-averaged squared cylinder data. The
labels are the same as used in [Voke (1997)].

Set lr St CD CL CD CL

IS3 1.24 0.133 2.79 -0.125 0.36 1.68

NT7 1.39 0.131 2.05 -0.050 0.12 1.39

ST3 1.24 0.150 2.66 -0.005 0.27 1.33

TIT 1.23 0.131 2.62 0.0093 0.23 1.39

UK1 1.32 0.130 2.20 -0.020 0.14 1.01

UK3 1.44 0.130 2.23 -0.050 0.13 1.02

UOI 1.20 0.130 2.03 0.0400 0.18 1.29

[Lyn et al. (1995)] 1.38 0.132 2.1

SLIM 1.41 0.131 2.44 0.076 0.33 1.29

NT7, show the velocity approaching the free stream value; others such as ST5
and UOI show a distinct decline beyond x/D = 5. The results from this work
agree reasonably well with the experimental data.

Figure 14: Streamwise distribution of the normalised time-averaged
horizontal velocity along the centreline y = 0 for the experimental and
numerical data sets.

The prediction of fluctuating horizontal and vertical velocities along the centre
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line are shown in Figs. 15 and 16 respectively. These figures also display disparity
amongst the numerical simulations and reveal that no simulation matches closely.
The result from this work shows a slightly higher peak in the horizontal velocity
fluctuation just behind the cylinder but does a much better job than most of the
other simulations at matching the experimental data beyond this point. The fluc-
tuations in the vertical velocity show reasonable agreement with the experimental
data over the entire measurement region.

Figure 15: Streamwise distribution of the normalised horizontal ve-
locity fluctuation along the centreline y=0 for the experimental and
numerical data sets.
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Figure 16: Streamwise distribution of the normalised vertical velocity
fluctuation along the centreline y = 0 for the experimental and numer-
ical data sets.

Conclusions

In this paper, the Semi-Linear Implicit Method (SLIM) algorithm was described.
The algorithm has many benefits including the exact satisfaction of the continuity
equation for each time step. In addition, the algorithm is computationally efficient
due the the geometric nature of the pressure Laplacian and the hyperbolic nature
of the momentum equations. The algorithm was implemented as a solver using
version 5.04 of the Caelus library and its accuracy tested through several validation
cases comprising steady and transient laminar problems along with a transient
turbulent case.
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