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Abstract

In this paper, we proposed a new highly efficient two-point sixth-order family of
Halley type methods that do not require any second-order derivative evaluation
for obtaining simple roots of nonlinear equations, numerically. In terms of compu-
tational cost, each member of the family requires two function and two first-order
derivative evaluations per iteration. On the account of the results obtained, it is
found that our proposed methods are efficient and show better performance than
existing sixth-order methods available in the literature. Further, it is also noted
that larger basins of attraction belong to our methods although the others meth-
ods are slow and has darker basins while some of the method are too sensitive
upon the choice of the initial value.

Keywords: Nonlinear equations, Simple roots, Halley’s method, Basins of at-
tractions, Order of convergence

Introduction

Efficient solution techniques are required for finding simple roots of nonlinear
equation of the form

f(x) = 0, (1)

where f : D ⊆ R → R is a nonlinear sufficiently differentiable function in an
interval D, which partake of scientific, engineering and various other models. One
of the best known one-point optimal second-order method based on two functional
evaluations is the classical Newton’s method [Traub (1964); Petković et al.
(2012)]. Many methods have been developed which improve the convergence rate
of the Newton’s method or Newton like at the expense of additional evaluations
of functions or derivatives.

Halley’s method [Traub (1964); Petković et al. (2012)] is the third-order
modification of Newton’s method, which is defined as follows:

xn+1 = xn − 2f(xn)f ′(xn)
f(xn)f ′′(xn) − 2{f ′(xn)}2 . (2)
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Despite the cubic convergence, this method is considered less practical from a
computational point of view because of the costly second-order derivative evalu-
ation. Therefore, researchers introduced multi-point methods and the primarily
aim of these methods is to achieve as high as possible order of convergence using
a fixed number of function evaluations. However, multi-point methods do not use
higher order derivatives and has great practical importance since they overcome
the theoretical limitations of one-point methods regarding their convergence order
and computational efficiency.

Therefore, a number of sixth-order methods are also appearing as the exten-
sions of Newton’s method or Newton like method to solve nonlinear equation
(1). In [Neta (1979)] given a three-point sixth-order general iteration scheme for
obtaining simple roots of nonlinear equations, which is defined as follows:

yn = xn − f(xn)
f ′(xn)

,

zn = xn − 1 + βu

1 + (β − 2)u
f(yn)
f ′(xn)

= yn − Gf (u) f(xn)
f ′(xn)

,

xn+1 = zn − 1 − u

1 − 3u

f(zn)
f ′(xn)

,

(3)

where u = f(yn)
f(xn) , Gf (u) = u(1+βu)

1+(β−u) , β ∈ R.

In [Sharma and Ghua (2011)], proposed three-point family of sixth-order methods
based on fourth-order Ostrowski’s method [Kanwar et al. (2011)], which is given
by 

yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(xn)
f(xn) − 2f(yn)

f(yn)
f ′(xn)

,

xn+1 = zn − f(xn) + af(yn)
f(xn) + (a − 2)f(yn)

f(zn)
f ′(xn)

, a ∈ R.

(4)

On the other hand, [Wang and Liu (2009)] have constructed two three-point
sixth-order families of Jarratt’s method [Petković et al. (2012); Behl et al.
(2013)] requiring two of functions and two of first-order derivative evaluations per
iteration, one of them is defined as follows:

yn = xn − 2
3

f(xn)
f ′(xn)

,

zn = xn − 9 − 5w

10 − 6w

f(xn)
f ′(yn)

, w = f ′(yn)
f ′(xn)

xn+1 = zn − a + bw

c + dw + rw2
f(zn)
f ′(xn)

,

(5)

where a = 5c+3d+r
2 , b = r−3c−d

2 , c + d + r ̸= 0, a, b, c, d, r ∈ R.
But, the body structures of above mentioned three-point sixth-order meth-

ods are more complicated as compared with two-point methods [Kanwar et al.
(2011); Behl et al. (2013)]. Further, it is very rare to find two-point methods
whose order of convergence higher than four [Guem et al. (2015)]. Nowadays,
obtaining new two-point methods of order six not requiring the computation of a
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second-order derivative, is very important and interesting task from the practical
point of view,

Therefore, the principle aim of this manuscript is to provide a new highly effi-
cient two-point sixth-order class of Halley type methods, that do not require any
second-order derivative evaluation for obtaining simple roots of nonlinear equa-
tions, numerically. It is also observed that the body structures of our proposed
families of methods are simpler than the existing three-point families of sixth-
order methods. Further, our proposed methods are more effective in all the tested
examples to the existing three-point sixth-order methods available in the litera-
ture. Further, we also compare them with two-point sixth-order methods that is
very recently proposed by [Guem et al. (2015)] and it is found that our methods
our better than these methods. Furthermore, the dynamic study of our methods
also supports the theoretical aspects.

Development of two-point sixth-order methods

In this section, we intend to develop many new families of sixth-order Halley
type methods, not requiring the computation of second-order derivative. For this
purpose, we consider wn = xn − f(xn)

f ′(xn) , a Newton’s iterate. With the help of Taylor
series, we expand the function f(wn) about a point x = xn as follows:

f(wn) ≈ f(xn) + f ′(xn)(wn − xn) + 1
2

f ′′(xn)(wn − xn)2, which further implies

f ′′(xn) ≈ 2{f ′(xn)}2f(wn)
{f(xn)}2 . (6)

Similarly, expanding the function f ′(wn) = f ′
(
xn − f(xn)

f ′(xn)

)
about a point x = xn

by Taylor series expansion, we have f ′(wn) ≈ f ′(xn) + f ′′(xn)(wn − xn), which
further yields

f ′′(xn) ≈
f ′(xn)

(
f ′(xn) − f ′(wn)

)
f(xn)

. (7)

Now, taking the arithmetic mean of two equations (6) and (7), we get another
approximation of f ′′(xn) as follows:

f ′′(xn) ≈
2{f ′(xn)}2f(wn)

{f(xn)}2 +
f ′(xn)

(
f ′(xn)−f ′(wn)

)
f(xn)

2
. (8)

Inserting this approximate value of f ′′(xn) in scheme (2), and using the weight
function on the second step, we get

wn =xn − f(xn)
f ′(xn)

,

xn+1 =xn − 4{f(xn)}2

3f(xn)f ′(xn) + f(xn)f ′(wn) − 2f ′(xn)f(wn)
Mf (h, k),

(9)

where the weighting function Mf is a sufficient differential function with h =
f ′(xn)

(
f(xn)+f(wn)

)
f(xn)f ′(wn) and k = f(wn)

f(xn) . Theorem 1 indicates that under what choices on
the weight function (9), the order of convergence will reach at six without using
any more functional evaluations.
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Convergence analysis
Theorem 1 Let a sufficiently smooth function f : D ⊆ R → R has a simple zero
ξ in the open interval D. Assume that initial guess x = x0 is sufficiently close to
ξ. Then, the iterative scheme defined by (9) has sixth-order convergence when

M00 = 1, M01 = 3
4

, M10 = −1
4

, M20 = 1
2

, M11 = 1
2

, M02 = −5
2

, M03 = 9(6M30 + 3M21 + 5),

M12 = −3(3M30 + 2M21 + 3), M04 = −3{4M13 + 9(2M22 + 4M31 + 3M40 − 8)},
(10)

where Mij = ∂i+j

∂hi∂kj Mf (h, k)|(h=1, k=0). It satisfies the following error equation

en+1 = − c2

12

[
12(M13 + 18M21 + 9M22 + 54M30 + 27M31 + 27M40 − 10)c4

2 − {2M13 + 3(24M21

+ 6M22 + 72M30 + 18M31 + 18M40 − 5)}c2
2c3 + 6(4 + M21 + 3M30)c2

3 − 12c2c4

]
e6

n + O(e7
n).

(11)

Proof Let ξ be a simple zero of f(x). With the help of Taylor’s series, we get
the following expansion of f(xn) and f ′(xn) around x = ξ

f(xn) = f ′(ξ)
(
en + c2e

2
n + c3e

3
n + c4e

4
n + e5

nc5 + e6
nc6 + O(e7

n)
)
, (12)

and

f ′(xn) = f ′(ξ)
(
1 + 2enc2 + 3e2

nc3 + 4e3
nc4 + 5e4

nc5 + 6e5
nc6 + 7e6

nc7 + O(e7
n)

)
, (13)

respectively. By using equations (12)–(13), we get

f(wn) =f ′(ξ)
(

c2e2
n − 2(c2

2 − c3)e3
n + (5c3

2 − 7c2c3 + 3c4)e4
n − 2(6c4

2 − 12c2
2c3 + 3c2

3 + 5c2c4

− 2c5)e5
n +

(
28c5

2 − 73c3
2c3 + 34c2

2c4 − 17c3c4 + c2(37c2
3 − 13c5) + 5c6

)
e6

n + O(e7
n)

)
.

(14)
and

f ′(wn) =f ′(ξ)
(

1 + 2c2
2e2

n − 4(c3
2 − c2c3)e3

n + c2(8c3
2 − 11c2c3 + 6c4)e4

n − 4c2(4c4
2 − 7c2

2c3

+ 5c2c4 − 2c5)e5
n + 2(16c6

2 − 34c4
2c3 + 6c3

3 + 30c3
2c4 − 13c2

2c5 − 8c2c3c4 + 5c2c6)e6
n

+ O(e7
n)

)
.

(15)
By using equations (12)–(15), we obtain

h =
f ′(xn)

(
f(xn) + f(wn)

)
f(xn)f ′(wn)

= 1 + 3c2en + (5c3 − 3c2
2)e2

n − 7(c2c3 − c4)e3
n + (6c4

2 − 3c2
2c3

− 2c2
3 − 10c2c4 + 9c5)e4

n + {31c3
2c3 − 12c5

2 − c2
2c4 − 5c3c4

− c2(11c2
3 + 13c5) + 11c6}e5

n + O(e6
n).

(16)
and

k = f(wn)
f(xn)

= c2en + (−3c2
2 + 2c3)e2

n + (8c3
2 − 10c2c3 + 3c4)e3

n + (−20c4
2 + 37c2

2c3 − 8c2
3 − 14c2c4

+ 4c5)e4
n +

(
48c5

2 − 118c3
2c3 + 51c2

2c4 − 22c3c4 + c2(55c2
3 − 18c5) + 5c6

)
e5

n + O(e6
n).
(17)
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Since it is clear from equations (16) – (17), h = 1 + u and k = O(en). Then,
from these equations, we get the remainder u = h − 1 and k are infinitesimal with
the same order of en. Therefore, we can expand weight function M(h, k) in the
neighborhood of (1, 0) by Taylor series expansion up to fourth-order terms as
follows:

Mf (h, k) = M00 + M10u + M01k + M20u2 + 2M11uk + M02k2

2!
+ 1

3!
(
M30u3 + 3M21u2k

+ 3M12uk2 + M03k3)
+ M40u4 + 4M31u3k + 6M22u2k2 + 4M13uk3 + M04k4

4!
+ O(e5

n).
(18)

Using equations (12) – (18), in scheme (9), we obtain

en+1 = (1 − M00)en − c2(M01 + 3M10)e2
n +

6∑
l=3

Hle
l
n, (19)

where Hl = Hl(c2, c3, . . . , c6)Mij, for 0 ≤ i, j ≤ 4.
From the equation (19), it is clear that by substituting the following values

M00 = 1, M01 = −3M10, (20)

we get at least third-order convergence. Further, using (20) into H3 = 0, we find
two independent relation as follows:

(1 + 4M10) = 0, (M02 + 12M10 + 6M11 + 9M20 − 2) = 0 (21)

After some simplification, we get

M10 = −1
4

, M02 = (5 − 6M11 − 9M20). (22)

By substituting equations (20) and (22) into H4 = 0, we have

(M11 + 3M20 − 2) = 0,
(
M03 + 9(4M11 + M12 + 12M20 + 3M21 + 3M30 − 4)

)
= 0. (23)

Solving the above equation (23) for M11 and M03, which further yields

M20 = −1
3

(M11 − 2), M03 = −9(4 + M12 + 3M21 + 3M30). (24)

By substituting equations (20), (22) and (24) into H5 = 0, we obtain
(2M11 − 1) = 0,

(4M11 − M12 − 6M21 − 9M30 − 11) = 0,[
M04 + 3(168 − 48M11 + 24M12 + 4M13 + 144M21 + 18M22 + 216M30 + 36M31 + 27M40)

]
= 0.

(25)
Solving the above equation for M20, M12 and M04, we get

M11 = 1
2

,

M12 = −3(3 + 2M21 + 3M30),
M04 = −3{4M13 + 9(2M22 + 4M31 + 3M40 − 8)}.

(26)
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We obtain the following error equation, by using equations (20), (22), (24) and
(26) into (19)

en+1 = − c2

12

[
12(M13 + 18M21 + 9M22 + 54M30 + 27M31 + 27M40 − 10)c4

2 − {2M13 + 3(24M21

+ 6M22 + 72M30 + 18M31 + 18M40 − 5)}c2
2c3 + 6(4 + M21 + 3M30)c2

3 − 12c2c4

]
e6

n + O(e7
n).

(27)
This reveals that the modified family of Halley type methods (9) reaches the order
of convergence six by using only four functional evaluations(viz f(xn) f ′(xn) f(wn)
and f ′(wn)) per full iteration. This completes the proof. �

Special cases

In this section, we discuss some interesting special case of weight function defined
in (9) by inserting the values of free disposable parameters and different forms of
weight functions Mf (h, k).
(1) For M40 = 0, M31 = 0, M13 = 0, M22 = 4 and M30 = 0, in (18), we get the
following weight-function

Mf (h, k) =1 − u

4
+ u2

4
+ 3 + 2u + 2M21u2

4
k −

(5
4

+ 3
2

(3 + 2M21)u − u2
)

k2 + 3
2

(5 + 3M21)k3,

(28)
where M21 is a free variable and for the sake of simplicity u = h−1. This is a new
two-point sixth-order family of methods. For different specific values of M21, we
get various cases as well as two-point methods but some of the important cases
describes in the following table 1.

Table 1: Sub cases of weight function (28) and their error equations
Particular values Sub cases and their error equation

of M21

M21 = 0 Mf (h, k) = 1 − u
4 + u2

4 + 3+2u
4 k +

(
u2 − 5

4 − 9u
2

)
k2 + 15k3

2 ,(
−26c5

2 + 19
4 c3

2c3 − 2c2c
2
3 + c2

2c4
)

e6
n + O(e7

n).
M21 = −13

9 Mf (h, k) = 1 − u
4 + u2

4 + 27+18u−26u2

36 k +
(
u2 − 5

4 − u
6

)
k2 + k3,(

−47
12c3

2c3 − 23
18c2c

2
3 + c2

2c4
)

e6
n + O(e7

n).
M21 = −5

3 Mf (h, k) = 1 − u
4 + u2

4 + 9+6u−10u2

12 k +
(
u2 − 5

4 + u
2

)
k2,(

4c5
2 − 21

4 c3
2c3 − 7

6c2c
2
3 + c2

2c4
)

e6
n + O(e7

n).

(2) For M40 = 0, M31 = 0, M13 = 0, M22 = 4 and M30 = −3M21+5
6 in (18), we

obtain

Mf (h, k) = 1−u

4
+u2

4
−3M21 + 5

36
u3+3 + 2u + 2M21u

2

4
k+4u2 − 5 − 3(1 + M21)u

4
k2,

(29)
where M21 is a free variable. Therefore, some of the special cases given in the
following table 2.
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Table 2: Sub cases of weight function (29) and their error equations

Particular values Sub cases and their error equation
of M21

M21 = 0 Mf (h, k) = 1 − u
4 + u2

4 − 5u3

36 + 3+2u
4 k +

(
−5

4 − 3u
4 + u2

)
k2,

1
4c2

(
76c4

2 − 41c2
2c3 − 3c2

3 + 4c2c4
)

e6
n + O(e7

n).
M21 = −19

9 Mf (h, k) = 1 − u
4 + u2

4 + u3

27 + 27+18u−38u2

36 k +
(
−5

4 + 5u
6 + u2

)
k2,(

−47
12c3

2c3 − 23
18c2c2

3 + c2
2c4

)
e6

n + O(e7
n).

M21 = −5
3 Mf (h, k) = 1 − u

4 + u2

4 + 9+6u−10u2

12 k +
(
−5

4 + u
2 + u2

)
k2,(

4c5
2 − 21

4 c3
2c3 − 7

6c2c2
3 + c2

2c4
)

e6
n + O(e7

n).

(3) We consider following weight function, that satisfies all the conditions which
are mention in theorem 1

Mf (h, k) = 1
16

(
5 + 27

1 + 2h
+ 4k − 20k2 − 24k3 + h(2 + 8k)

)
. (30)

(4) We consider another weight function, which is given by

Mf (h, k) = 8 + k − 5k2 − 6k3 + h2(1 + 4k) + h (3 + 4k − 10k2 − 12k3)
4 + 8h

. (31)

(5) We consider one more weight function, which is defined as follows:

Mf (h, k) = 6 + 16k − 11k2 − 12k3 + 45k4 + h2 (
1 − 9k2)

+ h
(
−3 − k + 24k2)

4 + 12k
. (32)

Numerical experiments

In this section, we apply new methods for (M21 = −13
9 ) in scheme (28), for

(M21 = −19
9 ) in scheme (29), denoted by OM1

6 and OM2
6 respectively, to solve

some nonlinear equations given in table 3, which serve to check the validity and
efficiency of theoretical results. These methods are compared with method (5) for
(c = 0, d = 1, r = 0), proposed by [Wang and Liu (2009)], (called WM6) and
method (3) for (β = 2), proposed by [Neta (1979)], denoted by (NM6). Finally, we
will also compare our schemes with a two-point family of sixth-order methods that
is very recently proposed by [Guem et al. (2015)], between them we will choose
their best expression (3.4, 3.8 and 3.12) denoted by (GM1

6 , GM2
6 and GM3

6 ),
respectively. For better comparisons of our proposed methods, we have given
three comparison tables in each example: one is corresponding to absolute error,
the second one is with respect to number of iterations and third one is regarding
their computational error in table 4, 5, 6, respectively. All computations have been
performed using the programming package Mathematica 9 with multiple precision
arithmetic. We use ϵ = 10−34 as a tolerance error. The following stopping criteria
are used for computer programs:
(i)|xn+1 − xn| < ϵ and (ii)|f(xn+1)| < ϵ.

7
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Table 3: Test problems
f(x) Root(r)
f1(x) = tan−1(x2 − x) 1.00000000000000000000000000000000000
f2(x) = x3 − 30x + 5 5.3919091867997792317129299268950973
f3(x) = x3 + sin x + 2x 0.00000000000000000000000000000000000
f4(x) = sin x − tan x + 1 1.0826495247186551155684838889482183
f5(x) = e−x2+x+2 − 1 2.00000000000000000000000000000000000

Table 4: (Comparison of different sixth-order methods with the same
total number of functional evaluations (TNFE=12))

f(x) x0 WM6 NM6 GM1
6 GM2

6 GM3
6 OM1

6 OM2
6

1. 0.85 1.7e−93 2.8e−110 3.9e−95 1.1e−95 1.7e−111 6.0e−140 2.2e−161
1.6 3.2e−72 2.8e−78 1.7e−107 2.5e−63 8.3e−70 1.9e−153 5.3e−99

2. 4.5 7.1e−20 7.6e+5 9.4e−36 8.2e−35 1.7e−57 6.1e−68 3.3e−87
6.5 2.9e−97 2.0e−145 1.3e−95 3.2e−95 3.4e−102 1.3e−130 1.1e−147

3. −2.0 1.3e−4 2.7e−1 8.0e−60 1.6e−43 2.3e−49 2.4e−90 7.6e−75
−1.9 1.3e−47 1.7e−4 3.5e−67 4.3e−48 8.3e−55 3.5e−125 2.7e−75
1.9 1.3e−47 1.7e−4 3.5e−67 4.3e−48 8.3e−55 3.5e−125 2.7e−75
2.0 1.3e−4 2.7e−1 8.0e−60 1.6e−43 2.3e−49 2.4e−90 7.6e−75

4. 0.86 1.8e−14 C C C 1.3e−21 1.5e−9 1.5e−16
1.4 3.2e−26 3.3e−3 2.1e−25 9.0e−25 1.4e−29 1.5e−69 2.4e−38

5. 1.2 1.2e−47 5.0e−52 1.1e−50 9.5e−53 4.8e−57 3.5e−76 1.5e−98
2.25 7.5e−24 D 1.2e−30 8.9e−29 2.6e−54 1.7e−58 6.9e−74

C: stands for converge to undesired root, D: stands for divergent.

Table 5: (Comparison of different sixth-order methods with respect
to number of iterations)

f(x) x0 WM6 NM6 GM1
6 GM2

6 GM3
6 OM1

6 OM2
6

1. 0.85 4 4 4 4 4 4 4
1.6 4 4 4 4 4 4 4

2. 4.5 5 9 4 4 4 4 4
6.5 4 4 4 4 4 4 4

3. −2.0 4 6 4 4 4 4 4
−1.9 4 6 4 4 4 4 4
1.9 4 6 4 4 4 4 4
2.0 4 6 4 4 4 4 4

4. 0.86 5 C C C 5 5 5
1.4 5 6 5 5 5 4 4

5. 1.2 4 4 4 4 4 4 4
2.25 5 D 5 5 4 4 4

8
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Table 6: (Computational order of different sixth-order methods )

f(x) x0 WM6 NM6 GM1
6 GM2

6 GM3
6 OM1

6 OM2
6

1. 0.85 5.999 6.000 5.999 5.999 6.000 6.000 6.000

1.6 6.003 6.000 6.000 5.993 5.996 6.000 5.997

2. 4.5 6.000 6.000 5.956 5.952 5.994 6.010 6.001

6.5 6.000 6.000 6.000 5.994 6.000 6.000 6.000

3. −2.0 6.970 6.997 8.985 7.005 7.010 7.000 7.000

−1.9 6.982 7.000 9.000 7.003 7.006 7.000 7.000

1.9 6.982 7.000 9.000 7.003 7.006 7.000 7.000

2.0 6.970 6.997 8.985 7.005 7.010 7.000 7.000

4. 0.86 6.000 C C C 6.000 6.005 6.002

1.4 6.000 6.000 6.000 6.000 6.000 6.001 6.011

5. 1.2 5.984 5.980 5.988 5.990 5.994 5.996 6.000

2.25 6.000 D 6.000 6.000 5.992 6.013 6.003

Attractor basins in the complex plane

We here investigate the comparison of the attained simple root finders in the com-
plex plane using basins of attraction. It is known that the corresponding fractal
of an iterative root-finding method is a boundary set in the complex plane, which
is characterized by the iterative method applied to a fixed polynomial p(z) ∈ C,
see e.g. [Scott et al. (2011); Neta et al. (2012); Behl and Motsa (2012)]. The
aim herein is to use basin of attraction as another way for comparing the iteration
algorithms.

From the dynamical point of view, we consider a rectangle D = [−3, 3] ×
[−3, 3] ∈ C with a 400 × 400 grid, and we assign a color to each point z0 ∈ D
according to the simple root at which the corresponding iterative method start-
ing from z0 converges, and we mark the point as black if the method does not
converge. In this section, we consider the stopping criterion for convergence to
be less than 10−4 wherein the maximum number of full cycles for each method is
considered to be 100. In this way, we distinguish the attraction basins by their
colors for different methods.
Test problem 1. Let p1(z) = (z4 + 1), having simple zeros {−0.707107 −
0.707107i, −0.707107+0.707107i, 0.707107−0.707107i, 0.707107+0.707107i}. It
is straight forward to see from Fig. 1 – 2 that our methods, namely OM1

6 and OM2
6

contain lesser number of non convergent points, have a larger and brighter basin
of attraction in comparison to the methods, namely WM6, NM6, GM1

6 , GM2
6 and

GM3
6 . Further, our methods do not show an chaotic behavior as method WM6.
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Figure 1: The methods WM6, NM6, GM1
6 and GM2

6 , respectively for
test problem 1.

Figure 2: The methods GM3
6 , OM1

6 , and OM2
6 , respectively for test

problem 1.

Test Problem 2. Let p2(z) = (z6 + z), having simple zeros {−1, −0.309017 −
0.951057i, −0.309017+0.951057i, 0, 0.809017−0.587785i, 0.809017+0.587785i}.
We can easily observe from Fig. 3 – 4 that our proposed methods have larger and
brighter basin of attraction in comparison to the mentioned methods.

Figure 3: The methods WM6, NM6, GM1
6 and GM2

6 , respectively for
test problem 2.
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Figure 4: The methods GM3
6 , OM1

6 and OM2
6 , respectively for test

problem 2.

Conclusions

In this paper, we proposed several second-derivative free families of Halley type
methods based on weight function and arithmetic means of the approximated
value of the second-order derivative. We can easily get several new methods
by choosing different values of the disposable parameter M21 in schemes (28)
and (29). Further, we can also obtain several families of sixth-order Halley-type
method by considering different kind of weight functions which satisfy the condi-
tions mentioned in Theorem 1. Each member of the proposed family requires two
evaluations of the function f and two of its first-order derivative f ′ per full step.
Our proposed iterative methods are compared in their efficiency and performance
to various other multi-point methods in Table 4, 5, 6 and it is observed from these
tables that our proposed methods are efficient and perform better than existing
methods available in the literature. Based on Figs. 1 – 4, we conclude that larger
basins of attraction belong to our methods namely, OM1

6 and OM2
6 although the

others methods are slow and has darker basins while some of the method are too
sensitive upon the choice of the initial value.
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