Investigation on the influence of Localized Unbonded-areas on the Crack Growth Characteristic of Diffusion Bonded Titanium Alloy Laminates

*Yang Liu¹, Yongcun Zhang¹, †Shutian Liu¹, Shan Xiao^{1,2}, Yanpeng Sun², Xiangming Wang²

¹ State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China

² Shenyang Aircraft Design Research Institute, Shenyang, 110035, China

*Presenting author: 397600411@qq.com †Corresponding author: stliu@dlut.edu.cn

Abstract

Preformed unbonded-areas within the interface of diffusion bonded titanium alloy laminates can disturb the stress distribution when the crack growing in their neighborhood, thus, these performed unbonded-areas may change the crack growth characteristics. The motivation of this paper is to investigate the influence and intend to find the rules how the geometric parameters of unbondedareas affect the crack growth characteristics of diffusion bonded laminates. The specimens considered in this paper are made of Ti-6Al-4V titanium alloy with localized unbonded-areas and their crack growth characteristics were analyzed under tension-tension cyclic loading using the numerical simulation techniques based on extended finite element method (X-FEM). The results are compared with the experiments, and the agreement of numerical and experimental results illustrated that the exact crack growth characteristics can be captured by using X-FEM. The influence of the geometric parameters, such as the size, location and number of the unbonded-areas, were analyzed and synthesized. The results illustrate that preforming unbonded-areas do influence the crack growth characteristics and fatigue life, and the influence extent is tremendously dependent on the geometric parameters of the unbonded-areas. The fatigue life can be prolonged effectively if the unbonded-areas are arranged reasonably in the interfaces of diffusion bonded titanium alloy laminates. In the design of the laminate with unbonded-area, the surface layer should be thinner. The crack in the structure always initiates from the surface. So the thinner surface layer can make the unbonded-area works at an early time. The first unbonded-area plays the leading role in inhibiting crack growth.

This research is supported by the 973-Program of China (2011CB610304) and the NSFC (1332004, 11172052). The financial supports are greatly acknowledged.

Keywords: Titanium Alloy Laminates, Unbonded-area; Fatigue; Crack Growth; Extended Finite Element Method (X-FEM)