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Introduction

Meshfree particles methods, such as Moving Particle Semi-implicit (MPS) method [Koshizuka and
Oka (1996)] and the Smoothed Particle Hydrodynamics (SPH) method [Lucy (1977)], have been
widely applied in modeling free surface flows. They are superior to grid-based methods since it’s
not necessary to introduce extra equations and special treatments for interface tracking or
reconstruction. In general, the basic idea of MPS and SPH methods is to discretize the flow by
numerous particles moving in Lagrangian frame. Operators in N-S equations are calculated by
different particle interaction models. However, there are some differences between the two methods.
In the SPH method, spatial derivatives are obtained by superposition of the derivatives of the kernel
function. Comparatively speaking, in the MPS method, a differential operator is approximated using
a wei?hted average of the differential operator between two neighboring particles. Comparing to the
kernel function of the SPH method, the simple and crude kernel function of the MPS method will
lead to low accuracy. The other difference is that the pressure term is solved implicitly by the
Poisson equation to implement real incompressibility in MPS method rather than a fully explicit one
in original SPH method.

Application of the particle methods was still limited due to the problem of compressible stress
instability, which usually occurs in presence of repulsive forces when particles are approaching to
each other. As pointed out by previous researchers [Yang et al. (2014)], the fundamental reason of
the compressible stress instability is that the repulsive force first increases and then decreases as
two particles get close in the compressible state, and the low accuracy of the numerical schemes for
pressure gradient plays a negative role. To date, the available modification is the introduction of
artificial stress, which can’t solve the problem fundamentally. In this paper, a new MPS-based
numerical scheme is proposed to fundamentally improve the stability in the compressible state. Two
key modifications are proposed. Firstly, a modified quintic kernel function is adopted to guarantee
the repulsive force always increases as two particles get close. Secondly, a symmetric form of the
pressure gradient is employed based on the Taylor series expansion, which improves the accuracy
of the gradient operator of the standard MPS method.

Numerical algorithm

Firs;}lyéI the common used SPH quintic kernel function is modified and introduced in the MPS
method as

20° —60q +84 (0<qg<1)
wirhy=— " 1G- 9)°-6(2-0q)° (<qg<2) )
"7 4887h* |(3-q)° (2<q<3)
0 (@>3)

As shown in Figure 1, for the modified kernel function, the second derivative is non-negative in the
compressible state. That means the repulsive force aIwgP_/s increases as two particles get close.
Therefore the first reason of the compressible stress instability is removed.
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Figure 1 Kernel functions and their first and second derivatives. w: the common used SPH quintic
kernel; wy: the modified quintic kernel

Next, a symmetric form of the gradient based on the modified kernel function and the Taylor series
expansion are obtained to compute the gradient operator of pressure, which is the key part of
velocity correction computation. In the 2D case, for the pressure p of the particle r;. Multiplying
both sides of the Taylor series expansion with (xﬂ--xﬂ.)w., neglecting the second and high order
dgrlvatlc\j/es and integrating the resulting equation over the domain, a series of equations can be
obtaine
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aand B are varied between 1 to 2. Pressure p is a known quantity while its first order derivatives py;

and py,, are unknowns to be solved. Thus, the pressure gradient can be determined by the following
matrix equation:
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From Eq. (3), the force between two particles is attractive or repulsive is determined by (pj-pi). If
(p-pi) is positive, the force is repulsive, which is good for the numerical stability. Therefore the
m|n|mum p in the neighbor particles of particle i is used in place of p;. Then the modified pressure
gradient used in this paper is
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Since the matrix in Eq. (5) is symmetric, the proposed method is named Symmetric Moving Particle
Semi-implicit (SMPS) method.

Results and conclusion

A numerical example of droplet impact is simulated by the SMPS method. As shown in Figure 2,
the SMPS method shows the good stability and the compressible stress instability is removed.
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Figure 2 The simulation result of droplet impact. Left: original MPS; Right: SMPS.

Furthermore, the evolution of the dimensionless droplet width is illustrated in Figure 3. It can be
seen the result by SMPS is in good agreement with the FDM. Slight difference with original SPH is
observed, which may due to the particle inconsistency problem by artificial compressibility of the
original SPH algorithm.
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Figure 3 Evolution of the dimensionless droplet width
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