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Abstract

In the Scaled Boundary Finite Element Method (abbr. SBFEM), the analytical advantage of the
solution in the radial direction allows stress intensity factors (SIFs) to be determined directly from
its definition. Therefore no special crack-tip treatment is necessary. In addition, the stiffness of
infinite domain can be solved analytically. In present paper, the asymptotic fields of the crack tip of
the infinite plate subjected to the different loadings are computed based on the SBFEM combining
the sub-structuring technique (or super-element) , extracting the SIFs, some of higher order terms.
The essential calculating formula of SBFEM is derived. The numerical results are compared with
those in the literature, and the results show that SBFEM can evaluate the asymptotic fields of the
crack tip with higher efficiency and accuracy. In addition, some of the higher order terms may
provide evidence for the further research on the fracture characteristics of the mass concrete
materials and structures.
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Introduction

The analytical expression of stress fields of crack tip is presented by Williams[ Williams (1957)].
It includes stress intensity factors Ky, Ky; , T-stress and higher order terms which is named crack-tip
parameters. Theoretical analysis and test can not determine parameters of the complex case, which
is concerned on the material properties of structure, load form, and the initial angle of crack. Some
of the numerical methods are applied to determine these parameters of practical and complex
problem. The mainly numerical methods which can evaluate the singular fields of crack tip, include
the finite element method(FEM), the boundary element method(BEM), the weight function method,
the finite difference method and the scaled boundary finite element method(SBFEM) [(Deeks and
Chidgzey(2005); Song(2005 )]. FEM need discretizing crack tip area, and BEM need discretizing
crack surface area. Furthermore, they can’t gain analytical solution around singularity points in
general case, because of their dependence on the piecewise smooth functions [Song ( 2002)]. The
most important advantage of SBFEM is the stress singularity along the radial direction emanating
from the crack tip is represented analytically. No analytical asymptotic expansion or enrichment is
required. SIFs, T-stress and higher order terms are extracted directly [(Deeks and Chidgzey(2005);
Song(2005 )]. According to the advantages of SBFEM, it has been applied to evaluating the
dynamic stress intensity factors [Song(2004;2008)], the SIF of orthotropic material[Song ( 2002)],
the SIF under the temperature load [Song(2006)], and a unified definition of GSIFs was proposed in
[Song et al (2010)]. Crack propagation was modelled in [Yang (2006);Yang and Deeks (2007); Ooi
and Yang (2009; 2011a; 2011b); Bird et al (2010); Shi (2013) and Zhu(2014)]. Other applications in
fracture mechanics include [Li (2014);Liu(2008)].



In the paper, the asymptotic fields of the crack tip of the infinite plate subjected to the different
loadings are computed based on the SBFEM combining the sub-structuring technique (or super-
element), extracting the SIFs, some of higher order terms of crack tip are provided. Numerical
examples are provided to demonstrate the effectiveness and accuracy. The results are compared
with those of analytical solutions and numerical solutions. The comparison shows that SBFEM can
calculate the asymptotic field of crack tip with accuracy.

2 The Fundamental Equations of Scaled Boundary Finite Element Method

With emphasis placed on the two-dimensional problems the concept of the scaled boundary
finite element method and the necessary equations for a bounded medium are summarized.
The governing equations of SBFEM without dynamic problems is the following

[E°)e (u(&) . +{[E'T-[E'T+[ET )efu()}, -[E*Jfu(&)} =0 W
where [E°] s [EIJ and [E2] are the coefficient matrices on the boundary [Song and Wolf(1997)].

The solution of displacement field is expressed as the following
{u(e)f=2ee™ {4} @)
i=1

where, n is the dimension of eigen value vector matrix [®,, ] whose meaning can be seen in the
following formula. {¢} is i column of the matrix [®, ], ¢; is the i element of the integration
constant vector {Cl} . Then the radial displacement field within the sub-structure (super-element)

can be obtained by interpolation through the function [N ! (77)] , therefore
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the stress field within the sub-structure
{o(&n)f=2 e w(n)} @)
i=1

where, {w(n)}i is the stress mode of local coordinate 77, it can be calculated by the corresponding

displacement mode {¢}.,

v (1)}, =[P](-4[B' (7)]+[B* (n)]) {2}, 5)

The solutions of displacement and stress in the sub-structure can be expressed as polar-
coordinate form in order to calculate SIF. Radial coordinate can be expressed as

F(&m)=2&r(n) (7)
where, r(n)=,/X*(n)+Yy’ () is the radial coordinate on the boundary of sub-structure. Angle &
is only related to 77,

6(n)=arctan y(n) (8)

x(17)

Eq.(7) is substituted into Eq.(4), we can get

(ot} =2 () o () ©)

Eq.(8) and Eq.(9) constitute the stress field similar to Williams which is expressed by the series
coordinate. The expression of the singular fields of crack tip of Williams is used.



3 Numerical Examples

3.1 Edge-cracked semi-infinite plate under uniform tension tractions
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Fig.3a Edée—)cracked semi-infinite plate under uniform tensio)n traction
Fig.3b Boundary discretization of edge-cracked semi-infinite plate
First considering an edge-cracked semi-infinite plate subjected to uniform distributing tension

pO loaded on the crack faces as shown in Fig.3a. The semi-infinite plate is divided into three blocks
(Fig.3b), and the corresponding scaling centers are O;(0,0), Ox(-1,0) and O3(-1,2), respectively. The
geometrical parameter of the first block is:W=1.5,H=4, the crack length is a=1. The length of
loading for the crack face is b=0.35,0.5,0.75,0.85. The material properties elastic modulus E=1,
Poisson's ratio v=0.25. The Fig.3b gives the discretization model, and the total elements is 16 3-
node line elements. The analytical solutions of SIF are shown in Reference[Hiroshi(2000)], and the
present compared results and relative difference (RD) are shown in Table 1. The higher order terms
a2,a3 are shown in Table 1. They are in good agreement and the maximum difference is less than
3%.No analytical solutions or numerical results for the a2,a3 are compared.
Table 1 Results of edge-cracked semi-infinite Table 2 Results of edge-cracked semi-infinite plate under
plate under uniform tension tractions W=1.5 N=16  uniform shear tractions

Loading length b KII Analytical solution RD(%)

The length Analytical

of loading: b solutions (RD)(%) a2 a3 0.65 0.9763 0.9415 -3.7035
035 05130 04998 -2.6342 0.2728-0.2698 0.70 1.0401 1.0233 -1.6435
05 07317 07142 -2.4510 0.3474-0.4386 0.75 1.1049 1.1103 0.4871
075  1.1385 1.1103  -2.5378 0.4376-0.9263 0.80 1.1803 1.2046 2.0241
085 12698 13100 3.0722 0.6191-1.3251 0.85 1.2879 1.3100 1.6887

0.90 1.4542 14336 -1.4335

3.3 Edge-cracked semi-infinite plane under uniform
shear tractions

Fig.3a shows the Edge-cracked semi-infinite plate under uniform shear tractions model. The
geometrical parameter is W=1.5, H=4. The length of crack a=1, the loading length of uniform shear
b=0.65,0.70,0.75,0.80,0.85,0.90,0.95. The material properties elastic modulus E=1, Poisson's ratio
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v=0.25. The total number of elements is 8. Reference [Hiroshi(2000)] gives the analytical solutions.
The comparison of the present results with analytical solutions are shown in Table 3. Both the
numerical and analytical results are in good agreement. The maximum difference is less than 4%.

3.3 Edge-cracked semi-infinite plane under concentrated shear tractions
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Fig.4a Edge-cracked semi-infinite plate under concentrated shear tractions
Fig.4b Edge-cracked infinite plate under concentrated tension tractions

Fig.4 shows the Edge-cracked semi-infinite plane model under concentrated shear tractions.
The geometrical parameter is W=2, H=4. The length of crack is a=0.7,0.8,0.9,1.0,1.1,1.2,1.3. The
material properties elastic modulus E=1, Poisson's ratio v=0.25. The discretization is shown in
Fig.3b and the total number of elements is 19. The analytical solutions of SIF are shown in
Reference[Hiroshi(2000)], and the comparasion of the present results with analytical solutions are
shown in Table 2. Both the numerical and analytical results are in good agreement. The maximum
difference is less than 2%. The higher order terms a3 are also shown in Table 2. No analytical
solutions or numerical results are compared.
Table 3 Results of edge-cracked semi-infinite ~ Table 4 Results of SIF, al,a2 and a3 of the edge-cracked infinite

plate under concentrated shear tractions plate under concentrated tension tractions

Crack lengtha KII A;l(;luyt?gsl % a3 o~
0.7 17371 17492 0.6917 -2.1328 N;iznrg:;tzf I Analyiical al 22 m
0.8 1.6263 1.6363  0.6108 -1.9439 solution 0.5642
0.9 1.5353 1.5427  0.4795 -1.5322 5 05605 0.6532 0.22360.0263
1.0 1.4598 1.4635 02522 -1.1236 7 0.5603 0.6864 0.22350.0131-0.2904
1.1 1.3968 1.3954 -0.0990 -0.8287 11 0.5680 -0.6725 0.22660.0111-0.2889
1.2 1.3438 13360 -0.5827 -0.6297 19 0.5707 -1.1562 0.22770.011 -0.2885

1.3 1.2988 1.2836  -1.1865 -0.4953

3.4 Edge-cracked infinite plane under concentrated tension tractions

Edge-cracked infinite plane under concentrated tension tractions model is studied, as shown
in Fig.4b. The geometrical parameter is W=1.5, H=4. The length of crack a=1. The material
properties elastic modulus E=1, Poisson's ratio v=0.25. The analytical solutions of SIF are shown in
Reference [Hiroshi(2000)]. The comparison of the present results with analytical solutions are
shown in Table 4.The results of higher order terms a2 and a3 for the different element number are
shown in Table 5. It shows that the numerical and analytical results are in good agreement. The
maximum difference is less than 2%.



Conclusions

In the paper, the singular stress fields of edge-cracked infinite plate are computed based on the
SBFEM, extracting the SIF and the coefficients of higher order terms. The expression of
displacement field and stress field of SBFEM and the equation of asymptotic field of crack tip of
fracture mechanics are derived. The results are compared with the ones of analytical solutions and
some numerical results, which shows that the SBFEM can calculate the asymptotic field of crack tip
with accuracy. In addition, the results of T-stress and the coefficients of higher order terms have
certain significance on determining crack stability and studying the fracture characteristics of crack

tip.
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