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Abstract

Nature’s flyers have been an inspiration in the development of flap-

ping wing MAVs. The secret to their flight has been attributed to the

wing kinematics and wake patterns generated. The wing kinematics

used in flapping wing studies is usually sinusoidal. But in reality, a

flexible flight motor dictates the kinematics. In the current work, a

Duffing oscillator model of the insect flight motor is used to predict

the kinematics, in the presence wing loads that are computed by a

two-dimensional Navier-Stokes solver. This fluid-structure interaction

problem uses a discrete vortex method solver to solve for the fluid part

and a Runge-Kutta solver to solve for the structural part. The present

work investigates the structural response exhibited by the flexible in-

sect flight-motor, and the corresponding wake structures and loads in

a sub-resonance regime. A period-doubling route to chaotic structural

response is identified, which is reflected in the flow-field and the aero-

dynamic loads.

Keyword: Flapping wings, Discrete vortex method, Fluid-Structure Interac-
tion

1 Introduction

Development of Micro Aerial Vehicles (MAVs) with capabilities exceeding
that of a conventional aircraft have attracted a lot of attention in recent
years. The interest in biologically-inspired propulsion mechanisms have
peaked as insects and birds, with their amazing range of maneuvers and
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efficient flight, form an inspiration in the development of MAVs with flap-
ping wings.

The efficient flight of insects has been attributed to the flapping motion
(kinematics) of their wings and the corresponding wake structures down-
stream of the wings [17]. The problem of flapping wings poses a challenge
for conventional CFD methods, as it is inherently a moving body problem.
Different computational techniques used in flapping wing problems include
immersed boundary method [20], vortex methods [19], arbitrary Lagrangian-
Eulerian (ALE) methods [8] etc.

In a two-dimensional framework, usually the insect wing is approximated
as an airfoil, and its flapping motion is modeled using two fundamental kine-
matics – plunge (translational) and pitch (rotational). The forces produced
on a flapping wing are strongly dependent on the wake structures in its
downstream [17]. The wake structures and mean thrust produced by a si-
nusoidally plunging airfoil has been experimentally investigated by Lai &
Platzer [16]. Koochesfahani [11] has experimentally investigated the wake
structures downstream of a pitching airfoil and Mackowski et al. [12] have
measured the thrust produced by it. A combination of plunge and pitch
kinematics was also investigated experimentally by Anderson et al. [1], and it
was found that conditions of high propulsive efficiency are obtained when the
pitching and plunging motions have a phase difference of 90o. Furthermore,
comparison of periodic non-sinusoidal plunge kinematics with sinusoidal ones
has also been reported in Sarkar et al. [19].

However, in all these works, the flapping foil is assumed to be a rigid
body harmonically oscillating in a flowing fluid. In reality, the insect wing is
a flapping body whose kinematics is governed by an in-built flexible flight-
motor. Brennan et al. [4] have modeled the flexible insect flight-motor
as a forced-damped Duffing oscillator. The linear viscous damper in their
oscillator represents the damping forces acting on the insect wing (lift and
thrust), and the external forcing represents the control loads from the insect
muscles to the flight-motor. The present work, however, improves this model
by computing the aerodynamic loads using an unsteady Navier-Stokes solver,
which essentially results in a Fluid-Structure Interaction (FSI) problem.

1.1 The simplified flight motor

Brennan et al. [4] modeled the insect flight-motor as a linkage system ABCD

shown in Figure 1a with columns (1) and (2) attached to joints B and D re-
spectively, and the entire mass of the system concentrated at C. The mass m
at C, under the influence of a non-dimensional forcing Γ sin(ωt), oscillates in
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Figure 1: Linkage mechanism of insect-flight-motor modeled by Brennan et
al. [4] as a forced Duffing-type oscillator

a plunge degree-of-freedom. This oscillation of C causes bending of columns
(1) and (2) (Figure 1a). This bending of columns essentially represents the
stiffness of the insect flight-motor. This has been modeled by Brennan et
al. [4] as a spring with a linear and non-linear stiffness (Figure 1b). The
concentrated mass m at C is assumed to be a two-dimensional section of
the insect wing (airfoil), in the current work, as shown in Figure 1b. The
plunge-type motion of this airfoil is dictated by the non-dimensional forcing
Γ sin(ωt), in the presence of a spring (with linear and non-linear stiffness)
and the aerodynamic loads that are obtained from an unsteady Navier-Stokes
solver. Furthermore, as the airfoil undergoes only plunge type of motion, lift
is the only aerodynamic force to dampen the structural oscillations.

This essentially results in an undamped forced Duffing-type oscillator,
with a lift force L(t) as shown in Eqn. 1. The non-dimensionalization is in
accordance with [4]

ü− βu+ αu3 = Γ sin(ωt) +
L(t)

mD
(1)

where u is a non-dimensional displacement normalized with a characteristic

length D =

√

2(1− b
l
)

b
l3

, (̈ ) is the second derivative with respect to time,

α = β =
ω2
0

2
where β and α are linear and non-linear non-dimensional

stiffness parameters respectively, Γ =
P

mD
is the non-dimensional forcing

parameter, P is the forcing, ω2
0 =

4K

m

(

1 −
b

l

)

is the structural natural
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frequency, ω is the forcing frequency, K is the stiffness of columns (1) and
(2); b and l are lengths of linkage mechanism of the insect flight motor as

shown in Figure 1a; the ratio of
b

l
is maintained at 0.9 throughout this work

in accordance with [4].

2 Numerical Methodology

The current work employs a partitioned loosely-coupled [5] FSI solver. This
section includes the description of the computational methodology employed
in this work, and its validation. The loosely-coupled [5] FSI solver has
the aerodynamic part modeled by a Navier-Stokes solver using a particle
based Discrete Vortex Method (DVM) [18], and the structural displacements
and velocities computed using a fifth order embedded Runge-Kutta (RK)
solver [14].

DVM follows a vorticity-velocity formulation of the two-dimensional in-
compressible Navier-Stokes equations. The results generated by DVM is
ensured to be accurate by validating it qualitatively with results of Lai &
Platzer [16] and quantitatively with that of Young [21], for the range of
parameters chosen for this work. The structural solver is a fifth-order RK
solver [14] that ensures time-stepping convergence by comparison of results
with a fourth-order RK solver embedded in it. Furthermore, an adaptive
time-stepping procedure is employed for faster convergence.

2.1 Discrete Vortex Method

The equations governing the incompressible fluid-flow are given by Navier-
Stokes equations [2] shown in Eqns. 2.

∇ · ~V = 0 (Continuity Equation) (2a)

D~V

Dt
= −

∇p

ρ
+ ν∇2~V (Momentum Transport) (2b)

Here,
D

Dt
is the material derivative, ν is the kinematic viscosity, ρ is the

density, p is the pressure and ~V is the velocity of the fluid at any point
in the domain. This can be written in two-dimensional vorticity transport
form [2] as shown in Eqn. 3b. The current problem domain has a body
moving in a fluid with no bounds, which has some initial vorticity (Eqn. 3d).
The fluid-flow far away from the body remains undisturbed (Eqn. 3e), and
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the no-penetration (Eqn. 3f) and no-slip (Eqn. 3g) boundary conditions need
to be ensured on the surfaces of the body.

∇ · ~V = 0 (Continuity Equation) (3a)

DΩ

Dt
= ν∇2Ω (Vorticity Transport) (3b)

~Ω = ∇× ~V (Vorticity) (3c)

ω(~x, 0) = ω0(~x) (Initial condition) (3d)

~V (~x→ ∞, t) = ~V∞ (Infinity BC) (3e)

~V (~xB , t) · ên = ~VB · ên (No-penetration BC) (3f)

~V (~xB , t) · ês = ~VB · ês (No-slip BC) (3g)

In the above Eqns. 3, ês and ên are the unit vectors in the tangential and
normal directions respectively on the body surface, ~VB is the velocity of the
body, ~V∞ is the incoming free-stream velocity and ~x is the position vector.

In the context of vortex methods, vorticity field is discretized into N

vortex particles (Eqn. 4).

Ω(~x) =

N
∑

j=1

γjfδ(~x− ~xj) (4)

Here, ~xj are the locations of N vortex particles with circulations γj respec-
tively; fδ is a function that defines the vorticity distribution of individual
vortex particles. The vorticity transport equation (Eqn. 3b) is split into ad-
vection (Eqn. 5a) and diffusion (Eqn. 5b) parts by the method of viscous
splitting [3]. The generalized solution procedure in vortex methods is to
update the location of the vortex particles in the domain by advecting and
diffusing them according to the solutions of Eqns. 5a and 5b respectively, to
advance in time.

∂Ω

∂t
+ ~V · ∇Ω = 0 Advection Equation (5a)

∂Ω

∂t
= ν∇2Ω Diffusion Equation (5b)

In vortex methods, the simulation begins by satisfying the no-penetration
boundary condition (Eqn. 3f) on the body surface S. For this purpose, a
body-bound vortex street whose vortex strength distribution is unknown, is
assumed. Then, this vortex sheet is discretized into panels of equal length,
and the no-penetration boundary condition is enforced at control points
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(mid-points of the panels in this scenario) to obtain the strength distribution
of the vortex sheet. However, this method of enforcing the no-penetration
boundary condition (Eqn. 3f) will, in general, violate the no-slip boundary
condition (Eqn. 3g).

The non-zero slip-velocity predicted by the aforementioned panel method
is cancelled out by generating new vortex particles that are placed at some
finite distance above the control points. Once the no-penetration (Eqn. 3f)
and no-slip (Eqn. 3g) boundary conditions are satisfied and new vortex par-
ticles are generated, the velocity required to advect these vortex particles is
calculated.

The advection equation (Eqn. 5a) implies that the vorticity remains con-
stant along a fluid path. Hence, a vortex particle can be advected from one
location to another without change in its strength [15], provided the velocity
field is known.

From the definition of vorticity (Eqn. 3c) and the requirement of an
incompressible (Eqn. 2a) velocity field, a Poisson’s equation (Eqn. 6) relating
the streamfunction ψ to vorticity can be obtained [15].

∇2ψ = −Ω (6)

The solution to ψ in Eqn. 6 is obtained using the Green’s function method,
and its derivative as shown in Eqn. 7 gives the velocity to advect the vorticity
field.

~V =

(

∂

∂y
,−

∂

∂x

)

ψ (7)

This procedure results in a vorticity-velocity relationship, the Biot-Savart’s
law (Eqn. 8), which gives the velocity to advect the vortex particles in the
presence of body moving in a flowing fluid [15], [2].

~V (~x, t) = −
1

2π

[

∫

R

~Ω× (~x′ − ~x)

|~x′ − ~x|2
dR + 2

∫

S

~Ωb × (~xB − ~x)

|~xB − ~x|2
dS + ~V∞

]

(8)

Here, R is the fluid region and S is the curve representing the body shape.
The first component in the RHS of Eqn. 8 is the velocity induced by a vortex
particle with vorticity ~Ω at ~x′ on another vortex particle at ~x. The second
component is the velocity induced by the rigid body rotation of the body
(~Ωb); here ~xB is a reference point in the body. The third component is the
contribution due to the incoming free-stream velocity.

Furthermore, it is understood from the denominator of the first and sec-
ond terms in the RHS of Eqn. 8 that the infinity BC (Eqn. 3e) is automati-
cally satisfied. Moreover, it shows that the velocity induced by a particle on
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itself is singular. This issue is tackled by usage of vortex blob model [7] that
smoothens out the singularity within a cut-off radius (σ) using a smoothing
function fδ (Eqn. 4) [15]; the present solver employs a Chorin blob [7]. It
should also be noted that in the present solver, the vortex blobs generated to
satisfy the no-slip boundary condition (Eqn. 3g) are placed at a distance of
σ above the control points such that the tangential (slip) velocity predicted
by the application of panel methods is exactly cancelled out.

The diffusion equation (Eqn. 5b) is solved by the method of random
walks [7]. The solution to the diffusion equation (Eqn. 5b) is similar to the
probability density function of a Gaussian random variable with zero mean
and variance of 2νt [7]. Hence, for a discretized vorticity field, diffusion can
be simulated by giving random displacements with zero mean and variance
of 2ν∆t to the vortex blobs in two orthogonal directions over a discrete time
interval of ∆t [15].

Once the vortex blobs are advected and diffused, the forces acting on the
body are computed. The force computations are done using the theory of
vortex momentum [2], wherein the net force ~F on the body is given by the
rate of change of vortex momentum ~I as shown in Eqns. 9a and 9b.

~I = (Ix, Iy) =

∫

R

~x× ~Ω dR (9a)

~F = −
d~I

dt
(9b)

A disadvantage of the vortex methods is that they become very slow
as time progresses, due to addition of vortex blobs at every time-step. In
the present solver, the number of blobs are reduced by the process of blob
"annihilation" [15]. Vortex blobs of similar strengths and opposite signs that
are very close to each other have insignificant contribution [15] and are hence
"annihilated". The method of blob "annihilation" has reduced the number
of vortex blobs in the domain to a great extent in the present solver and has
been very effective in reducing its aforementioned gradual sluggishness.

2.2 Validation of DVM solver

In the present work, a NACA 0012 airfoil moving in a plunging degree of
freedom is chosen as the body. Validation of the fluid solver for a har-
monically oscillating airfoil has been done qualitatively by comparing with
experimental results of Lai & Platzer [16] and quantitatively by comparing
with the Navier-Stokes solutions of Young [21]. Flapping wing MAVs operate
at Re = 10000 - 40000 [13] and hence Re = 10000 is maintained throughout
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this work. Moreover, the effects of varying Re in these ranges are minimal
on loads [10], as they are dictated by trailing wakes that are unaltered at
these ranges of Re [9].

For a sinusoidally plunging airfoil, the wake structures and mean-thrust
generated have a strong dependence on the non-dimensional plunge velocity

khm =
2πfh

V∞
[16]; f is the flapping frequency and h is the plunge amplitude.

According to Young [21], the reduced frequency km =
2πfc

V∞
is also an im-

portant parameter in the context of plunging airfoils. The variation in wake
structures with khm [16] have been used for qualitative comparison. The

variation of mean thrust coefficient CT mean =
1

T

∫ T

0
CT (t) dt and the peak

lift coefficient CL peak [21] have been used for quantitative validation; T is
the time-period and CT (t) is the instantaneous thrust coefficient.

Figure 2 shows the wake structures as a function of khm and also com-
pares the experimentally generated vorticity plots of Lai & Platzer [16] with
wake patterns generated by DVM. At low values of khm = 0.196, two
similar-signed vortices (SSV) are produced in a half-cycle (Figure 2). As
khm is increased to 0.393, reverse-Kármán type of vortex streets are ob-
served (Figure 2). This reverse-Kármán type of vortex street is maintained
till khm reaches 1.0 (khm = 0.589 and 0.786 in Figure 2). Further increase
in khm results in wake structures deflected from their horizontal alignment
(khm = 1.570 in Figure 2). It can also be seen from Figure 2 that the
qualitative results predicted by DVM show a very good match with the ex-
perimental vorticity plots of Lai & Platzer [16].

Figure 3 shows the variation of CT mean and CL peak with khm, at km =
2.0, 10.0 and 20.0, compared with that of Young [21]. Both CT mean and
CL peak increase with increase in khm, and show a very good match with
the values generated by Navier-Stokes solver of Young [21]. The slope of
CL peak-khm curve increases with increase in km (Figure 3). However, the
slope of CT mean-khm curve is almost the same between km = 10 and 20,
and much higher compared to that of km = 2. This implies that beyond a
certain value, an increase of km cannot cause a change in CT mean. However,
increase in khm causes a significant increase in CL peak and CT mean values,
except at lower values of km.
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Figure 2: Wake structures generated by DVM, compared with Lai &
Platzer [16] at different khm
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2.3 Runge-Kutta solver

The structural equation is a forced Duffing equation given by Eqn. 1, which
is an ordinary differential equation that does not have an exact solution and
hence is to be solved numerically; the current work uses a Runge-Kutta (RK)
solver. Step-sizing is an integral part of RK solvers which essentially dictates
its accuracy [14]. Among the many methods proposed for step-sizing conver-
gence of RK solvers, Press et al. [14] have suggested the use of embedded RK
solvers, where the step-sizing convergence is dictated by comparing the re-
sults predicted by the two RK solvers embedded in it. The current work uses
a fifth-order RK solver which has a fourth-order RK solver embedded in it
[14]. Here, the step-sizing convergence is decided by comparing the result of
fifth-order RK solver with the embedded fourth-order RK solver [14], and if
the error is within the tolerance limit, the value generated by the fifth-order
solver is chosen [14] such that the solver remains accurate to the fifth-order.
Moreover, an adaptive step-sizing is employed for faster convergence.

The equation for the fifth-order scheme is given by

un+1 = un + c1r1 + c2r2 + c3r3 + c4r4 + c5r5 + c6r6 +O(h6) (10)

and the embedded fourth-order embedded scheme is given by

u∗n+1 = un + c∗1r1 + c∗2r2 + c∗3r3 + c∗4r4 + c∗5r5 + c∗6r6 +O(h5) (11)

where

r1 = ∆t f(tn, un)

r2 = ∆t f(tn + a2h, un + b21r1)

r3 = ∆t f(tn + a3h, un + b31r1 + b32r2)

r4 = ∆t f(tn + a4h, un + b41r1 + b42r2 + b43r3)

r5 = ∆t f(tn + a5h, un + b51r1 + b52r2 + b53r3 + b54r4)

r6 = ∆t f(tn + a6h, un + b61r1 + b62r2 + b63r3 + b64r4 + b65r5)

where un and un+1 are values at n − th and (n + 1) − th steps, ∆t is the
step-size, ri’s are the intermediate slopes, ci’s and c∗i ’s are the corresponding
weights given to slopes for the fifth and fourth-order solvers respectively, ai’s
and bij’s are the coefficients given by Cash & Karp [6]. The error estimate
is given by

∆1 ≡ un+1 − u∗n+1 =
6
∑

i=1

(ci − c∗i )ri
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The coefficients of ai, bij, ci and c∗i are chosen from Cash & Karp [6] and are
given in the table below.

i ai bij ci c∗i
1 37

378
2825
27648

2 1
5

1
5 0 0

3 3
10

3
40

9
40

250
621

18575
48384

4 3
5

3
10

−9
10

6
5

125
594

13525
55296

5 1 −11
54

5
2

−70
27

35
27 0 277

14336
6 7

8
1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

j 1 2 3 4 5 6

The step-sizing ∆t is controlled by means of an adaptive-time-stepping given
by the relation

∆t0 = ∆t1

∣

∣

∣

∣

ǫ0

ǫ1

∣

∣

∣

∣

0.2

where ∆t0 is the desired step-size, ∆t1 is the actual step-size, ǫ0 is the desired
accuracy, and ǫ1 is the accuracy obtained with a step-sizing of ∆t1. If the
error ǫ1 does not remain within the user-defined value of ǫ0, then a new
step-size ∆t0 is chosen by the aforementioned equation.

The Duffing equation (Eqn. 1) is split into two parts as shown below.

u̇ = v (15a)

v̇ = Γ sin(ωt) +
L(t)

mD
+ βu− αu3 (15b)

Then values of u̇ and v̇ at the (n+1)− th time-step are obtained by substi-
tuting into Eqn. 10.

The current solver is a partitioned FSI solver that is loosely coupled [5].
In this FSI solver, the lift-force of the n−th time-step is transferred from the
aerodynamic solver (DVM) to the structural solver to get the displacements
and velocities in the (n+ 1)− th time-step.

3 Results and discussion

The present study investigates the flow-field and loads generated on an airfoil
(simplified wing) due to the structural response of a simplified insect-flight-
motor [4] subjected to a harmonic forcing. The type of forcing given by
the insect to its flight-motor is unknown and hence, a sinusoidal forcing is
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Figure 4: Structural response at Γ = 85, with phase portrait and FFT

Figure 5: Wake patterns at Γ = 85

assumed in accordance with Brennan et al. [4]. In the present work, the
values of α an β in Eqn. 1 are kept constant and the structural response,

flow-field and loads in a sub-resonance regime (
ω

ω0
= 0.4) are explored by

varying Γ as a control parameter. The control parameter Γ is varied till
no further qualitative changes in the plunge response are observed and the
forcing frequency ω is kept constant at 20 rad s−1. Qualitative changes in
the structural response observed at Γ = 85, 505, 530 and 565 are specifically
discussed in this work.

At Γ = 85, the structural response shows a single-well potential which
is almost single harmonic and has a frequency same as that of the forcing
frequency of 20 rad s−1. These are presented in the phase portraits and FFT
plots in Figure 4. The equivalent khm calculated from the structural response
is ∼ 0.06 (the reduced frequency corresponds to 20 rad s−1). At this khm, for
a rigidly oscillating airfoil, a Kármán type of wake is to be expected. Kármán
wake patterns also generate a non-zero amount of drag when averaged over a
finite time-scale [16]. In the present case, the corresponding drag-producing
von-Kármán wake structures are shown in Figure 5; a mean finite drag of
0.0149 is obtained. The lift-time history is shown in Figure 6 and is also
seen to be predominantly single-harmonic with frequency same as the forcing
frequency, which can be confirmed from the FFT plots.

As the control parameter Γ is increased, the structural response gradually
shows increased influence of higher harmonics. At Γ = 505, it resembles a
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Figure 6: Lift-Time history and corresponding FFT at Γ = 85
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Figure 7: Structural response at Γ = 505, with phase portrait and FFT

triangular waveform as shown in Figure 7. In the associated phase portrait,
one can also see a small kink at the bottom-right corner. The FFT plot
of the structural response at Γ = 505 (Figure 7) shows presence of higher
harmonics at 40 and 60 rad s−1 in addition to the main peak at 20 rad s−1.
The strength of its odd and even multiples at 40 and 60 rad s−1 are small,
compared to the fundamental frequency peak at 20 rad s−1, and contributes
to imparting a triangular shape to the structural response.

Please note that the structural response resembles a kinematics with a
fast upstroke and slow down-stroke. The corresponding flow-field is shown in
Figure 8. A single large clockwise vortex is generated in the upstroke (1Rci);

1Bc2

2Bc2

3Bc2 3Bc1
2Bc1

1Bc1

3Bc0

1Bc3

1Rc3
1Rc2

1Rc1

B : Anti-clockwise vortex

R : Clockwise vortex Suffix: Cycle number

Figure 8: Wake pattern formed at Γ = 505
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Figure 9: Lift-Time history and corresponding FFT at Γ = 505
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Figure 10: Structural response at Γ = 530, with phase portrait and FFT

the down-stroke being comparatively slower, generates three smaller anti-
clockwise vortices from the trailing edge (1Bci, 2Bci and 3Bci), where ( )ci
denotes the cycle number. The clockwise vortex 1Rci pairs with the counter-
clockwise vortex 1Bci. The clockwise vortex 1Rci then undergoes vortex
tearing and pairs with the third anti-clockwise vortex from the previous
cycle 3Bc(i−1) (Figure 8). Hence the final wake pattern from the discussed
plunge movement has a vortex pair in the upper row and two anti-clockwise
vortices in the lower row (Figure 8), and results in an asymmetric wake
pattern. Such wake patterns in plunging airfoils have not been reported so
far in the literature.

The lift-response for this case of forcing at Γ = 505 is given in Figure 9.
The asymmetry in the wake pattern is reflected in the lift time history as
well, as seen in Figure 9. The FFT of the lift-response in Figure 9 shows
large number of odd and even harmonics that are multiples of 20 rad s−1. It
is also interesting to notice that the presence of second and third harmonics
are significantly more compared to the previous case. A positive mean thrust
of 0.0953 is observed in this case.
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Figure 11: Wake pattern formed at Γ = 530
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Figure 12: Lift-Time history and corresponding FFT at Γ = 530

When the forcing amplitude Γ is increased to 530, the structural re-
sponse shows a period-doubling phenomenon (Figure 10). This is clearly
evident from the phase portrait that shows two separate closed loops. The
FFT of the structural response shows two small peaks at 10 and 30 rad s−1,
in addition to the forcing frequency and its harmonics. These smaller peaks
signify the presence of period doubling in the response. The corresponding
flow-field for Γ = 530 is given in Figure 11. They are not qualitatively very
different from the case of Γ = 505 (Figure 8) as the plunge time histories
for both the cases are not qualitatively very different, except the presence
of the period doubling. A clockwise vortex is generated during the faster
upstroke (1Rci) of the kinematics and three anti-clockwise vortices are gen-
erated during the relatively slower down-stroke (1Bci, 2Bci and 3Bci). The
clockwise vortex (1Rci) then pairs with the first anti-clockwise vortex from
the current cycle (1Bci) and undergoes vortex tearing, and finally pairs with
the third clockwise vortex from the previous cycle (3Bc(i−1)). This chain
of events is very similar to the previous case. All the vorticity cycles look
alike and there is no apparent manifestation of period doubling on the wake
structure. The lift time history and the FFT for the case of Γ = 530 is
shown in Figure 12 and is very similar to the case of Γ = 505 presented in
Figure 9. However, the FFT behavior of the lift response shows some dif-
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Figure 13: Structural response at Γ = 565, with phase portrait and FFT

Figure 14: Wake pattern formed at Γ = 565

ferences. In this case, one can see the not so dominant presence of peaks at
the higher harmonics of 10 rad s−1. As the structural response amplitude in
this case in slightly higher, an increase in the mean thrust is observed which
now becomes +0.1238.

Next, Γ is increased to 565 and the structural response is seen to become
chaotic and also shows a double-well potential. This is seen from the phase
portrait and the FFT plot in Figure 13. The corresponding wake structure is
given in Figure 14. There is no identifiable pattern in the wake structures and
hence the flow-field can be considered to be chaotic. The lift-time history,
along with its FFT, is shown in Figure 15. The lift time-history is also
chaotic, and the accompanying FFT plot confirms this by showing a multi-
frequency band.

4 Conclusion

A loosely-coupled FSI solver has been developed by coupling a vortex method
based Navier-Stokes solver with an embedded Runge-Kutta structural solver.
The wake structures and loads generated by the structural response (in
plunge direction only) due to a flexible insect-flight-motor has been stud-
ied. At low values of forcing amplitude Γ, a single harmonic response is
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Figure 15: Lift-Time history and corresponding FFT at Γ = 565

observed. This single harmonic structural response predicts wake structures
and loads similar to that of a rigid airfoil in a sinusoidal plunge motion. Fur-
ther increase in Γ results in multiple frequencies in the structural response
which in turn results in unequal speeds of the up and down strokes of the
airfoil. This results in an asymmetric flow-field, which is also reflected in the
loads. Further increase in Γ shows a period-doubling type of phenomenon.
There are no qualitative changes observed in the flow-field as the shape of
the structural response is unchanged, except for the period-doubling phe-
nomenon. The aerodynamic load is also qualitatively similar except for the
presence of small harmonics at frequencies at half of the forcing frequency.
Further increase in forcing amplitude Γ results in a double-well potential with
a chaotic structural response. This translates to chaotic wake and aerody-
namic loads. Hence, a period-doubling route to chaos has been identified
which is characteristic of a forced damped Duffing oscillator.

This study has been conducted at a sub-harmonic regime, where the forc-
ing frequency is dominant. It would of interest to extend this to a resonance
regime where the natural frequency of the system becomes dominant.
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