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Abstract 
Most geomaterials exhibit localised modes of failure, which appear in the form of shear bands or 
cracks. This appearance could be gradual or very abrupt, depending on the type of materials and 
also loading conditions. In particular, failure of rocks or concrete is very abrupt in tension and 
indicates the brittle nature of these materials under such conditions, while in compression regime 
and under increasing confining conditions, their failure gradually becomes more ductile with the 
onset and propagation of shear bands. The orientation and size of shear bands and/or fracture 
process zones in localised failure vary with the loading and materials. As a consequence, a correct 
description of geomaterial behaviour must take into account all these characteristics of failure. This 
is however not always the case in constitutive modelling of geomaterials, and while working well 
under homogeneous condition, most (if not all) existing models do not possess details on the size 
and orientation of localisation zones when localised failure takes place. This prevents them from 
capturing correctly the failure behaviour of the materials, the most important characteristic of which 
is size effect. We present in this study a new approach to incorporating both size and orientation of 
localisation zone in constitutive models for geomaterials. The concepts together with technical 
details, and preliminary results are presented to show the potentials of the new approach. 
 
Keywords: Localisation, Size effects, Geomaterials, Constitutive Modelling 

Introduction 

Constitutive models play a key role in correctly predicting load carrying capacity and failure of 
materials and structures. They give a mathematical description of material behaviour under different 
loading conditions, and it is essential that this description follows closely the observed behaviour of 
materials in experiments and/or real life. This requires not only advanced experimental techniques 
for better understanding of material behaviour, but also a generic and strong theoretical framework 
to transfer this understanding to a constitutive model. In geomaterial modelling, while the 
experimental part has been advancing quickly in the last few decades, with sophisticated techniques 
such as X-Ray and Digital Image Correlation [Alshibli and Sture (1999); Desrues and Viggiani 
(2004), Réthoré et al (2007)] for the observation of failure initiation at the micro scale, in our 
opinion, the development of a theoretical framework to accommodate these experimental 
development is still lagging behind. Despite the developments of more and more advanced 
constitutive models, one of the most important features of geomaterial failure - localised failure 
mode and the associated size effect - is still an outstanding issue in constitutive models for 
geomaterials. 
 
Localisation of deformation appears in the form of thin bands such as shear bands in soils or 
fracture process zones in concrete/rock under tensile loadings. The material outside a localisation 
band usually unloads elastically, giving the indication that most (or all) inelastic behaviour happens 
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inside this thin band. In addition, while the orientation of a localisation band depends on loading 
conditions [Runesson and Ottosen (1991)], the size and behaviour of the material inside this band 
are material characteristics. It can be seen that classical continuum models utilise a single stress-
strain relationship under both diffuse and localised modes of failure; this is not adequate, due to 
lack of details on the size and behaviour of the localisation band to capture correctly localised 
failure of the material. A correct description of failure must, therefore, account for the transition 
from diffuse to localised mode, and the progression of material failure beyond that. In this sense, 
most existing models ignore localised failure and size effect issues, either partly or completely, in 
the model developments and interpretation/mapping of experimental data. In particular, they 
possess no details on the size, orientation and evolution of the localisation band. As a consequence, 
their behaviour does not scale with the volume, and hence size effects cannot be captured. This 
requires ad hoc treatments incorporated later, after the model development, should these models be 
used in the analysis of failure that involves numerical methods for the solutions of boundary value 
problems. Typical examples of these treatments are the nonlocal/gradient regularisation [Bažant and 
Lin (1988); de Borst and Muhlhaus (1992)], and viscous regularisation [Forest, E. Lorentz (2004)], 
with several corresponding applications in geomaterial modelling [Pedersen et al (2008); Nguyen 
and Einav (2010); Das et al (2013)]. Other examples to overcome deficiencies of existing 
continuum models in capturing localised failure and size effects involve enhancements to the 
discretisation techniques (e.g. finite element methods) to correctly describe the kinematics of 
localised failure and behaviour. 
 
In this study, we start from a key characteristic of localisation in constitutive modelling of 
geomaterials: kinematics of localised failure, and enhancement is developed after enriching the 
kinematics of constitutive models. In this sense, an enriched constitutive model will possess more 
than one stress-strain relationships to correctly describe different material behaviours in- and out-
side the localisation zone. Size effects are automatically taken into account thanks to the intrinsic 
material length scale in the framework. A new formulation will be established and applied to 
different kinds of existing constitutive models. Numerical examples at the constitutive levels are 
used to illustrate key features of the new theoretical framework. 

Kinematic enrichment at the constitutive level 

Localised deformation takes place at certain stage of the deformation process (Fig. 1), with the 
onset and propagation of localisation band, where inelastic response occurs. This leads to incorrect 
representation of the deformation if a single homogeneous strain is used, as in classical continuum 
models (Fig. 2). In other words, the strain in the volume where constitutive model is defined is no 
longer homogenous, while homogenised deformation is considered only appropriate inside the 
localisation zone and the bulk material outside it.  
 

 

 
 

 
Figure 1. Diffuse and localised stages. Figure 2. Observed localised failure and classical 

assumption of homogenous deformation. 
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In this section, the connection between the averaged (macro) stress 𝛔 and averaged (macro) strain 𝛆 
over the domain Ω crossed by a localisation band (Figs. 1 & 2) is derived by coupling the response 
of the material inside and outside the localised region. For the volume of consideration, the stresses 
and strains for materials inside the localisation band and outside the homogeneous bulk are denoted 
as 𝛔!, 𝛆!  and 𝛔!, 𝛆!  respectively. 
 
As can be seen in Fig. 2, two strain measures and correspondingly two stresses are required to 
capture correctly localised deformation, while for backward compatibility with existing numerical 
codes that takes a single stress-strain relationship, a macro stress-strain relationship is needed. For 
this, the macro strain rate is defined as the volume averaged quantity: 

 𝜺 = 𝑓𝜺! + 1− 𝑓 𝜺! (1) 

in which 𝑓, the volume fraction of the localisation zone, is defined as the ratio between the width ℎ 
of the localisation zone and the effective size 𝐻 of the volume element: 

 𝑓 = !!
!
= !

!
 (2) 

where 𝐴 is the surface area of the localisation zone. The strain inside the localisation zone takes the 
following form (Nguyen et al, 2012): 

 𝜺! =
!
!
𝒏⊗ 𝒖 !  (3) 

where 𝒏 denotes the normal vector of the band and 𝒖  is the relative velocity between opposite 
sides of the localisation band. We note that homogeneous term was ignored in the above equation, 
on the assumption that the deformation inside the localisation zone is usually of higher order of 
magnitude than that in the bulk volume containing it [Vardoulakis et al (1978), Vardoulakis and 
Graf (1985a; 1985b)]. This simplifies the formulation and also makes it adaptable to other cases of 
quasi-brittle modelling (Nguyen et al, 2014). The macro stress in this case cannot assume a volume 
averaged form, but needs to be worked out from the virtual work equation in the following form: 

 𝝈: 𝜺 = 𝑓𝝈!: 𝜺! + 1− 𝑓 𝝈!: 𝜺! (4) 

Substituting (1) and (3) into the above and after some rearrangement, we have: 

 !
!
𝒕− 𝒕! ∙ 𝒖 + 1− 𝑓 𝝈− 𝝈! : 𝜺! = 𝟎 (5) 

in which 𝒕 = 𝝈 ∙ 𝒏 and 𝒕! = 𝝈! ∙ 𝒏 are the tractions associated with the macro stress and the stress 
inside the localisation zone, respectively. 
 
Since the strain rate and velocity jumps are arbitrary the following conditions are obtained: 

 𝒕 = 𝒕!, and 𝝈 = 𝝈! (6a,b) 

Given 

 𝛔! = 𝐃! : 𝛆!, and 𝛔! = 𝐃!!: 𝛆!    (7a,b) 

as generic constitutive behaviours for the macro volume element and the localisation zone, with 𝑫! 
and 𝑫!

! being the corresponding tangent stiffnesses, using equations (1, 3, 6), we can solve for the 
velocity jump as: 

 𝒖 = !
!
𝒏 ∙𝑫! ∙ 𝒏 + !!!

!
𝒏 ∙𝑫!

! ∙ 𝒏
𝑪

!!
∙ 𝑫!: 𝜺 ∙ 𝒏 (8) 
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Substituting (1, 3 and 8) into (7a) and rearranging the obtained expression, we get the macro stress-
strain relationship in the rate form as: 

 𝝈 = !!!
!
𝑫!: 𝜺−

!
!
𝒏⨂ 𝑪!! ∙ 𝑫!: 𝜺 ∙ 𝒏 !  (9) 

in which tensors 𝑨! = 𝒏 ∙𝑫! ∙ 𝒏 and 𝑨! = 𝒏 ∙𝑫!
! ∙ 𝒏 are the acoustic tensors associated with the 

tangent stiffness outside and inside the localisation band, respectively. Further details on the 
approach can be found in Nguyen et al (2012 & 2014). 

Numerical implementation 

As mentioned in the previous section, the enriched approach focuses on the post-localisation 
behaviour which means it is active only when localised failure has been detected. Bifurcation 
analysis, therefore, is of crucial importance and is presented in this section. Later, the implicit stress 
update algorithms for the enriched approach is given. 

Onset and orientation of localisation band 

The deformation behaviour of geomaterials under some specific circumstances can bifurcate from 
homogeneous to inhomogeneous localisation. There are several equivalent methods used for 
detecting that bifurcation point [Rudnicki and Rice (1975); Ottosen and Runesson (1991); Nielsen 
and Schreyer (1993)]. The loss of positive definiteness of the acoustic tensor is used in this paper as 
the indication of the onset of a localisation band. The normal vector 𝐧 determines the orientation of 
the localisation band and also indicates the occurrence of the discontinuous bifurcation by the loss 
of positive definiteness of the acoustic tensor 𝐀 associated with the tangent stiffness 𝐃 [Schreyer 
and Nielsen (1996); Chambonet al. (2000)]: 

 det 𝑨 = det 𝒏 ∙𝑫 ∙ 𝒏 ≤ 0 (10) 

 
Figure 3. A spherical coordinates, after Wolfram 

 
Using a standard spherical coordinates and define 𝜃 to be the azimuthal angle in the xy-plane from 
the x-axis with 0 ≤ θ ≤ 2π and 𝜙 the zenith angle from the z-axis with 0 ≤ ϕ ≤ π, Fig. 3, the unit 
direction vector can be defined as following: 

 𝒏 =
𝑛!
𝑛!
𝑛!

=
sin𝜙 ∙ cos θ
sin𝜙 ∙ sin θ
cos𝜙

 (11) 

The matrix form of 𝒏, derived from the equation used to calculate the traction vector from the stress 
vector, is: 
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 𝒏 =

𝑛! 0 0
0 𝑛! 0
0 0 𝑛!
𝑛! 𝑛! 0
0 𝑛! 𝑛!
𝑛! 0 𝑛!

 (12) 

For the case of incrementally multi-linear models such as classical elasto-plastic models, a wide 
range of orientations can be physically admitted [Ottosen and Runesson (1991); Chambonet al. 
(2000)] hence it is determined through minimization of det 𝑨  provided that det 𝑨 ≤ 0  [Sanborn 
and Prevost (2011)]. 

Implicit stress return algorithm 

After the bifurcation point, a post-localisation analysis is performed with two distinct solutions of 
stresses and strains for the zones inside and outside the band. In this approach the macro stress 
coincides with the stress outside the localisation zone, whilst the macro strain is computed from the 
inside and outside strains and the volume fraction f. This section presents the stress update 
algorithm used in the enhanced approach. 
 
Following the implicit algorithm, the traction equilibrium across the discontinuity plane is rewritten 
in the residual form as following: 

 𝒓 =   𝝈 ∙ 𝒏− 𝝈! ∙ 𝒏 (13) 

then the iterative scheme is performed so that the norm of this residual is zero, indicating a 
converged solution in which the equilibrium across the discontinuity plane has been met. A first 
order Taylor expansion of the above equation at the state of the last iteration can be written as: 

 𝒓!"# = 𝒓!"# + 𝛿𝝈 ∙ 𝒏− 𝛿𝝈! ∙ 𝒏 (14) 

After some arrangement the following relation between the residual and the increment displacement 
jump is obtained: 

 𝒓!"# = 𝒓!"# − !
!!!

!
!
𝒏 ∙𝑫! ∙ 𝒏 + !

!
𝒏 ∙𝑫!

! ∙ 𝒏 ∙ 𝛿 𝒖  (15) 

Enforcing the requirement of 𝒓!"# = 0 leads to: 

 𝛿 𝒖 = !
!!!

𝑪
!!
∙ 𝒓!"# (16) 

Once 𝛿 𝒖  is calculated, the iterative strain inside the localisation band is computed as: 

 𝛿𝜺! =
!
!
𝒏⊗ 𝛿 𝒖 ! (17) 

then the stress increment 𝛿𝝈! is updated along with internal variables for the material inside the 
band and the tangent stiffness 𝑫!. The convergence criteria is defined as: 

 𝒓!"#

𝝈∙𝒏
≤ TOLERANCE (18) 

with TOLERANCE is a sufficiently small positive number. 
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A constitutive model based on breakage mechanics 

The theoretical aspects and numerical implementation of the enriched approach are given in the 
previous sections. This section presents a specific constitutive model which will be used with the 
enriched approach to illustrate its capabilities. A breakage constitutive model [Einav (2007a)] is 
used to describe the behaviour of the material inside the localisation zone. First, a brief description 
of the breakage model is given including the stress-strain relationship, yield condition and tangent 
stiffness tensor; then performances of the model with and without using the enriched approach are 
given. For the shake of simplicity, the responses obtained without using the enriched approach are 
named “homogeneous”, whereas the responses obtained using the enriched approach are named 
“localised” indicating that the localisation behaviour has been taken into account.  

Model description 

The breakage mechanics theory for crushable granular materials [Einav (2007a)] is built on the 
micromechanics of grains, using statistical homogenisation to upscale the grain-scale energy 
potential to obtain the macro energy potential of the continuum model. A simple breakage model 
proposed by Einav [2007b] and later improved by Nguyen and Einav [2009] is considered in this 
study. The following standard notations are used: bulk and shear modulus 𝐾 and 𝐺, mean effective 
stress and deviatoric shear stress 𝑝 and 𝑞, total and elastic volumetric strain 𝜀!  and 𝜀!!, total and 
elastic deviatoric shear strain 𝜀!  and 𝜀!!, total and deviatoric stress tensor 𝜎!" and 𝑠!", and total, 
elastic and plastic strain tensors 𝜀!" , 𝜀!"!  and 𝜀!"

! , the Kronecker delta 𝛿!". 
 
The stress-strain relationship in the triaxial stress space is: 

 𝑝 = 1− 𝜗𝐵 𝐾𝜀!! (19) 

 𝑞 = 3 1− 𝜗𝐵 𝐺𝜀!! (20) 

The above relationships can also be written in tensorial form as: 

 𝜎!" = 1− 𝜗𝐵 𝐷!"#$𝜀!" (19) 

in which 𝐷!"#$ is the linear elastic stiffness tensor. The grading index 𝜗 is a result of the statistical 
homogenisation, and can be obtained from the initial and ultimate grain size distributions (gsd). 
Physically 𝜗 is related to the crushing potential of the materials and admits values from 0 to 1. The 
breakage variable 𝐵 represents the degree of grain crushing, and is used to linearly interpolate the 
current gsd from the initial and ultimate gsd’s [Einav, 2007a]. 
 
Einav [2007b] derived an elastic-plastic-breakage yield criterion, written in the mixed stress-
breakage energy space as: 

 𝑦! =
!!! !!!

!!
+ !

!"

!
− 1 ≤ 0 (22) 

where 𝑀 is the slope of the critical state line in the 𝑝 − 𝑞 space; 𝐸!  is the critical breakage energy 
which is computed from the critical crushing pressure during isotropic loading condition 𝑃!"  as: 

 𝐸! =
!!"! !
!!

 (23) 

𝐸! is the breakage energy, the thermodynamical conjugate to the breakage variable 𝐵, and has the 
form: 
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 𝐸! =
!

! !!!" !
!!

!
+ !!

!!
 (23) 

The evolution laws for the breakage and plastic strains can be written as: 

 d𝐵 = d𝜆 ! !!! !!! !"#!!
!!

 (24) 

 d𝜀!"
! = d𝜆 − ! !!! !!! !"#!!

!!!

!!"
!
+ !!!"

!!!!
 (25) 

in which d𝜆 is the nonnegative breakage/plasticity multiplier; 𝜔 is a parameter that couples the 
plastic volumetric deformation with grain crushing. Physically 𝜔 represents the pore collapse of the 
material due to grain crushing and reorganisation [Einav (2007a; 2007b)].  
 
The incremental stress-strain relationship can be written as: 

 d𝜎!" = 𝐿!"#$d𝜀!" (26) 

where the elastic-plastic-breakage tangent stiffness tensor 𝐿!"#$ has the form [Nguyen & Einav, 
2009]: 

 𝐿!"#$ = 1− 𝜗𝐵 𝐷!"#$ −
!!!" !!"!!"!!"#$

!!"!!"!
!"
!!

 (27) 

in which: 

 𝑋!" = 1− 𝜗𝐵 𝐷!"#$
!!!"

!

!!
+ !!!"

!!!"
 (28) 

and 𝑌!" =
!"
!!!"

 (29) 

Behaviour of the breakage model 

For the illustration of the behaviour of the breakage model, a triaxial drained test simulation is 
performed at the constitutive level on the highly porous Bentheim sandstone. In the context of the 
triaxial test, the confining pressure p0 means the initial isotropic confining pressure and this 
confining pressure is maintained horizontally during a strain-controlled axial loading. 
 
Bentheim sandstone exhibits significant compactive behaviour and distinct compaction bands in 
experiments [Wong et al. (2001)]. Material parameters of Bentheim sandstone are taken from the 
reported experimental data and calibrated parameters [Wong et al. (2001), Das et al. (2011)]: bulk 
stiffness 𝐾 = 138333 MPa, shear stiffness 𝐺 = 7588 MPa, critical breakage energy 𝐸!  = 4.67 MPa, 
critical state parameter 𝑀 = 1.7 MPa, grading index 𝜗 = 0.85 and  𝜔 = 70o. 
 
Fig. 4(a, b) presents the homogeneous responses of the breakage model in the drained triaxial test 
with different initial confining pressures. The increasing hardening of the breakage model is 
consistent with the experimental data [Baud et al (2004)] and represents the compactive cataclastic 
flow regime in which the stress-strain relationship is hardening and the porosity decrease 
monotonically with deformation [Wong et al. (2001)]. At the onset of inelastic deformation, 
localisation analysis is carried out following the classical bifurcation condition, Eq. (10-13). It is 
revealed that for all three confining pressures of 120, 180 and 240 MPa, bifurcation points exist and 
the corresponding inclination angles 𝜙 of the localisation surfaces are 35o, 15o and 0o, respectively. 
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Because of the symmetry in the triaxial loading condition, the angle 𝜃 (Fig, 3) is 90o in all three 
cases. 

  
(a) Homogeneous response, 𝜀! − 𝑞 (b) Homogeneous response, axial σ-ε 

  
(c) Localised response, 𝒇 = 𝟎.𝟐𝟓, 𝜀! − 𝑞 (d) Localised response 𝒇 = 𝟎.𝟐𝟓, axial 𝜀 − 𝜎 

Figure 4. Triaxial loading at different confining pressure 
 

Fig. 4(c, d) depicts the localised responses following the enriched framework with the volume 
fraction f = h/H = 0.25 in the same loading conditions and given parameters. It is clear from Fig. 4 
that localisation changes the material behaviour not only quantitatively but also qualitatively. The 
homogeneous behaviour is hardening but the localised behaviour, following the enriched 
framework, first exhibits softening associated with the activation and evolution of a localisation 
band, followed by hardening with the slope of the macro hardening much larger than that of the 
homogeneous hardening. Details of the localised behaviour are analysed in the next section. 
 
Fig. 5 presents the initial yield envelopes obtained from the given constitutive parameters. The 
range of stress state along that initial yielding surface, in which the localisation bands most likely 
occur, is predicted numerically. In very high pressure regime, no localisation is observed which 
may be due to diffuse compaction band formation over the entire sample under high confining 
pressure [Wong et al. (2001)]. In such cases, the deformation may evolve into cataclastic flow 
without localisation [Das et al. (2011)]. However, as pointed out by Besuelle [2001], 
extension/dilation shear bands can form in Bentheim sandstone at low confining pressures. Note 
that the material behaviour at low confining pressures is not yet captured by this version of the 
breakage model. Fig. 5 also indicates that the inclination angle of the compact band varies from 0o-
35o with the variation of the pressure regime, which implies that the localisation band is compactive 
dominant. In the high pressure regime, the angle is 0o which implies a pure compaction localisation 
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band; whereas in the medium pressure regime, the angle is about 30o-35o which implies a 
compactive shear localisation band. 

  
Figure 5. Predicted zone of localisation Figure 6. Contours of the determinant of the 

acoustic tensor 
 
Fig. 6 presents the contours of the determinant of the acoustic tensor against the band orientation 
angle and the normalised mean stress (𝑝 𝑃!" in which 𝑃!" = 389.87 MPa) at the onset of crushing. 
In Fig. 6, the inner zone denotes negative determinant of the acoustic tensor which implies that 
localisation is possible only within this zone. It is clear from Fig. 6 that for a given stress state there 
is a set of inclination angles that are physically admissible in forming a localisation band. In the 
post-localisation analysis, only the angle with the minimum value of the determinant of the acoustic 
tensor is chosen as the inclination angle of the localisation band. 

Size dependent behaviour 

In this section, the performance of the enriched approach is investigated in details. The post-
bifurcation responses of the Bentheim sandstone during the drained triaxial test are given in the first 
section; in the second section, the size dependent behaviour is proven by studying the influence of 
the localisation band width h on the macro responses.  

Post-bifurcation responses 

The stress-strain responses during the drained triaxial test at different confining pressures obtained 
by using the enhanced framework are given in Fig. 7; the general responses (q-εs) are given in Fig. 
7(a, c) whereas the responses on the loading direction – in short: the axial response – (σ-ε) are given 
in Fig. 7(b, d). Two confining pressures of 180 and 240 MPa, corresponding to two inclination 
angles of 15o and 35o of localisation bands, as calculated in the previous section from the 
bifurcation analysis, are applied. In these analyses, the volume fraction f is chosen to be 0.25. 
 
It is clear from Fig. 7 that the general and axial homogeneous behaviours are always hardening 
whereas the macro localised behaviours are more complex. Initially after localisation, the 
mechanism of elastic unloading for the material outside the band and plastic hardening for the 
material inside the band dominates, leading to a steep softening behaviour for the macro material. 
However when the load reaches a minimum, the outside material starts behaving elastically, the 
macro softening terminates and the macro response is hardening. This hardening phase is then 
dominated and the localised hardening slope is much larger than the homogeneous hardening slope.  
 
The general response of the material inside of the band is hardening with the long-term localised 
hardening slope is smaller than the homogeneous one, Fig. 7(a, c). This can be explained from the 
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fact that in the localised situation, only a band with the volume fraction f = 0.25 exhibit a hardening 
behaviour whereas in the homogeneous situation the whole sample is undergoing hardening 
deformation. It is also noted that the initial hardening slope in the localised response is larger with 
the larger confining pressure. This can originate from different types of the localisation bands at 
different confining pressures which changes from a compactive shear band, Fig. 7(a) with φ = 35o to 
a pure compaction band, Fig. 7(c) with φ= 0o. On the loading direction, Fig. 7(b, d), the axial 
response of the inside material is first softening and then hardening which is analogous to how the 
macro behaviour is.  

  
(a) p0 = 180 MPa, q-εs (b) p0 = 180 MPa, axial σ-ε 

  
(c) p0 = 240 MPa, q-εs (d) p0 = 240 MPa, axial σ-ε 

Figure 7. Responses at different confining pressure, f = 0.25 
 
Since the homogeneous behaviour of the breakage model in drained triaxial tests is hardening, the 
initial strong softening behaviour originates from the kinematics enhancement occurred with strain 
localisation. Gajo et al [2004] also observed this saturation process and suggested that another 
mechanism of strain hardening is occurring inside the band, induced by the contractive behaviour of 
the material. It is worth mentioning that as the hardening phase is reached – or the band saturation 
process continues, at a certain point the material outside the localisation zone will reach the yield 
condition. At this point, a localised inelastic deformation occurs outside the band while the material 
inside the band starts elastic unloading, as suggested by Gajo et al [2004]. This behaviour is, 
however, not considered in this paper.  

Effects of localisation band width 

There is considerable experimental evidence on the relation between the shear band thickness h and 
the mean grain size d50 [Scarpelli and Wood (1982); Vardoulakis et al. (1985a; 1985b); Muhlhaus 
and Vardoulakis (1987)], usually given in the form: 
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 ℎ = (10÷ 15)𝑑!" (30) 

This band width h is of a great importance in understanding and numerical modelling of progressive 
failure in granular materials [Gudehus (1978); Muhlhaus and Vardoulakis (1987)]. In this section, 
the size dependent behaviour in the drained triaxial test is investigated by varying the value of h 
whilst keeping H constant which means the volume fraction f is changed. Three values of f are 
chosen 0.25, 0.50 and 0.75, and two confining pressures of 180 and 240 MPa are applied. 

  
(a) p0 = 180 MPa, inside (b) p0 = 180 MPa, macro 

  
(c) p0 = 240 MPa, inside (d) p0 = 240 MPa, macro 

Figure 8. Size dependent behaviour on q-εs response 
 
It is clear from Fig. 8 (a, c) that the response of the material inside the localisation band is 
independent of the value of f. This independence implies that the macro dissipation energy, which 
only takes place inside the localisation band, scales linearly with the volume fraction of the band. 
Fig. 8 (b, d) illustrates that a size effect is exhibited since the macro response is strongly affected by 
the value of f. Since all of the dissipation energy occurs only inside the localisation band, apparently 
the smaller the value of f, the steeper the macro softening experiences initially. It can also be seen 
from Fig. 8 (b, d) that the band saturation process occurs at larger strain magnitude for the larger 
value of f which is explained by the fact that the localisation area is larger. Moreover, with a larger 
value of f, the influence of the elastically loading behaviour of the outside material on the 
subsequent hardening of the macro becomes smaller which is indicated by the smaller value of the 
hardening slope, Fig. 8 (b, d).  
 
The experimental validation of the proposed constitutive model is shown in Fig. 9. The same set of 
parameters for the breakage model obtained from experimental data on Bentheim sandstone (see the 
preceding section on the breakage model) was used. A volume fraction f=0.35 needed for the 
enriched model was estimated from the experimental figures in [Baud et al (2004)]. We know that f 
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is evolving during failure of the material, so the fixed value of f=0.35 is used merely as a rough 
estimation to explore the trend of the material behaviour. 

  
(a) p0 = 180 MPa (b) p0 = 250 MPa 

Figure 9. Validation of model response under different confining pressures 
 
As can be seen in Fig. 9, the softening behaviour at the onset of localised failure, followed by 
hardening due to an increase of the density as a result of compaction, can be captured by the 
enriched model, while the original breakage model always exhibits a hardening trend. This 
preliminary result should serve as a basis for future improvements of the both the breakage model 
and the enrichment framework.  

Conclusions 

Theoretical development, numerical implementation and performance of a new constitutive 
modelling framework were presented in conjunction with the use of a model based on breakage 
mechanics for exploring localised failure in sandstone. The results explain the response of the 
material inside and outside the localisation band and how they influence the macro response. This 
helps improve both the performance and capacity of constitutive model in capturing post-
bifurcation behaviour of geomaterials. Although the enriched approach provides a good 
understanding on the influence of the localised deformation, it is not adequate yet to capture 
correctly the material behaviour with oscillation in the macro response due to the gradual formation 
of several compaction bands during loading [Wong and Baud (2012); Das (2012)]. With that 
evolution of the localisation behaviour, inelastic behaviour outside the band must be also taken, and 
this is a subject of an on-going research. 
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