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PREFACE

Dear Friends and Colleagues,

On behalf of the organizing committee and the co-chairs, we would like to welcome you to the 7th
International Conference on Computational Methods (ICCM2016) at Berkeley, California, USA,
between August 1% and 4™, 2016. The conference aims at to provide an international forum for scholars,
researchers, industry practitioners, engineers, and graduate and undergraduate students to promote
exchange and disseminate recent findings on both contemporary and traditional subjects in computational
methods, numerical modeling and simulation, and their applications in science and engineering. It
accommodates presentations on a wide range of topics to facilitate inter-disciplinary exchange of ideas in
science, engineering and allied disciplines, and helps to foster collaborations.

Computational Modelling and Simulation are fundamental subjects in engineering and sciences. They can
be applied to many of the primary engineering disciplines, including Aerospace, Bio-medical, Civil,
Chemical, Mechanical, and Materials Engineering among others. Computational Modelling and
Simulation cover a broad range of research areas, from conventional structural and mechanical designs,
failure analysis, dynamic and vibration analysis, and fluid mechanics to cutting-edge computational
mechanics, nano-micro mechanics, multiscale mechanics, coupled multi-physics problems and novel
materials. This is reflected in the variety of fields featured in the conference topics.

The genesis of the ICCM series dates back to 2004, when the first ICCM2004 conference was held in
Singapore founded and chaired by Professor Gui-Rong Liu, followed by ICCM2007 in Hiroshima, Japan,
ICCM2010 in Zhangjiajie, China, ICCMZ2012 in Gold Coast, Australia, ICCM2014 in Cambridge, UK,
and ICCM2015, Auckland, New Zealand. The present ICCM conference in Berkeley, USA encompasses
over 330 oral presentations in 68 technical sessions, including 2 Plenary Talks, 6 Thematic Plenary Talks,
and a number of Keynotes.

The ICCM conference is unique in the sense that it showcases the current developments and trends in the
general topic of Computational Methods and their relationship to global priorities in science and
engineering. The papers scheduled for presentation at ICCM address many urgent and grand challenges
in modern engineering and sciences. All ICCM abstracts and full papers were peer-reviewed by
independent reviewers. Selected papers may be invited to be developed into a full journal paper for
publication in special issues of some international journals. These papers encompass a broad range of
topics related to computational mechanics, including applied mechanics theory and formulation,
computational methods and techniques, modelling techniques and procedures, nano and macro-
mechanics of materials, dynamics, manufacturing, biomechanics, processing of advanced materials,
welding and joining, surface engineering and other related processes.

We would like to express my gratitude for the contributions of all ICCM2016 participants and presenters
at this international event. We gratefully acknowledge the contributions from the International Scientific
Committee, Mini-Symposium Organizers, and the expert reviewers and volunteers for their efforts and
assistance in the organization.

Finally, we would like to thank you for your contribution to the ICCM2016 conference. We are looking
forward to your participation and continued engagement for the future ICCM conferences.

Professor Shaofan Li Professor Gui-Rong Liu
Conference Chairman, ICCM2016 Conference Chairman, ICCM2016
University of California at Berkeley, USA University of Cincinnati, USA
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Investigation of the Satellite Attitude Control System Performance
Using as Actuator Reaction Wheels
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SUMMARY: Satellite Attitude Control System (SACS) pointing accuracy is dependent of its actuator and
sensor performance and robustness, where the first design requirement can be associated with bandwidth while
the second is related to the ability of SACS to keep performance in face of system parameters variation. One
way to gain attitude control algorithms confidence is through the conjunction of computational methods and
experimental design, which allows hardware and software interface test, besides decreasing the SACS design
cost. As for maneuver pointing accuracy the reaction wheel (RW) is a key actuator, because its disturbance can
influence the accuracy and stability of SACS. This paper studies how the dynamics and the control algorithm
strategy of the reaction wheels with its respective DC motor can influence the performance and robustness of the
SACS control in three axes. To do this one develops a 3D satellite simulator nonlinear model based on the State-
Dependent Riccati Equation (SDRE) method taking into account the RW parameters. One compares the
performance and robustness of the SACS where the RW is commanded by the SDRE control law with algorithm
based on current and speed feedback compensation. Simulations of the computational methods developed have
shown that the RW with speed feedback compensation has improved the SACS performance and robustness.

KEYWORDS: satellite attitude control, reaction wheel.

1. INTRODUCTION

The design of a SACS, that involves plant uncertainties and large angle maneuvers followed by stringent
pointing control, may require new nonlinear attitude control techniques in order to have adequate stability, good
performance and robustness. Experimental SACS design using nonlinear control techniques through prototypes
is one way to increase confidence in the control algorithm. Experimental design has the important advantage of
representing the satellite dynamics in a laboratory setting, from which it is possible to accomplish different
simulations to evaluate the SACS [1]. However, the drawback of experimental testing is the difficulty of
reproducing zero gravity and torque free space conditions. A Multi-objective approach [2] has been used to
design a satellite controller with real codification. An investigated through experimental procedure has been
used by Conti and Souza in [3] for simulator inertia parameters identification. An algorithm based on the least
squares method to identify mass parameters of a rotating space vehicle during attitude maneuvers has been
developed by Lee and Wertz in [4]. The H-infinity control technique was used in [5] to design robust control
laws for a satellite composed of rigid and flexible panels. In the SDRE method, the nonlinear dynamics are
brought to a time-invariant, linear-like structure containing state-dependent coefficients. Infinite-horizon LQR is
then applied to the linear-like structure with the coefficient matrices being evaluated at the current operational
point in the state space. The process is repeated in the next sampling periods therefore producing and controlling
several state dependent linear models out of a non-linear one. The SDRE method was applied in [6] for
controlling a nonlinear rotatory flexible beam system with two-degrees of freedom. However, it did not
incorporate the SDRE filter (Kalman filter ) as a state observer for the SDRE method, so that uncertainties could
be accounted for in the filtering process. This paper studies how the dynamics and the control algorithm strategy
of the reaction wheels with its respective DC motor can influence the performance and robustness of the SACS
control in three axes. To do this one develops a 3D satellite simulator nonlinear model based on the State-
Dependent Riccati Equation (SDRE) method taking into account the RW largest possible number of variables.
One compares the performance and robustness of the SACS where the RW is commanded by the SDRE control
law with algorithm based on current and speed feedback compensation. Simulations results have shown that the
RW with speed feedback compensation has improved the SACS performance and robustness. As a result, the
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simulations has shown the computational feasibility for real time implementation of the SDRE control method
based on speed feedback algorithm in satellite’s onboard computer.

2. SDRE CONTROL METHODOLOGY

The Linear Quadratic Regulation (LQR) approach is well known and its theory has been extended for the
synthesis of nonlinear control laws for nonlinear systems [7]. This is the case for satellite dynamics that are
inherently nonlinear. A number of methodologies exist for the control design and synthesis of these highly
nonlinear systems; these techniques include a large number of linear design methodologies such as Jacobean
linearization and feedback linearization used in conjunction with gain scheduling [8]. Nonlinear design
techniques have also been proposed including dynamic inversion and sliding mode control, recursive back
stepping and adaptive control [9].

Compared to multi-objective optimization nonlinear control methods the SDRE method has the advantage of
avoiding intensive interaction calculations, resulting in simpler control algorithms that are more appropriate for
implementation on a satellite’s onboard computer.

The Nonlinear Regulator problem for a system represented in the State-Dependent Riccati Equation form with
infinite horizon, can be formulated by minimizing the cost functional given by

1 (o)
JGow) = 5 (<"Q()x+uR(x)u )dt €Y)
to
with the state x € R™ and control u € R™ subject to the nonlinear system constraints given by

x=f(x)+ B(x)u
y=C(x)x (2)
x(0) = x,

where B € R™™ and C are the system input and the output matrices, and y € R® (R® is the dimension of the
output vector of the system). The vector initial conditions is x(0), Q(x) € R™™ and R(x) € R™™ are the
weight matrix semi defined positive and defined positive.

Applying a direct parameterization to transform the nonlinear system into State Dependent Coefficients (SDC)
representation, the dynamic equations of the system with control can be write in the form

x=A()x + B(x)u 3

with f(x) = A(x)x , where A € R™" is the state matrix. By and large A(x) is not unique. In fact there are an
infinite number of parameterizations for SDC representation. This is true provided there are at least two
parameterizations for all 0 < o < | satisfying

ad; ()x + (1 —a)A(0)x = af (x) + (1 —a)f(x) = f(x) 4

The choice of parameterizations to be made must be appropriate in accordance with the control system of
interest. An important factor for this choice is not violating the controllability of the system, i.e., the matrix
controllability state dependent [B(x) + A(x)B(x) ... A" 1(x)B(x)] must be full rank.

The state-dependent algebraic Riccati equation (SDARE) can be obtained applying the conditions for optimality
of the variational calculus. As a result, the Hamiltonian for the optimal control problem given by Equations (1)
and (2) is given by

1
H(x,u, 1) = 3 TQ)x + uTR()u) + AT(A(X)x + B(x)uw) (5)
where A4 € R™ is the Lagrange multiplier.
Applying to the Eq.(5) the necessary conditions for the optimal control given by x = Z—;’ , % =0 and
A=— z—i, one gets
. 1 .00(x) 1 _9R(x) A0 aBwW]"
— . AT _ T _ _—_—
A=—Q00)x 2x d0x x Zu dx u dx A dx A (®)
x=A0)x + B(x)u (7
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0=R(x)u+ B(x)4 (8)

Assuming the co-state in the form A=P(x)x, which is dependent of the state, from Eq.(8) one obtains the
feedback control law

u= —RYx)BT(x)P(x)x 9
Substituting this result into Eq. (7) one gets
x=Ax)x — B(x)R™*(x)BT (x)P(x)x (10)
To find the function P (x) one differentiates A = P (x) with respect the time along the path from which one gets
A=P)x +P(x)x = P(x)x + P(x)A(x)x — P(x)B(x)R™1(x)B” (x)P(x)x (11)
Substituting Eq.(11) in the first necessary condition of optimal control (Eq.6) one obtains

P(x)x + P(x)A(x)x — P(x)B(x)R™*(x)BT (x)P (x)x

= —Q(x)x — %xT a(éix) x— %uT agix) u— [A(x) + %x] P(x)x
aBWI"
- [—ax ] P(x)x (12)
Arranging the terms more appropriately one has
P(x)x + %xT a(éix) x %uT agix) u+ xT [—a(gix))] P(x)x + [—6 (Ba(z)u)] P(x)
+ [P()AG) + AT()P(x) — P(X)B()R™(x)BT ()P (x) + Q(x)]x
=0 (13)

In order to satisfy the equality of Eq.(13) one obtains two important relations. The first one is state-dependent
algebraic Riccati equation (SDARE) which solution is P(x) given by

P(x)A(x) + AT(x)P(x) — P(x)B(x)R"1(x)BT(x)P(x) + Q(x) = 0 (14)

The second one is the necessary condition of optimality which must be satisfied and it is given by

P(x)x + %xT a(éix) x+ %uT GIZSCx) u+ xT [@] P(x)x + [%] P(x)x

=0 (15)

For the infinite time problem and considering the standard Linear Quadratic Regulator (LQR) problem, this is a
condition that satisfies the optimality of the solution suboptimal control.
Finally, the nonlinear control law fed back by the states has the following form

u= —=Sx)x, with S(x) =R *(x)BT(x)P(x) (16)

For some special cases, such as systems with little dependence on the state or with few state variables, Eq.
(14) can be solved analytically. On the other hand, for more complex systems the numerical solution can be
obtained using an adequate sampling rate. It is assumed that the parameterization of the coefficients dependent
on the state is chosen so that the pair (A(x), B(x)) and (C(x) , A(x)) are in the linear sense for all x belonging to the
neighborhood about the origin, point to point, stabilizable and detectable, respectively. Similar to the LQR
method the SDRE nonlinear regulator need that all states are available to be feedback, otherwise one has to use
the Kalman filter to estimates the data that is not measurable.

3. SIMULATOR MODEL

Figure 1 shows the INPE 3-D simulator which has a disk-shaped platform, supported on a plane with a spherical
air bearing. Considering that the INPE 3-D simulator is not complete build, one assumes that there are three
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reaction wheel configuration set capable to perform maneuver around the three axes and that there are three
angular velocities sensor, like gyros. Apart from the difficulty of reproducing zero gravity and torque free
condition, modeling a 3-D simulator, basically, follows the same step of modeling a rigid satellite with rotation
in three axes free in space.

Figure 1- INPE 3-D simulator three reaction wheels.

The orientation of the platform is given by the body reference system F, with respect to inertial reference system
F, considering the principal axes of inertia and using the Euler angles (6,, 65, 03) in the sequence 3-2-1, to
guarantee that there is no singularity in the simulator attitude rotation. The equations of motions are obtained
using Euler’s angular moment theorem given by

h=g ()
where g and h are the torque and the angular moment of the system, which is given by

h=16+1,(0+a) (18)

where | = diag (l11, I, l35) is the system matrix inertia moment, @ is the angular velocity of the platform, I,

w

= diag (lw1, lwa, lwa) is the reaction wheel matrix inertia moment and Q = (Q,, Q,, Q;) are the reaction wheel
angular velocity.

Differentiating Eq. (18) and considering that the angular velocity of F, is @ and that the external torque is
equal to zero, one has

h+@&h =0 (19)

Substituting Eq.(18) into Eq.(19), the acceleration of the system is

B=(141,)"[ -0 (141,)8-31,0-1,0]

(20)
The simulator attitude as function of the angular velocity is
6 (0  sing,/cosb, cosd, /cosb, o,
6, |=|0 cosé, -siné, o, (21)
6,) \1 sing,sind,/cosd, cosd,sind,/cosd, |\ o,

Here one simulates the angular maneuver which represents the fine pointing mode control where the reaction
wheel is the best actuator, so the state’s x are (8; 6, 65 w; w, w3)T and the control are due to the reaction wheel
velocities (Q; Q, Q3)TOne knows that the reaction wheel generates internal torques and the attitude control is
performed by exchange of angular moment between the reaction wheel and the satellite. From the union of the
Equations (20) and (21) one obtains the matrices A(x), B(x) and C(x) in state space form, which represents the
satellite simulator nonlinear plant (yellow block) as showed in Figure 5. It should be stressed, that a great
advantage of the SDRE method is that it is not necessary to linearize the system. The SDRE method can deal
with the nonlinearities of the system, which here come from the product of the angular velocities of the platform
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and reaction wheel (Eq.(20)) and with the trigonometric function of Eq.(21) associated with the angular position
that represent the attitude of the system.

4. REACTION WHEEL DYNAMICS

In the sequel one derives the reaction wheel dynamics which is triggered by a DC motor as show in Figure 2.
For simplicity, here one ignores the losses due to the transformation of electrical energy into mechanical.
Therefore, the electrical power is equal to the mechanical power given by

V (b)i(t) =T (t)w(t) (22)
V (t) = Ri(t) + Ld:j—(tt) +e(t) (23)
dw(t)

T(t) =Bw(t) + j (24)

Figure 2- DC Motor dynamics representation.

Where R is the electrical resistance of the motor, L is the inductance of the motor, B is the viscous friction of the
motor, J is the moment of inertia of the reaction wheel, w is the angular velocity of the wheel, i is the electric
current of the motor, V is the electrical voltage at the motor terminals and e is the voltage generated due to
movement of the motor rotor within a magnetic flux.

For a permanent magnet motor, the following relationship given below is valid

e(t) = K, w(t) (25)

where K, is associated with the motor tension. One also knows that in an engine of this type the relationship
between torque and current is given by

T = K,i(t) (26)

where Kt is a constant associated with the motor torque. Substituting Eq. (25) into Eq. (23) one has
. di(t
V(1) =Ri(t) + L_d(t) + Kk w(t) 27

Substituting Equation (26) into Equation (24) one has

K.,i(t) = Bw(t) + j% (28)

Arranging the Equations (27) and (28) with the first order terms in the left hand side and the zero order terms in
the right hand one has
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LE=V—Ri—KeW (29)
dt

. dw .

—=K,1-Bw 30
Jdt t (30)

Putting Equations (29) and (30) in the Matlab/Simulink form, one has the block diagram given by Figures 3 and
4, respectively.

Input [radss]

ke
Integradar

w
Output [&] |2

b
Cutput [radss] | < Output [radss=s]

Figure 3 - block diagram of Eq. (29) Figure 4 - block diagram of Eg. (30)

Joining the two block diagrams of the Figures 3 and 4 above, one gets the complete block diagram of the entire
reaction wheel (blue bock) as showed in Figure 5.

5. SIMULATIONS RESULTS

Now one has the Simulink/Matlab model for the Satellite Simulator with Nonlinear Plant (yellow block), the
control system using the SDRE Controller (green block) and the reaction wheel dynamics with velocity or
current feedback (blue block), so grouping them one gets the Complete Simulator System , showed in Figure 5.
In such system one has as input the reference angles to where the SDRE controller must maneuver the satellite
and as output the angles and the angular velocity of the satellite. For simplicity the external torque is zero.

+
b 4

i Dutpt: [dfss]

0_dat
theta o D
Referance

L pwitheta
rad2deg  theta [degre]

v

u P Input [] Output [radi=] 0

] ot l:l
0_det Output [A] > m—benemal torques

radé=Zrpm 1 [rpm)]

v

Controller Reaction wheel Extemnal Plant

SDRE torques -Satellite Simulator

Figure 5 — Entire Simulator with plant of the satellite, SDRE Controller and the Reaction Wheel dynamics.

The satellite simulator model is inertia moment depend, so here one uses 1;; = 1,,=1185.0; 153=1136.0 and for the
DC motors parameters R = 7,3, L =2,5, B =0,00494, J = 2.0, Kt = 0,05, Ke = 0,05. The SDRE controller must
maneuver the satellite from initial angles zeroes to final angles are Thetal = 10°, Theta2 = 5°, Theta3 = - 5°.
The control system has used three different reaction wheel configurations. In the first one the reaction wheel has
no feedback, in the second and thirty configurations one employs velocity feedback and current feedback, as
showed in Figure 6, in order to evaluate the reaction wheel performance for the three cases.

18



ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

[u] diss] —
Output [Adfss] — % utput [rEdiss]

Input [ Output [Edss] —xn

Input 4] Qutput [rEdés]
% Output [4]
Output [4]
Fain Reaction wheel
. React heel
Gain1 sastianwhes Integrater 14 Kt
’\3\134

Figure 6 — reaction wheel block diagram with velocity and current feedback

The first simulation is the design of the SDRE controller where the reaction wheel loop has no feedback. The
SDRE controller gain S(x) depend on matrices of the simulator model A(x), B(x) and C(x), see [16] for details,
and of the tuning matrices Q and R which one assumes the values Q = diag( 1, 1, 1,100, 100, 100) and R
(0.001, 0.001,0.011). Once one has design the SDRE controller the next step is to design the reaction wheel
control loop which can have velocity or current feedback. After some try and error one get the gain K = 50 to
feedback with velocity or current the reaction wheel. The performance of the entire SACS for the previously
angular maneuver is showed in Figures 7, 8 and 9 for each axis angles Thetal, 2 and 3, without feedback and
with feedback of velocity and current, respectively

Thatad

Thital = '\'a]:lml;l faadback
| .-_ =y dback
I - -‘Ir |
- df- 4
¥\
- % S — S | ! = —— E [
= "3 4
II abf L
{ 1R N S
Lr'
% m m ol an 100 130 ‘0 m m ] F7 o0 120 Ko 0 m 5‘5!.‘[ | B0 o 1200
tien | e [i] tempo [2]
Figure 7 — Attitude angle Theta 1 Figure 8 — Attitude angle Theta 2 Figure 9 — Attitude angle Theta 3

In order to investigate the reaction wheel performance one increases its gain to K= 250 and perform the same
previously angular maneuver. Figures 10, 11 and 12 show the SACS action for each angle Thetal, 2 and 3,
without feedback and with feedback of velocity and current, respectively

Theta2 Thetat
- , s 1 - ; 2 g i s Thetad

Teata? [deg)

Thetad [deg]

Figure 10 — Attitude angle Theta 1 Figure 11 — Attitude angle Theta 2 Figure 12 — Attitude angle Theta 3

As one observes the SACS performance has been improved when the reaction wheel gain increases, so one
increases it a bit more to K= 500 and one performs the same angular maneuver. Figures 13, 14 and 15 show that
the SACS performance to control the angles Thetal, 2 and 3 has been deteriorated both with velocity and
current feedback.
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Thlal {deg]

Figure 13 — Attitude angle Theta 1 Figure 14 — Attitude angle Theta 2 Figure 15 — Attitude angle Theta 3

4. CONCLUSIONS

From the first simulation one observes that the SACS with reaction wheel loop using the gain K=50 has better
performance than the SACS with reaction wheel without both velocity or current feedback, since there is an
improvement in the level of the overshoot and the maneuver has been done faster, although one observes that
there is a stead state error when using the current feedback. So one can conclude that increasing the reaction
wheel gain the velocity feedback has better performance that current feedback. In order to investigate this and
to improve the maneuver one has increase the reaction wheel loop gain to K = 250, in that case one notices that
stead state error introduced by the current feedback increase, although the overshoot has decreased. As a result,
one could conclude that increasing the reaction wheel gain the SACS performance using the velocity feedback
in the reaction wheel loop could be better than current. But this is not true since when one increase a bit more
the gain to K = 500, the maneuver using the reaction wheel with velocity feedback has been performed in more
time than the maneuver using K= 250. This just shows that there exists a limit value for the reaction wheel gain
which possible is around 250. Besides, it is important to say that the reaction wheel gain is as function of its axis
since the inertia moments are different for each axis. Finally, one observes that there are two ways to improve
the SACS design, the first one could be using a kind of optimal control technique to obtain the reaction wheel
gains, and the other one is including a Kalman filter to estimate the possible measurements that eventually are
not available to be feedback, since here one has consider that all states are available to be feedback into the
control loop.
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Abstract

Forces are generally defined in physics as functions of position (Newton: gravity) or velocity
(Laplace: magnetic force on a moving electric charge). Damping forces are little known even today
and represent one of the most intriguing subjects of physics. Maxwell elements and fractional
derivatives are used to modelize time domain natural hysteretic damping. The resulting models are
comparatively complicated and have a limited domain of validity especially when strong non-
linearity is involved. The mathematical model we use is based on the introduction of a new state
variable and is particularly suitable in the non-linear vibration case. S.I.D. (Strain Integral
Damping: see ref. [2]) is a very suitable mean to modelize natural hysteretic damping in the time
domain and for nonlinear rubber elements in particular. In the present paper the stress is on
modelling of nonlinear elements. The effectiveness of SID is shown by an example concerning a
strongly non-linear spring. A “’Scilab’’ script is provided to better explain.

Keywords: Natural hysteretic damping, Computational model, Vibration, Engine, Driveline,
Startup

Introduction

Natural damping is only seldom viscous. Natural hysteretic damping is much more common and
can be described as follows in the frequency domain.

If:

M = Mass Matrix K = Stiffness Matrix f = force vectoar & = displacement vector
w = angular frequency

[-*M+K-(1+j-tg(@))]E=F 1)

Where an imaginary part of the stiffness matrix is introduced (tg(¢)). We shall call this 1.S.D.
(Imaginary Stiffness Damping) in the following.

Such a formulation is much used in the frequency domain because it is simple and practical to use
and not because there is a real physical theory behind it. S.1.D. (Strain Integral Damping) wants to
be as simple and practical to use for hysteretic damping modeling in the time domain. The
formulation of SID will be now briefly recalled. See references [2] and [3].
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1 SID Formulation

Force F
Force

[
»

/ Displacement

Figure 1. Hysteresis of a spring-damper

Let us consider the spring-damper of FIG. 1. If x(t) is the displacement at time “’t’” and we apply a
sinusoidal force we shall obtain:

x(t) = X cos(wt) (2)
Velocity “’v’’ and acceleration “’a’’:
v(t) = ;EE = —w X sin(wt) 3)
a(t) = j: — _w? X cos(wt) (4)
The applied force will be:
f(t) = F cos(wt + @) (5)

“’F’” being the force amplitude. We can rewrite:
f(t) = F cos(wt) cos(p) — F sin(wt) sin(¢g) (6)
Following equation (1) the springer-damper stiffness “’k’” is defined by:

F cos(g) = kX (7)
We can then write equation (6) in the form:

f(t) = kX cos(wt) — k tg(p) X sin(wt) (8)

By substituting equations (2) and (3) in equation (8) we obtain:
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v (t]) ©)

£ =k (x(0 +1(0) =
Where we have introduced the same tg(¢) factor of eq. (1).
Now we must express the “’®’’ of eq. (9) as a function of state variables only. We may think of
expressing the “’1/w*’ factor of eq. (9) as the ratio:

1 ‘ ﬂ 1/2 (10)

" la@

But as it is shown in reference [1], forces cannot in general be expressed as functions of the
accelerations and this leads us to define a new state variable which is the solution of the differential

eq.:

i

dy
@Y + x(t) (11)
The solution is:
1]
v(t) = j e~ t=T) r (D)dr (12)
o

The constant “’w;”” is introduced to define as ‘‘remote past’” all events for which:
(t—1) = 1/w, (13)

Such events will have negligible effect on “’y’” (strain integral) and, as a consequence, on the
damping force. We must remark that if “’w;”” is zero, 'y’ goes to infinity for all x(t) whose
average is not zero (spring preloading). This of course wouldn’t be physical. So “’w;’” can be
seen as a high pass filter parameter: it has the same physical dimensions as a frequency and it must
be set well lower than the frequencies of interest but it must not be negligible in comparison with
the frequencies of interest to avoid *’y’’ to go to infinity. We can better understand this by writing
eg. (11) in the frequency domain:

g 1

X tie a4

Where X and Y are the complex amplitudes of “’x’” and *’y’’ respectively. We can see from this
formula that if ® is an angular frequency of interest, it must be w >» w, for *’y’’ to be close to the
integral of “’x’". e, = 1% ) is a possible value.

We can then assume:

Y[

v(t)

By substituting eq. (15) into eq. (9) we easily obtain:

1.

i

(15)
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f(t) = k (x +tg (o) sign(v()) ly(t) v()|"?) (16)

We remark that the term |v(2) »(£)|** has the physical dimensions of a displacement but is
“’phased’” like a velocity.

We assume as initial condition for *’y’:
(t=0)=(y=0) (17)

We can easily see that, with this initial condition, the cycle starts at the origin like the dotted curve
shown in Fig. 1.

Work experience has shown that the introduction of factor “’®;’” in eg. (11) is not enough to avoid
that “’y’” goes to infinity. This problem of course can only exist in case of spring (engine mount)
preloading. The problem is easily solved by the introduction of a moving average in equation (11):

d}:r B . ==
PRl + (x(t) — z(1)) (18)

The moving average ﬁ is defined as the solution of the following differential equation:

dz

e - 19
R Wy Z+ X (19)
The solution is:
3
z(t) = J-e_‘”f:r_r:' x(1) dr (20)
o
And the corresponding weighted moving average:
r
% = f e~@2(t=7) x(7) dr - w, /(1 — e™%2"F) (21)
o
Where:
w, /(1 —e™“2%%) (22)

Is the normalization factor. We can see from eq. (21) that such an average has the important
property that all events of the *’past’’ that happened at time T such that:

(t—1) % 1/w, (23)

Are “’squeezed’’ by the weighting factor:
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e @2(t7T) g q (24)

So that only the most “’recent’” events are really included in the average.
The fact that factor (22) goes to infinity when t=0 is generally avoided by the substitution:

w, [ max(0.0001,1 — e~ %z"F) (25)
In practice we often assume:

Wy = @y (26)
But this is not a general rule: e, depends on the speed by which the “quasi static” preloading varies and
must be set accordingly. Sometimes static preloads are not really constant. For example the engine torque
varies depending on how much the driver presses on the accelerator and “’static’” loads on the mounts will
vary accordingly. In the driveline model of section 4.2 for example we had:

C'A'J'j_: 001, mz = 8
Because of the quickly increasing engine torque due to quickly mounting RPM. The RPM rose
quickly because of simulation of a steep sloping down startup of the vehicle. Consider for example
the famous “Gross Glochner” very steep descent in Austria.

2 Nonlinearity

SID is most useful in nonlinear problems. To introduce non linearity we only need modifying eq.
(16) as follows:

F(£) =spl(x) + k, - tg(¢) sign(v(2)) ly(e) v() [ (27)

Where “’spl’” is a spline representing the non-linear spring and ks is the secant stiffness (very
seldom the tangent stiffness as explained in reference [3]). In references [2] and [3] the user is
provided with useful advice and cautions concerning the practical use of SID. For example the
“boxcar effect” [4] needs sometimes being considered in analyzing results obtained by time step
integration. It must be remarked that assuming the secant stiffness (load divided by displacement) to
drive the damping phenomenon corresponds to assuming damping forces to be proportional to the
loads acting on the nonlinear element. In the author’s experience such an assumption is often closer
to reality than assuming damping forces to be proportional to the differential stiffness.

3 Frequency independence of SID nonlinear cycles (Numerical example)

We are now going to present with a numerical example concerning the property of a SID spring
hysteresis cycle to remain the same whatever the frequency of the imposed displacement. Such a
property is a feature of natural damping as it is observed in physical reality. SID has the remarkable
power of insuring that such a property is verified also in the case of calculation of a strongly
nonlinear spring. The Scilab script in the appendix was used to perform the calculations. By setting
the imposed displacement frequency at 20, 40 and 60 Hz we are now going to see that the cycle
doesn’t change. We can see that the cycle in figure (5) is practically identical to that in figure (3)
although the frequency is twice and that the cycle in figure (7) is again practically identical to that
in figure (3) although the frequency is 3 times higher.
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3.1 Calculation at 20 Hertz.

Figure 2. Displacement

Figure 3. Cycle
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3.2 Calculation at 40 Hertz.
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3.3 Calculation at 60 Hertz.
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4 The kind of models SID is used in

4.1 “Global car model”

Figure 10. “Global car model”

Figure 10 shows a “VelLab” model inclusive of practically everything which is needed to predict a
vehicle startup behavior. Models of the following subsystems are included:

- Starter

- Engine, pistons, crankshaft, links, engine mounts

- Clutch

- Gearbox, gears, differential, transmissions

- Suspensions, dampers, steering apparatus

- Wheels

- Tires

- Rigid or flexible car body and suspension frameworks

- Torsional dampers

4.1.1 Applicability

It is generally possible to devise and validate such subsystems separately and then assemble them in
the global model. Such “global” models are seldom used except for special problems involving the
whole of the vehicle like for example the study of vibration energy transmission from the engine
through the suspensions and to the car body. Animation of this model helps understanding “global”
problems sometimes.
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4.2 “Driveline model”

Figure 11. “Driveline model”

Figure 1 shows a driveline model that was used to study a pendulum damper dynamic behavior. The
starter, gear, differential and wheels are modelized together with the vehicle which is represented by
a big flywheel in such a model.

4.2.1 Applicability

Such models are more often used than the “global” one. The effects of the SHR (wheel longitudinal
vibration) mode can be studied by such a model and SID is used to modelize practically everything
flexible in the model. Only the tire model also includes viscous damping, tire longitudinal stiffness
being concerned.

5 General remarks

SID is of great help in preparing such models because it provides the desired natural damping
behavior. Using viscous damping for example would require adapting the damping to the new
situation every time some eigenfrequencies change because of structural modification. Viscous
damping cycles are in facts strongly frequency dependent. Once the 3 parameters governing SID are
set, instead one can almost forget damping modelling and go on trying new solutions in a most
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expedite way. SID also has the prize of simplicity: it would be very difficult obtaining the same
result displayed in figures 3-5-7 by other methods and by 18 lines of code only (see the script in the
appendix). One can quickly prepare macros that formulate SID for all elastic elements in a model. It
is very important to remark that the phenomena dealt with by such models all start by low levels of
vibration and then soar to higher vibration levels as the transient goes on: this is precisely the kind
of phenomena SID was born to deal with. This is also the reason for the “rising amplitude imposed
displacement” (figures 2-4-6) chosen for the examples of figures 3-5-7 and the corresponding
SciLab script in the appendix.

Conclusions

The validity of a theory can only be proved by its agreement with reliable experimental results like
the well-known result of eq. (5). In this sense SID has been shown to give the kind of results we
expect (see figures 3-5-7). We don’t know whether SID is a *’beable’” which is what the physicists
call something that has a real link with physical reality: only the future can say. We can say
however that it is a very practical and easy method that corresponds, in the time domain, to the
imaginary stiffness damping of eq. (1) in the frequency domain: no physical base to it but
everybody uses it because it is simple and practical (see the general remarks of paragraph 5). SID
only needs three parameters to be defined. SID is a suitable mathematical description of hysteretic
damping and gives fairly physical results when applied to non-linear problems (see figures 3-5-7).
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Appendix

In the following script the variables correspond to:

freqq = frequency

tt =time

dd = displacement

csl = natural hysteretic damping

k1 = linear stiffness

dt = time differential

zh1 = SID w, parameter of eq. (19)

h1 = SID o, parameter of eq. (11)

va = velocity

z1 = solution of eq. (19)

ss1 = solution of eq. (11)

z1lav = moving average of eq. (21)

forcel = force of nonlinear spring: spline spl(x) of eq. (27)

secstiff = secant stiffness: (force/displacement) that is k, of eq. (27)
forcel = after definition of secstiff, it is the total force including damping force

SCILAB SCRIPT
clear;
freqq = 20; figl = 1; fig2 = 2;
tt=(1:4096)/4096; Il = 2* %pi; dd = sin(lI*tt*freqq)/10;
for kk = 1 : 2048; dd(kk) = dd(kk) * tt(kk)/tt(2048); end;
figure(figl); title(FREQ =" + msprintf('%.2f',freqq)); plot(tt,dd,'r'); xlabel('Seconds'); ylabel('Meters");
csil = 0.4; ml = 400; f1 = 2; k1 = (II*f1)*(11*f1)*m1; dt = 1/4096;
ss1 =0;hl1=0.2; z1 =0; zh1 =0.0001; forcel =0.;
forkk =1:4096 - 1;
va = (dd(kk+1) - dd(kk))/dt; z1 = z1 + (-z1 * zh1 + dd(kk)) * dt;
zlav = z1 * zh1 / max(0.0001,1-exp(-zh1*tt(kk)));
ssl =ssl + (-ss1 * h1 + dd(kk)-zlav) * dt;
forcel = (dd(kk))*k1 + 2.*((dd(kk)) > 0.03)*(dd(kk)-0.03)**2*1000000;
secstif = abs(forcel/ (dd(kk)));
forcel = forcel + (-0.*0.15+sign(va))*(abs(ssl * va))**0.5 * secstif * csil;
force(kk) = forcel;
end
dd = dd(1:length(dd)-1); figure(fig2); title(FREQ =" + msprintf('%.2f' freqq)); plot((dd),force,'b");
xlabel('Meters"); ylabel('Newtons');
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Abstract

Eigenvector analysis can be performed to determine the shapes and frequencies of the undampened
free vibration modes of a system. These natural modes provide excellent insight into the behavior of
a particular structure. Eigen vector analysis involves solving the generalized eigenvalue problem,
which considers the stiffness and mass matrix of a structure. When a geometric nonlinear study
must be performed, a situation that commonly occurs in the analysis of slender structures, nonlinear
analysis or a more complete and rigorous evaluation that considers both parts of the total matrix is
required. For instance, slender structures possess a small first frequency of vibration, less than 1 Hz,
and can resonate due to wind excitation. The first frequency and shape of vibration are the most
important parameters for calculating the response of a structure to environmental excitation.
Therefore, when modal analysis depends on the stiffness of the structure, the effect of a reduction in
stiffness on the modal shape of vibration must be determined. To this end, case studies were
evaluated using the finite element method (FEM), considering and neglecting the geometric portion
of the stiffness matrix. Mathematic functions were also applied for comparison.

Keywords: Modal Shape, Geometric Stiffness, Nonlinear Analysis, Computational Simulation,
Mathematic functions, Case Studies

Introduction

For structures with a first natural frequency less than 1 Hz, the dynamic effects of wind are too
important to be considered as pure static effort or deterministic in nature, which would only provide
a rough approximation. Regarding the importance of the dynamic effects of wind, Durbey and
Hansen (1996) su%gested that flexible structures vibrate in different modes, frequencies and shapes
when excited by the wind. Further, they stated that the dynamic effect of wind may allow slender
structures to display resonance.

In many countries, models that consider the effects of wind in design structures are provided by
governing codes. Many of these models consider that average wind speeds produce a static effect,
whereas fluctuations or gusts of wind produce important oscillations, especially in tall
constructions. When dealing with the dynamic response to the average wind speed, fluctuations are
considered to occur in the band of the lower frequencies of the structure. This model of dynamic
analysis was also considered by Simiu and Scalan (1996), who suggested that induced vibration
analysis for floating loads was a necessary model component. Moreover, constructions with a basic
period greater than 1 s and frequencies up to 1 Hz can undergo a floating response in the direction
of the wind. Although the frequencies and vibration shapes of a structure should be considered, the
most important parameter is the fundamental frequency.

Modal analysis and vibration shapes

A classical method for the dynamic analysis of a structure is modal analysis, in which sufficient
information on the system or structure is obtained to reproduce their dynamics. Carrion et al. (2014)
previously indicated that the natural frequencies (eigenvalues) and modes of vibration
(eigenvectors) of the system are relevant information for classical modal analysis. Carrion further
stated that a well-known concept used in the finite element method (FEM) is the stiffness matrix,
which is used to relate the external forces applied at the nodes of the structural element to the nodal
displacement.

Structural dynamics can be employed to obtain solutions to homogeneous differential equations, the
shape of which represents vibration modes that exist in the coordinate system at the same frequency
range and occur harmonically in time. The equation describes the vibration of the system according
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to a normal mode of vibration and corresponds to the frequency. After deriving the solution twice
with respect to time and canceling the harmonic function, the homogeneous algebraic equations
shown in Eq. (1) were obtained. In the equation, «~ are the eigenvalues, and @ are the eigenvectors

in the FEM environment.
[K]-o?[m]] {o} = 0 @

[K] is the total stiffness matrix, which is composed of two parts, one being conventional, as shown
In Eq. (2), the other being geometric, as shown in Eq. (3). [M] is the known mass matrix, pertaining
to modal analysis with geometric nonlinear characteristics. When the mass matrix is a discrete mass
distribution (lumped mass) of the structural system, a diagonal matrix containing the masses and
moments of inertia for the nodal displacements is obtained.
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The mathematic solution to the dynamic problem is a polynomial equation of degree n that contains
the variable &’ and is common(ljy known as the frequency equation. The n solutions for « are real
and positive and are considered the natural frequencies of the system. The smallest frequency is
typically denoted as an, while the largest frequency is denoted as @,. Thus, n modes of vibration
can be determined and collected in a modal n x n matrix, which contains columns representing the n
modes of undampened, normalized free vibration (Brazil, 2004). Each pair of eigenvalues and
eigenvectors corresponds to a frequency and mode of vibration for the system. To consider values
and characteristic vectors equal in number to the nodal displacements of the system, Venancio Filho
(1975) suggested that Eq. (1) can be written as follows:

[@][e]=[k][M]"[e] (4)

where [&] is the diagonal matrix of order n and consists of the natural frequencies squared, and [D]
is an n x n matrix and contains columns corresponding to the normal modes of vibration. The term
[K][M] " is a dynamic matrix, as previously mentioned by Blessmann (2005).
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The formulation corresponding to the previous exposition of the FEM is a geometric nonlinear
formulation and is based on the geometric stiffness matrix. Geometric stiffness has been introduced
in several analyses of the FEM when nonlinear effects or geometric nonlinearity (GNL) are
considered. The interpolation functions normally used in FEM formulations to determine the full
stiffness matrix are third-degree polynomials, such as those evaluated by Filho (1975) and Wilson
and Bathe (1976).

Computer models of actual structures were developed in the c]oresent study using a FEM-based
computer modeling program, and modal analysis was performed linearly and nonlinearly to obtain
the shape of the first mode of vibration. For comparative purposes, mathematic functions, such as
the trigonometric function given in Eq. (5), the polynomial function given in Eq. (6), and the
potential function given in Eq.(7). All of the functions were considered to be valid throughout the
entire domain of the structure.

Trigonometric function

#(x)=1- cos{%j . (5)
Polynomial function
2 3
o(x) =37 2" (6)
L L
Potential function
X V4
w(X) = (f} . (7

The value of y was determined in the present research.

Analysis of the first modal shape using case studies

Extremely slender structures possessing frequencies of the first vibration mode less than 1 Hz were
selected. Modal analysis was achieved using finite element models, according to SAP2000
(integrated software for structural analysis and design, Analysis Reference Manual, Computer and
Structures, Inc., Berkeley, California, USA?, a commercial software package. Modal shapes for the
structures were obtained linearly and nonlinearly. The procedure used to calculate the nonlinear
modal shape considered geometric stiffness; therefore, the influence of axial loads was inserted in
the stiffness matrix. The structures were modeled using bar elements with constant and variable
Cross sections, as appropriate.

Structure with a slenderness index of 310

The evaluated structure was 48 m high and possessed a hollow circular section with a variable
external diameter ((Iﬁext?] and thickness (t). The slenderness index of the pole was set to 310. The
geometric details are shown in Figure 1(b), where t is the thickness of the wall of each segment of
the structure. The metal pole was used to support the transmission system for mobile telephone
signals. Table 1 lists the structural parameters and existing devices on the structure, and Table 2
specifies the structural properties and model discretization values.

Table 1. Devices and weights on the structure

Device Height Weight and distributed weight
Pole from 0 to 48 m 7850 kN m™®
Ladder from0to 48 m 0.15 KN m™
Cables from 0 to 48 m 0.25 kN m™
Antenna and supports 48 m 3.36 kN
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Table 2. Structural properties and discretization of the FEM model

Height | dext t | Height | ¢ t | Height | ¢ t | Height | dex t
(m | (m) [(em) ]| (m) | (cm) [(em)| (m) | (cm) |(cm)]| (m) (cm) | (cm)
48.00 |40.64 | 0.48 | 30.00 | 80.00 | 0.80 | 20.00 | 90.00 | 0.80| 10.00 | 97.56 | 0.80
46.00 |40.64 | 0.48 | 29.00 | 80.00 | 0.80| 19.00 | 90.00 |0.80| 9.00 | 105.11 |0.80
44,00 | 40.64 | 0.48 | 28.00 | 80.00 | 0.80 | 18.00 | 90.00 |0.80| 8.00 | 112.67 |0.80
42.00 | 65.00|0.80| 27.00 | 80.00 | 0.80| 17.00 | 90.00 |0.80| 7.00 | 120.22 |0.80
40.00 | 65.00|0.80| 26.00 | 80.00 | 0.80| 16.00 | 90.00 |0.80| 6.00 | 127.78 | 0.80
38.00 |65.00 | 0.80| 25.00 |80.00|0.80]| 15.00 |90.00|0.80| 5.00 | 135.33 |0.80
36.00 | 70.00 | 0.80 | 24.00 |90.00 | 0.80| 14.00 | 90.00 | 0.80| 4.00 | 142.89 |0.80
34.00 | 70.00 | 0.80 | 23.00 |90.00 | 0.80| 13.00 |90.00 | 0.80| 3.00 | 150.44 |0.80
32.00 | 70.00 | 0.80 | 22.00 |90.00 | 0.80| 12.00 | 90.00 | 0.80| 2.00 | 158.00 |0.80
31.00 | 80.00 | 0.80| 21.00 |90.00 | 080 11.00 | 90.00 |0.80| 1.00 | 165.56 |0.80
0.00 | 173.11 | 0.80

40.64
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(a) Slender metallic pole (b) Geometric details

Figure 1. Slender metallic pole and its geometric details

The modal shapes obtained by FEM and the aforementioned mathematic functions are provided in
the gégph shown in Figure 3. The exponent of the potential function that best fit the curve was equal
to 1.965.

Structure with a slenderness index of 256

This investigated structure is a truncated cone metallic pole with 52 cm and 82 cm top and bottom
diameters resEectiver. It is intended for the sustaining of the mobile phone broadcasting system. It
is 30 meters high, hollow section. The external diameter (¢.x) and thickness (t) vary along of the
height. The assessed slenderness of the structure is 256.
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Figure 2. Modal shapes of the structure with slenderness 310

The structure data were acquired in the field. The diameters were measured with a metallic tape
measure and the thickness with ultrasound equipment. For a given vertical line, several thickness
measurements were carried out to obtain a relative average of the band. The union of the pole
segments is formed by successive fittings, by placing and screw-fastening the metallic parts. Each
superpositioning band has 20 cm length. In these joint areas, the thickness of the transverse section
corresponds to the sum of the measures of the superpositioning bands, conform is indicated in
Figure 3. In Table 3 it can be found the properties and the discretization used to model the structure.

Table 3: Structural properties and discretization of the FEM model.

Height Dext t Height Dext t Height Dext t
(m) (cm) (cm) (m) (cm) (cm) (m) (cm) (cm)
30.00 52.00 0.60 20.00 62.00 0.60 | 10.00 | 72.00 0.76
29.00 53.00 0.60 19.00 63.00 0,60 | 9.00 73.00 0.76
28.00 54.00 0.60 18.10 63.90 0.60 | 8.00 74.00 0.76
27.00 55.00 0.60 17.90 64.10 0.60 | 7.00 75.00 0.76
26.00 56.00 0,60 17.00 65.00 0.60 | 6.10 75.90 0.76
25.00 57.00 0.60 16.00 66.00 0.60 | 5.90 76.10 0.76
24.10 57.90 0.60 15.00 67.00 0.60 | 5.00 77.00 0.76
23.90 58.10 0.60 14.00 68.00 0.60 | 4.00 78.00 0.76
23.00 59.00 0.60 13.00 69.00 0.60 | 3.00 79.00 0.76
22.00 60.00 0.60 12.10 69.90 0.60 | 2.00 | 80.00 0.76
21.00 61.00 0.60 11.90 70.10 0.76 | 1.00 | 81.00 0.76
0.00 | 82.00 0.76

The metallic pole sustains two working platforms, one situated at 20 m height and the other at the
superior extremity. There is still a set of antennas located at 27 m from the base and attached to the
body of the pole through metallic devices. The platforms and the supporting devices follow the
composition presented in Table 4 where ¢ designate the diameter of the platform. The local
assessment revealed the presence of microwave (MW) antennas and of radio frequency (RF), which
are listed with the rest of the structure accessories in
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Table 5. The data related to the antennas were obtained from the catalogue of the manufacturer. All
trrl]e aforementioned devices represent additional masses and concentrated forces on the structure, as
shown in

Table 6, which presents the structural parameters and the parameters of the existing devices, the
specific weight adopted for the material of the structure, the localized and distributed axial load.
The geometry of the structure and the existing devices are schematically represented in Figure 3. In
Figure 4 they are presented photographic images of the pole.

Table 4. Composition of the platform and support

Platform ¢ = 2.5 m Mass (kqg)
Floor sheet 116
Lateral floor sheet 46
Channel (U) 150 x 12.2 mm — Banister 96
Angle (L) 102 x 76 x 6.4 mm — Banister 68
Angle (L) 102 x 76 x 6.4 mm — Banister 77
Angle (L) 102 x 76 x 6.4 mm — Floor support 43
Platform lower ring 14
Joints 3
Banister bolts 5
Angles (L) 152 x 102 x 9.5 mm - Platform lower support 33
Total = 500
Support set for antenna Mass (kg)
Pipe ¢ =1" (25.4 mm) 6
Angle (L) 203 x 152 x 19 mm 50
Staples U (¢ = 1" = 25.4 mm) 1
Top plate 1
Total = 58

Table 5. Composition of the localized nodal masses

Device Mass | 1> Plat (20 m) | Support (27 m) |2 Plat (30 m)

(kg/unit) | Quant. (kg) | Quant. (kg) | Quant. (kq)
Antenna RF 2.6 m 19 2 37 3 56 1 19
Antenna RF 1.23 m 4 1 4 0 0 1 4
Antenna MW 19 2 38 0 0 0 0

Platform 500 1 500 0 0 1 500

Support for antennas 58 6 345 3 173 6 345
Pipe ¢ = 1" (25.4 mm) (Guide) 6 0 0 0 0 1 6
Pipe ¢ = 3/4" (19 mm) (LC) 6 0 0 0 0 1 6
Total (kg) = 924 228 880

(LC = Lightning conductor, MW = Microwave, RF = Radio frequency, Plat = Platform)

Table 6. Localized axial load and characteristics of the devices

Device Frontal area | Height | Weight, distributed weight
Pole Variable [0-30 m 77 KNm™
Ladder 0.05 m*/m [0-30 m 0.15 kKN m™
Cables 0.15 m“/m [0-30 m 0.25 kKN m™
1st Platform 2.60 m?
Antenna of the 1st platform 1.99 m* 20m 9.06 kN
Intermediate antennas 2.11m?
Intermediate supports 0.56 m* 27m 2.24 kN
2nd Platform 2.36 m’
Antennas of the 2nd platform| 0.90 m* 30m 8.63 kN
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Figure 4. General photographic views

The modal shapes obtained by FEM and by the mathematic functions can seem in graph of Figure
5. The exponent of the potential function which best adjusts the curve is 1.85.
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Figure 5. Modal shapes of structure with slenderness 256
Conclusions

In the present study, the shape of the first mode of vibration was investigated using case studies.
Analysis by finite element method (FEM) was performed using two different procedures, including
a linear procedure, where the geometric stiffness was not considered, and a nonlinear procedure,
called the geometric nonlinear formulation (GNL), which considered the geometric stiffness. For
comparison, several mathematic functions were studied, and all of the functions were valid
throughout the entire domain of the structure.

For the studied cases, geometric stiffness did not have a significant effect on the shape of the first
mode of vibration, and the trigonometric function was shown to be a good approximation for the
nonlinear vibration shape. The mathematic potential function also represented the first shape of the
vibration. For the structure with a slenderness index of 310, the exponent of the function was equal
to 1.965, while the structure with a slenderness index of 256 corresponded to an exponent of 1.865.
With this information, the weight-averaged rate of slenderness (r;) was determined to be
rs = 0.006812. Thus, an adequate exponent could be obtained by multiplying the slenderness index
by r.. For example, for a structure with a slenderness of 200, the exponent is equal to 1.36 (200
times 0.006812).

Finally, the polynomial function did not provide an accurate representation of the vibration shape of
the first mode.
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Abstract

This paper presents a numerical solution to shape identification problem of steady-state vis-
cous flow fields. In this study, a shape identification problem is formulated for flow velocity
distribution prescribed problem, while the total dissipated energy is constrained to less than a
desired value, in the viscous flow field. The square error integral between the actual flow veloc-
ity distributions and the prescribed flow velocity distributions in the prescribed sub-domains is
used as the objective functional. Shape gradient of the shape identification problem is derived
theoretically using the Lagrange multiplier method, adjoint variable method, and the formulae
of the material derivative. Reshaping is carried out by the traction method proposed as an ap-
proach to solving shape optimization problems. The validity of proposed method is confirmed
by results of 2D numerical analysis.

Keywords: Inverse problem, Shape identification, Optimum design, Flow control, Traction
method

Introduction

Shape optimization problems of viscous flow fields for improving performance are important
in mechanical engineering fields. The theory of shape optimization for incompressible viscous
flow fields was initiated by Pironneau [Pironneau(1973; 1974; 1984)], who formulated a shape
optimization problem for an isolated body located in a uniform viscous flow field to minimize the
drag power on this body. The distributed shape sensitivity, which is called the shape gradient,
was derived with respect to the domain variation by means of an adjoint variable method
based on optimal control theory. The adjoint variable method introduces adjoint variables into
variational forms of the governing equations as variational variables; it also determines the
adjoint variables using adjoint equations derived from criteria defining an optimality condition
with respect to the domain variation.

The present authors have proposed an approach for the shape optimization of such channels or
bodies based on a gradient method using the distributed shape sensitivity. In previous studies,
the present authors presented a numerical method for the minimization of the dissipation energy
of steady-state viscous flow fields [Katamine and Azegami(1995); Katamine et al.(2005)] and
extended this method to 3D problems [Katamine et al.(2009)]. Also, the present authors applied
this method to the shape optimization solution for the drag minimization and lift maximization
of an isolated body located in a uniform viscous flow field [Katamine and Matsui(2012)].

The present study describes the extension of this method for solving a shape identification
problem of flow velocity distribution prescribed problem in sub-domains of steady-state vis-
cous flow fields. Reshaping is accomplished using the traction method [Azegami el al.(1995;
1997); Azegami(2000)], which was proposed as a means of solving boundary shape optimization
problems of domains. In the traction method, domain variations that minimize the objective
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functional are obtained as solutions of pseudo-linear elastic problems for continua defined in
the design domain. These continua are loaded with pseudo-distributed traction in proportion
to the shape gradient in the design domain.

In this study, the shape identification problem is formulated for flow velocity distribution pre-
scribed problem, while the total dissipated energy is constrained to less than a desired value,
in the viscous flow field. The square error integral between the actual flow velocity distribu-
tions and the prescribed flow velocity distributions in the prescribed sub-domains is used as
the objective functional. Shape gradient of the shape identification problem is derived theoret-
ically using the Lagrange multiplier method, adjoint variable method, and the formulae of the
material derivative. The validity of proposed method is confirmed by results of 2D numerical
analysis.

Flow velocity distribution prescribed problem

Let {2 be a viscous flow fields in a steady state. The fluid flows in from sub-boundaries Iy
and flows out from sub-boundaries I, where we write velocity vector u = {u;}!; and pressure
p. A domain variation problem where the flow velocity distribution u is specified with up in
sub-domains {2p C (2 can be regarded as a shape optimization problem. For simplicity, we
assume that the sub-domains 2p, sub-boundaries Iy and I} are invariables. The flow velocity
distribution prescribed problem considering constraint for dissipation energy is formulated as

Given 2 (1)

find (P2 (2)

that minimizes E(u—up, u—up) (3)
subject to a’ (u, w) + b(u, u,w) + c(w,p) = l(w) Yw e W (4)
c(u,q) =0 VgeQ (5)

a’ (u,u) < al, (6)

where Eqs.(4) and (5) are variational forms, or weak forms, using adjoint velocity w = {w;}?,
and adjoint pressure ¢ a for the state equations. Eq.(6) is the constraint with respect to the
dissipation energy, and a}, is the limit of dissipation energy. The flow velocity square error
integral E(u — up, u — up) and the terms such as the a" (u, w) are defined as

E(u—up, u—up) = / (u; — up;) - (u; —up;) dz,

Qp
a’ (u,w) = 2/ gij(u)e;j(w) de = 1/ w; ;i (u j + uj,) da
) — Re Jo ij ij - Re Jo 1,7 \Wi,j 7,0 )
b(v,u,w) = / wivjujde,  c(w,p) = —/ w;pde, (w)= w;o,; dI
Q Q I

where g, (u) = %(u” +u;;), Reynolds number Re and the traction ¢; are given as known values
or functions.

Applying the concept of the Lagrange multiplier method and the adjoint variable method, this
problem can be rendered as a stationary problem for the Lagrange functional L(u,p,w,q, A):

L= E(u—up, u—up)
—a" (u,w) = b(u, u,w) — c(w,p) + l(w) = c(u, q) + A(a" (u,u) — ay;) (7)
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Figure 1: 2D numerical analysis model
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Figure 2: Identified shape

where A is the Lagrange multiplier with respect to the dissipation energy constraint. The
derivative L with respect to domain variation for shape optimization is calculated. Letting this
L = 0, the Kuhn-Tucker conditions with respect to u, p, w, q, A are obtained by

a’ (u,w") + b(u, u,w') + c(w',p) = l(w') Yuw' €W (8)
c(u,¢)=0 V¢ €Q (9)
a’ (v, w) + b(u, u, w) + b(u,u, w) + c(v', q) = 2E(u — up, u') +2Aa" (u,v/) Yu' € W
(10)
c(w,p)=0 Vp' €qQ (11)
A>0, a(u,u) <ay, Al (u,u)—a))=0 (12)

that indicate the variational forms of the original state equations for v and p, the variational
forms of the adjoint equations for w and ¢ which we call adjoint equations, respectively. Where
(-)" is the shape derivative for domain variation of the distributed function fixed in spatial
coordinates. Under the condition satisfying Eqs.(8)- (12), the derivative L agrees with the
linear form < Gv,V > with respect to the velocity function V' of domain variation:

L|u,p,w,q,/1 =< Gr,V >= / Gy, V;dI', (13)
r
1

1
G = ——wi,j(ui,j + Uj,i) + ARG

oo i (i + uj;) (14)

where v is an outward unit normal vector on the boundary.

The coefficient vector function Gv in Eq.(13) has the meaning of a sensitivity function relative
to domain variation and is so-called the shape gradient function. The scalar function G is called
the shape gradient density function. Since the shape gradient function is obtained, the traction
method[Azegami el al.(1995; 1997); Azegami(2000)] can be applied to this shape identification
problem.

Numerical results

We present the results of a numerical analysis for a 2D shape identification problem using the
traction method and the shape gradient derived as described in the above sections.
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Figure 4: Flow velocity distribution on 8 lower-side sub-domaines {2

We analyzed the 2D problem as one fundamental problem, as shown in Figure 1 The fluid
flows in from left-side sub-boundary Iy and flows out from a right-side and 8 lower-side sub-
boundaries I}. The sub-domain {25 to prescribe the flow velocity distribution was set as 8
lower-side sub-domains. The purpose of this analysis is to determine the shape for which the
flow velocity distribution in the 8 lower-side sub-domains becomes as uniform as possible.

In this numerical analysis of the flow field, we used the Hood-Taylor type finite element. That is,
the complete polynomial series of the second-order terms was used to provide the interpolation
functions for u and w, while the linear polynomial series was used to provide the interpolation
functions for p and ¢. Further, finite elements with six nodes for u and w and three nodes
for p and g were also used. The total numbers of nodes and elements were 3,902 and 1,803,
respectively. For the analyses of the domain variation V', we used the finite element method
with second-order finite elements. The Reynolds number is 100. The dissipation energy is less
than the initial shape measure.

The numerical results for the shape identification are shown in Figures 2, 3 and 4. Figures 2
shows the obtained identified shape. Figure 3 shows the iterative history ratios of the square
error of velocity distribution F(u — up, u — up), the dissipation energy, and the volume nor-
malized by their respective initial values. Figure 4 shows the flow velocity distribution in
the 8 lower-side sub-boundaries 7 for the target, the initial shape, and the identified shape.
These results confirm that the flow velocity distribution of the identified shape analyzed by
the proposed method approached the target uniform distribution and that the value for the
objective functional became zero. The validity of the present method was confirmed based on
the numerical results obtained for the basic problems described above.

Conclusions

In the present study, we formulated a shape identification problem in which the square error
integral between the actual flow velocity distributions and the prescribed distributions in the
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prescribed sub-domains on viscous flow fields was used as the objective functional. The shape
gradient of the shape identification problem was derived theoretically. The validity of the
proposed method was confirmed based on the results of a 2D numerical analysis. The present
study was supported in part by JSPS KAKENHI Grant Numbers 26420161.
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Abstract

In this paper, we investigate the effects of load balancing in a distributed Web caching system. Our
investigation is focused specifically on adaptive load sharing: an approach that reacts to the current
state of the system. Load balancing has been shown to improve system performance in other appli-
cations and in this paper, we investigate it in a distributed Web caching environment using both a
unified and partitioned approach. The goal of this work is threefold: (1) to determine the conditions
under which load balancing can be beneficial in a distributed Web caching system, (2) to compare
load balancing in a unified and partitioned Web caching system, and (3) to determine how much
state information is required to achieve any benefit. Discrete-event simulation is used as the tool to
generate results for these different environments.

Keywords: Web Caching, Load balancing, Performance Evaluation, Simulation, Computer Mod-
elling

1. Introduction

Web caching is a technique that is heavily utilized on the Internet and has been shown to be highly
effective in improving network performance by reducing bandwidth and latency [1][2][3]. The
premise of Web caching is to store frequently-accessed pages from an originating server closer to
the clients to reduce bandwidth and workload on the originating server[4]. This can result in a
reduction in the time to deliver a page from the server to the client [5].

One of the more common approaches is to implement multiple Web caches in a distributed system
where additional Web caches are considered peers with each cache being contained within the same
level (similar “distance” from the client). This arrangement allows the peer caches to be relatively
close to one another. Distributive Web caching allows for better load sharing when compared to
other approaches [6].

Traditionally Web caches hold both large and small pages together, where one large page would
replace multiple small pages or a single large page. This storage model is referred to as Unified
caching. However, partitioned Web caching, where large and small pages are stored in separate
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areas, has been shown in previous work to result in increased performance [7]. This approach
ensures that large pages will not replace many small pages in the cache.

Since there are multiple caches working together in a distributed environment, a key mechanism to
fully harness the potential of the system is load balancing. There have been many load balancing
algorithms proposed in the past that have been applied to diverse applications such as telecommu-
nications, processing process on a computer and network traffic [8][9]. In the last decade there
has been an increase into research for applying load balancing to a distributed Web caching system
[10][11]. In a system without load balancing, requests are typically assigned randomly to the dis-
tributed Web caches. With no direction as to which assignment of requests, the issue that arises is
that one cache could be congested while other caches are underutilized; this uneven utilization can
degrade performance [12].

Typically, there are two common transfer policies used in adaptive load sharing: sender-initiated
and receiver-initiated [13]. A sender-initiated policy attempts to balance the workload in the system
at the point in time when a Web cache receives an incoming request. A threshold value, which is
based on the number of requests in the local queue, is used to determine whether the system needs
to transfer the incoming request to another peer cache. This approach will only transfer newly
arriving requests with them being placed at the end of the selected Web cache queue. A receiver-
initiated policy, on the other hand, attempts to load balance as requests are serviced (not when they
arrive). If the Web cache queue falls below a given threshold, the system attempts to find additional
work from a peer cache with queue length above the given threshold. If such a cache can be found,
a request from its tail will be transferred to the tail of the Web cache that initiated the transfer.
In this paper, we focus on sender-initiated policies but more information on the performance of
receiver-initiated policies can be found in [14].

For this paper, we used a discrete-event simulation model to investigate the performance of load
balancing in a distributed unified and partitioned Web caching system. We present the models and
assumptions for our distributed Web caching systems for both unified and partitioned storage in
Section 2, while in Section 3 the input parameters are discussed. Section 4 presents the simulation
results derived from the models and finally, Section 5 summarizes our findings.

2. Performance Models

Our system model is divided into two parts: a Web reference model and a Web cache model.
By varying the architecture in the Web cache model, we produce two distinct systems: unified
and partitioned. We can simplify our system models since we are concerned with the relative
performance achieved by each load balancing algorithm relative to the distributed Web caching
system without load balancing (i.e. we are not concerned with the absolute performance of the
system).

2.1. Web Reference Model

The pages stored in a Web cache and their request probabilities vary over time. Pages such as news
articles, viral videos, course assignments and memes become popular for periods of time and then
eventually the frequency of access decreases. To represent this behavior, we use a dynamic page
reference model (shown in Figure 1) as described in [15].

47



ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

2.1.1. Page Popularity

The request probabilities are shown in Equation (1) and defined by: p;(¢), the probability of re-
questing page i at time ¢ is i = 1,2,...,M, where M is the number of Web pages. From Figure 1,
we can see that there are two states for the probability of requesting a page: normal and popular.
Pages in the popular state have a higher request probability than that of the pages in the normal
state, where v represents the ratio of the rate of requests in the popular to normal state.

Requests
A A
> v Popular

—
— Potentially

Popular Mo

Pages
— 1 Normal M

N AN

— 1 > Normal Conventional

Pages

N AN

Figure 1: Dynamic Page Reference Model

The model also assumes that there are two types of pages: conventional (M) and potentially popular
(My). Conventional pages remain in the normal state while potentially popular pages shift between
the normal and popular sate based on a continuous-time Markov chain. The rate at which a page
transitions from a normal to popular state is A; and from popular to normal is A, (the time spent
in either state is assumed to be exponentially distributed). We let My < M denote the number of
potentially popular pages and thus M, (t) < M represents the total number of pages in the popular
state at time 7. The time-dependent request probability for page i is defined as:

. I popular state
pi(t) - { M (1)+(M—Mp(1)) (1)

1
VM, (1)+(M—M, (1)) normal state
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2.1.2. Page Size

To simplify our model we assume that a page is either large or small, we assume that a large page is
k times larger than a small page. Small pages have a service time that is assumed to be exponentially

distributed with a mean rate of u~!, while large pages have a exponentially distributed service time
of ku=!.

It has been shown that the majority (ninety percent) of Web pages are in the range of 100 bytes to
100 KB, with less than ten percent being greater than 100 KB [16]. As a result, we assume that
the probability of requesting a large page would be 1 — s, where s is the probability of requesting
a small page. Since 90% of pages requested are small, we set s to 0.9, which based on previous
observations is reasonable.

2.2. 'Web Cache Model

Our Web cache model is comprised of a page replacement model, an architectural model, and a
storage mode.

2.2.1. Page Replacement Model

One of the most critical components of a good Web caching system is the page replacement algo-
rithm. The page replacement algorithm is responsible for storing or discarding pages in the Web
cache once it becomes full. Without this component, once the cache is full, no new pages would
be stored and the cache would become stale. Although there are many different page replacement
algorithms, our model uses The Least Recently Used (LRU) [17].

As the name implies, the LRU algorithm selects the least recently used page (determined from the
last accessed timestamp) to be removed from the cache. We have chosen to implement the LRU
since it is one of the most widely-used cache replacement algorithms for Web pages [18]. One of
the main advantages of the LRU is that it is straightforward to incorporate in the system model,
while being highly efficient. Some of the determents to the algorithm are that it excludes certain
state information such as the and latency of a page. However, since we are considering only relative
performance, these effects will be negligible.

2.2.2. Architectural Model

Our work expands on a Web cache model that was first introduced by [19], and is shown in Figure
2. The distributed system contains D peer (or co-operative) caches which are assumed to exist as
the same level. When a Web cache receives a page request, the cache fist checks if there is a copy
currently stored in its own cache and if the page is found, it is returned to the client. However,
if no copy of the requested page can be found at the current Web cache, the request is forwarded
randomly to one of the peer caches. If the page cannot be found at the new Web cache, the request
is again transfered to another peer Web cache, until the page is found. If all D peer caches are
exhausted the request will be forwarded to the originating server, a copy is made at the original
cache and the page is returned to the client.

It is assumed that if the request is satisfied by the first cache in D peer cache, than the processing
time is considered to be 7 (this includes the service time and propagation delay). If the first cache
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Figure 2: Web Caching Architecture Model

can not satisfy the request (a {textitmiss) but can still be satisfied within the D peer cache, then the
service time is assumed to be 77 4+ Tp. While exact for D = 2 caches, this value is an approximation
for larger values of D as it would be a factor of the number of cache misses. If the request can
not be satisfied within our distributed Web caching system and therefore must be completed by the
originating server, then the processing time is considered to be 7.

2.2.3. Storage Model

We also investigate two variations of the cache storage model: a unified cache and a partitioned
cache. A unified cache is simply a single cache that treats both large and small pages the same
(they are stored together). If the cache was full and needed to make room for a incoming large
page, the cache would have to discard one large page or k small pages. A partitioned cache on the
other hand treats large and small pages differently. The cache is split into two separate ares: one
for large pages and one for small pages. This approach ensures that large pages will not replace k
small pages and that k small pages will not replace a single large page. It is assumed that the ratio
of space reserved for large pages is (PL).

2.3. Load Balancing Algorithms

Our investigation considers two variants of a sender-initiated load balancing algorithm:

e Short-Sender (SS). Once a threshold value (®) is reached, the algorithm looks for the Web
cache with the shortest queue (including itself).
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e Random-Sender (RS). Once a threshold value (®) is reached, the algorithm randomly selects
a Web cache (excluding itself).

3. Input Parameters

In order to simplify our investigation, the following model parameters are fixed for all simulations:
M =1000, My =100, u=1,PL=04,7o=05,T1 =0.1, T, =1,5s=0.9, =100 and k£ = 10. It is
assumed that our system has a finite population of N client workstations, with D peer caches. Each
Web cache is assumed to have a size of C bytes, which is defined to be the percentage of total bytes
available for storage within the entire system, initially we set C to 0.05 [19].

4. Performance Results

The main objective of this investigation is to evaluate the relative performance of our load balancing
algorithms in a distributed Web caching system using both unified and partitioned storage against
the same system without load balancing. That is, the chief concern is whether load balancing will be
effective in a distributed Web caching system. We are not concerned with the absolute performance
of our system but that said, it would be beneficial to also be able to compare the results from the
simluation models with experimental data from an implemented system but at this point in time,
none was available. This is an area underwhich current work is being applied. Our performance
measure of interest in our simulation models is mean response time (the time from when a request
is generated until the web page has been returned to the client). The complexity of the system
and the number of possible parameters is such that an analytic solution is not tractable thus results
are gathered using a discrete event simulation written in C++. For more information on the acutal
simluation program, please see [14].

4.1. Threshold Limit

We begin by examining threshold limit (®) for a sender-initiated approach in a unified and parti-
tioned storage environment. We simulate the system under a high system load (py, = 0.85) for
D =2 and 10 peer Web caches (Figures 3 and 4). The results indicate that all four systems (RSy
- Random-Sender-Unified, RSp - Random-Sender-Partitioned, SS;; - Short-Sender-Unified, SSp -
Short-Sender-Partitioned) preform at least as well as to that of the distributed Web caching system
without load balancing (Ny - No LB-Unified, Np — NoLB — Partitioned). In some cases, response
time is decreased by as much as 60.0%.

One of the more prominent trends is that as we increase ®, the mean response time also increases:
this is as a result of the fact that less load balancing is occurring up until the point where no pages
are being transfered. However, with the RSy algorithm we observe a small dip: the valley of the dip
tends to be achieved with a threshold value (®) just greater than O (1 or 2). This can be explained
by the fact that when the threshold is set to 0, the system will transfer the work randomly even if
the local Web cache queue is the shortest. As the threshold is increased, the probability that the
arriving Web cache is the shortest in the system decreases. As the threshold is increased to the point
where the algorithm stops initiating transfers, there appears to be an optimal value that would be
dependent on factors such as system load and number of caches. Going forward, we will be using
a threshold value (®) of 3, as this is a reasonable choice given that the optimal value can not be
directly determined.
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Figure 3: The Effect of Threshold (®) on the Mean Response Time for Unified and Partitioned
Web Caching: D =2, py, ~ 0.85

4.2. System Workload

We next examine the effects of system workload for D = 2 and 10 peer Web caches (Figures 5
and 6). We observe that the system is relatively underutilized (workloads less than 20%), there
is little difference between the load balancing algorithms and the respective systems without load
balancing. As the utilization increases, we start to see a dramatic improvement (with respect to
response time) with our load balancing algorithms relative to the systems without load balancing:
this trend becomes more noticeable as the number of peer caches increase. Specifically from Figure
6, the Short (SSy) algorithm has a decrease in response time of 37.7% over Ny (pn, ~ 90%),
while RSy has a decrease in mean response time of 30.6% over Ny (pn, ~ 90%). The Short
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Figure 4: The Effect of Threshold (®) on the Mean Response Time for Unified and Partitioned
Web Caching: D = 10, py, ~ 0.85

(SSy) algorithm seems to outperform the Random (RSy) algorithm by 7.1% (pn, ~ 90%). The
results also indicate that partitioned load balancing systems follow the same trends as their unified
counterparts with partitioning tending to perform better overall.

Additional workload seems to provide more opportunity for the load balancing algorithms to reduce
the mean response time and so we can conclude that the higher the system load, the more potential
the load balancing algorithms have to make a positive impact on the performance of the distributed
Web caching system in both a unified and partitioned storage model.
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4.3. Number of Peer Caches

We examine both Web caching systems under a medium (Figure 7) and a high system load (Figure
8). As additional peer Web caches are added, the systems without load balancing (Ny, Np) have
mean response times which tend to increase marginally. From Figure 8, the increase in mean
response time from 2 to 10 peer Web caches for the systems without load balancing (Ny and Np)
Ny 1s 12.0% and Np respectively. Each additional Web cache added to the distributed Web caching
system tend to increase the probability that one of the Web caches will become overloaded, leading
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to higher response times.

As additional Web caches are introduced in our load balancing environments, the Short (SSy, SSp)
and Random (RSy, RSp) algorithms tend to lead to a decrease in mean response time. For each
additional cache added to the system, the system is provided with more opportunities to attempt
to balance the workload in the system, leading to a decrease in mean response time. Again from
Figure 8, when D = 10, SSy and RSy have a decrease in mean response time of 57.1% and 44.3%
respectively with regards to the system without load balancing (Ny). The algorithms seem to
follow the same pattern with the Short algorithm outperforming the Random algorithm by 30.0%
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with respect to response time. However, it is important to note that Short algorithm would incur
more overhead than Random algorithm due to the need to collect queue lengths from peer caches.

Partitioned Web caching system tends to again outperform a unified Web caching system. As we
observe from Figure 8, there is a 52.2% performance difference between SSy and SSp and a 51.3%
performance difference between RSy and RSp when D = 10. From these results, we conclude that a
Web caching system with load balancing tends to scale gracefully relative to a Web caching system
without load balancing as the number of peer Web caches (D) increases.
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4.4. Cache Size

In Figure 9, we investigate the effects of the cache size (C) on the mean response time for our unified
and partitioned Web caching systems. As expected, we observe that there is a dramatic decrease
in the mean response time when the Web cache size is greater than 0. As soon as Web caching is
introduced, there is an immediate performance benefit that can be observed, Ny has a performance
increase of 62.9% when C = 5% when compared to when C = 0%. As the Web cache size increases
(C), the mean response time tends to decrease. However, we observe that after the initial dramatic
decrease in mean response time, the system does not see the same large performance benefit as the
cache size continues to increase. The performance improvements over time tends to decrease until
mean response time plateaus. This occurs when the cache size is large enough to store most of the
pages from the originating servers (an unlikely event but does provide a lower bound for the mean
response time). Both algorithms follow the same trend and tend to outperform the systems without
load balancing. For example SSyy and SSp have a performance increase of 35.8% over Ny and Np,
while RSy and RSp have an increase of 33.7% over Ny and Np when C = 100.

We also observe that as we increase the cache size, the partitioned system collapses into a unified
system. With ample cache space, both storage models achieve the same level of performance. We
find that smaller values of cache size (as long as it is greater than 0), tends to benefit partitioned
storage over unified storage(i.e. when C = 5%, the mean response time for Np is 53.7% lower than
that of Ny). It is again important to observe that irrespective of the value of the cache size, load
balancing tends to improve the performance of the system with respect to the mean response time.

5. Conclusion

The results from this study have shown that the load balancing algorithms in a distributed Web
caching system can be effective from a performance standpoint. In fact, any of the algorithms we
examined achieved a level of performance equal to or better than a system without load balanc-
ing. We also determined that both unified and partitioned systems scale well with respect to ad-
ditional peer Web caches, with the performance gains actually increasing as additional caches are
introduced (unlike the system without load balancing (Ny) which degrades with additional Web
caches). The use of the partitioned storage system has also been shown to increase the performance
benefits of the load balancing algorithms in the Web caching environment. Performance benefits
are seen even if a simple algorithm such as Random is incorporated. The benefits tend to increase
with the use of state information (such as that seen with Short versus Random algorithms). In all
of our cases, the use of load balancing in a distributed Web caching system tends to be much more
desirable relative to a Web caching system without load balancing.

The research from this investigation has opened the door to a variety of potential extensions. A nat-
ural extension would be to utilize more state information from the requests; specifically, what page
is being requested. For example, it may be beneficial to transfer a request (or multiple requests) to
a Web cache that contains the requested page so as not to have to retrieve the page from the orig-
inating server. This will result in a cache hit for the local Web cache, thus increasing the hit rate
of the cache at the same time as reducing the mean response time. As well, our system model was
based on a distributed Web caching system, it may be possible to adapt our sender-initiated load
balancing algorithms to a hierarchal Web caching system where caches are assumed to reside at
various levels (i.e.”distances”) from the client (a receiver-initiated would not be appropriate for this
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environment). Finally, our system model did not directly model the effects of overhead, such as the
cost of transferring a request or the cost of collecting state information. It would be interesting to
examine the effects of these overhead costs as they would likely impact some of the load balancing
algorithms differently.
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A case study of time step validation strategy and convergence method

for oscillation numerical simulation in a heat transfer process
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Abstract A convergence identification method for oscillation numerical simulation is
proposed, the numerical solutions can converge at the inflection point with respect to the time
steps. In this way, it is possible to determine which time step is the appropriate convergence
solutions, it can be ensured to obtain the accurate solution as much as possible, the results of
the numerical experiments are presented and they confirm analytical predicts. In addition, an
algorithm to verify the appropriate time step is suggested also, first use one time step to
compute a case until it reaches a stable periodic solution; then sequentially reducing time step
to check its convergence. The feasibility of the proposed method is further verified via its
applications to the case study of the combined natural and MHD convection in a Joule-heated
cavity using the finite volume methods. It is found that the two approaches have the same
results and can judge the validity of the time step in computation, this might accurately
predict the fluid flow and heat transfer.

Keywords : oscillation numerical simulation, time step, convergence, algorithm

Nomenclature

A amplitude

g gravitational acceleration [m/s’]

Ha Hartmann number

L enclosure height [m]

Pr Prandtl number

Ra Rayleigh number

T temperature [K]; period

u x-velocity component [m/s]

U dimensionless x-velocity component
Vv y-velocity component [m/s]

\Y dimensionless y-velocity component
W enclosure width [m]

X x coordinate [m]

X dimensionless x coordinate

y y coordinate [m]

Y dimensionless y coordinate

Greek symbols

0 dimensionless temperature

o electrical conductivity [ms/s]
T dimensionless time

® potential difference [V]
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1. Introduction

The most common approach for approximating the derivatives is the finite difference
methods due to their accuracy, stability, and easy of implementation. Different types and
orders of finite difference methods are available to model the diffusions and the convection
derivatives, and this method is widely used in the fluid flow and heat transfer field. The
improvement in computer capabilities, especially in memory and speed, has made an accurate
numerical predictions of the complex fluid flow and heat transfer cases.

However in the scientific computing, there are many sources of uncertainty including the
model inputs, the form of the model, and poorly characterized numerical approximation
errors [1]. In fact, all of these sources of uncertainty can give false results.

Therefore, several lines of researches have been proposed in the literature to solve these
serious problems. One of them is for the scheme and algorithm, for example, a scheme called
SGSD (Stability Guaranteed Second Order Difference Scheme) is proposed [2] which is
absolutely stable and possesses at least second-order accuracy. A new weighted essentially
non-oscillatory (WENO) procedure for solving hyperbolic conservation laws is proposed on
uniform meshes [3]. An algorithm called IDEAL algorithm was conducted by Sun et al. [4]
[5] in the IDEAL algorithm where the inner doubly iterative processes for the pressure
equation are used to almost completely overcome the two approximations in the SIMPLE
algorithm. Furthermore , a general method to remove the numerical instability of partial
differential equations was presented by [6].

The previous studies on the computation of the discretization equation mainly focused on the
finite difference method, the issue of consistency still remains several problems far from
totally solved in the actual numerical computation, most transient simulations consist of a
considerable number of time steps, therefore, the choice of the time step size is critical for the
efficiency of the transient simulations. An alternative approach is to focus on the numerical
solution and computer round-off errors. It is well known that Von-Neumann established that
discretized algebraic equations must be consistent with the differential equations, and must be
stable in order to obtain a convergent numerical solutions for the given differential equations.
Eca and Hoekstra [7] offered a procedure for the estimation of the numerical uncertainty of any
integral or local flow quantity as a result of a fluid flow computation. Teixeira et al. [8]
explored the time step sensitivity of non-linear atmospheric models and illustrated how
solutions with small but different time steps will decoupled from each other after a certain
finite amount of the simulation time. Li [9] carried out systematic investigations on the
sensitivity of the numerical solutions of non-linear ordinary differential equations (ODEs). A
review on the computational uncertainty principle could be seen in Li and Wang [10]. Wang
et al. [11] developed a high-performance parallel Taylor solver to do the Lorenz equations
computation.

Depending on the study and analysis of those representative works mentioned above, the
present paper finds that most of them are concerned to the Lorenz system, namely the
ordinary differential equations. We know that the governing equations on the fluid flow and
heat transfer problems are usually partial differential equations (PDEs). It can be proved
mathematically that linear differential equations should have unique solutions, the situation is
more complex for non-linear PDE’s, and ,in some cases the numerical solutions are not
chaotic but are still spurious and time periodic, making it difficult for the researchers to
determine if the solution is representative of the true physics of the problem or not? Explicit
methods have been coupled with spatial variable and time step for a particular problem to
obtain simulations with a low computational cost, efforts have been made to identify the
correct time step from the physical viewpoint, the time step size is restricted by stability
reasons to fulfill the Courant—Friedrichs—Lewy (CFL) condition, while, few attentions on the
time step with fully implicit scheme which is unconditionally stable in the non-steady
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computation and few time step with fully implicit scheme validations are studied but on the
grid independency, meanwhile, there is not a suitable convergence method for the oscillation
simulation.

So, this is the motivation of our work, where a suitable convergence method for the
oscillation simulation and an algorithm were established to overcome previous convergence
method shortcoming, extensive calculations were performed and examined to a Joule heating
flow in order to confirm the two independent methods.

2. Convergence method and algorithm

The rigorous convergent criterion has only been established for the equilibrium solution: the
difference between two consecutive iterations is less than a predetermined value is considered
to be convergence, the iteration process convergence to one steady-state solution. This is only
applicable for the system which has the static values as time approaches to infinity. Therefore,
it is no appropriate to use convergent criterion aforementioned above in the oscillation
numerical simulation cases.

A convergence method in the numerical simulation is addressed here which states that if the
system is a stable oscillation system, as the time step decreases, the calculated values
(including velocity and temperature) should be monotonous, theoretical speaking, at the same
point in the same moment time, the reason is that the even smaller truncation error can be
achieved because of decreasing time step size for the fixed grid spacing. It is desirable to use
the smallest time step possible throughout the computation, the difference of the computation
values with different two time steps at the same space point in the same moment time is less
than a predetermined value is considered to be the convergence solution. But in practical
simulation, the computer is finite precision, so as the time step decreases more, the round-off
error is primary. Consequently, the smallest time step cannot be viewed as the solution
approached to the correct one, the solution properties at the same point in the same moment
time as the time step is refined is non-monotonic. Therefore, the numerical solutions can
converge at the inflection point with respect to the time step, in this way, it is possible to
determine which time step is the appropriate convergence solutions, and it can be ensured to
obtain the accurate solution as much as possible. This is the convergence concept for the
stable oscillation case.
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Figure 1 flow chart of time step identification

A practical algorithm of judging the accuracy of the above analysis for oscillations results is
suggested below (see Figure 1 for more details), first we use one time step to compute a case
until it reaches a stable periodic solution; then sequentially reducing time step to check its
convergence, for example, the time step equals to Az =107°:

Step 1 From0 < 7 <7,, choose of 7, is large enough for the computational result reached a
periodic motion whose period is T1 and the amplitude is Al. The purpose of this period is to
lock the numerical solution into a special mode, we hope that the truncation error is sufficient
to alter the initial condition and leads to a special solution among many possibility.

Step 2 Continue the computation from 7, <z <z, with Az =10"°/2. 7, is large enough
for the computational results to reach another periodic solution, its period is T2, and the
amplitude is A2. If (T2=T1), and A2 is close to Al, then the solution may have some
meaning.

Step 3 Continue the computation from 7, <z <z,with Az =10"°/4. If (T3 = T2) and
A3-A2 is smaller than A2-Al, then the results have chance to converge. Then , return to the
other time step, repeat the above steps until time step corresponding the convergence of the
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solution is reached. The alternative convergence method and choosing the correct time step
size algorithm for the solution of the oscillation numerical simulation are more accurate than
the previous convergent method, and this is more general approach. In the next section, the
method presented above will be validated and analyzed by the numerical simulation test.

3. Numerical experiments

In the previous section, the convergence approach and algorithm of indentifying adequate
time step were discussed. In this section, we investigate the convergence approach using an
example of case study.

3.1 Physical model and the problem formulation

The problem under consideration is the combined natural and MHD convection, as
demonstrated in Zhang [12], the system considered is shown in Figure 2. The fluid contained
in the rectangular pool is heated by a pair of vertical electrodes, which are assumed to be
isopotential surfaces with an externally applied potential difference of ¢q across them. The

bottom boundary is assumed to be electrically insulated. In the present study, low frequency
alternating current sources are considered for Joule heating. All the boundaries of the cavity
are solid—fluid interfaces, which can be treated as no-slip and no-penetration boundaries. The
upper boundary of the liquid cavity is an isothermal surface at T = Ty, while the rest of the
boundaries are assumed to be thermally insulated. The aspect ratio of the pool is set to be
W:L=2:1.

u=v=0,T=T, dp/dy =0

e % A
lg
u=v=0, u=v=0, ¢
dT/ox =0, dT/ox =0, L
¢ =@ 0=0 [
y
x u=v=0,dT/dy =0, dp/dy =0 V )

A

Electrodes
Figure 2 Schematic of the system under consideration

In the present model, flow is simulated as a two dimensional phenomenon with the following
assumptions or simplifications: a) the fluid is Newtonian, incompressible and the flow is
laminar; b) the effect of temperature on fluid density is expressed adequately by the
Boussinesq approximation; c) the local electrical conductivity is independent of the thermal
field.

The governing equations presented in Zhang [12] will not be repeated here just for the brevity.
In order to guarantee both the numerical stability and solution accuracy, the SGSD scheme [2]
is employed for the discretization of the convection terms, which is absolutely stable and
adaptive. The SGSD scheme can automatically choose a different difference scheme
according to the available local field information in difference space or time. The diffusion
terms are discretized by the central difference scheme. The IDEAL [4] [5] algorithm is
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adopted which exists inner doubly iterative processes for the pressure equation. The coupling
between the velocity and pressure is fully guaranteed, greatly enhancing the convergence rate
and the stability of the iteration process. While dealing with the time-dependent physics
problem for the un-steady state governing equations. It has been theoretical analyzed that the
fully implicit scheme is unconditionally stable for SGSD scheme in un-steady convection
diffusion equation, it is not repeated here for simplicity.

It must be noted that, the Rayleigh number and the Hartman number which are investigated

here are smaller than the critical Rayleigh number and the critical Hartman number
respectively. The zero initial conditions are set for velocity and temperature fields.
Grid sensitivity analysis is performed and the accuracy of the numerical procedure is further
validated by comparing predicted results with the solutions obtained by Sugilal [13] on the
same test case, the present procedure adequately predicts the flow and heat transfer inside the
system considered.

3.2 Numerical Results

The main goal of the present study is not only to obtain the accurate solution but also to
investigate its stability. The computational efficiency (low demand on CPU time) of the
present study is not considered here.

3.2.1 Time step validation for Pr=1 ,Ra=15000 and Ha=0

We perform the numerical simulations for four values of the time step ( At ) ranging from
At=10" to At=107°, while keeping the other relevant parameters fixed ( i.e., Ra =15000, Pr
=1 and Ha =0) . This approach is aimed to evaluate the sensitivity of the time step. All the
computations start from a zero field initialization and are stopped at T = 4. Throughout the
simulations, the time histories of the dimensionless temperature and velocity components are
recorded at a monitoring point (X,Y) = (0.25,0.483) inside of the cavity. All the simulation
results exhibit a common behavior as depicted in Fig. 3, where the dimensionless temperature
reaches a steady state of the solution as the time increases, and it has a similar behavior for
the velocity components. The solution for a particular time step is considered converged
when the iteration makes no change to the solution in any of the variables U, V or 6. This
convergence method is not necessarily the best, but it is a commonly used.

Uis

05

O3 3 L o . S—
T 1
Fig. 3 Evolution of U-velocity (left) and temperature (right) in monitoring point

(X,Y=0.25,0.483) of the cavity for At=0.0001

The only difference in Table 1 is the momentum residual ,we find that as the At decrease
from 0.001 to 0.0001, the momentum residual decreases. While when At decreases more the
momentum residual increases, this can be explained that the truncation error is smaller
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when At decreases, while when At decreases more the round-off error is bigger and the more
accurate time step is 10,

Table 1. Residuals , dimensionless temperature at T = 4 at a monitoring point (X,Y) =

(0.25,0.483)
Time Mass .
Case step residual Momentum Residual
a 0.001 1.2822E-09 1.7986E-02  8.5379E-03
b 0.0001 3.3605E-13 4.6960E-06  2.9421E-06
C 0.00001 2.6585E-13 2.2607E-05  1.5130E-05
d 0.000001 3.3216E-13 4.2578E-04  2.6565E-04

3.2.2 Time step validation for Pr=0.01, Ra =15000 and Ha=0

We perform the numerical simulations for four values of the time step ( At ) ranging from
At=10"to At=10", while keeping the other relevant parameters fixed (i.e., Ra =15000, Pr
=1 and Ha =0) . All the computations start from a zero-field initialization and are stopped at
1=1. Throughout the simulations, the time histories of the dimensionless temperature and
velocity components are recorded at a monitoring point (X,Y) = (0.25,0.483) as shown in
Fig.4.

500

400 =

P RTINS " PRRSPURPIN RS URU BRSNS |
0.25 0.5 0.75 1 0.25 0.5 0.75 1
T T

1 gl i,

Fig. 4 Evolution of U-velocity (left) and temperature ( right ) in a monitoring point (X, Y)
=(0.25,0.483) of the cavity for At=0.0001

The time history of the dimensionless temperature(d) and the time history of the
dimensionless x-velocity component (U) exhibit a common behavior in different time steps
for all the cases examined. It is worthwhile to note that the sensitivity to the initial conditions
associated with a set of non-linear differential equations is a reflection of a characteristic of a
non-linear physical system, to pursue this property more fully. It can be verified by a
non-zero field in procedure at t=0 whose components take random values from -1 to 1
generated by the computer. The results keep the same as those of zero initial conditions. It
should be noted that the computation for Rayleigh number (Ra=15000) is less than the
critical Rayleight number, verifies the system is to make stable oscillation.

The question is which time step corresponds to the accurate solution and how to identify the
convergence, while the method of considering convergence when the monitoring value makes
a small change cannot be applied in this case, as the # and U are oscillated with the time.
These results suggest that there is no apparent convergence of comparing the numerical
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values during the iterations. It can be verified with proposed method in section 2 by the
numerical simulation results below. Fig.5 shows that the V-velocity and temperature are
monotonically decrease as the time step decreases. The truncation errors become the primary,
on the contrary when At is 10°, as the time step decreases, the V-velocity monotonically
increases. This is because the round-off errors become the primary errors. In order to get
more accurate results, the correct time step should be 10°®, where in this case the residuals are
relatively smaller (see Table. 2), so the more accurate solutions can be obtained. From the
experiment we validate the convergence analysis method.

Table 2. Comparisons of the mass and momentum residuals

Case Time step Mass residual Momentum residual

A 0.0001 6.4119E-04 1.0649E-02 1.8723E-02
B 0.00001 8.6406E-05 6.9381E-03 9.3104E-03
C 0.000001 2.5270E-06 2.1513E-02 2.0302E-02
D 0.0000001 2.3201E-08 7.4870E-03 9.3305E-03
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Fig. 5. Comparison of V-velocity and temperature calculated by different time steps at
the same moment time (7=1) in a monitoring point (X,Y=0.25,0.483) of the cavity

A practical algorithm of judging the accuracy for oscillations results in section 2 is
implemented, the experiment results for different time steps are listed in Table 3 which
confirm our analysis, and the correct time step should be 10°.

Table 3. Periods and amplitudes of periodic oscillation for each At

time step/ periods of the periodic amplitudes of the
At oscillations/T periodic oscillations/A

10 0.00765 0.0179

1012 0.00487 0.01424

10™/4 0.003437 0.010512
10° 0.002563 0.00823

10°/2 0.002287 0.00728
10° 0.002055 0.008

1072 0.002007 0.0081

10°%/4 0.002114 0.00814

3.2.3 Time step validation for Ha = 7000 and Ra = 0
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The numerical simulations for four values of the time step are performed where , At, ranging
from At = 10" to At=10", while keeping the other relevant parameters fixed (i.e., Ha = 7000,
Pr =0.01 and Ra =0) .All the computations start from a zero-field initialization and are
stopped at t=0.2. Throughout the simulations, the time histories of the dimensionless
temperature and velocity components are recorded at a monitoring point (X,Y)=(0.25,0.483)
as shown in Fig. 6. The computed U results at a monitoring point (X=0.25,Y=0.483) take the
oscillation in the average of 400 , 460 and 100 for the three different time steps respectively.
It can be seen that, the solutions are apparently quite close to each other for the different time
steps except At=0.0000001.
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Fig. 6.Evolution of U-velocity (left) and temperature ( right) in a monitoring point
(X,Y=0.25,0.483) of the cavity for At=0.00001

The non- zero field in procedure at T = 0 whose components take random values from -1 to 1
which are generated by the computer is implemented, where the results keep the same as
those of the zero initial condition. This verifies the system is not non-linear at present
computation conditions. It can be seen from Fig. 7 , that the moment time records increase
monotonically with decreasing time step to At =10, then it decreases with decreasing time
step furthermore. The optimal time step should be 10°®, and the residuals are relatively small
one (Table 4) in this case. Similarly, the method stated in section 2 for the selection time step
is utilized again with sequentially reducing At by factor two and comparison of the results. It
can be got clearly that the correct time step should be 10°.

Table 4. Comparisons of the mass and momentum residuals

Case Time step Mass residual Momentum residual

A 0.0001 1.0177E-03 1.9489E-02 1.1435E-02
B 0.00001 1.1858E-04 5.5880E-03 3.5529E-03
C 0.000001 2.2849E-06 4.1785E-03 4.8898E-03
D 0.0000001 3.2633E-08 4.1209E-03 4.6373E-03
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Fig. 7. Comparison of V-velocity and temperature calculated by different time steps at
the same moment time (7=0.2) in a monitoring point (X,Y=0.25,0.483) of the cavity

3.2.4 Time step validation for Pr = 0.01, Ha=7000 and Ra=15000

The time-periodic solutions are predicted shown in Fig. 8 which reports the time dependent
behavior of the dimensionless velocity and temperature at the monitoring point
(X,Y=0.25,0.483) of the cavity. Fig.9 shows that the oscillations start at t~0.08 and the
computed U at a monitoring point takes the oscillatory center value of 230.
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Fig. 8.Evolution of U-velocity (left) and temperature ( right) in a monitoring point
(X,Y=0.25,0.483) of the cavity = for Azr=0.00001

We find that the results are different in different time steps as shown in Table 5. For cases A
and B, the time step width is of the order of 102 and 10 residuals for momentum equation
and mass equation are of the order of 10™. The time step width is of the order of 10 for case
C, and the residuals are of the order of 10®.For cases D and E, the considered smaller time
steps are, 10%and 107 respectively, the residuals of the order of 10.Such small time step
width gives much larger residuals, the different truncation errors associated with different
time-steps, in effect, lead to a series of residuals. A non-zero field in procedure at t=0 whose
components take random values from -1 to 1 which are generated by the computer is
implemented and the experiment results are the same as the zero initial condition. Therefore,
this confirms the system is not a non-linear system.

The convergence of the solution properties as the time step refined is no monotonically at the
same zero initial condition, this can be seen from Fig. 9, where the moment time records
increase monotonically with decreasing time step to Az =107, then it decreases with
decreasing time step. The correct time step should be 107. In this case the residuals (see Table
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5) are the smallest one, accuracy of the solution can be obtained, and the total errors keep in
an admissible bound. Consequently, we can also check these time steps as the step stated in
section 2 by sequentially reducing (At) by factor two. It is found that the results obtained are
in excellent agreement with the analytical numerical results, and it is confirmed that the
optimal time step should be 10~ .

TABLE 5. Comparisons of the mass and momentum residuals

Case Time step Mass residual Momentum residual

A 0.001 2.9206E-4 4.7253E-4 7.6886E-4
B 0.0001 3.1185E-5 1.6895E-4 1.5762E-4
C 0.00001 2.5432E-6 7.2870E-5 5.7573E-5
D 0.0000001 2.4611E-6 1.8177E-2 1.4063E-2
E 0.00000001 3.6968E-8 2.9424E-2 2.0477E-2

450 =i o R i T 061
T e mEEY
250
200
AR B L -

100 kL 055 i

054F e bl

ol 3 i L il 0_53"_7 i 5;_ L iy
10 10 10 10 10 10 10 10
time step time step
Fig. 9. Comparison of V-velocity (left) and temperature ( right) calculated by
different time steps at the same moment time (At=0.4) in a monitoring point (X,

Y=0.25,0.483) of the cavity

4. Conclusions

The convergence method in the numerical simulation provided that the system is stable
oscillation is present in the present paper , where the solution properties at the same point in
the same moment time with refined time steps are non-monotonic for the stable oscillation
model. So, the numerical solutions can converge at the inflection point with respect to the
time step, therefore in this way it is possible to determine which time step is the appropriate
convergence solution. In order to obtain the accurate solution as much as possible, the results
of the numerical experiments are presented and they confirm our theoretical predictions.
Therefore, an algorithm to verify the appropriate time step is suggested. First use one time
step to compute a case until it reaches a stable periodic solution; then sequentially reducing
time step to check its convergence. The numerical accuracy of the proposed method has also
been demonstrated via its application to more complex two-dimensional Joule heating flow
problem. The feasibility of the proposed method is further verified. It is found that the results
obtained in all the test cases with the suggested algorithm are in excellent agreement with the
analytical as well as the established numerical results, underlining the high validity of the
method. The new methods are somewhat more complex and the accuracy of the results is
greatly improved. Meanwhile, the proposed methods are considered universal and can be
applied to other unsteady computation engineering calculations.
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Abstract.

We investigate the convective heat and mass transfer in magnetohydrodynamic a nanofluid through a
porous medium over a stretching sheet subject to a magnetic field, heat generation, thermal radiation,
viscous dissipation and chemical reaction effects. The effects of porosity, heat generation, thermal
radiation, magnetic field, viscous dissipation and chemical reaction to the flow field are thoroughly
explained for various values of the governing parameters. We have further assumed that the nanoparti-
cle volume fraction at the wall may be actively controlled. Two types of nanofluids, namely Cu-water
and Al,Oz-water are studied. The physical problem is modeled using systems of nonlinear differential
equations which have been solved numerically using the spectral relaxation method. Comparing the
results with those previously published results in the literature shows excellent agreement.

Keywords: MHD Nanofluids flow; Porous media; Thermal radiation; Spectral relaxation method.

Introduction

Nanofluids are suspensions of metallic, non-metallic or polymeric nano-sized powders in a base liquid which are employed
to increase the heat transfer rate in various applications. In recent years, the concept of nanofluid has been proposed as a
route for increasing the performance of heat transfer liquids. Due to the increasing importance of nanofluids, there is an
enormous amount of literature on convective transport of nanofluids and problems linked to a stretching surface. Today
nanofluid are sought to have more range of applications in power generation in nuclear reactors, medical application,
biomedical industry, detergency, and more specifically in any heat removal involved industrial applications. The ongoing
work ever since then has extended to utilization of nanofluids in microelectronics, fuel cells, pharmaceutical processes,
vehicle thermal management, domestic refrigerator, chillers, heat exchanger, nuclear reactor coolant, grinding, machining,
space technology, defence and ships, and boiler flue gas temperature reduction. The majority of the previous studies have
been restricted to boundary layer flow and heat transfer in nanofluids. Following the early work by Crane [1], Khan
and Pop [2] were the first to work on nanofluid flow due to stretching sheet. A mathematical analysis of momentum
and heat transfer characteristics of the boundary layer flow of an incompressible and electrically conducting viscoelastic
fluid over a linear stretching sheet was carried out by Abd El-Aziz [3]. In addition, radiation effects on the viscous flow
of a nanofluid and heat transfer over a nonlinearly stretching sheet were studied by Hady et al. [4]. Theoretical studies
include, for example, modelling unsteady boundary layer flow of a nanofluid over a permeable stretching/shrinking sheet
by Bachok et al. [5]. Rohni et al. [6] developed a numerical solution for the unsteady flow over a continuously shrinking
surface with wall mass suction using the nanofluid model proposed by Buongiorno [7]. The effect of an applied magnetic
field on nanofluids has substantial applications in chemistry, physics and engineering. These include cooling of continuous
filaments, in the process of drawing, annealing and thinning of copper wire. Drawing such strips through an electrically
conducting fluid subject to a magnetic field can control the rate of cooling and stretching, thereby furthering the desired
characteristics of the final product. In other work, Jafar et al. [8] studied the effects of magnetohydrodynamic(MHD) flow
and heat transfer due to a stretching/shrinking sheet with an external magnetic field, viscous dissipation and joule effects.
Murthy and Singh [9] studied viscous dissipation on non-Darcy natural convection regime in porous media saturated
with Newtonian fluid. In the past few years, convective heat and mass transfer in nanofluids has become a topic of
major contemporary interest. In this paper we examine the study analyzed of magneto-hydrodynamics (MHD), heat and
mass transfer in nanofluid flow over a stretching sheet subject to Porous media, hydromagnetic, heat generation, thermal
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radiation, viscous dissipation, chemical re- action and Soret effects. The spectral relaxation method (SRM ) was proposed
by Motsa [10]. It is used to solve the governing partial differential equations numerically. This spectral relaxation method
has been successfully applied to other problems of fluid mechanics and heat transfer. In this paper we discuss the fluid
flow and heat transfer as well as highlight the strengths of the solution method.

Governing Equations

Consider the two-dimensional steady boundary layer flow of an incompressible heat and mass transfer nanofluid past a
stretching sheet. The origin of the system is located at the slit from which the sheet is drawn. In this coordinate frame
the x-axis is taken along the direction of the continuous stretching surface. The y-axis is measured normal to the surface
of the sheet. It is assumed that the induced magnetic field is negligible in comparison to the applied magnetic field. It is
assumed that the induced magnetic field, the external electric field and the electric field due to the polarization of charges
are negligible in comparison to the applied magnetic field. In addition to these, the effects of chemical heating, agglomer-
ation and sedimentation of nanoparticles are not included in the work.

The fluid is a water based nanofluid containing two different types of nanoparticles; Copper (Cu) and Alumina (Al,O3)
nanoparticles. It is assumed that the base fluid and the nanoparticles are in thermal equilibrium and no slip occurs between
them. The thermophysical properties of the nanofluid are given in Table 1.

With the above assumptions, the governing boundary layer equations of the nanofluid flow, the continuity, momentum, en-
ergy and the concentration fields with diffusion with radiation, heat generation, viscous dissipation and chemical reaction
effects can be written in dimensional form as proposed by Tiwari and Das [11]

ou ov
—+—= =0, 1
ox Oy M
n 2 nf 1 O—BZ
u%+v%=#'fa—1;— oy 2 220 u, 2
Ox 0y  pur Oy Pnr K puy
T oT T 1 160°T2 8°T nf g
u6_+vé)_:anf6_2+ Q (T -T) + c °°67+ Hnf (6_14) , 3)
Ox dy Ay (oCpInf (oCpInf 3K* 0%y (ocpInr dy
oc  oC 0*C D7 &°T
— +v—=Dg— + —— — Ko(C - Cv), 4
Yo TV TP Y TL oy of ) S
Here g, is the radiation heat flux given by
4" OT*
== - 5
4 3K* dy ©)

where o is the Stefen-Boltzmann constant and K* is the Rosseland mean absorption coefficient. The temperature vari-
ation T* is expanded in a Taylor series expansion form. Neglecting higher order terms and expanding T* about T,, we
obtain, T4 = 4T3 T —3T%. where u and v are the fluid velocity and normal velocity components along x— and y—directions,
respectively, iz, Puf, n s are the effective dynamic viscosity of the nanofluid, nanofluid density and the thermal diffusivity
of the nanofluid respectively. The boundary conditions for equations (1) - (4) are as follows

2
u=ax, v=_0, T:Tw(x)zToo+H(ﬁ) )

C=Cu®=Cu+0(2) a y=0,
u—0,T—>Ty, C—>Csx as y— oo, (6)

where Q, H and a are constants, a > 0 and w is the characteristic length. The effective dynamic viscosity of the nanofluid

was given by Brinkman [14] as

Hy
= 7
(1-9) %
where ¢ and i, are the solid volume fraction of nanoparticles and the dynamic viscosity of the base fluid. In equations (1)
to (4) the heat capacitance of the nanofluid and the thermal conductivity of nanofluids restricted to spherical nanoparticles
is approximated by the Maxwell-Garnett model (see Maxwell Garnett [15]).

(pcp)nf =(- ¢)(pcp)f + ¢(pcp)s»
Pnf = (I- ¢)Pf + Pps, Vuf = ﬁ'_y://:

_ _ky _ 1 [ Gtk =200 k)
Unf = Gy Knr = Kf [ (ki) otk —ks) ] ®)

Hnf =
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where vy, ¢, Png, (0Cp)nfs kngs ks ks, ps, (0Cp) . (pCp)s are the nanofluid kinematic viscosity, the electrical conductivity, the
nanofluid heat capacitance, thermal conductivity of the nanofluid, thermal conductivity of the fluid, the thermal conduc-
tivity of the solid fractions, the density of the solid fractions, the heat capacity of base fluid, the effective heat capacity of
nanoparticles, respectively, (see Abu-Nada [16] and Kameswaran et al. [18]).

The continuity equation (1) is satisfied by introducing a stream function ¥ (x, y) such that

W _ W

=L v= ) 9
" ay Y 0x ©)
Introducing the following non-dimensional variables,
1

v = [ave|’ xf,u=axf @), v =—(avs) f@), (10)

1

T-Ts C-Cs al?
9 = —_— = -_—, = _— 11
() T - T. @(m) co_c. [vf] y an

where 7, is the similarity variable, f(n) is the dimensionless stream function, 6(r) is the dimensionless temperature and
(1) is the dimensionless concentration. By using (7), (8) and (11) the governing equations (2), (4) and (3) along with the
boundary conditions (6) are reduced to the following two-point boundary value problem:

1
f/// + ¢] ff// _f/2 _ @Mf, _ K]f, — 0’ (12)
k

(1 + 4—R)9"+Pr—f¢3 [fe’—2f’e+5e+ &f”z] -0, (13)

3 K P4
" +Sc(fe =2f'o+yp)+Srd” =0, (14)

subject to the boundary conditions

f(0)=0,f(©0)=1,00)=1,00)=1,n=0, (15)
f/(oo) — 0,0(c0) = 0, ¢(c0) = 0,17 — o0, (16)

Where primes denote differentiation with respect to i, @y = ky/(oc,)y and vy = uy/p; are the thermal diffusivity and
kinetic viscosity of the base fluid, respectively. Other non-dimensional parameters appearing in equations (12) to (14) are
M, K\, R, Pr, 8, E., Sc,y and S r denote the magnetic parameter, porous medium parameter, thermal radiation parameter,
Prandtl number, heat generation parameter, Eckert number, Schmidt number, scaled chemical reaction parameter and
Soret number. These parameters are defined mathematically as

M_G'BS © vy R_40"‘T3o S 7 7
- apy s Al = E7 - k*knf O C = B& ( )
_vleep)r o Q _ ko
Pr - kf 75 - a(pcp),lfﬁl - a ’ (18)
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The nanoparticle volume fraction ¢; and ¢, are defined as
¢ =(1 —¢)2'5[1 —¢+¢(&)],¢2 =1 _¢+¢(ps)’
(ocp) o (o (?f)
C Cph)e

=1- P2 gy =(1- 25[1— ’”]. 20
&3 ¢+ ¢(pc,,)f g =(1-9) ¢+ ¢(pcp)f (20)

Skin friction, heat and mass transfer coefficients

The quantities of engineering interest are the skin friction coefficient Cy, the local Nusselt number Nu, and the local
Sherwood number S /i, characterize the surface drag, wall heat and mass transfer rates respectively. The shearing stress at
the surface of the wall 7, is defined as

N (1 I S S
" “"f(ay)yo_ TR o
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where p,, is the coeflicient of viscosity. The skin friction coefficient is obtained as

27,
Cry = , 22
T2 22

and using equation (21) in (22) we obtained
1 2.5 _% 1’
5 (1 =¢)" Cpx=—Re,” f7(0). (23)

The heat transfer rate at the surface flux at the wall is defined as

BT (Tw - Too) wa ’
qw = _knf ' = "RKpf— —0 (0)7 (24)
ady =0 X 143

where k, is the thermal conductivity of the nanofluid. The local Nusselt number is defined as

Xqw
Nuy = ——————. 25
T~ T *
Using equation (24) in equation (25), the dimensionless wall heat transfer rate is obtained as
kf 1 ,
. Nu, = — Re} ¢ (0). (26)
nf

The mass flux at the wall surface is defined as

ac 2
G = ‘D(a_) =-po(=] /< ¢ @7)
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and the local Sherwood number is obtained as

Xqm
Shy = m. (28)
The dimensionless wall mass transfer rate is obtained as
She =~ Re} ¢(0), (29)
where Re, represents the local Reynolds number and is defined as
Rey = ™2 (30)
Ve

Method of Solution

The equations (12) to (14) are highly non-linear, it is difficult to find the closed form solutions. Thus, the solutions of
these equations with the boundary conditions 15 and 16 were solved numerically using the SRM, Motsa [10].

The SRM is an iterative procedure that employs the Gauss-Seidel type of relaxation approach to linearise and decouple
the system of differential equations. The linear terms in each equation is evaluated at the current iteration level (denoted
by r + 1) and non-linear terms are assumed to be known from the previous iteration level (denoted by r). The linearised
form of (12) to (14) is

o anfly —anfl = R €2))
I+ %)0;{‘_1 + bl,rg;_,_l + b2,r9r+1 = RZ,ra s (32)
90;:,1 + C1,r<,0’,+1 + CorPri1 = R3,ra (33)

Results and Discussion

The nonlinear boundary value problem 12 to 14 subject to the boundary conditions 15 and 16 connot be solved in closed
form, so these equations are solved numerically using the spectral relaxation method (SRM) for Cu-water and A/, Oz-water
nanofluids with water as the base fluid (i.e. with a constant Prandtl number Pr = 6.7850). The thermophysical properties
of the nanofluids used in the numerical simulations are given in Table 1. Extensive calculations have been performed to
obtain the velocity, temperature, concentration profiles as well as skin friction, local Nusselt number and local Sherwood
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number for various values of physical parameters such as ¢, M, Ky, R, Pr, Sc, 0, E., y and Sr. To determine the accuracy
of our numerical results, the skin friction and the heat transfer coefficient are compared with the published results of
Hamad [17], Kameswaran et al. [18] and Grubka and Bobba [19]in Tables 2 and 3. Here we have varied the M with ¢
while keeping other physical parameters fixed for Cu-water and Al,Oz-water in Table 2. It is observed that increasing
the values of M results in an increase in the skin friction coefficient. The calculated values show good agreements with
Hamad [17] and Kameswaran et al. [18].

In Table 3 gives a comparison of the values of wall temperature gradient —6’(0) results with those obtained by Kameswaran
et al. [18] and Grubka and Bobba [19]when M = E. =K, =6=R=¢=0,Sc=1,S8r =0.2 and y = 0.08 for different
values of Prandtl number Pr. As it is shown in the table thewall temperature gradient —6’(0) increases with an increase
of Prandtl number. This is fact because the definition of Prandtl number is the ratio of kinematic viscosity to thermal
diffusivity. An increase in the values of Prandtl number implies that momentum diffusivity dominates thermal diffusivity.
Hence, the rate of heat transfer at the surface increases with increasing values of Pr. It is observed that the present results
are in good agreement with results in the literature by Kameswaran et al. [18] and Grubka and Bobba [19]. In Table 4
approximate solutions of the skin friction coefficient, surface heat transfer and the surface mass transfer rates at different
values of flow parameters are presented. All SRM results were generated using L = 30, Nx = 60 and Nt = 1000, these
values were found to give accurate solutions after a numerical experimentation. The L and Nt in the tables represent the
maximum Lth and Ntth iteration required to produce converging results. It is observed that increasing the values of Sr
increase Sherwood numbers in case of Cu-water but the opposite trend is observed with Al O3-water. Also increasing the
values of S ¢ increase the Sherwood numbers for both cases of nanofluids while increasing in heat generation parameter 6
is tend to decrease the heat transfer rate for both nanofluids. The table also shows that surface mass transfer rates increase
with increasing in the values of the chemical reaction parameter y as can be seen from the table.

The effects of physical parameters on various fluid dynamic quantities are show in Figures 1 - 13. Figures 1 - 4 illustrate
the effect of the nanoparticle volume fraction ¢ on the velocity, temperature and concentration profiles, respectively, in
the case of a Cu-water nanofluid and Al O3-water nanofluid. It is clear that as the nanoparticle volume fraction increases,
the Cu-water nanofluid velocity decreases while the Al,O3-water nanofluid velocity increases. As it is shown in Figure
1 while the temperature profile increases with increase in the values of nanoparticle volume fraction this is clear from
Figure 2. increasing the volume fraction of nanoparticles increases the thermal conductivity of nanofluid and in turn
results a thickening of the thermal boundary layer. It is also observed that the temperature distribution in a Cu-water
nanofluid is higher than that of Al,O3-water nanofluid; this is an anticipated results because Cu-water is good conductor
of heat and electricity. The Al,O3-water nanofluid concentration profile decreases as the nanoparticle volume fraction
increases but reveres it true to that of Cu-water nanofluid as shown in Figure 3.

Figure 4 shows the effect of the porous medium parameter K; on the velocity in case of a cu-water and Al,Oz-water
nanofluids. increasing the porous medium parameter K; decreases the velocity profiles of both nanofluids. We observed
from the Figure, the velocity profile of Al,O3-water nanofluid is higher than that of Cu-water nanofluid. Figures 5 and 6
show the effect of porous medium parameter K; on the temperature and solutal concentration profiles respectively, in the
case of Cu-water and Al,Os-water nanofluids. It is clear that as the porous medium parameter K; increases the tempera-
ture and solutal concentration profiles increase.lIt is observed that the temperature and concentration profiles increment of
Al,O3-water nanofluid is less than that of Cu-water nanofluid. Figure 7 illustrates the influence of heat generation param-
eter ¢ on the temperature profile in the case of Cu-water and Al,O3-water nanofluids. We observed that the temperature
profile increases for both cases of nanofluids with increasing in the values of heat generation parameter ¢. It found that
the temperature in case of Cu-water is more than that of Al, O3-water nanofluids. Increasing the values of heat generation
parameter ¢ increases the thermal conductivity of nanofluid and the thickening of the thermal boundary layer. Figure 8
shows the influence of the magnetic parameter M on nanofluid velocity profile in the case of Cu-water and Al, O3-water
nanofluids. When the magnetic parameter M increases, the nanofluid velocity profile of Cu-water and Al, O3-water de-
crease. This is because of the application of the transverse magnetic field in an electrically conducting fluid produces a
ratarding lorenz force slows down the fluid motion in the boundary layer and hence decreases the velocity at the expense
of increasing it is temperature and the solutal concentration. But we observed the opposite for solutal concentration of
Al,Os-water nanofluid is against this fact as illustrates in Figure 4. The velocity profile of the Al,Os-water nanofluid is
higher than that of the Cu-water nanofluid as it shown in the Figure.

Figure 9 shows the effect of the viscous dissipation parameter E. on the temperature profile in the case of Cu-water and
Al Os-water nanofluids. It is observed that the temperature profile increases of both nanofluids with increasing in the
values of E.; we notice that the influence of an increment in E. is to increase the temperature distribution. This is due
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to the fact that the energy is stored in the fluid region as a consequence of dissipation because the viscosity and elastic
deformation. It is observed that the temperature profile in the case of Cu-water nanofluid is higher than that of Al, O3-water
nanofluid. Figure 10 shows the effect of the thermal radiation parameter R on the temperature profile in the case of both
nanofluids. Increasing the thermal radiation Parameter R increases the temperature profile of Cu-water and Al, Oz-water
nanofluids. We observed that the temperature increases of Cu-water is higher than that of Al, O3-water nanofluids. The
thermal radiation parameter R is responsible to thickening of thermal boundary layer. This enables the nanofluids to release
the heat energy from the flow region and cases the system to be cool. This is true because of increasing the Rosseland
approximation results in an increase in the temperature profile. Figure 11 illustrates the effect of the Schmidt number
S ¢ on the solutal concentration profile in the case of Cu-water and Al,Oz-water nanofluids. Increasing the values of Sc
decreases the solutal concentration profile of both case of nanofluids. It is observed that the concentration profile of Cu-
water nanofluid increases more than that of AI,Oz-water nanofluid. Figures 12 and 13 show the effect of two parameters
namely by chemical reaction parameter y and the Soret number S r on the concentration profiles in the case of Cu-water
and Al, Os-water nanofluids in Figure 12 and 13 respectively. We observed that the concentration profiles decreases with
an increase in the values of the scale chemical reaction parameter y whereas the chemical reaction parameter y effect
shows no substation changes on the nanofluid velocity and temperature profile in the two case of the nanofluids. It is clear
that the solutal concentration profiles in case of Al,O3-water nanofluid is relatively less than that of Cu-water nanofluid
in Figure 12. While the Figure 13as the Soret number S r increases, the solutal concentration boundary layer thickness of
both case of nanofluids also increase. We found that the solutal concentration profiles increment of Al, Oz-water nanofluid
exhibits less than that of Cu-water nanofluid.

Conclusions

We have investigated the heat and mass transfer in steady MHD boundary layer flow in nanofluids through a porous due
to an stretching surface subjected to a magnetic field, heat generation, chemical reaction, viscous dissipation and thermal
radiation effects. From the numerical simulations, some results can be drawn as follow:

[i] The velocity profile of Cu-water nanofluid decreases with increasing in the nanoparticle volume fraction whereas the
velocity profile of Al,O3-water nanofluids increases with increasing in the nanoparticle volume fraction while the velocity
profile of both nanofluids decrease with an increase in magnetic and porous medium parameters.

[ii] The temperature profile of both nanofluids increase with increasing in the values of the nanoparticle volume fraction
while the concentration of Al,O3-water nanofluids decreases with increasing in the values of the nanoparticle volume
fraction and the opposite trend is observed for the concentration of Cu-water nanofluids with increasing in the values of
the nanoparticle volume fraction.

[iii] The temperature profile of both nanofluids increase with increase in the values of the Viscous dissipation, heat gener-
ation and thermal radiation parameters.

[iv] The concentration profile of both nanofluids decreases with increase in the values of chemical reaction parameter and
Schmidt number while the opposite trend is observed for the increasing values of the Soret number in the both case of
nanofluids.

[v] The rate of thermal boundary layer thickness of both nanofluids decreases with the presence of nanoparticle volume
fraction, thermal radiation, porous media and viscous dissipation in the flow field.

[vi]ln general, the Al, Os-water nanofluid shows thicker velocity layer at the plate than a Cu-water nanofluids; Al, O3-water
nanofluid exhibits thicker thermal and concentration boundary layer than that of a Cu-water nanofluid.
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Table 1. Thermophysical properties of the water and copper and alumina nanoparticles, (see
Sheikholeslami et al. [12] and Oztop and Abu-Nada [13])

Physical properties Base fluid (Water) Copper (Cu) Alumina (AL O3)

C,(J/kgK) 4179 385 765

p(Kg/m?) 997.1 8933 3970

k(W/mK) 0.613 401 40
a x 107(m?/s) 1.47 1163.1 131.7
Bx103(K™) 21 1.67 0.85

Table 2. Comparison of —f”’(0) for various values of M and ¢ when Pr = 6.2, Sc = 1, Sr =
02,E.=0,K;=0.0,R=0,6=0.02, y=0.08

Hamad[17] Kameswaran et al.[18] Present results

M 0] Cu-water AL O3 Cu-water AL O3 Cu-water AL O3
0 0.05 1.10892 1.00538 1.108919904 _ 1.108920 1.005385
0.1 1.17475 0.99877 1.174746021 _ 1.174746 0.998781
0.15 1.20886 0.98185 1.208862320 _ 1.208862 0.981854
0.2 1.21804 0.95592 1.218043809 _ 1.218043 0.955931
0.5 0.05 1.29210 1.20441 1.292101949 _ 1.292102 1.204412
0.1 1.32825 1.17548 1.328248829 _ 1.328249 1.175484
0.15 1.33955 1.13889 1.339553714 _ 1.339554 1.138892
0.2 1.33036 1.09544 1.330356126 _ 1.330356 1.095444
1 0.05 1.45236 1.37493 1.452360679 _ 1.452361 1.374930
0.1 1.46576 1.32890 1.465763175 _ 1.465763 1.328901
0.15 1.45858 1.27677 1.458581570 _ 1.458582 1.276766
0.2 1.43390 1.21910 1.433898227 _ 1.433898 1.219104
2 0.05 1.72887 1.66436 1.728872387 _ 1.728872 1.664356
0.1 1.70789 1.59198 1.707892022 _ 1.707892 1.591984
0.15 1.67140 1.51534 1.671398302 _ 1.671398 1.515336
0.2 1.62126 1.43480 1.621264175 _ 1.621264 1.434799

Table 3. Comparison of the values of wall temperature gradient —6'(0)
from currents with Kameswaran et al. [18] and Grubka and Bobba
[19] for different values of Prandtl numbers Pr when M = E. = K| =
60=R=0,Sc=1, Sr=02, y=0.08and ¢ = 0.

Pr 0.72 1 3 10 100

Kameswaran et al. [18] 1.08852 1.33333 2.50973 4.79687 15.71163
Grubka and Bobba [19]  1.0885 1.3333 2.5097 4.7969 15.7120
Present result (SRM ) 1.088524 1.333333 2.509725 4.796873 15.711967
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Table 4. Comparison of the SRM solutions for /’(0), —6'(0), and —¢’(0) for different values of
Sr,Sc,0andy.¢ =0.1,E. =1, M=0.5,5¢c=1,6=001, Pr=62,K, =1,y =0.08, Sr=0.2.

Cu — water Al O5 — water
¢=01,E.=1 R=2,Pr=6.2 Ki=1,M=05

Sr 17(0) -6 (0) -¢'(0) 17(0) -0'(0) —¢'(0)
0.0 1.662602 0.262150 1.202677 1.543296 0.387825 1.231631
0.1 1.662602 0.262150 1.203733 1.543296 0.387825 1.223237
0.3 1.662602 0.262150 1.205845 1.543296 0.387825 1.206449
04 1.662602 0.262150 1.206901 1.543296 0.387825 1.198055
Sc
0.6 1.662602 0.262150 1.204789 1.543296 0.387825 1.214843
0.7 1.662602 0.262150 1.574980 1.543296 0.387825 1.587530
0.8 1.662602 0.262150 1.887968 1.543296 0.387825 1.901663
0.9 1.662602 0.262150 2.163376 1.543296 0.387825 2.177705
1)
0.6 1.662602 2.350214 0.854174 1.543296 2.408433 0.877492
0.7 1.662602 2.305154 0.861916 1.543296 2.365163 0.884957
0.8 1.662602 2.258469 0.869887 1.543296 2.320555 0.892611
0.9 1.662602 2.044322 0.905376 1.543296 2.122996 0.925819
Y
0.6 1.662602 0.262150 1.140069 1.543296 0.387825 1.155418
0.7 1.662602 0.262150 1.219003 1.543296 0.387825 1.228159
0.8 1.662602 0.262150 1.438686 1.543296 0.387825 1.439333
0.9 1.662602 0.262150 1.642761 1.543296 0.387825 1.639504

Solid Line  : Cu-water
Dashed Line: Alumina-water
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« ©=0,0.05,01,02

Figure 1. Effect of various nanoparticle values fraction ¢ on velocity profile for K, = 1.0, M =
05E.=10,R=20,Pr=62,6=0.01,y=0.08,Sc=1and Sr = 0.4.
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Solid Line

: Cu-water
Dashed Line: Alumina-water
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Figure 2. Effect of various nanoparticle values fraction ¢ on temperature profile for K; = 1.0,
M=05E.=10,R=20,Pr=62,6=0.01,y=0.08,Sc=1and Sr = 0.4.
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Figure 3. Effect of various nanoparticle values fraction ¢ on the concentration profile for K;

Figure 4. Effect of various nanoparticle values fraction ¢ on the velocity profile for ¢ = 0.2,
M=05E.=10,R=2.0,Pr=62,6=0.01,y=0.08,Sc=1and Sr =0.2.
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Solid Line  : Cu-water
Dashed Line: Alumina-water
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Figure 5. Effect of the porous medium parameter K, on temperature profile for ¢ = 0.2, M = 0.5,
E.=10,R=20,Pr=6.2,6=0.01,y=0.08,Sc=1and Sr =0.2.
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Figure 6. Effect of the porous medium parameter K; on concentration profile for ¢ = 0.2, M =
05 E =10,R=20,Pr=62,6=0.01,y=0.08,Sc=1and Sr =0.2.
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Solid Line  : Cu-water
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Figure 7. Effect of heat generation parameter ¢ on the temperature profile for ¢ = 0.2, M = 0.5,
E.=10,R=20,Pr=62,K, =10,y=0.08,Sc=1and Sr =0.2.

Solid Line  : Cu-water
0.9F Dashed Line: Alumina-water

I'(n)

Figure 8. Effect of magnetic parameter M on the velocity profile for ¢ = 0.1, K, = 1.0, E. = 1.0,
R=20,Pr=62,6=0.01,y=0.08,Sc=1and Sr=0.2.
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Solid Line  : Cu-water
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Figure 9. Effect of viscous dissipation parameter E. on the temperature profile for ¢ = 0.1,
Ki=10,M=05,R=20,Pr=62,6=0.01,y=0.08,Sc=1and Sr =0.2.

Solid Line  : Cu-water
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10 12

Figure 10. Effect of thermal radiation parameter R on the temperature profile for ¢ = 0.1,
Ki=10,M=05,E.=1.0,Pr=6.2,6=0.01,y=0.08,Sc=1and Sr =0.2.

Solid Line  : Cu-water
Dashed Line: Alumina-water

Sc=1,15,2,25

Figure 11. Effect of the Schmidt number Sc on concentration profile for ¢ = 0.1, K; = 1.0,
M=05,E.=1.0,Pr=62,6=0.01,y=0.08,R=2and Sr =0.2.
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Solid Line  : Cu-water
Dashed Line: Alumina-water

Figure 12. Effect of the chemical reaction parameter y and Soret number S r on concentration
profiles for ¢ = 0.1, K, =1.0,M =05,E.=1.0,Pr=62,6 =0.01,Sc=1and R = 2.
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Dashed Line: Alumina-water
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Figure 13. Effect of the chemical reaction parameter y and Soret number S r on concentration
profiles for ¢ = 0.1, K, =1.0,M =05,E.=1.0,Pr=6.2,6=0.01,Sc=1and R = 2.
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Abstract

Certain traditional methods of Calculus for solving DEs and systems of DEs in engineering
analysis depend in one form or another on the use of some general initially assumed analytical
representation of the intended solution. Unfortunately this often leads to defining one or several
integrals that cannot always be resolved exactly. In order to avoid this complication we propose
that the complete "differential” of a general initially assumed analytical representation of the
intended solution with unknown coefficients to solve for be used instead as a means of solving for
DEs and systems of DEs. Such a novel method of differential analysis has led to the development
of what appears to be some form of a unified theory of integration. This would represent the
greatest opportunity by which the complete Navier-Stokes equations for incompressible flow in the
presence of any external forces may be investigated for the existence of any "generalized"
analytical solutions under the three most commonly used coordinate systems.

Keywords: Universal Polynomial Transform, ODEs, PDEs, Multinomial Expansion Theorem,
Quantum Physics, Quantum computers, Navier-Stokes equations, Theory of everything.

Introduction

Such a non-traditional method of using this unique form of differential analysis in Calculus would
have the real potential of defining integrals that can be completely resolved because a certain
number of these initially assumed "differentials” are expected to become "exact” from the
application of a well defined computational process. This would represent a very significant
departure from current traditional methods of engineering analysis favoring a purely "numerical
method of integration in cases by which no real analytical solution to many fundamental DEs and
systems of DEs in engineering science is possible. The greatest advantage of performing such a
type of analysis strictly at the differential level has led to the development of some type of a unified
theory of integration that can be applied for finding approximate or in some cases exact analytical
solutions to "all types” of DEs and systems of DEs encountered in engineering analysis. The entire
process of analytical integration now becomes a matter of pure computational analysis just for
identifying those differentials that are exact and thus completely integrable. Such a very unique
method of differential analysis will be applied for the complete analytical solution of a number of
randomly selected DEs that would include a first and second order ODE as well as a second order
PDE. The outcome of having performed such a detailed differential analysis on these very simple
DEs may provide us in the long term with some basic fundamental tools of analysis by which a
generalized theory of the Navier-Stokes equations may be possible in the foreseeable future. Not
surprisingly since such a novel method of differential analysis has led to the development of a
computational based unified analytical theory of integration. Beyond the Navier-Stokes equations
are other equations of significant importance to the physical sciences that would include Maxwell's
equations, Einstein's field equations, the Schrodinger equation just to name a few. Each of these
fundamental equations of science would define their own very unique ideology all of which may
one day be consolidated into one gigantic universal theory of everything.
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1. Universal differential form representation of all mathematical equations

For solving a DE or a system of DEs, an alternative representation in complete differential form
for a generally assumed system of "k™ number of implicitly defined multivariate mathematical
equations in the form of "f,(z,,, x,,) = 0" that consist of "m" number of dependent variables and
"n" number of independent variables [Mikalajunas (2015)] may be completely defined as :

(1). Primary Expansion:

T ptq
Ejj .
Fy(Wy, Wy, s Wyyyy) = 0 = zai,t nwg. i (1<i<k) (1)
j

t

where "W;" for 1 < j < p are arbitrarily defined auxiliary variables that take part in representing
the complete initially assumed analytical solution of a DE or a system of DEs. For any number
of basis functions that are present in a DE or a system of DEs we would have to define an
additional "g" number of known supplemental auxiliary variables for including each of their
differential expansion as part of the complete overall expansion for representing the system of "k
number of implicitly defined multivariate equations. In such cases, the total number of auxiliary
variables would grow from "p" to "p + q" when such basis functions are present in these types of
DEs. Each of the "p" number of arbitrarily defined auxiliary variables are always initially assumed
as raised to some floating point number and finally, "r" refers to the total number of multivariate
polynomial terms that are present in each of the "k™ number of implicitly defined multivariate
polynomial equations.

(2). Secondary Expansion:

dx; = dWpyy I<isn) 3

m n
ZNi(m+n+1)—m—n—1+tdZt + ZNi(m+n+1)—n—1+tdxt =

t=1 t=1
= Nim+n+1)dW; [I<i<p+gq-m—-—-n] [m+n+1<j<p+q] (4)

As in the case of the Primary Expansion, each of the expressions for "N," in equation (4) is also
defined as a multivariate polynomial with unknown coefficients and floating point exponent values
to solve for.

And finally we have,

m n
ZTi(m+n+1)—m—n—1+tdZt + ZTi(m+n+1)—n—1+tdxt =

t=1 t=1

= Timen+1)dW; [1<i<q][p<j<p+dq] ©)
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where each of the expression for "T," in equation (5) is also a multivariate polynomial but this time
containing only known coefficient and exponent values that are reserved exclusively for defining
each of the basis functions that would be present inside a DE or a system of DEs.

At the present time there is no other known universal representation of all mathematical equations
consisting only of algebraic and elementary basis functions other than the one suggested above.

In complete expanded form we would write this as follow:

(1). Primary Expansion:

— _ My1y M1z ., 1p7 LD+ Myp+q+1y, ,Mup+q+2 | 107 M12(0+9)
F,F=0 = a; W, W, Wp+q + a1'2W1 I/I/2 I/I/;Hq
My, @+ (r-D+1 1, M,p+)r-D+2 14, Tr(p+q) 6
+ ot aW, W, W, (6)
_ _ Ma1y0 M2z ., 147 20+4q M2p+q+1y,M2p+q+2 | 10, M2.2(0+q)
F, =0 = ayW ='W, Wp+q + a2,2W1 W2 Wp+q

+ .+ azlrwmz.(mq)(r—l)ﬂsz.(p+q)(r—1)+2 ___sz,r(p+q) (7)

1 2 ptq
_ _ Mp1ya7Mk2 .. Mi,p+q Mi,p+q+iy, Mhp+q+2 Mi,2(p+q)
Fe = 0 = agWy =W ™ =Wy + a2, W, Wo+q
m - m — m
+ .+ ak’rw/l k(p+a)(r 1)+1V|/2 k(p+q)(r-+2 va+l:l,r(p+q) (8)
(2). Secondary Expansion:
dx; = AWy (1<i<n) (10)

[ Nydz; + Nydz, + ... + Npndz,| + [Npyidxy + Npgodx, + .0+

+ oo+ Nppndxn] = Npinse1@Wininaa (11)

[Nm+n+2dZ1 + Nm+n+3dzz + ..+ N2m+n+1dzm] + [N2m+n+2dx1 +

+ Nomynssdx, + ..+ Nz(m+n+1)—1dxn] = Nz(m+n+1)dWm+n+2 (12)
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[N(p+q—1)(m+n+1)+1dzl + N(p+q—1)(m+n+1)+2d22 + ..+ N(p+q—1)(m+n+1)+mdzm] +

+ [N(p+q—1)(m+n+1)+m+1dx1 + N(p+q—1)(m+n+1)+m+2dx2 + ..+ N(p+q)(m+n+1)—1dxn] =

= N(p+q)(m+n+1)de+q (13)

The actual process of transforming a complete mathematical equation or a system of mathematical
equations in terms of the above universal differential form representation is referred to as taking its
Multivariate Polynomial Transform. The complete reverse process of going from a differential
form representation back to the original complete mathematical equation or system of mathematical
equations would be referred to as taking the inverse of a Multivariate Polynomial Transform. This
would involve following a very unique integration process in the Secondary Differential Expansion
for determining the complete analytical expression corresponding to each auxiliary variable. They
in turn would each be substituting back into the Primary Expansion for arriving at the complete
original expression in the form of "f, (2, x,,) = 0".

Appendix A provides a list of the Multivariate Polynomial Transform corresponding to a variety of
univariate and multivariate mathematical equations. For simplicity, both the Sine and Cosine
function have been expressed as a rational combination of the Tangent function using the following
basic trigonometric identity:

] _ 2Tan(x/2) 14
Sin(x) = 1+ Tan?(x/2) a4
Cos(x) = 1— Tan?(x/2) (15)

1+ Tan?(x/2)

Just by increasing the total number of dependent and independent variables, the concept of a
Multivariate Polynomial Transform is still applicable for including all systems of mathematical
equations as well. However, space limitation prevents the inclusion of these types of mathematical
equations as good illustrative examples.

2. Unique template for investigating the probable existence of complete "*general™ analytical
solutions to DEs and systems of DEs by using a method of conjecture

A necessary condition for defining a complete unified analytical theory of integration is by
substituting an initially assumed version with unknown coefficients to solve for of the universal
differential form representation of all mathematical equations as described by equations (1) through
(5) into any type of DEs and systems of DEs. This would always result into defining a very
unique type of system of nonlinear simultaneous equations to solve for. The exact numerical
solution sets obtained would then be used as a means of inverting the corresponding initially
assumed differential expansions for arriving at an exact or approximate analytical solution that
would be expressible only in terms of the algebraic and elementary basis functions.

Such an initially assumed differential expansion form would possess all the characteristics of a
complete mathematical transform so we would refer to it as an initially assumed Multivariate
Polynomial Transform or in short IAMPT.
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The entire process of using an IAMPT for solving DEs and systems of DEs can be divided into
two fundamental stages. The first, is the computational stage by which the corresponding nonlinear
simultaneous equations of a DE or a system of DEs are numerically derived and completely
solved for. The second, is the analytical stage by which every numerical solution set obtained is
converted to pure analytical form. This would involve the process of identifying and solving for
those exact integrals that are present in the Secondary Expansion which have successfully pass the
complete test for exactness. From this exact integration process, the complete expression for each
initially assumed set of auxiliary variables are obtained and substituted into the Primary Expansion
for arriving at the complete analytical solution of the DE or system of DEs.

When selecting a suitable IAMPT for solving a particular DE or a system of DEs, the total number
of unknown coefficients and floating point exponent values to solve for becomes purely arbitrary
and should be as high as possible. This is necessary as a means of capturing those "exact"
analytical solutions that can successfully resolve a DE or a system of DEs uniquely in terms of
some combination of algebraic and elementary basis functions. The limitations on the total number
of unknown coefficients and exponent values to solve for as defined from an IAMPT is generally
set by the capacity of a computer system to handle extremely large numbers of very complex
nonlinear simultaneous equations to solve for.

The resultant system of nonlinear simultaneous equations to solve for will always consist of an
infinite number of exact numerical solutions sets provided that the IAMPT has been chosen large
enough to contain the exact solution of the DE or system of DEs that is being solved for.

Some of the reasons that would account for the existence of such an infinite number of numerical
solution sets are:

» The ability for an exact solution to a DE or a system of DEs to satisfy an infinite number
of initial conditions.

» The permutation of each auxiliary variable present in both the Primary and Secondary
Expansion for representing the same identical exact analytical solution of the DE or system
of DEs.

> As a result of the natural computational process involved in solving for a very large number
of complex nonlinear simultaneous equations, many numerical solutions sets obtained are
expected to define numerous types of trivial algebraic identities from the process of
inverting the corresponding IAMPT. Such type of identities will always be present in one
form or another in the final representation of the analytical solution. A good example is the
"Sin%(x) + Cos?(x) = 1" or any other algebraic variations of this trigonometric identify that
would also include other types of basis functions as well.

» The presence of singular solutions.

> As a result of the natural computational process involved in solving for a very large number
of complex nonlinear simultaneous equations, many numerical solutions sets obtained will
naturally lead to the formation of one or several expressions in the Secondary Expansion
that would be represented as a ratio of two exactly identical multivariate polynomials.
These types of ratios would be considered as trivial ratios that would have to be all
completely eliminated before any attempts is made for inverting a Secondary Expansion.

For every numerical solution set obtained as a result of solving for these nonlinear simultaneous
equations there will always be a corresponding exact analytical solution satisfying a "unique" set of
initial conditions. We would refer to the existence of such a type of exact analytical solution as an
"instance solution”. As there are an infinite number of possible numerical solution sets of the
nonlinear simultaneous equations this will give rise to an infinite number of such instance solutions.
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By consolidating a sufficient number of such instance solutions we can by using a method of
conjecture potentially uncover more complete "generalized" versions of analytical solutions
satisfying a general DE or a system of DEs. It therefore becomes quite imperative that as a result
of solving for the nonlinear simultaneous equations we always continuously keep track of all
instance analytical solutions obtained in the form of a table that we would like to refer as a
"numerically controlled system of analytics table” or inshortan (NCSA) table.

The following general system of PDEs of any order can be used for describing the most general
case of an NCSA table:

G — G ( 0z, 0z, 0z, 0z, 0z, 0z,
Kk = k\ 21,22, -y Zmy X1, X2y ooy Xy, ax1 ) axn ) axl ) axn ) ax1 ) axn )
0%z, 0%z, 0%z, 0%z,
T 0x,0x; 7 0x10x, ' 0xy0x,” T 0x,0x, "
0%z, arzm) _ 0
T ' o )
In this case, the NCSA table would be represented as follow:
Gk =0
Initial Coefficient Exact analytical solution
Conditions values present obtained using the Multivariate
in the DE or Polynomial Transform method

system of DEs

Z01,Z02) »»Zom» X01s = » Xon -+ ao, bo, Coy «or Ul =0

Z11, 202y > Zomr» X01s »r» Xon == a,, bo, Coy «or U2 =0

ZOl,le ,...,Zom,x01,...,xOn e ao, bl’ Co,... U3 =0
Table 2.1

where "U; = 0" would then be referred to as an instance solution satisfying the unique set of
parameters contained in this table.
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Example (2.1). For the simple two dimensional case that can be represented by the following
general first order ODE,

d
cAg ay + bx"y? = 0 17)

dx

the corresponding NCSA table may be constructed in the following manner:
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dy
— + + bx"y* = 0
xdx ay x"y
Initial Coefficient Exact analytical solution
Conditions Values obtained using the Multivariate
Polynomial Transform method
xo =1 a=1.0 (-3x+ xHy+2=0
Yo =1 b=1.0
n=-1.0
X0 =1 a=1.2 (1.4x%2 — x?)y — 080 = 0
n=20
xo =1 a=12 (1.7x*2 4+ 1.5%)y + 32 =0
n=-2.0
xo =1 a=20 x%y(05 — In(x)) — 1 =0
n=20
xo =1 a=15 (—2.75x + 2x3)y — 1.5 = 0
n=3.0
Xo=1 a=1.0 xy(1 + In(x)) — 1.0 = 0
n=1.0
xo =1 a=-1.0 x1y(-1 + 1.5In(x)) — 1.0 = 0
Vo = -1 b=1.5
n=-1.0
Table 2.2
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The evidence gathered from each of the above instance solutions allows us to conclude by
conjecture that:

fitx,y) = 0 = (AxB + CxP)y + E (18)
and:

fo(x,y) = 0 = xy(B + Cln(x)) + D (19)

both appear to be perfect candidates for the general exact analytical solution of the ODE where the
coefficients "A", "B", "C", "D" and "E" are to be expressed in terms of the coefficients "a", "b",
"n" and the initial conditions of the ODE.

By substituting any one of these generally assumed analytical solution into the ODE and equating
like terms to zero, we can derive a complete relationship that can exist between the known and the
unknown coefficients.

The general formula used for determining the first derivative of "y" is:

dy _ _9f jof (20)
dx  0x/ dy

In our first assumption that "f;(x,y) = 0" and upon equating like terms to zero in the ODE,
this would define the following system of equations to solve for:

A(a — B) =0 (21)
C(a — n)— bE =0 (22)
(Ax§ + CxB)yo + E = 0 (23)
with exact solution [Mikalajunas 2015]:

A #= 0 (24)
B = a (25)

_ a
c = Abxoyo (26)

a+ bxgyo— n

- C

E = % (@ 1) 27)

Following the same type of logic for our second assumption that "f,(x,y) = 0", this would
define the following system of nonlinear equations to solve for:

B(a — n)— C — bD =0 (28)
Cla — n) =0 (29)
x3yo(B + Cln(xg)) + D = 0 (30)
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with exact solution [Mikalajunas 2015]:

= 0 (31)

C = -bD (32)

-D —D — Cxlyoln(x 33

B = — ~ Cln(xy) = n03’0 (x0) (33)
X0 Yo X0 Yo

Without having constructed the NCSA table it would have been very difficult to have correctly
arrived at the complete "general analytical solution" of this first order ODE that would satisfy all
initial conditions as well. There are currently no known traditional method of integration capable
of deriving complete "general” closed form solutions to "any type" of DEs and systems of DEs
that would be entirely based on the use of a well defined "exact" method of computational analysis
such as the one being proposed in this paper.

The very unique mathematical properties of an IAMPT when substituted into a DE or a system
of DEs allows for all initial conditions to be fully accounted for. This is because the exact
integration process that is performed in the Secondary Expansion for determining an exact
expression for each auxiliary variable must always include the constant of integration which in turn
would automatically define each of their initial values. For every instance solution obtained, the
overall contribution of each of these initial values for the auxiliary variables can easily succeed in
completely matching the initial conditions of a DE or a system of DEs. This becomes very
obvious by noticing that the Primary Expansion of an IAMPT is always expressed as some
algebraic combination of initially assumed auxiliary variables as well as known auxiliary variables.
Its the initial values of each of these auxiliary variables that can easily be adjusted numerically for
satisfying the overall initial conditions of a DE or a system of DEs by solving for the type of
system of nonlinear equations in which there will always be more unknowns than available
equations to solve them.

Based on our previous example for the general first order ODE, we notice that every instance
solution obtained would potentially lead towards defining a more generalized version of the exact
analytical solution. It is only through the painstaking gathering of this type of information in the
form of a large distribution sample of instance solution sets can we succeed in determining only by
the method of conjecture complete general closed form solutions of a DE or a system of DEs.

The complete consolidation of a large number of these generalized exact analytical solutions which
would be the result of having solved for a large number of very distinct classes of DEs and
systems of DEs can potentially lead to defining some very fundamental theorems. Case in point is
the superposition theorem being the result of having solved mostly by trial and error a very
distinct class of linear second order ODEs.

By consolidating each of these fundamental mathematical theorems into one gigantic universal
theory might represent our most realistic hope yet of ever arriving at some unified theory of
everything.

3. The theory of everything not just about modern physics anymore

To this day, the most accepted definition of the theory of everything is that it must remain an
integral part of modern physics on the principle of defining a unique Space-Time model that would
explain all the basic laws of this universe.

However, what appears to be clearly lacking in our attempt to create such a grandiose physical
theory for explaining everything about this universe is an equivalent grandiose mathematical theory
that would have to succeed in explaining everything about the complete analytical integration of all
types of DEs as well as all types of systems of DEs.
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Because DEs are completely universal and not linked to any specific area of the physical sciences,
there is really no evidence to support that modern physics is the only real subject by which a
complete theory of everything may be entirely constructed from.

Rather, it would have to be through the application of some unified theory of analytical integration
that a theory of everything would be achievable. This would be result of consolidating each
fundamental theorem associated with a single Unified Physical System at a time into one gigantic
theory capable of explaining everything about this physical universe.

The following block diagram suggests such a scenario by which DEs and systems of DEs would
play a central role for establishing such a theory of everything where each Unified Physical System
would have its own very unique story to tell us that in the end we would need to know about:

Navier-Stokes Maxwell's Unified Physical
Equations Equations - System

Instance Analytical Solution Set Instance Analytical Solution Set Instance Analytical Solution Set Instance Analytical Solution Set

General Analytical Solution Set General Analytical Solution Set General Analytical Solution Set General Analytical Solution Set

Fundamental Theorems Fundamental Theorems Fundamental Theorems Fundamental Theorems

Figure 3.1

The very mathematical nature of our proposed unified theory of analytical integration is built on the
principle that "analytical solutions” to DEs and systems of DEs must be constructed entirely on
pure computational analysis.

In the absence of a unified theory of analytical integration, our understanding of the physical
sciences cannot be complete as our method of analysis becomes reduced to a process that is mostly
governed by unpredictable events. Because Calculus is so deeply embedded into all of the physical
sciences, how can we expect to devise a theory of everything without the use of some form of a
unified analytical theory of integration that would be entirely driven by some well defined method
of exact computational analysis ?
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4. Complete numerical example for a second order ODE

In our first example for the general first order ODE, we highlighted the importance of creating a
special type of table called the NCSA table for providing much greater visibility towards the
acquisition of general closed form solutions. Such a table would be constructed on the principle of
creating a special type of database that would consist of a large number of instance solutions each
satisfying a predetermined number of control parameters that would include initial conditions and
all the variable coefficients that take part in defininga DE or a system of DEs.

Corresponding to a unique set of control parameters would define a unique instance solution that
would be obtained as a result of substituting an IAMPT into a DE or a system of DEs and
numerically solving for the resultant system of nonlinear simultaneous equations. This would be
followed by the complete transformation of the resultant IAMPT into a unique instance solution.

As the number of instance solutions grows, this would allow for much greater insight in
determining by method of conjecture if a more general analytical solution actually exists. These
types of closed form solutions have a far greater capacity towards a much better understanding on
the very long term behavior of a physical system. By consolidating each and every general
analytical solutions obtained over a large class of DEs and systems of DEs into basic
fundamental theorems, an even far much better understanding of the same physical system is
possible. Only as we progress further in the complete formulation of a large number of such
specialized fundamental theorems can we expect to move closer towards the complete development
of some form of a theory of everything.

In the following example, we have randomly selected a second order ODE and provided a
complete step by step process for arriving at its complete exact analytical solution satisfying all
initial conditions.

Example (4.1). Starting with the following second order ODE:
d’y dy\* dy . dy (34)
vaz (@) {1 - @S0 - ygeesm) = o

there are two external inputs that are defined in terms of the Sine and Cosine function.

For the sake of simplicity in our analysis, we can use the following identities for expressing each
of the two trigonometric functions as a rational combination of the half angle tangent function:

S _ 2Tan(u/2) (35)
in(u) = 1+ Tan?(u/2)
Cos(u) = 1— Tan?(u/2) (36)

1+ Tan?(u/2)

Based on the use of this half angle formula for the Tangent function, we begin by selecting a much
simpler alternative representation for the Sine and Cosine function by defining:
H = Tan(y/2) = Wy, (37)

where "p" is the total number of arbitrarily defined auxiliary variables from the IAMPT that will
be selected for solving this second order ODE.
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For this choice of auxiliary variable the corresponding Multivariate Polynomial Transform would
be defined as follow:

(1). Primary Expansion:

H(Wp+1) = Wy (38)

(2). Secondary Expansion:

dy = dW, (39)

0-dx + (1+ WZy)dy = 2dW,4, (40)

We can arbitrarily select our IAMPT as consisting of a maximum of five arbitrarily defined
auxiliary variables so that "p = 5". There will be a total number of six terms in the Primary
Expansion so that "u, = 6" and a total number of four terms in the Secondary Expansion so that
"ug = 4", Because there is only one external input in the form of the Tangent function for
representing both the Sine and Cosine function, "g = 1" thereby bringing the total number of
auxiliary variables in the entire initially assumed expansion to six.

For this selection of parameters, the corresponding IAMPT for solving this second order ODE
can be expanded as:

(1). Primary Expansion:

F=0= aW W, 2 =W+ aW™ "W, W "? + .. +
m m m
+ ot agWEW, W (A1)

(2). Secondary Expansion:

42
dy = dWw, (43)
Nldx + dey = N3dW3 (44)
N4dx + Nsdy = N6dW4 (45)
N,dx 4+ Ngdy = NodWs (46)
Nlodx + Nlldy = ledW6 (47)
where:
Ny = byWmW, 2 Wg™ 4 4+ bW oW, 20 e W2 (48)
N, = bW 25W,"26 e W0 4 4 bgW S W)™6 e W (49)
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N9 — b33W1m193W2m194 ,_,W6m198 + .+ b36W1mz11W2m212 ,,,W6m216 (50)

To account for the presence of both the Sine and Cosine function inside the ODE we must
define the following three multivariate polynomials with known coefficient values:

Nig = 0 (51)
Ni; =1+ W§+1 =1+ W2 (52)
and :

Ny, = 2 (53)

We can compute the total number of unknowns to solve for in our IAMPT using the following

general formulawith "p = 5", "up = 6", "ug =4" and "g=1":

Ntotat = Nprimary + Nsecondary (54)
= up(p+q+1) + 3us(@+q+D(P-2) (55)
= 6(5+1+1) + 3@)G+1+1)(5B-2) (56)
= 6(7) + 12(7)(3) = 42 + 252 = 294 (57)

We can express the entire ODE in terms of the following single large multivariate polynomial by
taking its complete Multivariate Polynomial Transform using equation (35), (36) and (37):

d?y dy\? dy [ 2Wyyq dy (1 — W2,

W,— - (—) 1 - —w\—% | - Wo |75 =0 (58)
dX? ax ax 1+W1[J+1 ax 1+W1[J+1

where we have selected:

(59)
(60)

W]_:X
W2=Y

and where capital letters are used to indicate that a transformation from rectangular to complete
multivariate polynomial form has taken place.
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A very general formula for calculating the first derivative of a general IAMPT may be defined as:

p+q-2 p+q p+q-2
av P JoF l_[ N Z N JoF 1—[ N (61)
k=1 j=3 k=1
k+j-2
P p+q-2 p+q r p+q-2
W H Ny + Z Nsj-7 o 1_[ N
Z k=1 =3 T k=
*j-2

where both P; and (@Q; are each defined as a multivariate polynomial.

By expressing this equation in the following form:

dy

Tl =0 (62)
we can numerically determine the second and higher derivatives of the dependent variable by
successively differentiating both sides of this equation using the product rule and the general
formula provided in equation (61).

Section 6 describes an exact computational method for calculating the various derivative of a
product of two or more expressions using the Multinomial Expansion Theorem without resorting to
any type of symbolic algebraic manipulation.

Our system of nonlinear simultaneous equations of interest to solve for is obtained by first taking
the various derivatives of equation (58) that represents the ODE in complete multivariate
polynomial form. This would include the various derivatives of each auxiliary variable that define
the Multivariate Polynomial Transform of the single external input as provided in equations (37)
through (40) which are "W," and "Wp.,".

Next, we replace the various derivatives of the dependent variable in equation (58) with the
computed values obtained from the various derivatives of our IAMPT using equations (61) and
(62).

The resultant nonlinear simultaneous equations can then be numerically solved for using various
optimization technics where our objective function to be minimized would be represented as the
sum of the squares of each of the various derivatives of equation (58):

. - an W dzy (dY)Z ) dy [ 2Wp4 W dy (1— W2, 63
T odxn| 2dX? dXx dX \1+ W2, 2dx \1+ W2, (63)
Our main objective function to minimize would thus be represented as:

F = Zc;,e (64)

100



ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

By succeeding in completely minimizing the above objective function to zero, the corresponding
inverse Multivariate Polynomial Transform would define an exact analytical solution of the ODE
that would satisfy a completely random set of initial conditions. Such a type of analytical solution
obtained was earlier described as an instance solution. Any numerical solution set that would
depart from this minima would represent only an approximation of the actual exact analytical
solution of the ODE. The further away we are from this minima, the greater will be the error of
approximation between the exact analytical solution and the one arrived at.

As we are only interested in obtaining as many exact instance solutions as possible each satisfying
their own very unique initial conditions when solving for these nonlinear simultaneous equations,
we must treat all initial values of the auxiliary variables as unknown coefficients to solve for in
order to achieve the highest numerical solution set rate possible. It is the initial values of each
auxiliary variable defined from the exact integration of a Secondary Expansion that when
substituted into the Primary Expansion would completely define the initial conditions of a DE or a
system of DEs. Keep in mind that our primary objective in this type of analysis is to acquire as
many instance solutions as possible so that by applying a unique method of conjecture, we would
be able to arrive at a more generalized version of the closed form solution satisfying a DE or a
system of DEs.

For solving these nonlinear simultaneous equations using an optimization technic, all gradient
calculations can become fairly complex quite often leading to very unpredictable results. A
preferred method of optimization that generally does not require any type of gradient calculations is
the pattern search method as described in the book by [Adby and Dempster 1974].

All calculations involving very high order partial derivatives of an IAMPT require a great deal
amount of precision and thus not recommended to be performed on a regular PC. Instead, the entire
computational process would become more manageable if it were conducted on a very advanced
super computer system.

Future generations of computer hardware may begin to take full advantage of the multistate
quantum bit (or Qubit) technology originating from the principles of quantum physics as they are
expected to become much more powerful than the conventional types that operate only on the
principle of two states being a 0 or 1. Over time the semi conductor industry that currently powers
our conventional computers will eventually reach its own physical limitations in terms of its ability
for designing super fast switching devices. Some estimate that because of the multi state capability
of a Quibit, it would succeed in outperforming even the most powerful conventional super computer
of our time in the billion-fold under the most demanding condition of computational requirements.

Upon the gathering of as many numerical solution sets of the nonlinear simultaneous equations as
possible, the next step to follow afterwards is in the complete construction of an NCSA table that
would be very specific to the particular DE or system of DEs being solved for.

For solving our second order ODE, we were able to acquire a large number of instance solutions
each satisfying its own very unique set of initial conditions that would also become the initial
conditions of the ODE as well. The greater the number of instance solutions that can be gathered
and fully documented accordingly, the greater is the amount of information that can be made
available for facilitating the entire process of deducing by conjecture the complete general exact
analytical solution of the second order ODE.
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The NCSA table for our example of a second order ODE would therefore appear as follow:

Based entirely on the information provided in this table and following the same basic procedure as
was done in our first example for a first order ODE, a plausible conjecture for the exact analytical

solution of this second order ODE satisfying all initial conditions would be:

fx,y) = 0 = Cos(y) + x + A

+ A, In(y)

where "A; " and "A;" are each defined as a constant of integration.
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dy\* dy y
. — [=£ 1 — —Z8i - y= =

Y dx? (dx) { dem(y) Y dx Cos(y)} 0
Initial Coefficient Exact analytical solution
Conditions Values obtained using the Multivariate

Polynomial Transform method
Xo = —1.28 N/A Cos(y) + x + 1.662 — 0.778 In(y)
yo = 1.591
Xy = 0.2473 N/A Cos(y) + x — 0.111 + 3.138In(y)
yO - 0.76
Xy = —3.2542 N/A Cos(y) + x + 2.662 + 1.267 In(y)
yO = 1.44‘2
Xo = 1.2223 N/A Cos(y) + x + 0.579 — 0.778 In(y)
yo = 3.865
Xo = —0.837 N/A Cos(y) + x — 1.051 + 2.817 In(y)
Vo = 2.691
X, = —1.668 N/A Cos(y) + x — 0.871 + 4.511in(y)
yo = 1.877
Table 4.1
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5. Complete numerical example for a second order PDE

For PDEs and for systems of ODEs as well as for system of PDEs, the NCSA table is always
constructed in pretty much the same way as we did for the first order ODE described in the first
example. In all cases involved, we always allow for the initial conditions of a DEs or a system of
DEs to become part of the unknown coefficients to solve for as originally defined from within an
IAMPT,

In the following example, we have randomly selected a second order PDE and provided a complete
step by step process for arriving at its complete exact analytical solution satisfying all initial
conditions.

Example (5.1). For the following second order PDE :

0%z 0z
— ) - = _ 2¢; — (66)
Xy < o 0x2> o x1x58in(x,x,) 0

there is only one external input that is defined in terms of the Sine function.

As we did in our previous example for a second order ODE, we can use the following trigonometric
identity for expressing the Sine function as a rational combination of the tangent function:

2Tan(x1x,/2) 67)
1 + Tan?(x1x2/2)

f(x1,x) = Sin(xx;) =

Based on the use of this half angle formula for the Tangent function, we begin by selecting a much
simpler alternative representation for the Sine function by defining:

H(xy,x2) = Wy = Tan(xyxp/2) = Tan(W,W5/2) (68)

where "p" is the total number of arbitrarily defined auxiliary variables from the IAMPT that will
be selected for solving this second order PDE.

For this choice of auxiliary variable the corresponding Multivariate Polynomial Transform would
be defined as follow:

(1). Primary Expansion:
HWps1) = Wpis (69)

(2). Secondary Expansion:

0-dz + (1+ W2 )Wadx, + (14 W2 IWodx, = 2dWyy, (70)

where we have selected:

W, = z (71)
L=

Wz = X1 (72)
and:

W3 = x2 (73)
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We can arbitrarily select our IAMPT as consisting of a maximum of eight arbitrarily defined
auxiliary variables so that "p = 8". There will be a total number of eight terms in the Primary
Expansion so that "u, = 8" and a total number of four terms in the Secondary Expansion so that
"ug = 4". Because there is only one external input in the form of the Tangent function for

representing only the Sine function, "q = 1" thereby bringing the total number of auxiliary
variables in the entire initially assumed expansion to nine.

For this selection of parameters, the corresponding IAMPT for solving this second order PDE can
be expanded as:

(1). Primary Expansion:

F=0 = aW W2 =W + a;W "W, = Wy"® + ..+
+ o+ agWmetWSmes w2 (T4)

(2). Secondary Expansion:

dz = dw, (75)
dx1 = dWZ (76)
dxz = dW3 (77)
Nle + dexl + N3dX2 = N4dW4 (78)
Ngdz + Ngdx; + N,dx, = NgdWs (79)
NgdZ + Nlodxl + Nllde == ledW6 (80)
ngdZ + N14_dx1 + ledxz = N16dW7 (81)
N17dZ + ngdxl + ngdxz = NZOdWB (82)
N21dZ + szdxl + N23dx2 = N24,dW9 (83)

where :

Ny = bW W)™ - Wy™ 4 4 bW, e Wy (84)
N, = b5V|/1m37VV2m38 "'V|/9m45 + .+ b8VV1m64VV2m65 "'V|/9m72 (85)
(86)

— Megsy147Me686 ., Meo3 mzi2y47M713 .. mz20
Nyo = by W% W, Wy + ..+ bgoW,VIW, w,

To account for the presence of the Sine function inside the PDE we must define the
following three multivariate polynomials with known coefficient values:
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N21 = 0 (87)
Ny = (1 + WA W = (1 + WHW; (88)
Nos = (1 + W)W, = (1 + WHW, (89)
and

N24 = 2 (90)

We can compute the total number of unknowns to solve for in our IAMPT using the following

general formula with "n = 2", "p = 8", "up = 8", "u;, =4" and "q=1"":
NTotal = NPrimary + NSecondary (91)
= up(p+q+1) + us@+g+1D+2)p—n-1) (92)
= 88+1+1) + 48+1+1)(2+2)(8—2-1) (93)
= 8(10) + 4(10)(4)(5) = 80 + 800 = 880 (94)

As in the case for the second order ODE, the entire PDE may be expressed in terms of the
following single large multivariate polynomial by taking its complete Multivariate Polynomial
Transform using equations (68) through (73):

W( 0%z > 0z 2W. W2< Woss >— 0 (95)
S\ ow,ow, oW, 2 \1+ WA,

where we have selected:

WZ = X1 (97)
W3 = x, (98)

and where capital letters are used to indicate that a transformation to complete multivariate
polynomial form has taken place.

A very general formula for calculating the first partial derivative of our IAMPT that is based on the
use of the product rule and the Multinomial Expansion Theorem can also be derived in a very
similar manner as was done in our last example of a second order ODE which was provided in
equation (61).

Our system of nonlinear simultaneous equations of interest to solve for is obtained by first taking
the various partial derivatives of equation (95) that represents the PDE in complete multivariate
polynomial form. This would include the various partial derivatives of each auxiliary variable that
define the Multivariate Polynomial Transform of the single external input as provided in equations
(68) through (73) which are "W,", "W5" and "Wp.1".

Next, we replace the various partial derivatives of the dependent variable in equation (95) with the
computed values obtained from the various partial derivatives of our IAMPT.

The resultant nonlinear simultaneous equations can then be numerically solved for using various
optimization technics where our objective function to be minimized would be represented as the
sum of the squares of each of the various partial derivatives of equation (95):
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Giz

om gmz  g™ms g™k { < 0%Z ) 0z
A —

A A A AV OW,0Ws; oW,

— 2W,W2 (h» =0 (99

1+ Wz,

Our main objective function to minimize would therefore be represented as:
F = Z G? (100)
i

By succeeding in completely minimizing the above objective function to zero, the corresponding
inverse Multivariate Polynomial Transform would define an exact analytical solution of the PDE
that would satisfy a completely random set of initial conditions. Such a type of analytical solution
obtained was earlier described as an instance solution. Any numerical solution set that would
depart from this minima would represent only an approximation of the actual exact analytical
solution of the PDE. The further away we are from this minima, the greater will be the error of
approximation between the exact analytical solution and the one arrived at.

As we are only interested in obtaining as many exact instance solutions as possible each satisfying
their own very unique initial conditions when solving for these nonlinear simultaneous equations,
we must treat all initial values of the auxiliary variables as unknown coefficients to solve for in
order to achieve the highest numerical solution set rate possible. It is the initial values of each
auxiliary variable defined from the exact integration of a Secondary Expansion that when
substituted into the Primary Expansion would completely define the initial conditions of a DE or a
system of DEs. Keep in mind that our primary objective in this type of analysis is to acquire as
many instance solutions as possible so that by applying a unique method of conjecture, we would
be able to arrive at a more generalized version of the closed form solution satisfying a DE or a
system of DEs.

For solving these nonlinear simultaneous equations using an optimization technic, all gradient
calculations can become fairly complex quite often leading to very unpredictable results. A
preferred method of optimization that generally does not require any type of gradient calculations is
the pattern search method as described in the book by [Adby and Dempster 1974].

All calculations involving very high order partial derivatives of an IAMPT require a great deal
amount of precision and thus not recommended to be performed on a regular PC. Instead, the entire
computational process would become more manageable if it were conducted on a very advanced
super computer system.

Upon the gathering of as many numerical solution sets of the nonlinear simultaneous equations as
possible, the next step to follow afterwards is in the complete construction of an NCSA table that
would be very specific to the particular DE or system of DEs being solved for.

For solving our second order PDE, we were able to acquire a large number of instance solutions
each satisfying its own very unique set of initial conditions that would also become the initial
conditions of the PDE as well. The greater the number of instance solutions that can be gathered
and fully documented accordingly, the greater is the amount of information that can be made
available for facilitating the entire process of deducing by conjecture the complete general exact
analytical solution of the second order PDE.
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The NCSA table for our example of a second order PDE would therefore appear as follow:

0%z 0z 2 in(eix,) 0

X - — = x1x55in(x1xy) =

2\ 9x,0x, dx, 172 172
Initial Coefficient Exact analytical solution obtained using the
Conditions Values Multivariate Polynomial Transform method
Xo1 = 3.61 N/A 2x,x1%% + Sin(In[x;*] + x278) — Sin(xx,) — z = 0
xoz = 1.771
X, = 1.29 N/A xzsfxf'23+ 1.78 + 1.221r1< /xzz +1 +3.5>— Sin(x;x,) — z = 0
xoz = _1.88
Xo; = 3.555 N/A 0.56x,e*1  — 4.6Tan(x21'86+4/x21'1—6.1) — Sin(xx,) — z = 0
sz = 276

1.46 /x3-1—2.3
Xo1 = —0.723 N/A 3.06x,Sinh(x{) — 2.45x, ’ — Sin(x;x,) — z =0
xoz = 1.58
Table 5.1

Based entirely on the information provided in the above table, there appears to be no obvious
patterns by which a plausible conjecture for the exact analytical solution of this second order PDE
satisfying all initial conditions can be made.

The main reason for this is that the exact analytical solution consists of a number of expressions that
are completely arbitrarily defined. This would call for the development of a very sophisticated
method of comparison analysis just for identifying those arbitrary expressions that are present in all
of the instance solutions obtained. Some of these arbitrarily defined expressions may be easier to
detect than others for establishing a plausible conjecture by which a complete analytical solution of
the PDE satisfying all initial conditions may be arrived at.

In the final analysis, all results would be pointing towards the following expression as representing
the complete exact analytical solution of the PDE satisfying all initial conditions:

f(Z,x1,x) = 0 = x0.(x1) + @2(x3) — Sin(x1x) — z (101)

where upon conducting such a type of special method of comparison analysis, each of the
expression for "g,(x;) " and "¢,(x,)" would eventually have been singled out in the end as
completely arbitrarily defined.

Once again it is very important to mention that without having constructed the NCSA table it

would have been virtually impossible to have correctly arrived at the complete general analytical
solution of this second order PDE satisfying all initial conditions.

107



ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

6. Exact computational method for calculating the various derivatives and partial derivatives
of an initially assumed Multivariate Polynomial Transform (IAMPT)

The method of substituting an IAMPT into a DE or a system of DEs for defining a valid system of
nonlinear simultaneous equations to solve for requires that the numerical values of each of the
various derivatives of the DE or system of DEs become equal to that of an IAMPT. An alternative
method is to substitute an IAMPT into a DE or a system of DEs and afterwards equating like
multivariate polynomial terms to zero. However, this would result into defining a completely
invalid system of nonlinear simultaneous equations to solve for as it would automatically impose a
major restriction on each auxiliary variable for becoming totally independent from one another.
The evidence is clearly provided in Appendix A where as you will notice that for the vast majority
of the cases involved, it is always necessary to maintain a certain degree of dependency among
auxiliary variables especially when very complex mathematical equations are involved.

The actual process of computing the exact values for the various derivatives and partial derivatives
of an IAMPT to any desirable order of differentiation without any loss of accuracy whatsoever can
always be reduced at a computational level. The reason for this is that we take full advantage of a
well known fact in numerical analysis that taking the various derivatives of a product of several
expressions is very much similar to algebraically expanding to some exponent value the sum of
several terms. The only major difference between the two is that in the case of differentiation,
exponentiation becomes treated purely as an order of differentiation while all the remaining
algebraic operations remain completely identical.

For the simple case of differentiating a product involving only two expressions, this would require
the use of the Binomial Expansion Theorem which is defined by:

n

d” ™\ £(k) ,(n—k) 102
a9 = 2, ()% (102)
k=0
where:
n _ n!
(k) = Bux = k! (n — k)! (103)

are the binomial coefficients and where it is to be clearly understood that all exponent values are to
be treated purely as order of differentiation.

In complete expanded form, the various derivatives of a product consisting of two expressions can
be symbolically defined as :

[f +g]®™ = fOgm 4 B fFOgm-D 4 g _ f@gn-2) 4 4 £m)g(0) (104)
where the product is being substituted by the sum inside a square bracket and "n" is the order of
differentiation.

When a product always involves more than two expressions, we can instead replace the Binomial
Expansion Theorem with the following Multinomial Expansion Theorem:

n' n n n
(a; + a, ++ a)" = g ) ) (105)
1 2 k 1 1 1 1 2 k
nNyiNngl =" Ny
Tll,nz,...,nkEO
Ny +ny++ng=n

where n=n; + n, + ... + ny

108



ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

For determining the various derivatives of a product involving any number of expressions and in

accordance to our previously defined notation we can define:
dn
W(ﬂfz “fi) = [A+ fott fi]™

n!

_ £ £ L w0

nyiny! - ny!
nl,nz,...,nkZO 1 2 k
n1+n2+~~~+nk=n

(106)

(107)

where the square bracket is used to symbolize differentiation with all exponents treated as order of

differentiation.

Example (6.1). To test the validity of our symbolic notation, Iethus consider the simple two
dimensional case for calculating the various derivatives up to the 5" order at "x = 2" for the

following equation:

-X ,0.5x ,2.5x

= e "e"e
Here we can start by letting:
fi=eX f,=e%%and f; = e*5¥

so that each of their various derivatives up to 5 may be defined as:
fl(O) = 7%, fz(O) = %% and f3(0) = @25x

fl(l) = —e7X, 2(1) = 0.5e%5% and f3(1) = 2.5e25%

fl(Z) = 7%, 2(2) = 0.25e%5% and f3(2) = 6.25e25%

£ = —e, £ =0125¢"* and £ = 15.625e*

£ = e £ =00625e" and f£* = 39.0625¢>5

£ = —e £ =0.03125¢°5* and £ = 97.65625e%5*

At "x =0.5" we thus have:

9= e05=0607, ¥ =e"2°=1284 and £ = €25 =3.490

fP = —e05 = 0607, £V =0.5e°%5 = 0.642 and fV = 2.5¢%5 = 8.726

P = e =0607, £ =025 =0321 and £ = 6255 = 21.815

P = —e05 = 0607, £, =0.125¢°%° = 0.161 and [ = 15.625¢!%5 = 54,537
£ = 05 = 0607, £ =0.0625¢"2° = 0.080 and ¥ = 39.0625¢!25 = 136.342

P = —e05 = 0607, £, =0.03125e%?° = 0.040 and [ = 97.65625¢'%5 = 340.854
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Applying the Multinomial Expansion Theorem on these three individual components, we arrive at:

d®y

s i + f2 + 10 = Z
Nnq,Np,N320
nq+n,+nz=>5

n!

fl(nl) fz(nz) 3(713) (122)

n,!n,!ns!

= (1)(-0.607)(1.284)(3.490) + (5)(0.607)(0.642)(3.490) + (10)(-0.607)(0.321)(3.490) + (10)(0.607)(0.161)(3.490) +
(5)(-0.607)(0.080)(3.490) + (1)(0.607)(0.040)(3.490) + (5)(0.607)(1.284)(8.726) + (20)(-0.607)(0.642)(8.726) +
(30)(0.607)(0.321)(8.726) + (20)(-0.607)(0.161)(8.726) + (5)(0.607)(0.080)(8.726) + (10)(-0.607)(1.284)(21.815) +
(30)(0.607)(0.642)(21.815) + (30)(-0.607)(0.321)(21.815) + (10)(0.607)(0.161)(21.815) + (10)(0.607)(L.284)(54.537) +
(20)(-0.607)(0.642)(54.537) + (10)(0.607)(0.321)(54.537) + (5)(-0.607)(1.284)(136.342) + (5)(0.607)(0.642)(136.342) +
(1)(0.607)(1.284)(340.854) (123)

where there are a total number of 21 terms satisfying the criteria that "n;,n,,n; = 0" and
"n, +ny, +ng =5"

We can define the multinomial coefficient vector has having a total number of 21 elements and
these are:

cw = 1[1,5,10,10,5,1,5,20, 30, 20, 5, 10, 30, 30, 10, 10, 20, 10, 5,5, 1] (124)

We can also define the multinomial exponent vector as also consisting of 21 elements and they
are:

Ey = [500,410,320,230,140,050,401,311,221,131,041,302,212,122,032,203,113,023, 104,014, 005] (125)

By writing a short computer program for performing the arithmetical operation in equation (123)
using equation (122) but with higher precision, the value obtained based on the Multinomial
Expansion Theorem was determined as ''86.985019"".

The 5" derivative of "e2¥" is "25¢2*" so thatat "x = 0.5" this value becomes 32¢2(05) =
32e = 86.98501851 which is roughly the same value as the one computed using the
Multinomial Expansion Theorem in equation (123).

For calculating the various partial derivatives with respect to any number of independent
variables involving any number of products of multivariate expressions, the Multinomial Expansion
Theorem is still applicable but with some minor modifications of the general formula that was
derived for the two dimensional case.

The various partial derivatives of a product of several multivariate expressions may be written in a
more general form as:

aml amz am3 amk
axml axmz axm3 axmk [fl(xl, xz, ey x]) . fz(x:l, xz, ey x]) s ﬁ:(xll le ) x])] (126)
1 2 3 j

which can symbolically be expanded as:
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[FO+ £+ .t f(O)] 8RO+ £+ .t f(O)] A~ A

1(my) 2(my)

Jj(myy

where "A" is a special operator that is used to mimic the process of algebraically expanding term
by term the product of two or more expressions with the only exception that all exponents are to be
treated as order of differentiation.

In complete notational form using the Multinomial Expansion Theorem this may be rewritten as:

n!
) ) L cm) |
Py BV AR TCRPERTCH fi.l(ni)J A
nq{,Nny,...,N;20
L n1+7112'f"'+7‘1ii=m1
n!
(nq1) (n2) (ny)
gl 12w a2y 7 oo A A
nq,Nny,..,Nnj=0
L n1+7}12-'f~~~+ni=m2 a
n!
(n1) m2) ... ()
nyln,! - f](nl)fj(nz) fi,j(ni)
nin ,...,Tl'EO
L n1+7112'f"'+7;i=mk i

(128)

When expanding the various partial derivatives of a product of several multivariate expressions
using the above notational form, it is very important to insure that "all" the multivariate
expressions present in “each product" are also "all" present in "each term" of the resultant
expansion.

Example (6.2). Based entirely on our standard notation for representing the various partial
n afle 1]

derivatives of a product of several multivariate expressions, we will determine P where
1 2
"fi" and "f," are each defined as arbitrary multivariate function.
0°fy f
€y @ 129
® ® ©)) @ @D (2
[fl 1) T 1(1)] A [ fizy T 2fi2h2m T R (130)
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Algebraically performing a term by term symbolic multiplication by treating all exponent values as
order of differentiation, we obtain:

1 @ @D 1) @ 1) (@
f1(1)f 12(2) T 2f; 1(1)f 2(1)f 2,2(1) + fi 1(1)f 22(2) T

(1 (2) (1 (1 (€Y) (1 (2) 131
+ o+ 2 s s + Ry, (A3

which in the conventional symbolic form may be translated as:

Ofi L Oh O | Ph | PhOL | L0f O 0 (132)

0x,0x3 0x,0x, 0x, dx, dx2 dx2 0x, 0x, 0x,0x, 0x,0x3

To insure that every term in the above expansion always contains the two functions that is being
differentiated, we must include " f£" and "£" in the first and last term of the expansion
respectively.

The final results are:

2 fi O | 0h O | 00 0K 0% Th (139)

- 8x16x2f2 t A dx,0x2

axlaxz dx, ax, axz dxZ 0x, sz dx,0x,

We can validate the use of our symbolic notations by performing the same operation manually and
compare the results with the one obtained in the above equation:

0 fif> _ i (aflf +f afz) _ Zflf af1 afz + 20 0%f,
ax2  9x, \dx, Yox,) — ox2’? 6x2 dx, L ox2 (134)
PRE _ 0 (PREY _ 0 (h, L0005 0
0x,0x2 0%, \ 0x2 a\ 322t 2o a0 T N1ox (135)
a3 0%f, 0 02 d d 02 of, 02 93
= f12f2 ];12 + 2 h £+ zi f2 +i f22+ fi f22 (136)
0x,0x5 0x5 0x; 0x,0x, 0x, 0x, 0x,0x, 0x, 0x5 0x,0x;

As can be verified, the above expansion is exactly identical to the one in equation (133) thereby
completely validating our standard use of special notations for taking the various partial derivatives
of a product of several multivariate expressions.

The greatest advantage for using this notational convention is that it can reduce the entire process
of determining the various partial derivatives of a product consisting of any number of expressions
entirely on a "computational level".

In general, an IAMPT will always consist of multivariate polynomials as well as the differential of
multivariate polynomials where each multivariate polynomial term will always be expressible as a
product of several auxiliary variables. For calculating the various derivatives and partial derivatives
of an IAMPT would require that each of the products of several auxiliary variables be differentiated
under the product rule. So its therefore quite easy to visualize how the use of the Multinomial
Expansion Theorem would become a very valuable tool for computing the various derivatives and
partial derivatives of an IAMPT to any desirable degree of accuracy.
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The complete development of all the formulas related to the calculations of the various derivatives
and partial derivatives of an IAMPT for solving all types of DEs and systems of DEs is of
course much beyond the scope of this paper. However, this can always be made available to
anyone by special request provided you contact me at either one of the following email addresses
michelmikalajunas@bellnet.ca or at jpnelson_mfc@yahoo.ca .

7. General closed form solutions of the Navier-Stokes equations by method of conjecture
involving the use of computational differential analysis

The Navier-Stokes equations is the direct application of Newton's second law of motion for the
complete analysis of both compressible and incompressible fluids.

For the case of incompressible flow and assuming constant viscosity, the equations may be
described as follow:

Inertia = Pressure + Viscosity +  Other
gradient forces
ov 2 (137)
p(a + v-Vv) = —=VP +  uVev + F

along with the mass continuity equation which states that:

0
L4 7w = o (138)

Since we will restrict our analysis to incompressible flow only, the density is always assumed
constant so that the above equation may be rewritten as:

Vv =0 (139)

By assuming that gravitational forces are the only external forces present, the vector equations in
Cartesian coordinates expand as follow:

<6u N ou N ou N 6u) 0P N 0%u N 0%u N 0%u N (140)
Plac " ax T 0y " az) T Tax T M\axz T ay2 T 922 P9x
(6v+ 6v+ 6v+ av) 0P N 62v+62v+62v N (141)
Pt ™ ox "oy ™ Waz) T "oy T Mo T2 T 92 P9y
(6W+ 6W+ 6w+ GW) 0P N 62W+02W+02w N (142)
Plac T%x "y TV az) T Taz T M\ axz T oy T 922 Pz
along with the mass continuity equation defined as:
ou v ow 0 (143)

a'l‘@‘l‘g—

We would construct the NCSA table by defining the variable coefficients as the fluid density "p",
the fluid dynamic viscosity "u" and the gravitational force components in the X, y and z direction.
Since no external inputs are present in these equations other then the external forces due to gravity
then we can set "q=0" inthe IAMPT that will be selected for solving these vector equations.
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In the Secondary Expansion of our IAMPT, the first set of auxiliary variables will be used for
representing the dependent and independent variables in that order. This will be followed by the
remaining initially assumed auxiliary variables used for representing all basis functions in complete
differential form that will be present in the exact analytical solution of the system of PDEs.

Our IAMPT will be selected on the basis of solving the above system of PDEs in terms of a
system of implicitly defined equations that would consist only of the algebraic and elementary basis
functions. The various initial conditions possible for this type of generalized flow are of course
expected to be infinite. So in order to maximize our numerical solution rate of the corresponding
nonlinear simultaneous equations, we can set all the coefficients defining the initial conditions in
our IAMPT as part of the unknowns to solve for that would be represented by the initial values of
each initially assumed auxiliary variable. Other unknowns to solve for are the variable coefficients
defined in our NCSA table as well as those present in both the Primary and Secondary Expansion
of our IAMPT.

Over time, the NCSA table should ev_entuaII?/ succeed in capturing from the numerical solution set
of the nonlinear simultaneous equations all those exact instance analytical solutions that would
conform with experimental results obtained under controlled laboratory conditions.

It is only through the gathering of this type of information over a span of say many years or even
many decades that a large number of generalized analytical solutions may potentially be uncovered.
This would in the very long term enable us to acquire a far better understanding of general fluid
behavior than having to depend entirely on the use of laboratory experiments as a result of the non-
integrability of many integrals that would have originated from the use of conventional methods of
pure mathematical analysis.

In terms of Cylindrical coordinates this would be written as:

ou, ou,  ugou, du, ug) _ 0P

p<6t T YT T T )T Tor
10/ 0 1 92 02 240

#[<_ < ur) + Uy + U, _& _ _ﬁ)] + pgr (144)

rorUar) T2 902 T 922 72 T 7200

+

(aug Jug uglduy Jdug urug) _ lop
P\ ae Wy r a0 " Yoy r rdo

10 / Oug 1 0%uy 0%uy ug 2 ou,
“[(m(ra—r> t g0 t o Ty tiag)| torse (149)

du, du, ugou, ou,\ 0P 10/ ou, 1 0%u, 0%y, (146)
R R I - et | ol (6 o K=t e | IR
along with the mass continuity equation defined as:
10 1 dug ou, (147)
rar )t o T <O

Such a coordinate system may in some cases prove to be easier for the analysis of certain types of
fluid motion that would mainly involve symmetry thereby allowing for the elimination of a velocity
component.

A very common case is axisymmetric flow where there is no tangential velocity (u, = 0) and the
remaining quantities are independent of 6:
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ou, ou, du, \ 0P 10 / oOu, %u, u,
(Gt gy tugr ) = 5+ allia(rF) T )| e (148)
ou, ou, du,\ 0P 10/ ou, 0%u, (149)
p(at +“TW+”ZE) =" tH m(r 6r> T oz )| TP
10 ou, (150)
rarur) + 5o =0

For this type of coordinate system we would proceed in constructing the NCSA table in exactly the
same manner as for the Cartesian coordinate system where in both cases there are no external
inputs so that "g = 0". This would also include managing in exactly the same manner all initial
conditions and the variable coefficients defined by the fluid density "p", the fluid dynamic
viscosity "u" and the gravitational components in the X, y and z direction.

In terms of Spherical coordinates this would be written as:

du, du, ug Ou, ug du, ugtul P
U — Ze7%e) _ °C +
<6t T U t e e r 09 - ar + PYr
10 (5 0u, 1 9%u, 1 ur+%+u¢C0t(¢) 2 dug
+ = (r22E) + + (s ) -2 + e
r2 or or r2Sin(@)% 062 r2Sin(®) 00 r2 r25in(@) 20
(151)
dug dug ug dug ug dug (urug + uquCot(Q)))} _ __ 1 or
{ t U, rSin(@) 80 t T T = “smwoae T P9 T

10/ ,0up 1 9%u 1 9 dug %9 + ZCos(Q))W — ug
o _Za_(r W) t sz 90 T rzSin((Z))a(Z)(Sm(Q) ) 2Sin(D)? (152)

dug |, Oug | _up Oup , uplug (uruo-uécot@))} _ _1op
{ T U, rSin(@) 96 r 99 T = T t PG T

6u9
10 ( ,0u 1 0%uy 1 o0 Iup 2 0u, _ (U0 + 2C0s0)Gp
’ #{r_ﬁ(r ) * rer e @O 5) + g ( rsin(@)* (153)

along with the mass continuity equation defined as:

10 5 1 aug

r_za(r ur) + rSin((Z))% + rSm((Z)) 0 (Sm((Z))u(D) =0 (154)
In this coordinate system, there are two external inputs in the form of the Sine and Cosine function
which according to equation (35) and (36) can each be expressed in terms of the Tangent half angle
formula so that we can set "g = 1" in our IAMPT. All initial conditions and variable coefficients
are handled in exactly the same manner as with the Cartesian and Cylindrical coordinate system.

Because of the universality of the new method of analytical integration we can extend this analysis
to cover all possible cases for both compressible and incompressible flow where the concept of an
NCSA table would still be applicable throughout.
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8. The development of a universal software for the analytical solutions of all DEs and
systems of DEs under a single unified theory of analytical integration

The highly computational nature of the universal differential expansion described by equations (1)
through (5) for representing all mathematical equations makes it very difficult for conducting any
real meaningful numerical experimentations even for solving the simplest type of DE. For solving
the vast majority of DEs and systems of DEs of greatest importance to the physical sciences,
super computers are by far more suitable for this type of high level and very advanced form of
computational analysis.

The advent of Quantum computers in the near future could significantly improve the performance
of handling even the most complex systems of PDEs. They would by far exceed the capabilities of
even our most powerful super computer of our time because they would operate entirely on the
fundamental principles of Quantum theory which is based on the study of energy at the atomic and
subatomic level. Such advanced computer technology would allow for the capability of performing
multiple tasks in parallel thereby resulting in a significant increase in the billion-fold when
compared to conventional computer systems.

Among the many possible states of operation is the binary state of a Quantum bit or Qubit that
would either be defined as spin-down or spin-up with each mode entirely controlled by a pulse of
energy originating from a laser beam. Major centers of research in Quantum computing are
currently in operation that would include MIT, IBM, Oxford, Harvard, Stanford and the Los
Alamos National Laboratory.

The greatest advantage for having arrived at a unified theory of analytical integration is that it can
be converted into a single major universal software by which all DEs and systems of DEs may
be resolved under a single common mathematical ideology. Such a universal software development
would be referred to as a "Numerical Control Analytics Software™ or NCAS. It would operate on
the principle of determining the existence of general analytical solutions to DEs and systems of
DEs through the application of a very unique method of conjecture that would be driven entirely by
computational analysis. This would represent a far better alternative than having to maintain a large
number of highly dispersed mathematical theories all of which could never be consolidated in terms
of a single universal software development package such as the one proposed here.

If such a Numerical Control Analytics Software would be applied only to Physics, it would certainly
qualify as being “the complete unified theory of physics” but only in its most “raw state”. Human
intervention would then only be necessary for complete translation of all computer results that
would appear in the form of exact numerical computations into practical decipherable
mathematical equations.

If such a Numerical Control Analytics Software would be applied only into Engineering Science, it
would become the standard method of all engineering analysis by which the concept of an IAMPT
would be applied very rigorously for resolving all relevant DEs and systems of DEs in the form of
general closed form solutions only. This would set the stage for the complete formulation of many
fundamental key theorems similar to what the famous Superposition Theorem has succeeded in
accomplishing in the general theory of linear physical systems.

9. Conclusions

The problem of integration has always presented itself as a real challenge when attempting to find
closed formed solutions for the vast majorities of DEs and systems of DEs. The main reason for
this is the frequent occurrences of integrals from which the vast majority of them cannot always be
resolved exactly under any existing methods of mathematical analysis. This complication can be
completely avoided altogether if rather than proceeding with some initially assumed closed form
solution for attempting to solve a DE or a system of DEs, we instead work only with the complete
differential representation of the same initially assumed closed form solution. The greatest
advantage for proceeding in that fashion is the highest expectation that many of the assumed
differentials will in the end appear exact and thus always completely integrable in the end. This in
fact is quite achievable because every differentiable mathematical equation can always be converted
in complete differential form by following the same basic unique mathematical structure as the one
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introduced by equations (1) through (5). Such a unique differential expansion form is so universal
to all mathematical equations that it would certainly qualify by all mathematical standards as being
a complete unified analytical theory of integration for resolving all types of DEs and systems of
DEs in terms of closed form solutions. Many key mathematical properties of this unified analytical
theory of integration have been quite extensively investigated in the past mainly by myself. But the
one that stands out the most is the ability for resolving "all types" of DEs and systems of DEs
uniquely in terms of "general closed form solutions™ by utilizing a method of conjecture that
would be driven entirely on computational analysis alone. We use the Navier-Stokes equations as a
perfect model for illustrating this very unique approach of working with initially assumed
differentials. In our example, we explore the various types of systems of PDEs that were developed
in the past under the three most popular set of coordinate systems. In the final analysis, we were
able to establish that independent of the type of flow whether compressible or incompressible, the
boundary conditions and various external forces present can always be completely accounted for
during the process of working with these types of initially assumed differential forms. From the
very unique properties of such a proposed unified differential method of analysis, it is expected that
many cases of the Navier-Stokes equations will always be completely integrable in terms of such
"general” closed form solutions by following a very unique method of conjecture. From the
Navier-Stokes equations we can apply the same type of universal differential analysis for
investigating other types of fundamental equations that would include Maxwell's equations,
Einstein's field equations, the Schrddinger equation just to name a few. Figure 3.1 provides a
direct relationship between the method of universal differential analysis and the elusive "theory of
everything". From this table, one is very tempted to conclude that for arriving at such a gigantic
theory for explaining everything about our universe may no longer be just a matter for modern
physics to resolve over time. Rather, it is expected that such a theory of everything may only be
achievable in the end from the complete consolidation of every single theory describing its own
unique physical system under one big gigantic universal theory that in the end will succeed in
explaining everything about our universe.

10. Appendix A

(1.1) f(xy) = 0 = a.x* + ayy* + azxy + a,

S
I

x
y

(1). Primary Expansion:

F(Wl,Wz) =0= a1W12 + a2W22 + a3W1W2 + ay

(2). Secondary Expansion:

dx aw,
dy dw,

(1.2) f(xy) = 0 = aqy + a,e®*Sin(aux)

Wl = X

W, =y

W3 = €a3x

W, = Tan(a,x/2)

(1). Primary Expansion:

F(Wl,Wz,W3,W4_) =0 = a1W2(1+ W42)+ 2a2W3W4
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(2). Secondary Expansion:

dx = dWl
dy dw,

a3W3dx + O'dy = dW3
a4(1 + W42)dx + 0 * dy = 2dW4

(1.3) fixy) = 0 = x> + y*/(x—y) + 3e3*
Wi X

W,=y

Wi=x—-y =W - W,

W4,= ex = w1

(1). Primary Expansion:

F(Wy, Wy, W3, W,) = 0

WE + WAW, + 3W3

(2). Secondary Expansion:

dx = dWl

dy = dWZ

d.x - dy = 2W3 dW3
3W4dx + 0 'dy = dW4

(14) f(X,y) = 0 = x\/x2+ yz + y\/xz_ yZ

W1 = X
W, =y
Wi= WZ + W}
W42 — W12 _ WZZ

(1). Primary Expansion:

F(Wl,Wz,W3,W4) =0 = W1W3 + W2W4

(2). Secondary Expansion:

dx = dW1
dy = dWZ
Wldx + Wzdy = W3dW3
Wldx - Wzdy = W4dW4

(1.5) f(xy) =0 = In(1+ Vx+1) - ${fy+1 -1

X

y

W= x+ 1= W + 1

W,= In(1+ Vx+1) = In(1+ W)
We=y+ 1= W, + 1

S
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(1). Primary Expansion:

F(W11W21W31W41W5) =0= W4 - WS -1

(2). Secondary Expansion:

dx
dy

dx + 0-dy = 3WidW,
d.x + O'dy = 3W32(1 + W3)dW4
0-dx + dy = 6W2dwy

(1.6) f(x,y) = 0 = 3Sin(x+y) — ln(ex+ Cos(x)) + ln(g) + JArcTan(2x)

Wl = X
W=y

X +
W; = Tan( y)

2

W4_ = ex

X
Wy = Tan(z)

2 1 - W52
W6 = COS(X)= m
w, = ln(e"+,/Cos(x)) = In(W, + Wy)
Ws = In(x)

Wy = In(y)

W2 = ArcTan(2x)

(1). Primary Expansion:

6W,
F(W1!W21'"1W10) = 0 = TV[GZ_ W7 + Wg - Wg + WlO

(2). Secondary Expansion:

dx = dW;
dy = dWw,
A+WhHdx + (1+WdHdy = 2dW;
W,dx + 0-dy = dw,
A+ wddx + 0-dy = 2dWw;
—Wsdx + 0-dy = We(1+W2)dWw,
W,we(1 +W2) — Weldx + 0-dy = We(1+ W)W, + Wy)dW,

dx + 0-dy = W;dWs
0- dx + dy = Wdeg
dx + 0- dy = (1 + 4W12)W10dW10
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(21) f(Z,xl,xz) =0 =2z + Z3xle - X2 + 1

W, = z
WZ = x1
W3 = xZ

(1). Primary Expansion:

F(Wl,Wz,Wg) = 0 =

(2). Secondary Expansion:

dZ + O'dxl + O'de
+ O'de
O'dZ + O'dx1 +

0-dz +

(2.2) f(z,x1,%2,%3,) =

W, = z
W, = x
W; = x;
W, = x3

Ws = Tan(zx,x,/2)

We = Tan{

(1). Primary Expansion:

dx,

dx,

Z+3x, + 2x3}

dw,
AW,

Wl + W13W2W3 - W3 + 1

0 = 5x3x35in(zx1x3) + (xq4 + x3)Cos(z + 3x, +2x3) + 3

Ws

2 1— w2
F(Wy, Wy, Wa, Wy, Ws, W) = 0 = SWW, [7] + (W, + W) [TWGZ] + 3
6

(2). Secondary Expansion:

dz +
0-dz +
0-dz +
0-dz +

1+ WHW,W3dz + (1 + WEW Wydx, +

0-dx

dx,
0-dx,
0-dx,

+
+
+
+

0 " de
O " dxz
dx,

O'dxz

+
+
+
+

O'dx3
O'd.x3
O'dX3

dx;

1+ W2

= dw,
= dw,
= dw,
= dw,

(1 + W52)W1W2dx2 + 0- dx3 = ZdWS

1+Wddz + 0-dx; + 31 +Whdx, + 21+ WHdx; = 2dW;
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(2.3) f(X,y) = 0 = 31n<3/z+ x%+ x% _ 25322x1x3> +

+ 5\/x§+x§+x§ -4z + 1

W1 = Z

WZ = Xi

W3 = X5

W4 = X3

WS =z+ xf+ x5 =W + W)+ Wj

W6 — e22x1x3 — eZW1W2W4

ln( 3’2 + x2 4+ xZ — 25e22x1"3) — In(Ws — 25W)

Wg = xi + x5 + x5 = W} + W§ + W}

z
1

(1). Primary Expansion:

F(Wy, Wy, Wy, ..., Wg) = 0 = 3W, + W, — 4W3 + 1

(2). Secondary Expansion:

dz + 0-dx; + 0-dx, + 0-dxz; = dW;
0-dz + dx; + 0-dx, + 0-dxg = dW,
0-dz + 0-dx; + dx, + 0-dx; = dW;
0-dz + 0-dx; + 0-dx, + dx; = dW,

dz + 2W2dX1 + 2W3dX2 + O'dx3 = 3W5dW52
W, W, W,dz + 2W,W,Wedx, + 0-dx, + 2W,W,W,dx; = dW,

(1 - 150W2W4_W52W6)d2 + (ZWZ - 150W1W4W52W6)dx1 + 2W3dx2 -
150W1W2W52W6dX3 = 3W52 (WS - 25W6)dW7
0- dZ + Wzdxl + W3dx2 + W4dX3 = ZSWE;I'de
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