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PREFACE 
 
Dear Friends and Colleagues,  
  
On behalf of the organizing committee and the co-chairs, we would like to welcome you to the 7th 
International Conference on Computational Methods (ICCM2016) at Berkeley, California, USA, 
between August 1st and 4th, 2016. The conference aims at to provide an international forum for scholars, 
researchers, industry practitioners, engineers, and graduate and undergraduate students to promote 
exchange and disseminate recent findings on both contemporary and traditional subjects in computational 
methods, numerical modeling and simulation, and their applications in science and engineering. It 
accommodates presentations on a wide range of topics to facilitate inter-disciplinary exchange of ideas in 
science, engineering and allied disciplines, and helps to foster collaborations.   

Computational Modelling and Simulation are fundamental subjects in engineering and sciences. They can 
be applied to many of the primary engineering disciplines, including Aerospace, Bio-medical, Civil, 
Chemical, Mechanical, and Materials Engineering among others. Computational Modelling and 
Simulation cover a broad range of research areas, from conventional structural and mechanical designs, 
failure analysis, dynamic and vibration analysis, and fluid mechanics to cutting-edge computational 
mechanics, nano-micro mechanics, multiscale mechanics, coupled multi-physics problems and novel 
materials. This is reflected in the variety of fields featured in the conference topics.  

The genesis of the ICCM series dates back to 2004, when the first ICCM2004 conference was held in 
Singapore founded and chaired by Professor Gui-Rong Liu, followed by ICCM2007 in Hiroshima, Japan, 
ICCM2010 in Zhangjiajie, China, ICCM2012 in Gold Coast, Australia, ICCM2014 in Cambridge, UK, 
and ICCM2015, Auckland, New Zealand. The present ICCM conference in Berkeley, USA encompasses 
over 330 oral presentations in 68 technical sessions, including 2 Plenary Talks, 6 Thematic Plenary Talks, 
and a number of Keynotes.   

The ICCM conference is unique in the sense that it showcases the current developments and trends in the 
general topic of Computational Methods and their relationship to global priorities in science and 
engineering. The papers scheduled for presentation at ICCM address many urgent and grand challenges 
in modern engineering and sciences. All ICCM abstracts and full papers were peer-reviewed by 
independent reviewers. Selected papers may be invited to be developed into a full journal paper for 
publication in special issues of some international journals. These papers encompass a broad range of 
topics related to computational mechanics, including applied mechanics theory and formulation, 
computational methods and techniques, modelling techniques and procedures, nano and macro-
mechanics of materials, dynamics, manufacturing, biomechanics, processing of advanced materials, 
welding and joining, surface engineering and other related processes.  

We would like to express my gratitude for the contributions of all ICCM2016 participants and presenters 
at this international event. We gratefully acknowledge the contributions from the International Scientific 
Committee, Mini-Symposium Organizers, and the expert reviewers and volunteers for their efforts and 
assistance in the organization.  

Finally, we would like to thank you for your contribution to the ICCM2016 conference. We are looking 
forward to your participation and continued engagement for the future ICCM conferences.  

  
Professor Shaofan Li   
Conference Chairman, ICCM2016  
University of California at Berkeley, USA  

Professor Gui-Rong Liu 
Conference Chairman, ICCM2016 

University of Cincinnati, USA 
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SUMMARY: Satellite Attitude Control System (SACS) pointing accuracy is dependent of its actuator and 
sensor performance and robustness, where the first design requirement can be associated with bandwidth while 
the second is related to the ability of SACS to keep performance in face of system parameters variation. One 
way to gain attitude control algorithms confidence is through the conjunction of computational methods and 
experimental design, which allows hardware and software interface test, besides decreasing the SACS design 
cost. As for maneuver pointing accuracy the reaction wheel (RW) is a key actuator, because its disturbance can 
influence the accuracy and stability of SACS. This paper studies how the dynamics and the control algorithm 
strategy of the reaction wheels with its respective DC motor can influence the performance and robustness of the 
SACS control in three axes. To do this one develops a 3D satellite simulator nonlinear model based on the State-
Dependent Riccati Equation (SDRE) method taking into account the RW parameters.  One compares the 
performance and robustness of the SACS where the RW is commanded by the SDRE control law with algorithm 
based on current and speed feedback compensation. Simulations of the computational methods developed have 
shown that the RW with speed feedback compensation has improved the SACS performance and robustness.  
 
 
KEYWORDS: satellite attitude control, reaction wheel. 
 
 
1.  INTRODUCTION 
 
The design of a SACS, that involves plant uncertainties and large angle maneuvers followed by stringent 
pointing control, may require new nonlinear attitude control techniques in order to have adequate stability, good 
performance and robustness. Experimental SACS design using nonlinear control techniques through prototypes 
is one way to increase confidence in the control algorithm. Experimental design has the important advantage of 
representing the satellite dynamics in a laboratory setting, from which it is possible to accomplish different 
simulations to evaluate the SACS [1]. However, the drawback of experimental testing is the difficulty of 
reproducing zero gravity and torque free space conditions. A Multi-objective approach [2] has been used to 
design a satellite controller with real codification. An investigated through experimental procedure has been 
used by Conti and Souza in [3] for simulator inertia parameters identification. An algorithm based on the least 
squares method to identify mass parameters of a rotating space vehicle during attitude maneuvers has been 
developed by Lee and Wertz in [4]. The H-infinity control technique was used in [5] to design robust control 
laws for a satellite composed of rigid and flexible panels. In the SDRE method, the nonlinear dynamics are 
brought to a time-invariant, linear-like structure containing state-dependent coefficients. Infinite-horizon LQR is 
then applied to the linear-like structure with the coefficient matrices being evaluated at the current operational 
point in the state space. The process is repeated in the next sampling periods therefore producing and controlling 
several state dependent linear models out of a non-linear one. The SDRE method was applied in [6] for 
controlling a nonlinear rotatory flexible beam system with two-degrees of freedom. However, it did not 
incorporate the SDRE filter (Kalman filter ) as a state observer for the SDRE method, so that uncertainties could 
be accounted for in the filtering process. This paper studies how the dynamics and the control algorithm strategy 
of the reaction wheels with its respective DC motor can influence the performance and robustness of the SACS 
control in three axes. To do this one develops a 3D satellite simulator nonlinear model based on the State-
Dependent Riccati Equation (SDRE) method taking into account the RW largest possible number of variables.  
One compares the performance and robustness of the SACS where the RW is commanded by the SDRE control 
law with algorithm based on current and speed feedback compensation. Simulations results have shown that the 
RW with speed feedback compensation has improved the SACS performance and robustness.  As a result, the 
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simulations has shown the computational feasibility for real time implementation of the SDRE control method 
based on speed feedback algorithm in satellite´s onboard computer.  
 
2.  SDRE CONTROL METHODOLOGY 
 
The Linear Quadratic Regulation (LQR) approach is well known and its theory has been extended for the 
synthesis of nonlinear control laws for nonlinear systems [7]. This is the case for satellite dynamics that are 
inherently nonlinear. A number of methodologies exist for the control design and synthesis of these highly 
nonlinear systems; these techniques include a large number of linear design methodologies such as Jacobean 
linearization and feedback linearization used in conjunction with gain scheduling [8]. Nonlinear design 
techniques have also been proposed including dynamic inversion and sliding mode control, recursive back 
stepping and adaptive control [9].   
Compared to multi-objective optimization nonlinear control methods the SDRE method has the advantage of 
avoiding intensive interaction calculations, resulting in simpler control algorithms that are more appropriate for 
implementation on a satellite´s onboard computer.  
The Nonlinear Regulator problem for a system represented in the State-Dependent Riccati Equation form with 
infinite horizon, can be formulated by minimizing the cost functional given by  
 

𝐽𝐽(𝑥𝑥0,𝑢𝑢) =  
1
2
� (𝑥𝑥𝑇𝑇𝑄𝑄(𝑥𝑥)𝑥𝑥+𝑢𝑢𝑇𝑇𝑅𝑅(𝑥𝑥)𝑢𝑢 )𝑑𝑑𝑑𝑑                                                              (1) 
∞

𝑡𝑡0
 

with the state 𝑥𝑥 ∈ ℜ𝑛𝑛 and control  𝑢𝑢 ∈ ℜ𝑚𝑚 subject to the nonlinear system constraints given by 
 

𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) +  𝐵𝐵(𝑥𝑥)𝑢𝑢 
  𝑦𝑦 = 𝐶𝐶(𝑥𝑥)𝑥𝑥                                                                                              (2) 
𝑥𝑥(0) = 𝑥𝑥0                    

 
where 𝐵𝐵 ∈ ℜ𝑛𝑛𝑛𝑛𝑛𝑛 and C are the system input and the output matrices, and 𝑦𝑦 ∈ ℜ𝑠𝑠 (ℜ𝑠𝑠 is the dimension of the 
output vector of the system). The vector initial conditions is x(0), 𝑄𝑄(𝑥𝑥) ∈ ℜ𝑛𝑛𝑛𝑛𝑛𝑛 and  𝑅𝑅(𝑥𝑥) ∈ ℜ𝑚𝑚𝑚𝑚𝑚𝑚  are the 
weight matrix semi defined positive and  defined positive. 
Applying a direct parameterization to transform the nonlinear system into State Dependent Coefficients (SDC) 
representation, the dynamic equations of the system with control can be write in the form 

 
𝑥̇𝑥 = 𝐴𝐴(𝑥𝑥)𝑥𝑥 +  𝐵𝐵(𝑥𝑥)𝑢𝑢                                                                                    (3) 

 
with  𝑓𝑓(𝑥𝑥) = 𝐴𝐴(𝑥𝑥)𝑥𝑥  , where 𝐴𝐴 ∈ ℜ𝑛𝑛𝑛𝑛𝑛𝑛 is the state matrix. By and large 𝐴𝐴(𝑥𝑥) is not unique. In fact there are an 
infinite number of parameterizations for SDC representation. This is true provided there are at least two 
parameterizations for all 0 ≤ α ≤ 1 satisfying 
 

𝛼𝛼𝐴𝐴1(𝑥𝑥)𝑥𝑥 + (1 − 𝛼𝛼)𝐴𝐴2(𝑥𝑥)𝑥𝑥 = 𝛼𝛼𝛼𝛼(𝑥𝑥) +  (1 − 𝛼𝛼)𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)                                   (4) 
 
The choice of parameterizations to be made must be appropriate in accordance with the control system of 
interest. An important factor for this choice is not violating the controllability of the system, i.e., the matrix 
controllability state dependent [𝐵𝐵(𝑥𝑥) + 𝐴𝐴(𝑥𝑥)𝐵𝐵(𝑥𝑥) … 𝐴𝐴𝑛𝑛−1(𝑥𝑥)𝐵𝐵(𝑥𝑥)] must be full rank.  
The state-dependent algebraic Riccati equation (SDARE) can be obtained applying the conditions for optimality 
of the variational calculus. As a result, the Hamiltonian for the optimal control problem given by Equations (1) 
and (2) is given by  

          𝐻𝐻(𝑥𝑥,𝑢𝑢, 𝜆𝜆) =  
1
2

(𝑥𝑥𝑇𝑇𝑄𝑄(𝑥𝑥)𝑥𝑥 + 𝑢𝑢𝑇𝑇𝑅𝑅(𝑥𝑥)𝑢𝑢 ) + 𝜆𝜆𝑇𝑇(𝐴𝐴(𝑥𝑥)𝑥𝑥 + 𝐵𝐵(𝑥𝑥)𝑢𝑢)                                (5) 
  
where  𝜆𝜆 ∈ ℜ𝑛𝑛 is the Lagrange multiplier.  
Applying to the Eq.(5) the necessary conditions for the optimal control given by  𝑥̇𝑥 =  𝜕𝜕𝑯𝑯

𝜕𝜕𝜕𝜕
   ,    𝜕𝜕𝑯𝑯

𝜕𝜕𝜕𝜕
= 0  and    

𝜆̇𝜆 = −  𝜕𝜕𝑯𝑯
𝜕𝜕𝜕𝜕

 ,  one gets  
 

𝜆̇𝜆 = −𝑄𝑄(𝑥𝑥)𝑥𝑥 −  
1
2
𝑥𝑥𝑇𝑇

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

𝑥𝑥 −  
1
2
𝑢𝑢𝑇𝑇

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

𝑢𝑢 −  �
𝜕𝜕(𝐴𝐴(𝑥𝑥)𝑥𝑥)

𝜕𝜕𝜕𝜕
�
𝑇𝑇

𝜆𝜆 −  �
𝜕𝜕(𝐵𝐵(𝑥𝑥)𝑢𝑢)

𝜕𝜕𝜕𝜕
�
𝑇𝑇

 𝜆𝜆               (6) 

 
 𝑥̇𝑥 = 𝐴𝐴(𝑥𝑥)𝑥𝑥 +  𝐵𝐵(𝑥𝑥)𝑢𝑢                                                                                                   (7)        
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   0 = 𝑅𝑅(𝑥𝑥)𝑢𝑢 +  𝐵𝐵(𝑥𝑥)𝜆𝜆                                                                                                   (8) 
 
Assuming the co-state in the form λ=P(x)x, which is dependent of the state, from Eq.(8) one obtains  the 
feedback control law 
 

𝑢𝑢 =  −𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥)𝑥𝑥                                                                                       (9) 
 
Substituting this result into Eq. (7) one gets  

                                                           
  𝑥̇𝑥 = 𝐴𝐴(𝑥𝑥)𝑥𝑥 − 𝐵𝐵(𝑥𝑥)𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥)𝑥𝑥                                                               (10) 

 
To find the function P (x) one differentiates λ = P (x) with respect the time along the path from which one gets  
 

𝜆̇𝜆 = 𝑃̇𝑃(𝑥𝑥)𝑥𝑥 + 𝑃𝑃(𝑥𝑥)𝑥̇𝑥 = 𝑃̇𝑃(𝑥𝑥)𝑥𝑥 + 𝑃𝑃(𝑥𝑥)𝐴𝐴(𝑥𝑥)𝑥𝑥 − 𝑃𝑃(𝑥𝑥)𝐵𝐵(𝑥𝑥)𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥)𝑥𝑥                             (11) 
 
Substituting Eq.(11)  in the first necessary condition of optimal control (Eq.6) one obtains 
 

𝑃̇𝑃(𝑥𝑥)𝑥𝑥 + 𝑃𝑃(𝑥𝑥)𝐴𝐴(𝑥𝑥)𝑥𝑥 − 𝑃𝑃(𝑥𝑥)𝐵𝐵(𝑥𝑥)𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥)𝑥𝑥

=  −𝑄𝑄(𝑥𝑥)𝑥𝑥 −
1
2
𝑥𝑥𝑇𝑇

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

𝑥𝑥 −
1
2
𝑢𝑢𝑇𝑇

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

𝑢𝑢 − �𝐴𝐴(𝑥𝑥) +  
𝜕𝜕(𝐴𝐴(𝑥𝑥)𝑥𝑥)

𝜕𝜕𝜕𝜕
𝑥𝑥�

𝑇𝑇

𝑃𝑃(𝑥𝑥)𝑥𝑥

− �
𝜕𝜕(𝐵𝐵(𝑥𝑥)𝑢𝑢)

𝜕𝜕𝜕𝜕
�
𝑇𝑇

𝑃𝑃(𝑥𝑥)𝑥𝑥                                                                                                                           (12) 

 
     Arranging the terms more appropriately one has 
 

𝑃̇𝑃(𝑥𝑥)𝑥𝑥 +  
1
2
𝑥𝑥𝑇𝑇

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

𝑥𝑥 +
1
2
𝑢𝑢𝑇𝑇

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

𝑢𝑢 + 𝑥𝑥𝑇𝑇 �
𝜕𝜕�𝐴𝐴(𝑥𝑥)�
𝜕𝜕𝜕𝜕

�
𝑇𝑇

𝑃𝑃(𝑥𝑥)𝑥𝑥 + �
𝜕𝜕(𝐵𝐵(𝑥𝑥)𝑢𝑢)

𝜕𝜕𝜕𝜕
�
𝑇𝑇

𝑃𝑃(𝑥𝑥)

+ [ 𝑃𝑃(𝑥𝑥)𝐴𝐴(𝑥𝑥) +  𝐴𝐴𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥) − 𝑃𝑃(𝑥𝑥)𝐵𝐵(𝑥𝑥)𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥) + 𝑄𝑄(𝑥𝑥)]𝑥𝑥                                                
=    0                                                                                                                                                                                            (13) 
 
In order to satisfy the equality of Eq.(13) one obtains two important relations. The first one is state-dependent 
algebraic Riccati equation (SDARE) which solution is P(x) given by  
 

𝑃𝑃(𝑥𝑥)𝐴𝐴(𝑥𝑥) + 𝐴𝐴𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥) − 𝑃𝑃(𝑥𝑥)𝐵𝐵(𝑥𝑥)𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥) + 𝑄𝑄(𝑥𝑥) = 0                                          (14)    
 
The second one is the necessary condition of optimality which must be satisfied and it is given by 
 

𝑃̇𝑃(𝑥𝑥)𝑥𝑥 +  
1
2
𝑥𝑥𝑇𝑇

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

𝑥𝑥 +
1
2
𝑢𝑢𝑇𝑇

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

𝑢𝑢 + 𝑥𝑥𝑇𝑇 �
𝜕𝜕�𝐴𝐴(𝑥𝑥)�
𝜕𝜕𝑥𝑥

�
𝑇𝑇

𝑃𝑃(𝑥𝑥)𝑥𝑥 + �
𝜕𝜕(𝐵𝐵(𝑥𝑥)𝑢𝑢)

𝜕𝜕𝜕𝜕
�
𝑇𝑇

𝑃𝑃(𝑥𝑥)𝑥𝑥         

= 0                                                                                                                                                                                               (15)  
 
For the infinite time problem and considering the standard Linear Quadratic Regulator (LQR) problem, this is a 
condition that satisfies the optimality of the solution suboptimal control. 
Finally, the nonlinear control law fed back by the states has the following form 
 

𝑢𝑢 =  −𝑆𝑆(𝑥𝑥)𝑥𝑥 ,   𝑤𝑤𝑤𝑤𝑤𝑤ℎ   𝑆𝑆(𝑥𝑥) = 𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥)                                                           (16) 
 
       For some special cases, such as systems with little dependence on the state or with few state variables, Eq. 
(14) can be solved analytically. On the other hand, for more complex systems the numerical solution can be 
obtained using an adequate sampling rate.  It is assumed that the parameterization of the coefficients dependent 
on the state is chosen so that the pair (A(x), B(x)) and (C(x) , A(x)) are in the linear sense for all x belonging to the 
neighborhood about the origin, point to point, stabilizable and detectable, respectively. Similar to the LQR 
method the SDRE nonlinear regulator need that all states are available to be feedback, otherwise one has to use 
the Kalman filter to estimates the data that is not measurable.  
 
3.  SIMULATOR MODEL 
 
Figure 1 shows the INPE 3-D simulator which has a disk-shaped platform, supported on a plane with a spherical 
air bearing. Considering that the INPE 3-D simulator is not complete build, one assumes that there are three 
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reaction wheel configuration set capable to perform maneuver around the three axes and that there are three 
angular velocities sensor, like gyros. Apart from the difficulty of reproducing zero gravity and torque free 
condition, modeling a 3-D simulator, basically, follows the same step of modeling a rigid satellite with rotation 
in three axes free in space.  

 

 
Figure 1- INPE 3-D simulator three reaction wheels. 

 
The orientation of the platform is given by the body reference system Fb with respect to inertial reference system 
FI considering the principal axes of inertia and using the Euler angles (θ1, θ2, θ3) in the sequence 3-2-1, to 
guarantee that there is no singularity in the simulator attitude rotation.  The equations of motions are obtained 
using Euler´s angular moment theorem given by 
 

h g=
 

                                                                                                (17) 
where g  and h


are the torque and the angular moment of the system, which is given by 

 

( )wh I Iw w= + Ω+
  

                                                                                (18) 

where I = diag (I11, I22, I33) is the system matrix inertia moment, ω


 is the angular velocity of  the platform,  wI


= diag (Iw1, Iw2, Iw3)  is the reaction wheel matrix inertia moment and Ω = (Ω1, Ω2, Ω3)  are the reaction wheel 
angular velocity.  
Differentiating Eq. (18) and considering that the angular velocity of bF  is ω


 and that the external torque is 

equal to zero, one has 

0xh hω+ =
                                                                                          (19) 

 
Substituting Eq.(18) into Eq.(19), the acceleration of the system is  
                                          

( ) ( )1 x x
w w w wI I I I I Iw w w w−  = + − + − Ω− Ω  

     

                                                  (20) 

The simulator attitude as function of the angular velocity is 

 

1 3 2 3 2 1

2 3 3 2

3 3 2 2 3 2 2 3

0 sin / cos cos / cos
0 cos sin
1 sin sin / cos cos sin / cos

θ θ θ θ θ ω
θ θ θ ω
θ θ θ θ θ θ θ ω

    
    = −    

       







                                                (21) 

 
Here one simulates the angular maneuver which represents the fine pointing mode control where the reaction 
wheel is the best actuator, so the state’s x are  (𝜃𝜃1  𝜃𝜃2  𝜃𝜃3  𝜔𝜔1  𝜔𝜔2 𝜔𝜔3)𝑇𝑇 and the control are due to the reaction wheel 
velocities (Ω̇1  Ω̇2  Ω̇3)T One knows that the reaction wheel generates internal torques and the attitude control is 
performed by exchange of angular moment between the reaction wheel and the satellite. From the union of the 
Equations (20) and (21) one obtains the matrices A(x), B(x) and C(x) in state space form, which represents the 
satellite simulator nonlinear plant (yellow block) as showed in Figure 5. It should be stressed, that a great 
advantage of the SDRE method is that it is not necessary to linearize the system. The SDRE method can deal 
with the nonlinearities of the system, which here come from the product of the angular velocities of the platform 
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and reaction wheel (Eq.(20)) and with the trigonometric function of Eq.(21) associated with the angular position 
that represent the attitude of the system.  
 
 
4. REACTION WHEEL DYNAMICS 
 
In the sequel one derives the reaction wheel dynamics which is triggered by a DC motor as show in Figure 2. 
For simplicity, here one ignores the losses due to the transformation of electrical energy into mechanical. 
Therefore, the electrical power is equal to the mechanical power given by  
 

)()()()( twtTtitV =                                                                                        (22) 

)()()()( te
dt

tdiLtRitV ++=                                                                           (23) 

dt
tdwjtBwtT )()()( +=                                                                                (24) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2- DC Motor dynamics representation. 

 
Where R is the electrical resistance of the motor, L is the inductance of the motor, B is the viscous friction of the 
motor, J is the moment of inertia of the reaction wheel, w is the angular velocity of the wheel, i is the electric 
current of the motor, V is the electrical voltage at the motor terminals and e is the voltage generated due to 
movement of the motor rotor within a magnetic flux. 
For a permanent magnet motor, the following relationship given below is valid 
 

)()( twKte e=                                                                        (25) 
 
where  Ke  is associated with the motor tension. One also knows that in an engine of this type the relationship 
between torque and current is given by 

)()( tiKtT t=                                                                                         (26) 
 
where Kt is a constant associated with the motor torque. Substituting Eq. (25) into Eq. (23) one has 
 

)()()()( twk
dt

tdiLtRitV e++=                                                                  (27) 

 
Substituting Equation (26) into Equation (24) one has 
 

dt
tdwjtBwtiKt
)()()( +=                                                                     (28) 

Arranging the Equations (27) and (28) with the first order terms in the left hand side and the zero order terms in 
the right  hand one has  
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B 
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                wKRiV
dt
diL e−−=                                                                 (29)                 

BwiK
dt
dwj t −=                                                                (30) 

 
Putting Equations (29) and (30) in the Matlab/Simulink form, one has the block diagram given by Figures 3 and 
4, respectively.  

         
 

Figure 3 - block diagram of Eq. (29)                                                Figure 4 - block diagram of Eq. (30) 
 
Joining the two block diagrams of the Figures 3 and 4 above, one gets the complete block diagram of the entire 
reaction wheel (blue bock)  as showed in Figure 5. 
 
5. SIMULATIONS RESULTS 
 
Now one has the Simulink/Matlab  model for the Satellite Simulator with Nonlinear Plant (yellow block), the 
control system using the SDRE Controller (green block) and the reaction wheel dynamics with velocity or 
current feedback (blue block), so grouping them one gets the Complete Simulator System , showed in Figure 5. 
In such system one has as input the reference angles to where the SDRE controller must maneuver the satellite 
and as output the angles and the angular velocity of the satellite. For simplicity the external torque is zero. 
 

 
 

Figure 5 – Entire Simulator with plant of the satellite, SDRE Controller and the Reaction Wheel dynamics. 
 
The satellite simulator model is inertia moment depend, so here one uses I11 = I22=1185.0; I33=1136.0 and for the 
DC motors parameters R = 7,3 , L = 2,5 , B = 0,00494, J = 2.0, Kt = 0,05, Ke = 0,05. The SDRE controller must 
maneuver the satellite from initial angles zeroes to final angles are Theta1 = 10°, Theta2 = 5°, Theta3 = - 5°.  
The control system has used three different reaction wheel configurations. In the first one the reaction wheel has 
no feedback, in the second and thirty configurations one employs velocity feedback and current feedback, as 
showed in Figure 6, in order to evaluate the reaction wheel performance for the three cases. 
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Figure 6 – reaction wheel block diagram with velocity and current feedback  

 

The first simulation is the design of the SDRE controller where the reaction wheel loop has no feedback. The 
SDRE controller gain S(x) depend on matrices of the simulator model A(x), B(x) and C(x), see  [16] for details, 
and  of  the tuning matrices Q  and R  which one assumes the values Q  = diag( 1, 1, 1,100, 100, 100) and R  
(0.001, 0.001,0.011). Once one has design the SDRE controller the next step is to design the reaction wheel 
control loop which can have velocity or current feedback. After some try and error one get the gain K = 50 to 
feedback with velocity or current the reaction wheel. The performance of the entire SACS for the previously 
angular maneuver is showed in Figures 7, 8 and 9 for each axis angles Theta1, 2 and 3, without feedback and 
with feedback of velocity and current, respectively 

.  
   Figure 7 – Attitude angle Theta 1            Figure 8 – Attitude angle Theta 2                 Figure 9 – Attitude angle Theta 3             
 

In order to investigate the reaction wheel performance one increases its gain to K= 250 and perform the same 
previously angular maneuver. Figures 10, 11 and 12 show the SACS action for each angle Theta1, 2 and 3, 
without feedback and with feedback of velocity and current, respectively 

 

     Figure 10 – Attitude angle Theta 1              Figure 11 – Attitude angle Theta 2           Figure 12 – Attitude angle Theta 3             

As one observes the SACS performance has been improved when the reaction wheel gain increases, so one 
increases it a bit more to K= 500 and one performs the same angular  maneuver. Figures 13, 14 and 15 show that 
the SACS performance to control the angles  Theta1, 2 and 3 has been deteriorated both with velocity and 
current feedback. 
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     Figure 13 – Attitude angle Theta 1            Figure 14 – Attitude angle Theta 2          Figure 15 – Attitude angle Theta 3             

 
4.  CONCLUSIONS  
 
From the first simulation one observes that the SACS with reaction wheel loop using the gain K=50 has better 
performance than the SACS with reaction wheel without both velocity or current feedback, since there is an 
improvement in the level of the overshoot and the maneuver has been done faster, although one observes that 
there is a stead state error when using the current feedback.  So one can conclude that increasing the reaction 
wheel gain the velocity feedback has better performance that current feedback.  In order to investigate this and 
to improve the maneuver one has increase the reaction wheel loop gain to K = 250, in that case one notices that 
stead state error introduced by the current feedback increase, although the overshoot has decreased. As a result, 
one could conclude that increasing the reaction wheel gain the SACS performance using the velocity feedback 
in the reaction wheel loop could be better than current. But this is not true since when one increase a bit more 
the gain to K = 500, the maneuver using the reaction wheel with velocity feedback has been performed in more 
time than the maneuver using   K= 250. This just shows that there exists a limit value for the reaction wheel gain 
which possible is around 250. Besides, it is important to say that the reaction wheel gain is as function of its axis 
since the inertia moments are different for each axis.  Finally, one observes that there are two ways to improve 
the SACS design, the first one could be using a kind of optimal control technique to obtain the reaction wheel 
gains, and the other one is including a Kalman filter to estimate the possible measurements that eventually are 
not available to be feedback, since here one has consider that all states are available to be feedback into the 
control loop.  
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Abstract 
Forces are generally defined in physics as functions of position (Newton: gravity) or velocity 
(Laplace: magnetic force on a moving electric charge). Damping forces are little known even today 
and represent one of the most intriguing subjects of physics. Maxwell elements and fractional 
derivatives are used to modelize time domain natural hysteretic damping. The resulting models are 
comparatively complicated and have a limited domain of validity especially when strong non-
linearity is involved. The mathematical model we use is based on the introduction of a new state 
variable and is particularly suitable in the non-linear vibration case. S.I.D. (Strain Integral 
Damping: see ref. [2]) is a very suitable mean to modelize natural hysteretic damping in the time 
domain and for nonlinear rubber elements in particular. In the present paper the stress is on 
modelling of nonlinear elements. The effectiveness of SID is shown by an example concerning a 
strongly non-linear spring. A ‘’Scilab’’ script is provided to better explain. 
 
Keywords: Natural hysteretic damping, Computational model, Vibration, Engine, Driveline, 
Startup 

Introduction 

Natural damping is only seldom viscous. Natural hysteretic damping is much more common and 
can be described as follows in the frequency domain. 
If: 

                
  

 
  

 
(1) 

Where an imaginary part of the stiffness matrix is introduced (tg(φ)). We shall call this I.S.D. 
(Imaginary Stiffness Damping) in the following. 
Such a formulation is much used in the frequency domain because it is simple and practical to use 
and not because there is a real physical theory behind it. S.I.D. (Strain Integral Damping) wants to 
be as simple and practical to use for hysteretic damping modeling in the time domain. The 
formulation of SID will be now briefly recalled. See references [2] and [3]. 
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1 SID Formulation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Hysteresis of a spring-damper 
 

Let us consider the spring-damper of FIG. 1. If  is the displacement at time ‘’t’’ and we apply a 
sinusoidal force we shall obtain: 
 
  (2) 
 
Velocity ‘’v’’ and acceleration ‘’a’’:           
 
 

 
(3) 

 
 

(4) 

 
The applied force will be: 
 
  (5) 
 
‘’F’’ being the force amplitude. We can rewrite: 
 
  (6) 
 
Following equation (1) the springer-damper stiffness ‘’k’’ is defined by: 
 
  (7) 
We can then write equation (6) in the form: 
 
  (8) 
 
By substituting equations (2) and (3) in equation (8) we obtain: 
 

Force F 
Force 

Displacement 
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(9) 

 
Where we have introduced the same  factor of eq. (1). 
Now we must express the ‘’ω’’ of eq. (9) as a function of state variables only. We may think of 
expressing the ‘’1/ω‘’ factor of eq. (9) as the ratio: 
 
 

 
(10) 

 
But as it is shown in reference [1], forces cannot in general be expressed as functions of the 
accelerations and this leads us to define a new state variable which is the solution of the differential 
eq.: 
 
 

 
(11) 

 
The solution is: 
 
 

 
(12) 

 
The constant ‘’ω1’’ is introduced to define as ‘‘remote past’’ all events for which: 
 
  (13) 
 
Such events will have negligible effect on ‘’y’’ (strain integral) and, as a consequence, on the 
damping force. We must remark that if ‘’ω1’’ is zero, ‘’y’’ goes to infinity for all x(t) whose 
average is not zero (spring preloading). This of course wouldn’t be physical. So ‘’ω1’’ can be 
seen as a high pass filter parameter: it has the same physical dimensions as a frequency and it must 
be set well lower than the frequencies of interest but it must not be negligible in comparison with 
the frequencies of interest to avoid  ‘’y’’ to go to  infinity. We can better understand this by writing 
eq. (11) in the frequency domain: 
 
 

 
(14) 

 
Where X and Y are the complex amplitudes of ‘’x’’ and ‘’y’’ respectively. We can see from this 
formula that if ω is an angular frequency of interest, it must be  for ‘’y’’ to be close to the 
integral of ‘’x’’.  is a possible value. 
We can then assume: 
 
 

 
(15) 

 
By substituting eq. (15) into eq. (9) we easily obtain: 
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  (16) 
 
We remark that the term    has the physical dimensions of a displacement but is 
‘’phased’’ like a velocity. 
 
We assume as initial condition for ‘’y’’: 
 
  (17) 
 
We can easily see that, with this initial condition, the cycle starts at the origin like the dotted curve 
shown in Fig. 1. 
Work experience has shown that the introduction of factor ‘’ω1’’ in eq. (11) is not enough to avoid 
that ‘’y’’ goes to infinity. This problem of course can only exist in case of spring (engine mount) 
preloading. The problem is easily solved by the introduction of a moving average in equation (11): 
 
 

 
(18) 

 
The moving average  is defined as the solution of the following differential equation: 
 
 

 
(19) 

 
The solution is: 
 
 

 
(20) 

 
 
 
 
And the corresponding weighted moving average: 
 
 

 
(21) 

 
Where: 
 
  (22) 
 
Is the normalization factor.  We can see from eq. (21) that such an average has the important 
property that all events of the ‘’past’’ that happened at time  such that: 
 
  (23) 
 
Are ‘’squeezed’’ by the weighting factor: 
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  (24) 
 
So that only the most ‘’recent’’ events are really included in the average.  
The fact that factor (22) goes to infinity when t=0 is generally avoided by the substitution: 
 
  (25) 
 
In practice we often assume: 
 
  (26) 

But this is not a general rule: depends on the speed by which the “quasi static” preloading varies and 
must be set accordingly. Sometimes static preloads are not really constant. For example the engine torque 
varies depending on how much the driver presses on the accelerator and ‘’static’’ loads on the mounts will 
vary accordingly. In the driveline model of section 4.2 for example we had: 

                                                                = 0.01;      = 8 
 
Because of the quickly increasing engine torque due to quickly mounting RPM. The RPM rose 
quickly because of simulation of a steep sloping down startup of the vehicle. Consider for example 
the famous “Gross Glochner” very steep descent in Austria. 

2 Nonlinearity 

SID is most useful in nonlinear problems. To introduce non linearity we only need modifying eq. 
(16) as follows: 
 
  (27) 
 
Where ‘’spl’’ is a spline representing the non-linear spring and kS is the secant stiffness (very 
seldom the tangent stiffness as explained in reference [3]). In references [2] and [3] the user is 
provided with useful advice and cautions concerning the practical use of SID. For example the 
“boxcar effect” [4] needs sometimes being considered in analyzing results obtained by time step 
integration. It must be remarked that assuming the secant stiffness (load divided by displacement) to 
drive the damping phenomenon corresponds to assuming damping forces to be proportional to the 
loads acting on the nonlinear element. In the author’s experience such an assumption is often closer 
to reality than assuming damping forces to be proportional to the differential stiffness. 

3 Frequency independence of SID nonlinear cycles (Numerical example) 

We are now going to present with a numerical example concerning the property of a SID spring 
hysteresis cycle to remain the same whatever the frequency of the imposed displacement. Such a 
property is a feature of natural damping as it is observed in physical reality.  SID has the remarkable 
power of insuring that such a property is verified also in the case of calculation of a strongly 
nonlinear spring. The Scilab script in the appendix was used to perform the calculations. By setting 
the imposed displacement frequency at 20, 40 and 60 Hz we are now going to see that the cycle 
doesn’t change. We can see that the cycle in figure (5) is practically identical to that in figure (3) 
although the frequency is twice and that the cycle in figure (7) is again practically identical to that 
in figure (3) although the frequency is 3 times higher. 
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3.1 Calculation at 20 Hertz. 

 
Figure 2. Displacement 

 

 
Figure 3. Cycle 
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3.2 Calculation at 40 Hertz. 

 
Figure 4. Displacement 

 
 

 
Figure 5. Cycle 
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3.3 Calculation at 60 Hertz. 

 
Figure 6. Displacement 

 
 

 
Figure 7. Cycle 
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4 The kind of models SID is used in 

4.1 “Global car model” 

 
 

Figure 10. “Global car model” 
 
Figure 10 shows a “VeLab” model inclusive of practically everything which is needed to predict a 
vehicle startup behavior. Models of the following subsystems are included: 

- Starter 
- Engine, pistons, crankshaft, links, engine mounts  
- Clutch 
- Gearbox, gears, differential, transmissions 
- Suspensions, dampers, steering apparatus 
- Wheels 
- Tires 
- Rigid or flexible car body and suspension frameworks 
- Torsional dampers 

4.1.1 Applicability 

It is generally possible to devise and validate such subsystems separately and then assemble them in 
the global model. Such “global” models are seldom used except for special problems involving the 
whole of the vehicle like for example the study of vibration energy transmission from the engine 
through the suspensions and to the car body. Animation of this model helps understanding “global” 
problems sometimes. 
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4.2 “Driveline model” 

 
Figure 11. “Driveline model” 

 
Figure 1 shows a driveline model that was used to study a pendulum damper dynamic behavior. The 
starter, gear, differential and wheels are modelized together with the vehicle which is represented by 
a big flywheel in such a model.  

4.2.1 Applicability 

Such models are more often used than the “global” one. The effects of the SHR (wheel longitudinal 
vibration) mode can be studied by such a model and SID is used to modelize practically everything 
flexible in the model.  Only the tire model also includes viscous damping, tire longitudinal stiffness 
being concerned. 

5 General remarks 

SID is of great help in preparing such models because it provides the desired natural damping 
behavior. Using viscous damping for example would require adapting the damping to the new 
situation every time some eigenfrequencies change because of structural modification. Viscous 
damping cycles are in facts strongly frequency dependent. Once the 3 parameters governing SID are 
set, instead one can almost forget damping modelling and go on trying new solutions in a most 
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expedite way. SID also has the prize of simplicity: it would be very difficult obtaining the same 
result displayed in figures 3-5-7 by other methods and by 18 lines of code only (see the script in the 
appendix). One can quickly prepare macros that formulate SID for all elastic elements in a model. It 
is very important to remark that the phenomena dealt with by such models all start by low levels of 
vibration and then soar to higher vibration levels as the transient goes on: this is precisely the kind 
of phenomena SID was born to deal with. This is also the reason for the “rising amplitude imposed 
displacement” (figures 2-4-6) chosen for the examples of figures 3-5-7 and the corresponding 
SciLab script in the appendix. 

Conclusions 

The validity of a theory can only be proved by its agreement with reliable experimental results   like 
the well-known result of eq. (5). In this sense SID has been shown to give the kind of results we 
expect (see figures 3-5-7). We don’t know whether SID is a ‘’beable’’ which is what the physicists 
call something that has a real link with physical reality: only the future can say. We can say 
however that it is a very practical and easy method that corresponds, in the time domain, to the 
imaginary stiffness damping of eq. (1) in the frequency domain: no physical base to it but 
everybody uses it because it is simple and practical (see the general remarks of paragraph 5). SID 
only needs three parameters to be defined. SID is a suitable mathematical description of hysteretic 
damping and gives fairly physical results when applied to non-linear problems (see figures 3-5-7).  
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Appendix 

In the following script the variables correspond to: 

freqq = frequency 

tt = time 

dd = displacement 

cs1 = natural hysteretic damping 

k1 = linear stiffness 

dt = time differential 

zh1 = SID ω2 parameter of eq. (19) 

h1 = SID ω1 parameter of eq. (11) 

va = velocity 

z1 = solution of eq. (19) 

ss1 = solution of eq. (11) 

z1av = moving average of eq. (21) 

force1 = force of nonlinear spring: spline spl(x) of eq. (27) 

secstiff = secant stiffness: (force/displacement) that is ks of eq. (27) 

force1 = after definition of secstiff, it is the total force including damping force 

 

SCILAB SCRIPT 
clear;  
freqq = 20; fig1 = 1; fig2 = 2;  
tt=(1:4096)/4096; ll = 2* %pi; dd = sin(ll*tt*freqq)/10; 
for kk = 1 : 2048; dd(kk) = dd(kk) * tt(kk)/tt(2048); end; 
figure(fig1); title('FREQ = ' + msprintf('%.2f',freqq)); plot(tt,dd,'r'); xlabel('Seconds'); ylabel('Meters'); 
csi1 = 0.4; m1 = 400; f1 = 2; k1 = (ll*f1)*(ll*f1)*m1; dt = 1/4096; 
ss1 = 0; h1 = 0.2; z1 = 0; zh1 = 0.0001; force1 = 0.; 
for kk = 1 : 4096 - 1; 
va = (dd(kk+1) - dd(kk))/dt; z1 = z1 + (-z1 * zh1 + dd(kk)) * dt; 
z1av = z1 * zh1 / max(0.0001,1-exp(-zh1*tt(kk))); 
ss1 = ss1 + (-ss1 * h1 + dd(kk)-z1av) * dt; 
force1 = (dd(kk))*k1 + 2.*((dd(kk)) > 0.03)*(dd(kk)-0.03)**2*1000000; 
secstif = abs(force1/ (dd(kk))); 
force1 = force1 + (-0.*0.15+sign(va))*(abs(ss1 * va))**0.5 * secstif * csi1; 
force(kk) = force1; 
end 
dd = dd(1:length(dd)-1); figure(fig2); title('FREQ = ' + msprintf('%.2f',freqq)); plot((dd),force,'b'); 
xlabel('Meters'); ylabel('Newtons'); 
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Abstract 
Eigenvector analysis can be performed to determine the shapes and frequencies of the undampened 
free vibration modes of a system. These natural modes provide excellent insight into the behavior of 
a particular structure. Eigen vector analysis involves solving the generalized eigenvalue problem, 
which considers the stiffness and mass matrix of a structure. When a geometric nonlinear study 
must be performed, a situation that commonly occurs in the analysis of slender structures, nonlinear 
analysis or a more complete and rigorous evaluation that considers both parts of the total matrix is 
required. For instance, slender structures possess a small first frequency of vibration, less than 1 Hz, 
and can resonate due to wind excitation. The first frequency and shape of vibration are the most 
important parameters for calculating the response of a structure to environmental excitation. 
Therefore, when modal analysis depends on the stiffness of the structure, the effect of a reduction in 
stiffness on the modal shape of vibration must be determined. To this end, case studies were 
evaluated using the finite element method (FEM), considering and neglecting the geometric portion 
of the stiffness matrix. Mathematic functions were also applied for comparison. 
Keywords: Modal Shape, Geometric Stiffness, Nonlinear Analysis, Computational Simulation, 
Mathematic functions, Case Studies 

Introduction 
For structures with a first natural frequency less than 1 Hz, the dynamic effects of wind are too 
important to be considered as pure static effort or deterministic in nature, which would only provide 
a rough approximation. Regarding the importance of the dynamic effects of wind, Durbey and 
Hansen (1996) suggested that flexible structures vibrate in different modes, frequencies and shapes 
when excited by the wind. Further, they stated that the dynamic effect of wind may allow slender 
structures to display resonance. 
 
In many countries, models that consider the effects of wind in design structures are provided by 
governing codes. Many of these models consider that average wind speeds produce a static effect, 
whereas fluctuations or gusts of wind produce important oscillations, especially in tall 
constructions. When dealing with the dynamic response to the average wind speed, fluctuations are 
considered to occur in the band of the lower frequencies of the structure. This model of dynamic 
analysis was also considered by Simiu and Scalan (1996), who suggested that induced vibration 
analysis for floating loads was a necessary model component. Moreover, constructions with a basic 
period greater than 1 s and frequencies up to 1 Hz can undergo a floating response in the direction 
of the wind. Although the frequencies and vibration shapes of a structure should be considered, the 
most important parameter is the fundamental frequency. 

Modal analysis and vibration shapes 
A classical method for the dynamic analysis of a structure is modal analysis, in which sufficient 
information on the system or structure is obtained to reproduce their dynamics. Carrion et al. (2014) 
previously indicated that the natural frequencies (eigenvalues) and modes of vibration 
(eigenvectors) of the system are relevant information for classical modal analysis. Carrion further 
stated that a well-known concept used in the finite element method (FEM) is the stiffness matrix, 
which is used to relate the external forces applied at the nodes of the structural element to the nodal 
displacement.  
 
Structural dynamics can be employed to obtain solutions to homogeneous differential equations, the 
shape of which represents vibration modes that exist in the coordinate system at the same frequency 
range and occur harmonically in time. The equation describes the vibration of the system according 
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to a normal mode of vibration and corresponds to the frequency. After deriving the solution twice 
with respect to time and canceling the harmonic function, the homogeneous algebraic equations 
shown in Eq. (1) were obtained. In the equation, ω2 are the eigenvalues, and Φ are the eigenvectors 
in the FEM environment. 

{ }2-   =  0K Mω     Φ      (1) 

[K] is the total stiffness matrix, which is composed of two parts, one being conventional, as shown 
in Eq. (2), the other being geometric, as shown in Eq. (3). [M] is the known mass matrix, pertaining 
to modal analysis with geometric nonlinear characteristics. When the mass matrix is a discrete mass 
distribution (lumped mass) of the structural system, a diagonal matrix containing the masses and 
moments of inertia for the nodal displacements is obtained. 
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The mathematic solution to the dynamic problem is a polynomial equation of degree n that contains 
the variable ω2 and is commonly known as the frequency equation. The n solutions for ωI are real 
and positive and are considered the natural frequencies of the system. The smallest frequency is 
typically denoted as ω1, while the largest frequency is denoted as ωn. Thus, n modes of vibration 
can be determined and collected in a modal n x n matrix, which contains columns representing the n 
modes of undampened, normalized free vibration (Brazil, 2004). Each pair of eigenvalues and 
eigenvectors corresponds to a frequency and mode of vibration for the system. To consider values 
and characteristic vectors equal in number to the nodal displacements of the system, Venancio Filho 
(1975) suggested that Eq. (1) can be written as follows: 

12 K Mω
−        Φ = Φ          (4) 

where [ω2] is the diagonal matrix of order n and consists of the natural frequencies squared, and [Φ] 
is an n x n matrix and contains columns corresponding to the normal modes of vibration. The term 
[K][M]-1 is a dynamic matrix, as previously mentioned by Blessmann (2005). 
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The formulation corresponding to the previous exposition of the FEM is a geometric nonlinear 
formulation and is based on the geometric stiffness matrix. Geometric stiffness has been introduced 
in several analyses of the FEM when nonlinear effects or geometric nonlinearity (GNL) are 
considered. The interpolation functions normally used in FEM formulations to determine the full 
stiffness matrix are third-degree polynomials, such as those evaluated by Filho (1975) and Wilson 
and Bathe (1976). 
 
Computer models of actual structures were developed in the present study using a FEM-based 
computer modeling program, and modal analysis was performed linearly and nonlinearly to obtain 
the shape of the first mode of vibration. For comparative purposes, mathematic functions, such as 
the trigonometric function given in Eq. (5), the polynomial function given in Eq. (6), and the 
potential function given in Eq.(7). All of the functions were considered to be valid throughout the 
entire domain of the structure. 
 
Trigonometric function 

1
2

( ) cos xx
L

πφ
 

= −  
 

. (5) 

Polynomial function 
2 3

2 3
3 2θ = −( ) x xx

L L
. (6) 

Potential function 

( ) xx
L

γ

ψ
 

=  
 

. (7) 

The value of γ was determined in the present research. 

Analysis of the first modal shape using case studies 
Extremely slender structures possessing frequencies of the first vibration mode less than 1 Hz were 
selected. Modal analysis was achieved using finite element models, according to SAP2000 
(integrated software for structural analysis and design, Analysis Reference Manual, Computer and 
Structures, Inc., Berkeley, California, USA), a commercial software package. Modal shapes for the 
structures were obtained linearly and nonlinearly. The procedure used to calculate the nonlinear 
modal shape considered geometric stiffness; therefore, the influence of axial loads was inserted in 
the stiffness matrix. The structures were modeled using bar elements with constant and variable 
cross sections, as appropriate. 

Structure with a slenderness index of 310 
The evaluated structure was 48 m high and possessed a hollow circular section with a variable 
external diameter (φext) and thickness (t). The slenderness index of the pole was set to 310. The 
geometric details are shown in Figure 1(b), where t is the thickness of the wall of each segment of 
the structure. The metal pole was used to support the transmission system for mobile telephone 
signals. Table 1 lists the structural parameters and existing devices on the structure, and Table 2 
specifies the structural properties and model discretization values.  
 

Table 1. Devices and weights on the structure 

Device Height Weight and distributed weight 
Pole from 0 to 48 m 7850 kN m-3 

Ladder from 0 to 48 m 0.15 kN m-1 

Cables from 0 to 48 m 0.25 kN m-1 

Antenna and supports 48 m 3.36 kN 
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Table 2. Structural properties and discretization of the FEM model 

Height φext t Height φext t Height φext t Height φext t 
(m) (cm) (cm) (m) (cm) (cm) (m) (cm) (cm) (m) (cm) (cm) 

48.00 40.64 0.48 30.00 80.00 0.80 20.00 90.00 0.80 10.00 97.56 0.80 
46.00 40.64 0.48 29.00 80.00 0.80 19.00 90.00 0.80 9.00 105.11 0.80 
44.00 40.64 0.48 28.00 80.00 0.80 18.00 90.00 0.80 8.00 112.67 0.80 
42.00 65.00 0.80 27.00 80.00 0.80 17.00 90.00 0.80 7.00 120.22 0.80 
40.00 65.00 0.80 26.00 80.00 0.80 16.00 90.00 0.80 6.00 127.78 0.80 
38.00 65.00 0.80 25.00 80.00 0.80 15.00 90.00 0.80 5.00 135.33 0.80 
36.00 70.00 0.80 24.00 90.00 0.80 14.00 90.00 0.80 4.00 142.89 0.80 
34.00 70.00 0.80 23.00 90.00 0.80 13.00 90.00 0.80 3.00 150.44 0.80 
32.00 70.00 0.80 22.00 90.00 0.80 12.00 90.00 0.80 2.00 158.00 0.80 
31.00 80.00 0.80 21.00 90.00 0.80 11.00 90.00 0.80 1.00 165.56 0.80 

         0.00 173.11 0.80 
 
 

 
(a) Slender metallic pole 
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(b) Geometric details 

Figure 1. Slender metallic pole and its geometric details 
 
The modal shapes obtained by FEM and the aforementioned mathematic functions are provided in 
the graph shown in Figure 3. The exponent of the potential function that best fit the curve was equal 
to 1.965. 

Structure with a slenderness index of 256 
This investigated structure is a truncated cone metallic pole with 52 cm and 82 cm top and bottom 
diameters respectively. It is intended for the sustaining of the mobile phone broadcasting system.  It 
is 30 meters high, hollow section. The external diameter (φext) and thickness (t) vary along of the 
height. The assessed slenderness of the structure is 256. 
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Figure 2. Modal shapes of the structure with slenderness 310 

 
The structure data were acquired in the field. The diameters were measured with a metallic tape 
measure and the thickness with ultrasound equipment. For a given vertical line, several thickness 
measurements were carried out to obtain a relative average of the band. The union of the pole 
segments is formed by successive fittings, by placing and screw-fastening the metallic parts. Each 
superpositioning band has 20 cm length. In these joint areas, the thickness of the transverse section 
corresponds to the sum of the measures of the superpositioning bands, conform is indicated in 
Figure 3. In Table 3 it can be found the properties and the discretization used to model the structure. 
 

Table 3: Structural properties and discretization of the FEM model. 

Height φext t Height φext t Height φext t 
(m) (cm) (cm) (m) (cm) (cm) (m) (cm) (cm) 

30.00 52.00 0.60 20.00 62.00 0.60 10.00 72.00 0.76 
29.00 53.00 0.60 19.00 63.00 0,60 9.00 73.00 0.76 
28.00 54.00 0.60 18.10 63.90 0.60 8.00 74.00 0.76 
27.00 55.00 0.60 17.90 64.10 0.60 7.00 75.00 0.76 
26.00 56.00 0,60 17.00 65.00 0.60 6.10 75.90 0.76 
25.00 57.00 0.60 16.00 66.00 0.60 5.90 76.10 0.76 
24.10 57.90 0.60 15.00 67.00 0.60 5.00 77.00 0.76 
23.90 58.10 0.60 14.00 68.00 0.60 4.00 78.00 0.76 
23.00 59.00 0.60 13.00 69.00 0.60 3.00 79.00 0.76 
22.00 60.00 0.60 12.10 69.90 0.60 2.00 80.00 0.76 
21.00 61.00 0.60 11.90 70.10 0.76 1.00 81.00 0.76 

      0.00 82.00 0.76 
 
The metallic pole sustains two working platforms, one situated at 20 m height and the other at the 
superior extremity. There is still a set of antennas located at 27 m from the base and attached to the 
body of the pole through metallic devices. The platforms and the supporting devices follow the 
composition presented in Table 4 where φ designate the diameter of the platform. The local 
assessment revealed the presence of microwave (MW) antennas and of radio frequency (RF), which 
are listed with the rest of the structure accessories in  

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

37



Table 5. The data related to the antennas were obtained from the catalogue of the manufacturer. All 
the aforementioned devices represent additional masses and concentrated forces on the structure, as 
shown in  
Table 6, which presents the structural parameters and the parameters of the existing devices, the 
specific weight adopted for the material of the structure, the localized and distributed axial load. 
The geometry of the structure and the existing devices are schematically represented in Figure 3. In 
Figure 4 they are presented photographic images of the pole. 
 

Table 4. Composition of the platform and support 

Platform φ = 2.5 m Mass (kg) 
Floor sheet 116 

Lateral floor sheet 46 
Channel (U) 150 × 12.2 mm – Banister 96 

Angle (L) 102 × 76 × 6.4 mm – Banister 68 
Angle (L) 102 × 76 × 6.4 mm – Banister 77 

Angle (L) 102 × 76 × 6.4 mm – Floor support 43 
Platform lower ring 14 

Joints 3 
Banister bolts 5 

Angles (L) 152 × 102 × 9.5 mm – Platform lower support 33 
Total = 500 

Support set for antenna Mass (kg) 
Pipe φ = 1´ (25.4 mm) 6 

Angle (L) 203 × 152 × 19 mm 50 
Staples U (φ = 1´ = 25.4 mm) 1 

Top plate 1 
Total = 58 

 
Table 5. Composition of the localized nodal masses 

Device Mass 1st Plat (20 m) Support (27 m) 2nd Plat (30 m) 
(kg/unit) Quant. (kg) Quant. (kg) Quant. (kg) 

Antenna RF 2.6 m 19 2 37 3 56 1 19 
Antenna RF 1.23 m 4 1 4 0 0 1 4 

Antenna MW 19 2 38 0 0 0 0 
Platform 500 1 500 0 0 1 500 

Support for antennas 58 6 345 3 173 6 345 
Pipe φ = 1´ (25.4 mm) (Guide) 6 0 0 0 0 1 6 

Pipe φ = 3/4´ (19 mm) (LC) 6 0 0 0 0 1 6 
Total (kg) =   924   228  880 

    (LC = Lightning conductor, MW = Microwave, RF = Radio frequency, Plat = Platform) 
 

Table 6. Localized axial load and characteristics of the devices 

Device Frontal area Height Weight, distributed weight 
Pole Variable 0-30 m 77 kNm-3 

Ladder 0.05 m2/m 0-30 m 0.15 kN m-3 
Cables 0.15 m2/m 0-30 m 0.25 kN m-3 

1st Platform 2.60 m2 20 m 9.06 kN Antenna of the 1st platform 1.99 m2 
Intermediate antennas 2.11 m2 27 m 2.24 kN Intermediate supports 0.56 m2 

2nd Platform 2.36 m2 30 m 8.63 kN Antennas of the  2nd platform 0.90 m2 
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Figure 3.  Geometry – Measures in centimeters 
 
 

  
Figure 4. General photographic views 

 
 
The modal shapes obtained by FEM and by the mathematic functions can seem in graph of Figure 
5. The exponent of the potential function which best adjusts the curve is 1.85. 
 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

39



0 0.2 0.4 0.6 0.8
0

10

20

30
Finit element method (GNL)
Finit element method (Linear)
Trigonometric function
Polinomial function
Potential function

Finit element method (GNL)
Finit element method (Linear)
Trigonometric function
Polinomial function
Potential function

Modal shapes

H
ei

gh
t (

m
)

H

H

x

x

x

FEMGNL FEML, f x( ), θ x( ), ψ x( ),

 
Figure 5. Modal shapes of structure with slenderness 256 

Conclusions 
In the present study, the shape of the first mode of vibration was investigated using case studies. 
Analysis by finite element method (FEM) was performed using two different procedures, including 
a linear procedure, where the geometric stiffness was not considered, and a nonlinear procedure, 
called the geometric nonlinear formulation (GNL), which considered the geometric stiffness. For 
comparison, several mathematic functions were studied, and all of the functions were valid 
throughout the entire domain of the structure. 
 
For the studied cases, geometric stiffness did not have a significant effect on the shape of the first 
mode of vibration, and the trigonometric function was shown to be a good approximation for the 
nonlinear vibration shape. The mathematic potential function also represented the first shape of the 
vibration. For the structure with a slenderness index of 310, the exponent of the function was equal 
to 1.965, while the structure with a slenderness index of 256 corresponded to an exponent of 1.865. 
With this information, the weight-averaged rate of slenderness (rs) was determined to be 
rs = 0.006812. Thus, an adequate exponent could be obtained by multiplying the slenderness index 
by rs.  For example, for a structure with a slenderness of 200, the exponent is equal to 1.36 (200 
times 0.006812). 
 
Finally, the polynomial function did not provide an accurate representation of the vibration shape of 
the first mode. 
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Abstract

This paper presents a numerical solution to shape identification problem of steady-state vis-
cous flow fields. In this study, a shape identification problem is formulated for flow velocity
distribution prescribed problem, while the total dissipated energy is constrained to less than a
desired value, in the viscous flow field. The square error integral between the actual flow veloc-
ity distributions and the prescribed flow velocity distributions in the prescribed sub-domains is
used as the objective functional. Shape gradient of the shape identification problem is derived
theoretically using the Lagrange multiplier method, adjoint variable method, and the formulae
of the material derivative. Reshaping is carried out by the traction method proposed as an ap-
proach to solving shape optimization problems. The validity of proposed method is confirmed
by results of 2D numerical analysis.

Keywords: Inverse problem, Shape identification, Optimum design, Flow control, Traction
method

Introduction

Shape optimization problems of viscous flow fields for improving performance are important
in mechanical engineering fields. The theory of shape optimization for incompressible viscous
flow fields was initiated by Pironneau [Pironneau(1973; 1974; 1984)], who formulated a shape
optimization problem for an isolated body located in a uniform viscous flow field to minimize the
drag power on this body. The distributed shape sensitivity, which is called the shape gradient,
was derived with respect to the domain variation by means of an adjoint variable method
based on optimal control theory. The adjoint variable method introduces adjoint variables into
variational forms of the governing equations as variational variables; it also determines the
adjoint variables using adjoint equations derived from criteria defining an optimality condition
with respect to the domain variation.

The present authors have proposed an approach for the shape optimization of such channels or
bodies based on a gradient method using the distributed shape sensitivity. In previous studies,
the present authors presented a numerical method for the minimization of the dissipation energy
of steady-state viscous flow fields [Katamine and Azegami(1995); Katamine et al.(2005)] and
extended this method to 3D problems [Katamine et al.(2009)]. Also, the present authors applied
this method to the shape optimization solution for the drag minimization and lift maximization
of an isolated body located in a uniform viscous flow field [Katamine and Matsui(2012)].

The present study describes the extension of this method for solving a shape identification
problem of flow velocity distribution prescribed problem in sub-domains of steady-state vis-
cous flow fields. Reshaping is accomplished using the traction method [Azegami el al.(1995;
1997); Azegami(2000)], which was proposed as a means of solving boundary shape optimization
problems of domains. In the traction method, domain variations that minimize the objective
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functional are obtained as solutions of pseudo-linear elastic problems for continua defined in
the design domain. These continua are loaded with pseudo-distributed traction in proportion
to the shape gradient in the design domain.

In this study, the shape identification problem is formulated for flow velocity distribution pre-
scribed problem, while the total dissipated energy is constrained to less than a desired value,
in the viscous flow field. The square error integral between the actual flow velocity distribu-
tions and the prescribed flow velocity distributions in the prescribed sub-domains is used as
the objective functional. Shape gradient of the shape identification problem is derived theoret-
ically using the Lagrange multiplier method, adjoint variable method, and the formulae of the
material derivative. The validity of proposed method is confirmed by results of 2D numerical
analysis.

Flow velocity distribution prescribed problem

Let Ω be a viscous flow fields in a steady state. The fluid flows in from sub-boundaries Γ0

and flows out from sub-boundaries Γ1, where we write velocity vector u = {ui}n
i=1 and pressure

p. A domain variation problem where the flow velocity distribution u is specified with uD in
sub-domains ΩD ⊂ Ω can be regarded as a shape optimization problem. For simplicity, we
assume that the sub-domains ΩD, sub-boundaries Γ0 and Γ1 are invariables. The flow velocity
distribution prescribed problem considering constraint for dissipation energy is formulated as

Given Ω (1)

find Ωs (2)

that minimizes E(u − uD, u − uD) (3)

subject to aV (u,w) + b(u, u, w) + c(w, p) = l(w) ∀w ∈ W (4)

c(u, q) = 0 ∀q ∈ Q (5)

aV (u, u) ≤ aV
M (6)

where Eqs.(4) and (5) are variational forms, or weak forms, using adjoint velocity w = {wi}n
i=1

and adjoint pressure q a for the state equations. Eq.(6) is the constraint with respect to the
dissipation energy, and aV

M is the limit of dissipation energy. The flow velocity square error
integral E(u − uD, u − uD) and the terms such as the aV (u,w) are defined as

E(u − uD, u − uD) =
∫
ΩD

(ui − uDi) · (ui − uDi) dx,

aV (u,w) =
2

Re

∫
Ω

εij(u)εij(w) dx =
1

Re

∫
Ω

wi,j(ui,j + uj,i) dx,

b(v, u, w) =
∫
Ω

wivjui,j dx, c(w, p) = −
∫
Ω

wi,ip dx, l(w) =
∫
Γ1

wiσ̂i dΓ

where εij(u) = 1
2
(ui,j +uj,i), Reynolds number Re and the traction σ̂i are given as known values

or functions.

Applying the concept of the Lagrange multiplier method and the adjoint variable method, this
problem can be rendered as a stationary problem for the Lagrange functional L(u, p, w, q, Λ):

L = E(u − uD, u − uD)

−aV (u,w) − b(u, u, w) − c(w, p) + l(w) − c(u, q) + Λ(aV (u, u) − aV
M) (7)
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Figure 1: 2D numerical analysis model

Figure 2: Identified shape

where Λ is the Lagrange multiplier with respect to the dissipation energy constraint. The
derivative L̇ with respect to domain variation for shape optimization is calculated. Letting this
L̇ = 0, the Kuhn-Tucker conditions with respect to u, p, w, q, Λ are obtained by

aV (u,w′) + b(u, u, w′) + c(w′, p) = l(w′) ∀w′ ∈ W (8)

c(u, q′) = 0 ∀q′ ∈ Q (9)

aV (u′, w) + b(u′, u, w) + b(u, u′, w) + c(u′, q) = 2E(u − uD, u′) + 2ΛaV (u, u′) ∀u′ ∈ W

(10)

c(w, p′) = 0 ∀p′ ∈ Q (11)

Λ ≥ 0, aV (u, u) ≤ aV
M , Λ(aV (u, u) − aV

M) = 0 (12)

that indicate the variational forms of the original state equations for u and p, the variational
forms of the adjoint equations for w and q which we call adjoint equations, respectively. Where
( · )′ is the shape derivative for domain variation of the distributed function fixed in spatial
coordinates. Under the condition satisfying Eqs.(8)- (12), the derivative L̇ agrees with the
linear form < Gν, V > with respect to the velocity function V of domain variation:

L̇|u,p,w,q,Λ =< Gν, V >=
∫

Γ
GνiVi dΓ, (13)

G = − 1

Re
wi,j(ui,j + uj,i) + Λ

1

Re
ui,j(ui,j + uj,i) (14)

where ν is an outward unit normal vector on the boundary.
The coefficient vector function Gν in Eq.(13) has the meaning of a sensitivity function relative
to domain variation and is so-called the shape gradient function. The scalar function G is called
the shape gradient density function. Since the shape gradient function is obtained, the traction
method[Azegami el al.(1995; 1997); Azegami(2000)] can be applied to this shape identification
problem.

Numerical results

We present the results of a numerical analysis for a 2D shape identification problem using the
traction method and the shape gradient derived as described in the above sections.
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We analyzed the 2D problem as one fundamental problem, as shown in Figure 1 The fluid
flows in from left-side sub-boundary Γ0 and flows out from a right-side and 8 lower-side sub-
boundaries Γ1. The sub-domain ΩD to prescribe the flow velocity distribution was set as 8
lower-side sub-domains. The purpose of this analysis is to determine the shape for which the
flow velocity distribution in the 8 lower-side sub-domains becomes as uniform as possible.

In this numerical analysis of the flow field, we used the Hood-Taylor type finite element. That is,
the complete polynomial series of the second-order terms was used to provide the interpolation
functions for u and w, while the linear polynomial series was used to provide the interpolation
functions for p and q. Further, finite elements with six nodes for u and w and three nodes
for p and q were also used. The total numbers of nodes and elements were 3,902 and 1,803,
respectively. For the analyses of the domain variation V , we used the finite element method
with second-order finite elements. The Reynolds number is 100. The dissipation energy is less
than the initial shape measure.

The numerical results for the shape identification are shown in Figures 2, 3 and 4. Figures 2
shows the obtained identified shape. Figure 3 shows the iterative history ratios of the square
error of velocity distribution E(u − uD, u − uD), the dissipation energy, and the volume nor-
malized by their respective initial values. Figure 4 shows the flow velocity distribution in
the 8 lower-side sub-boundaries Γ1 for the target, the initial shape, and the identified shape.
These results confirm that the flow velocity distribution of the identified shape analyzed by
the proposed method approached the target uniform distribution and that the value for the
objective functional became zero. The validity of the present method was confirmed based on
the numerical results obtained for the basic problems described above.

Conclusions

In the present study, we formulated a shape identification problem in which the square error
integral between the actual flow velocity distributions and the prescribed distributions in the
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prescribed sub-domains on viscous flow fields was used as the objective functional. The shape
gradient of the shape identification problem was derived theoretically. The validity of the
proposed method was confirmed based on the results of a 2D numerical analysis. The present
study was supported in part by JSPS KAKENHI Grant Numbers 26420161.

References
[1] Pironneau, O.(1973) On Optimum Profiles in Stokes Flow, J. Fluid Mechanics 59, Part 1, 117-128.

[2] Pironneau, O.(1974) On Optimum Design in Fluid Mechanics, J. Fluid Mechanics 64, Part 1, 97-110.

[3] Pironneau, O.(1984) Optimal Shape Design for Elliptic Systems, Springer-Verlag.

[4] Katamine, E. and Azegami, H.(1995) Domain Optimization Analyses of Flow Fields, Computational
Mechanics’95, S. N. Atluri, G. Yagawa, and T. A. Cruse eds., Springer,Vol. 1, 229-234.

[5] Katamine, E., Azegami, H., Tsubata, T., and Itoh, S.(2005) Solution to Shape Optimization Problems of
Viscous Flow Fields, International Journal of Computational Fluid Dynamics 19, 45-51.

[6] Katamine, E., Nagatomo, Y., and Azegami, H.(2009) Shape optimization of 3D viscous flow fields, Inverse
Problems in Science and Engineering 17, No.1, 105-114.

[7] Katamine, E. and Matsui Y.(2012) Multi-objective shape optimization for drag minimization and lift
maximization in low Reynolds number flows, Theoretical and Applied Mechanics Japan 61, 83-92.

[8] Azegami, H., Shimoda, M., Katamine, E., and Wu, Z. C.(1995) A Domain Optimization Technique for
Elliptic Boundary Value Problems, Computer Aided Optimum Design of Structures IV, Hernandez S. and
Brebbia C.A. eds., Computational Mechanics Publications, 51-58.

[9] Azegami, H., Kaizu, S., Shimoda, M., and Katamine, E.(1997) Irregularity of Shape Optimization Prob-
lems and an Improvement Technique, Computer Aided Optimum Design of Structures V, Hernandez S.
and Brebbia C. A. eds., Computational Mechanics Publications, 309-326.

[10] Azegami, H.(2000) Solution to Boundary Shape Identification Problems in Elliptic Boundary Value Prob-
lems using Shape Derivatives, Inverse Problems in Engineering Mechanics II, Tanaka, M. and Dulikravich,
G. S. eds., Elsevier, 277-284.

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

45



Effectiveness of Load Balancing in a Distributed Web
Caching System

Brandon Plumley, Richard Hurley
Department of Computing and Information Systems

Trent University

Peterborough, ON Canada

bplumley@trentu.ca, rhurley@trentu.ca

Abstract
In this paper, we investigate the effects of load balancing in a distributed Web caching system. Our
investigation is focused specifically on adaptive load sharing: an approach that reacts to the current
state of the system. Load balancing has been shown to improve system performance in other appli-
cations and in this paper, we investigate it in a distributed Web caching environment using both a
unified and partitioned approach. The goal of this work is threefold: (1) to determine the conditions
under which load balancing can be beneficial in a distributed Web caching system, (2) to compare
load balancing in a unified and partitioned Web caching system, and (3) to determine how much
state information is required to achieve any benefit. Discrete-event simulation is used as the tool to
generate results for these different environments.

Keywords: Web Caching, Load balancing, Performance Evaluation, Simulation, Computer Mod-
elling

1. Introduction

Web caching is a technique that is heavily utilized on the Internet and has been shown to be highly
effective in improving network performance by reducing bandwidth and latency [1][2][3]. The
premise of Web caching is to store frequently-accessed pages from an originating server closer to
the clients to reduce bandwidth and workload on the originating server[4]. This can result in a
reduction in the time to deliver a page from the server to the client [5].

One of the more common approaches is to implement multiple Web caches in a distributed system
where additional Web caches are considered peers with each cache being contained within the same
level (similar ”distance” from the client). This arrangement allows the peer caches to be relatively
close to one another. Distributive Web caching allows for better load sharing when compared to
other approaches [6].

Traditionally Web caches hold both large and small pages together, where one large page would
replace multiple small pages or a single large page. This storage model is referred to as Unified
caching. However, partitioned Web caching, where large and small pages are stored in separate
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areas, has been shown in previous work to result in increased performance [7]. This approach
ensures that large pages will not replace many small pages in the cache.

Since there are multiple caches working together in a distributed environment, a key mechanism to
fully harness the potential of the system is load balancing. There have been many load balancing
algorithms proposed in the past that have been applied to diverse applications such as telecommu-
nications, processing process on a computer and network traffic [8][9]. In the last decade there
has been an increase into research for applying load balancing to a distributed Web caching system
[10][11]. In a system without load balancing, requests are typically assigned randomly to the dis-
tributed Web caches. With no direction as to which assignment of requests, the issue that arises is
that one cache could be congested while other caches are underutilized; this uneven utilization can
degrade performance [12].

Typically, there are two common transfer policies used in adaptive load sharing: sender-initiated
and receiver-initiated [13]. A sender-initiated policy attempts to balance the workload in the system
at the point in time when a Web cache receives an incoming request. A threshold value, which is
based on the number of requests in the local queue, is used to determine whether the system needs
to transfer the incoming request to another peer cache. This approach will only transfer newly
arriving requests with them being placed at the end of the selected Web cache queue. A receiver-
initiated policy, on the other hand, attempts to load balance as requests are serviced (not when they
arrive). If the Web cache queue falls below a given threshold, the system attempts to find additional
work from a peer cache with queue length above the given threshold. If such a cache can be found,
a request from its tail will be transferred to the tail of the Web cache that initiated the transfer.
In this paper, we focus on sender-initiated policies but more information on the performance of
receiver-initiated policies can be found in [14].

For this paper, we used a discrete-event simulation model to investigate the performance of load
balancing in a distributed unified and partitioned Web caching system. We present the models and
assumptions for our distributed Web caching systems for both unified and partitioned storage in
Section 2, while in Section 3 the input parameters are discussed. Section 4 presents the simulation
results derived from the models and finally, Section 5 summarizes our findings.

2. Performance Models

Our system model is divided into two parts: a Web reference model and a Web cache model.
By varying the architecture in the Web cache model, we produce two distinct systems: unified
and partitioned. We can simplify our system models since we are concerned with the relative
performance achieved by each load balancing algorithm relative to the distributed Web caching
system without load balancing (i.e. we are not concerned with the absolute performance of the
system).

2.1. Web Reference Model
The pages stored in a Web cache and their request probabilities vary over time. Pages such as news
articles, viral videos, course assignments and memes become popular for periods of time and then
eventually the frequency of access decreases. To represent this behavior, we use a dynamic page
reference model (shown in Figure 1) as described in [15].
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2.1.1. Page Popularity

The request probabilities are shown in Equation (1) and defined by: pi(t), the probability of re-
questing page i at time t is i = 1,2, ...,M, where M is the number of Web pages. From Figure 1,
we can see that there are two states for the probability of requesting a page: normal and popular.
Pages in the popular state have a higher request probability than that of the pages in the normal
state, where v represents the ratio of the rate of requests in the popular to normal state.

Popular

Normal

Normal

1

v

Requests

λ1λ2

Potentially 
Popular 
Pages

Conventional 
Pages

M0

M

1

Figure 1: Dynamic Page Reference Model

The model also assumes that there are two types of pages: conventional (M) and potentially popular
(M0). Conventional pages remain in the normal state while potentially popular pages shift between
the normal and popular sate based on a continuous-time Markov chain. The rate at which a page
transitions from a normal to popular state is λ1 and from popular to normal is λ2 (the time spent
in either state is assumed to be exponentially distributed). We let M0 < M denote the number of
potentially popular pages and thus Mp(t)< M0 represents the total number of pages in the popular
state at time t. The time-dependent request probability for page i is defined as:

pi(t) =

{
v

vMp(t)+(M−Mp(t))
popular state

1
vMp(t)+(M−Mp(t))

normal state
(1)
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2.1.2. Page Size

To simplify our model we assume that a page is either large or small, we assume that a large page is
k times larger than a small page. Small pages have a service time that is assumed to be exponentially
distributed with a mean rate of µ−1, while large pages have a exponentially distributed service time
of kµ−1.

It has been shown that the majority (ninety percent) of Web pages are in the range of 100 bytes to
100 KB, with less than ten percent being greater than 100 KB [16]. As a result, we assume that
the probability of requesting a large page would be 1− s, where s is the probability of requesting
a small page. Since 90% of pages requested are small, we set s to 0.9, which based on previous
observations is reasonable.

2.2. Web Cache Model
Our Web cache model is comprised of a page replacement model, an architectural model, and a
storage mode.

2.2.1. Page Replacement Model

One of the most critical components of a good Web caching system is the page replacement algo-
rithm. The page replacement algorithm is responsible for storing or discarding pages in the Web
cache once it becomes full. Without this component, once the cache is full, no new pages would
be stored and the cache would become stale. Although there are many different page replacement
algorithms, our model uses The Least Recently Used (LRU) [17].

As the name implies, the LRU algorithm selects the least recently used page (determined from the
last accessed timestamp) to be removed from the cache. We have chosen to implement the LRU
since it is one of the most widely-used cache replacement algorithms for Web pages [18]. One of
the main advantages of the LRU is that it is straightforward to incorporate in the system model,
while being highly efficient. Some of the determents to the algorithm are that it excludes certain
state information such as the and latency of a page. However, since we are considering only relative
performance, these effects will be negligible.

2.2.2. Architectural Model

Our work expands on a Web cache model that was first introduced by [19], and is shown in Figure
2. The distributed system contains D peer (or co-operative) caches which are assumed to exist as
the same level. When a Web cache receives a page request, the cache fist checks if there is a copy
currently stored in its own cache and if the page is found, it is returned to the client. However,
if no copy of the requested page can be found at the current Web cache, the request is forwarded
randomly to one of the peer caches. If the page cannot be found at the new Web cache, the request
is again transfered to another peer Web cache, until the page is found. If all D peer caches are
exhausted the request will be forwarded to the originating server, a copy is made at the original
cache and the page is returned to the client.

It is assumed that if the request is satisfied by the first cache in D peer cache, than the processing
time is considered to be T0 (this includes the service time and propagation delay). If the first cache
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can not satisfy the request (a {textitmiss) but can still be satisfied within the D peer cache, then the
service time is assumed to be T1+T0. While exact for D = 2 caches, this value is an approximation
for larger values of D as it would be a factor of the number of cache misses. If the request can
not be satisfied within our distributed Web caching system and therefore must be completed by the
originating server, then the processing time is considered to be T2.

2.2.3. Storage Model

We also investigate two variations of the cache storage model: a unified cache and a partitioned
cache. A unified cache is simply a single cache that treats both large and small pages the same
(they are stored together). If the cache was full and needed to make room for a incoming large
page, the cache would have to discard one large page or k small pages. A partitioned cache on the
other hand treats large and small pages differently. The cache is split into two separate ares: one
for large pages and one for small pages. This approach ensures that large pages will not replace k
small pages and that k small pages will not replace a single large page. It is assumed that the ratio
of space reserved for large pages is (PL).

2.3. Load Balancing Algorithms
Our investigation considers two variants of a sender-initiated load balancing algorithm:

• Short-Sender (SS). Once a threshold value (Θ) is reached, the algorithm looks for the Web
cache with the shortest queue (including itself).
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• Random-Sender (RS). Once a threshold value (Θ) is reached, the algorithm randomly selects
a Web cache (excluding itself).

3. Input Parameters
In order to simplify our investigation, the following model parameters are fixed for all simulations:
M = 1000, M0 = 100, µ = 1, PL = 0.4, T0 = 0.5, T1 = 0.1, T2 = 1, s = 0.9, z = 100 and k = 10. It is
assumed that our system has a finite population of N client workstations, with D peer caches. Each
Web cache is assumed to have a size of C bytes, which is defined to be the percentage of total bytes
available for storage within the entire system, initially we set C to 0.05 [19].

4. Performance Results
The main objective of this investigation is to evaluate the relative performance of our load balancing
algorithms in a distributed Web caching system using both unified and partitioned storage against
the same system without load balancing. That is, the chief concern is whether load balancing will be
effective in a distributed Web caching system. We are not concerned with the absolute performance
of our system but that said, it would be beneficial to also be able to compare the results from the
simluation models with experimental data from an implemented system but at this point in time,
none was available. This is an area underwhich current work is being applied. Our performance
measure of interest in our simulation models is mean response time (the time from when a request
is generated until the web page has been returned to the client). The complexity of the system
and the number of possible parameters is such that an analytic solution is not tractable thus results
are gathered using a discrete event simulation written in C++. For more information on the acutal
simluation program, please see [14].

4.1. Threshold Limit
We begin by examining threshold limit (Θ) for a sender-initiated approach in a unified and parti-
tioned storage environment. We simulate the system under a high system load (ρNU = 0.85) for
D = 2 and 10 peer Web caches (Figures 3 and 4). The results indicate that all four systems (RSU
- Random-Sender-Unified, RSP - Random-Sender-Partitioned, SSU - Short-Sender-Unified, SSP -
Short-Sender-Partitioned) preform at least as well as to that of the distributed Web caching system
without load balancing (NU - No LB-Unified, NP−NoLB−Partitioned). In some cases, response
time is decreased by as much as 60.0%.

One of the more prominent trends is that as we increase Θ, the mean response time also increases:
this is as a result of the fact that less load balancing is occurring up until the point where no pages
are being transfered. However, with the RSU algorithm we observe a small dip: the valley of the dip
tends to be achieved with a threshold value (Θ) just greater than 0 (1 or 2). This can be explained
by the fact that when the threshold is set to 0, the system will transfer the work randomly even if
the local Web cache queue is the shortest. As the threshold is increased, the probability that the
arriving Web cache is the shortest in the system decreases. As the threshold is increased to the point
where the algorithm stops initiating transfers, there appears to be an optimal value that would be
dependent on factors such as system load and number of caches. Going forward, we will be using
a threshold value (Θ) of 3, as this is a reasonable choice given that the optimal value can not be
directly determined.
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Figure 3: The Effect of Threshold (Θ) on the Mean Response Time for Unified and Partitioned
Web Caching: D = 2, ρNU ≈ 0.85

4.2. System Workload
We next examine the effects of system workload for D = 2 and 10 peer Web caches (Figures 5
and 6). We observe that the system is relatively underutilized (workloads less than 20%), there
is little difference between the load balancing algorithms and the respective systems without load
balancing. As the utilization increases, we start to see a dramatic improvement (with respect to
response time) with our load balancing algorithms relative to the systems without load balancing:
this trend becomes more noticeable as the number of peer caches increase. Specifically from Figure
6, the Short (SSU ) algorithm has a decrease in response time of 37.7% over NU (ρNU ≈ 90%),
while RSU has a decrease in mean response time of 30.6% over NU (ρNU ≈ 90%). The Short
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Figure 4: The Effect of Threshold (Θ) on the Mean Response Time for Unified and Partitioned
Web Caching: D = 10, ρNU ≈ 0.85

(SSU ) algorithm seems to outperform the Random (RSU ) algorithm by 7.1% (ρNU ≈ 90%). The
results also indicate that partitioned load balancing systems follow the same trends as their unified
counterparts with partitioning tending to perform better overall.

Additional workload seems to provide more opportunity for the load balancing algorithms to reduce
the mean response time and so we can conclude that the higher the system load, the more potential
the load balancing algorithms have to make a positive impact on the performance of the distributed
Web caching system in both a unified and partitioned storage model.
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Figure 5: The Effect of System Workload on the Mean Response Time for Unified and
Partitioned Web Caching

Θ = 3, D = 2

4.3. Number of Peer Caches
We examine both Web caching systems under a medium (Figure 7) and a high system load (Figure
8). As additional peer Web caches are added, the systems without load balancing (NU , NP) have
mean response times which tend to increase marginally. From Figure 8, the increase in mean
response time from 2 to 10 peer Web caches for the systems without load balancing (NU and NP)
NU is 12.0% and NP respectively. Each additional Web cache added to the distributed Web caching
system tend to increase the probability that one of the Web caches will become overloaded, leading
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Figure 6: The Effect of System Workload on the Mean Response Time for Unified and
Partitioned Web Caching

Θ = 3, D = 10
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Figure 7: The Effect of the Number of Peer Caches (D) on the Mean Response Time for Unified
and Partitioned Web Caching: Θ = 3, ρNU ≈ 0.70

to higher response times.

As additional Web caches are introduced in our load balancing environments, the Short (SSU , SSP)
and Random (RSU , RSP) algorithms tend to lead to a decrease in mean response time. For each
additional cache added to the system, the system is provided with more opportunities to attempt
to balance the workload in the system, leading to a decrease in mean response time. Again from
Figure 8, when D = 10, SSU and RSU have a decrease in mean response time of 57.1% and 44.3%
respectively with regards to the system without load balancing (NU ). The algorithms seem to
follow the same pattern with the Short algorithm outperforming the Random algorithm by 30.0%
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Figure 8: The Effect of the Number of Peer Caches (D) on the Mean Response Time for Unified
and Partitioned Web Caching: Θ = 3, ρNU ≈ 0.85

with respect to response time. However, it is important to note that Short algorithm would incur
more overhead than Random algorithm due to the need to collect queue lengths from peer caches.

Partitioned Web caching system tends to again outperform a unified Web caching system. As we
observe from Figure 8, there is a 52.2% performance difference between SSU and SSP and a 51.3%
performance difference between RSU and RSP when D = 10. From these results, we conclude that a
Web caching system with load balancing tends to scale gracefully relative to a Web caching system
without load balancing as the number of peer Web caches (D) increases.
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4.4. Cache Size
In Figure 9, we investigate the effects of the cache size (C) on the mean response time for our unified
and partitioned Web caching systems. As expected, we observe that there is a dramatic decrease
in the mean response time when the Web cache size is greater than 0. As soon as Web caching is
introduced, there is an immediate performance benefit that can be observed, NU has a performance
increase of 62.9% when C = 5% when compared to when C = 0%. As the Web cache size increases
(C), the mean response time tends to decrease. However, we observe that after the initial dramatic
decrease in mean response time, the system does not see the same large performance benefit as the
cache size continues to increase. The performance improvements over time tends to decrease until
mean response time plateaus. This occurs when the cache size is large enough to store most of the
pages from the originating servers (an unlikely event but does provide a lower bound for the mean
response time). Both algorithms follow the same trend and tend to outperform the systems without
load balancing. For example SSU and SSP have a performance increase of 35.8% over NU and NP,
while RSU and RSP have an increase of 33.7% over NU and NP when C = 100.

We also observe that as we increase the cache size, the partitioned system collapses into a unified
system. With ample cache space, both storage models achieve the same level of performance. We
find that smaller values of cache size (as long as it is greater than 0), tends to benefit partitioned
storage over unified storage(i.e. when C = 5%, the mean response time for NP is 53.7% lower than
that of NU ). It is again important to observe that irrespective of the value of the cache size, load
balancing tends to improve the performance of the system with respect to the mean response time.

5. Conclusion

The results from this study have shown that the load balancing algorithms in a distributed Web
caching system can be effective from a performance standpoint. In fact, any of the algorithms we
examined achieved a level of performance equal to or better than a system without load balanc-
ing. We also determined that both unified and partitioned systems scale well with respect to ad-
ditional peer Web caches, with the performance gains actually increasing as additional caches are
introduced (unlike the system without load balancing (NU ) which degrades with additional Web
caches). The use of the partitioned storage system has also been shown to increase the performance
benefits of the load balancing algorithms in the Web caching environment. Performance benefits
are seen even if a simple algorithm such as Random is incorporated. The benefits tend to increase
with the use of state information (such as that seen with Short versus Random algorithms). In all
of our cases, the use of load balancing in a distributed Web caching system tends to be much more
desirable relative to a Web caching system without load balancing.

The research from this investigation has opened the door to a variety of potential extensions. A nat-
ural extension would be to utilize more state information from the requests; specifically, what page
is being requested. For example, it may be beneficial to transfer a request (or multiple requests) to
a Web cache that contains the requested page so as not to have to retrieve the page from the orig-
inating server. This will result in a cache hit for the local Web cache, thus increasing the hit rate
of the cache at the same time as reducing the mean response time. As well, our system model was
based on a distributed Web caching system, it may be possible to adapt our sender-initiated load
balancing algorithms to a hierarchal Web caching system where caches are assumed to reside at
various levels (i.e.”distances”) from the client (a receiver-initiated would not be appropriate for this
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Figure 9: The Effect of Threshold Cache Size (C) on the Mean Response Time for Unified and
Partitioned Web Caching: Θ = 3, D = 2, ρNU ≈ 0.85

environment). Finally, our system model did not directly model the effects of overhead, such as the
cost of transferring a request or the cost of collecting state information. It would be interesting to
examine the effects of these overhead costs as they would likely impact some of the load balancing
algorithms differently.
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Abstract  A convergence identification method for oscillation numerical simulation is 
proposed, the numerical solutions can converge at the inflection point with respect to the time 
steps. In this way, it is possible to determine which time step is the appropriate convergence 
solutions, it can be ensured to obtain the accurate solution as much as possible, the results of 
the numerical experiments are presented and they confirm analytical predicts. In addition, an 
algorithm to verify the appropriate time step is suggested also, first use one time step to 
compute a case until it reaches a stable periodic solution; then sequentially reducing time step 
to check its convergence. The feasibility of the proposed method is further verified via its 
applications to the case study of the combined natural and MHD convection in a Joule-heated 
cavity using the finite volume methods. It is found that the two approaches have the same 
results and can judge the validity of the time step in computation, this might accurately 
predict the fluid flow and heat transfer.   
 
Keywords : oscillation numerical simulation, time step, convergence, algorithm 
 
Nomenclature 
A             amplitude  
g gravitational acceleration [m/s2] 
Ha Hartmann number 
L enclosure height [m] 
Pr Prandtl number 
Ra Rayleigh number 
T temperature [K]；period 
u x-velocity component [m/s] 
U dimensionless x-velocity component 
v  y-velocity component [m/s] 
V dimensionless y-velocity component 
W enclosure width [m] 
x x coordinate [m] 
X dimensionless x coordinate 
y y coordinate [m] 
Y dimensionless y coordinate 
 
Greek symbols 
θ dimensionless temperature 
σ electrical conductivity [ms/s] 
τ dimensionless time 
φ potential difference [V] 
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1. Introduction 
The most common approach for approximating the derivatives is the finite difference 
methods due to their accuracy, stability, and easy of implementation. Different types and 
orders of finite difference methods are available to model the diffusions and the convection 
derivatives, and this method is widely used in the fluid flow and heat transfer field. The 
improvement in computer capabilities, especially in memory and speed, has made an accurate 
numerical predictions of the complex fluid flow and heat transfer cases.  
However in the scientific computing, there are many sources of uncertainty including the 
model inputs, the form of the model, and poorly characterized numerical approximation 
errors [1]. In fact, all of these sources of uncertainty can give false results. 
Therefore, several lines of researches have been proposed in the literature to solve these 
serious problems. One of them is for the scheme and algorithm, for example, a scheme called 
SGSD (Stability Guaranteed Second Order Difference Scheme) is proposed [2] which is 
absolutely stable and possesses at least second-order accuracy. A new weighted essentially 
non-oscillatory (WENO) procedure for solving hyperbolic conservation laws is proposed on 
uniform meshes [3]. An algorithm called IDEAL algorithm was conducted by Sun et al. [4] 
[5] in the IDEAL algorithm where the inner doubly iterative processes for the pressure 
equation are used to almost completely overcome the two approximations in the SIMPLE 
algorithm. Furthermore , a general method to remove the numerical instability of partial 
differential equations was presented by [6].  
The previous studies on the computation of the discretization equation mainly focused on the 
finite difference method, the issue of consistency still remains several problems far from 
totally solved in the actual numerical computation, most transient simulations consist of a 
considerable number of time steps, therefore, the choice of the time step size is critical for the 
efficiency of the transient simulations. An alternative approach is to focus on the numerical 
solution and computer round-off errors. It is well known that Von-Neumann established that 
discretized algebraic equations must be consistent with the differential equations, and must be 
stable in order to obtain a convergent numerical solutions for the given differential equations. 
Eça and Hoekstra [7] offered a procedure for the estimation of the numerical uncertainty of any 
integral or local flow quantity as a result of a fluid flow computation. Teixeira et al. [8] 
explored the time step sensitivity of non-linear atmospheric models and illustrated how 
solutions with small but different time steps will decoupled from each other after a certain 
finite amount of the simulation time. Li [9] carried out systematic investigations on the 
sensitivity of the numerical solutions of non-linear ordinary differential equations (ODEs). A 
review on the computational uncertainty principle could be seen in Li and Wang [10]. Wang 
et al. [11] developed a high-performance parallel Taylor solver to do the Lorenz equations 
computation.  
Depending on the study and analysis of those representative works mentioned above, the 
present paper finds that most of them are concerned to the Lorenz system, namely the 
ordinary differential equations. We know that the governing equations on the fluid flow and 
heat transfer problems are usually partial differential equations (PDEs). It can be proved 
mathematically that linear differential equations should have unique solutions, the situation is 
more complex for non-linear PDE’s, and ,in some cases the numerical solutions are not 
chaotic but are still spurious and time periodic, making it difficult for the researchers to 
determine if the solution is representative of the true physics of the problem or not? Explicit 
methods have been coupled with spatial variable and time step for a particular problem to 
obtain simulations with a low computational cost, efforts have been made to identify the 
correct time step from the physical viewpoint, the time step size is restricted by stability 
reasons to fulfill the Courant–Friedrichs–Lewy (CFL) condition, while, few attentions on the 
time step with fully implicit scheme which is unconditionally stable in the non-steady 
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computation and few time step with fully implicit scheme validations are studied but on the 
grid independency, meanwhile, there is not a suitable convergence method for the oscillation 
simulation.  
So, this is the motivation of our work, where a suitable convergence method for the 
oscillation simulation and an algorithm were established to overcome previous convergence 
method shortcoming, extensive calculations were performed and examined to a Joule heating 
flow in order to confirm the two independent methods. 
 

2. Convergence method and algorithm 
The rigorous convergent criterion has only been established for the equilibrium solution: the 
difference between two consecutive iterations is less than a predetermined value is considered 
to be convergence, the iteration process convergence to one steady-state solution. This is only 
applicable for the system which has the static values as time approaches to infinity. Therefore, 
it is no appropriate to use convergent criterion aforementioned above in the oscillation 
numerical simulation cases. 
A convergence method in the numerical simulation is addressed here which states that if the 
system is a stable oscillation system, as the time step decreases, the calculated values 
(including velocity and temperature) should be monotonous, theoretical speaking, at the same 
point in the same moment time, the reason is that the even smaller truncation error can be 
achieved because of decreasing time step size for the fixed grid spacing. It is desirable to use 
the smallest time step possible throughout the computation, the difference of the computation 
values with different two time steps at the same space point in the same moment time is less 
than a predetermined value is considered to be the convergence solution. But in practical 
simulation, the computer is finite precision, so as the time step decreases more, the round-off 
error is primary. Consequently, the smallest time step cannot be viewed as the solution 
approached to the correct one, the solution properties at the same point in the same moment 
time as the time step is refined is non-monotonic. Therefore, the numerical solutions can 
converge at the inflection point with respect to the time step, in this way, it is possible to 
determine which time step is the appropriate convergence solutions, and it can be ensured to 
obtain the accurate solution as much as possible. This is the convergence concept for the 
stable oscillation case. 
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Figure 1 flow chart of time step identification 
 

A practical algorithm of judging the accuracy of the above analysis for oscillations results is 
suggested below (see Figure 1 for more details), first we use one time step to compute a case 
until it reaches a stable periodic solution; then sequentially reducing time step to check its 
convergence, for example, the time step equals to 610−=∆τ :  
Step 1 From 10 ττ ≤< , choose of 1τ  is large enough for the computational result reached a 
periodic motion whose period is T1 and the amplitude is A1. The purpose of this period is to 
lock the numerical solution into a special mode, we hope that the truncation error is sufficient 
to alter the initial condition and leads to a special solution among many possibility. 
Step 2 Continue the computation from 21 τττ ≤<  with 2/10 6−=∆τ . 2τ  is large enough 
for the computational results to reach another periodic solution, its period is T2, and the 
amplitude is A2. If  (T2=T1), and A2 is close to A1, then the solution may have some 
meaning. 
Step 3 Continue the computation from 32 τττ ≤< with 4/10 6−=∆τ . If (T3 = T2) and 
A3-A2 is smaller than A2-A1, then the results have chance to converge. Then , return to the 
other time step, repeat the above steps until time step corresponding the convergence of the 

Y 

N 

Y 

Y 

Continue the computation from τ1＜τ≤τ2  with Δτ=10-6/2  
τ2 large enough to reach another periodic solution 
T2：period  A2：amplitude 

 

Continue the computation from τ2＜τ≤τg  with Δτ=10-6/4 
T3：period  A3：amplitude 

 

divergence  
Reject time step 

and solution 
| T1-T2|→0 
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Reject time step 
and solution 
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Convergence (correct time step and solution) 

0＜τ＜τ1τ1large enough to reach periodic motion with Δτ=10-6  
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solution is reached. The alternative convergence method and choosing the correct time step 
size algorithm for the solution of the oscillation numerical simulation are more accurate than 
the previous convergent method, and this is more general approach. In the next section, the 
method presented above will be validated and analyzed by the numerical simulation test. 
 
3. Numerical experiments  
In the previous section, the convergence approach and algorithm of indentifying adequate 
time step were discussed. In this section, we investigate the convergence approach using an 
example of case study.  
 
3.1 Physical model and the problem formulation 
The problem under consideration is the combined natural and MHD convection, as 
demonstrated in Zhang [12], the system considered is shown in Figure 2. The fluid contained 
in the rectangular pool is heated by a pair of vertical electrodes, which are assumed to be 
isopotential surfaces with an externally applied potential difference of ϕ0 across them. The 
bottom boundary is assumed to be electrically insulated. In the present study, low frequency 
alternating current sources are considered for Joule heating. All the boundaries of the cavity 
are solid–fluid interfaces, which can be treated as no-slip and no-penetration boundaries. The 
upper boundary of the liquid cavity is an isothermal surface at T = T0, while the rest of the 
boundaries are assumed to be thermally insulated. The aspect ratio of the pool is set to be 
W:L=2:1. 
 

 
Figure 2 Schematic of the system under consideration 

 
In the present model, flow is simulated as a two dimensional phenomenon with the following 
assumptions or simplifications: a) the fluid is Newtonian, incompressible and the flow is 
laminar; b) the effect of temperature on fluid density is expressed adequately by the 
Boussinesq approximation; c) the local electrical conductivity is independent of the thermal 
field. 
The governing equations presented in Zhang [12] will not be repeated here just for the brevity.  
In order to guarantee both the numerical stability and solution accuracy, the SGSD scheme [2] 
is employed for the discretization of the convection terms, which is absolutely stable and 
adaptive. The SGSD scheme can automatically choose a different difference scheme 
according to the available local field information in difference space or time. The diffusion 
terms are discretized by the central difference scheme. The IDEAL [4] [5] algorithm is 
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adopted which exists inner doubly iterative processes for the pressure equation. The coupling 
between the velocity and pressure is fully guaranteed, greatly enhancing the convergence rate 
and the stability of the iteration process. While dealing with the time-dependent physics 
problem for the un-steady state governing equations. It has been theoretical analyzed that the 
fully implicit scheme is unconditionally stable for SGSD scheme in un-steady convection 
diffusion equation, it is not repeated here for simplicity. 
 It must be noted that, the Rayleigh number and the Hartman number which are investigated 
here are smaller than the critical Rayleigh number and the critical Hartman number 
respectively. The zero initial conditions are set for velocity and temperature fields. 
Grid sensitivity analysis is performed and the accuracy of the numerical procedure is further 
validated by comparing predicted results with the solutions obtained by Sugilal [13] on the 
same test case, the present procedure adequately predicts the flow and heat transfer inside the 
system considered. 
 

3.2 Numerical Results  
The main goal of the present study is not only to obtain the accurate solution but also to 
investigate its stability. The computational efficiency (low demand on CPU time) of the 
present study is not considered here. 
 
3.2.1 Time step validation for Pr=1 ,Ra=15000 and Ha=0 
We perform the numerical simulations for four values of the time step ( Δτ ) ranging from 
Δτ=10-3 to Δτ=10-6, while keeping the other relevant parameters fixed ( i.e., Ra =15000, Pr 
=1 and Ha =0) . This approach is aimed to evaluate the sensitivity of the time step. All the 
computations start from a zero field initialization and are stopped at τ = 4. Throughout the 
simulations, the time histories of the dimensionless temperature and velocity components are 
recorded at a monitoring point (X,Y) = (0.25,0.483) inside of the cavity. All the simulation 
results exhibit a common behavior as depicted in Fig. 3, where the dimensionless temperature 
reaches a steady state of the solution as the time increases, and it has a similar behavior for 
the velocity components. The solution for a particular time step is considered converged 
when the iteration makes no change to the solution in any of the variables U, V or θ. This 
convergence method is not necessarily the best, but it is a commonly used. 
  

 
Fig. 3 Evolution of U-velocity (left) and temperature (right) in monitoring point 

(X,Y=0.25,0.483) of the cavity for Δτ=0.0001 
 
The only difference in Table 1 is the momentum residual ,we find that as the Δτ decrease 
from 0.001 to 0.0001, the momentum residual decreases. While when Δτ decreases more the 
momentum residual  increases, this can be explained that the truncation error is smaller 
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when Δτ decreases，while when Δτ decreases more the round-off error is bigger and the more 
accurate time step is 10-4.   

 
Table 1. Residuals , dimensionless temperature at τ = 4 at a monitoring point (X,Y) = 

(0.25,0.483)   
 

Case Time 
step 

Mass   
residual 

              
Momentum  Residual 

a 0.001 1.2822E-09 1.7986E-02 8.5379E-03 
b 0.0001 3.3605E-13 4.6960E-06 2.9421E-06 
c 0.00001 2.6585E-13 2.2607E-05 1.5130E-05 
d 0.000001 3.3216E-13 4.2578E-04 2.6565E-04 

 

3.2.2 Time step validation for Pr=0.01, Ra =15000 and Ha=0 
We perform the numerical simulations for four values of the time step ( Δτ ) ranging from 
Δτ= 10-4 to Δτ=10-7, while keeping the other relevant parameters fixed  ( i.e., Ra =15000, Pr 
=1 and Ha =0) .  All the computations start from a zero-field initialization and are stopped at 
τ=1. Throughout the simulations, the time histories of the dimensionless temperature and 
velocity components are recorded at a monitoring point (X,Y) = (0.25,0.483) as shown in 
Fig.4. 
 
 

 
Fig. 4 Evolution of U-velocity (left) and temperature ( right ) in a monitoring point (X, Y) 

=( 0.25 ,0.483) of the cavity for Δτ=0.0001 
 
The time history of the dimensionless temperature(θ) and the time history of the 
dimensionless x-velocity component (U) exhibit a common behavior in different time steps 
for all the cases examined. It is worthwhile to note that the sensitivity to the initial conditions 
associated with a set of non-linear differential equations is a reflection of a characteristic of a 
non-linear physical system, to pursue this property more fully. It can be verified by a 
non-zero field in procedure at τ=0 whose components take random values from -1 to 1 
generated by the computer. The results keep the same as those of zero initial conditions. It 
should be noted that the computation for Rayleigh number (Ra=15000) is less than the 
critical Rayleight number, verifies the system is to make stable oscillation. 
The question is which time step corresponds to the accurate solution and how to identify the 
convergence, while the method of considering convergence when the monitoring value makes 
a small change cannot be applied in this case, as the θ and U are oscillated with the time. 
These results suggest that there is no apparent convergence of comparing the numerical 
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values during the iterations. It can be verified with proposed method in section 2 by the 
numerical simulation results below. Fig.5 shows that the V-velocity and temperature are 
monotonically decrease as the time step decreases. The truncation errors become the primary, 
on the contrary when Δτ is 10-6, as the time step decreases, the V-velocity monotonically 
increases. This is because the round-off errors become the primary errors. In order to get 
more accurate results, the correct time step should be 10-6, where in this case the residuals are 
relatively smaller (see Table. 2), so the more accurate solutions can be obtained. From the 
experiment we validate the convergence analysis method.  
 

 
Table 2.  Comparisons of the mass and momentum residuals 

 
Case Time step   Mass residual Momentum residual 
A 0.0001 6.4119E-04 1.0649E-02 1.8723E-02 
B 0.00001 8.6406E-05 6.9381E-03 9.3104E-03 
C 0.000001 2.5270E-06 2.1513E-02 2.0302E-02 
D 0.0000001 2.3201E-08 7.4870E-03 9.3305E-03 

 

    
Fig. 5. Comparison of V-velocity and temperature calculated by different time steps at 

the same moment time (τ=1) in a monitoring point (X,Y=0.25,0.483) of the cavity 
 
A practical algorithm of judging the accuracy for oscillations results in section 2 is 
implemented, the experiment results for different time steps are listed in Table 3 which 
confirm our analysis, and the correct time step should be 10-6. 
 

Table 3. Periods and amplitudes of periodic oscillation for each Δτ 
time step/ 

 Δτ 
periods of the periodic 

oscillations/T 
amplitudes of the 

periodic oscillations/A 
10-4 0.00765 0.0179 

10-4/2 0.00487 0.01424 
10-4/4 0.003437 0.010512 
10-5 0.002563 0.00823 

10-5/2 0.002287 0.00728 
10-6 0.002055 0.008 

10-6/2 0.002007 0.0081 
10-6/4 0.002114 0.00814 

 

3.2.3 Time step validation for Ha = 7000 and Ra = 0  
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The numerical simulations for four values of the time step are performed where , Δτ, ranging 
from Δτ = 10-4 to Δτ=10-7, while keeping the other relevant parameters fixed ( i.e., Ha = 7000, 
Pr =0.01 and Ra =0) .All the computations start from a zero-field initialization and are 
stopped at τ=0.2. Throughout the simulations, the time histories of the dimensionless 
temperature and velocity components are recorded at a monitoring point (X,Y)=(0.25,0.483) 
as shown in Fig. 6. The computed U results at a monitoring point (X=0.25,Y=0.483) take the 
oscillation in the average of 400 , 460 and 100 for the three different time steps respectively. 
It can be seen that, the solutions are apparently quite close to each other for the different time 
steps except Δτ=0.0000001. 
 

 
Fig. 6.Evolution of U-velocity (left) and temperature ( right ) in a monitoring point 

(X,Y=0.25,0.483) of the cavity for Δτ=0.00001 
 
The non- zero field in procedure at τ = 0 whose components take random values from -1 to 1 
which are generated by the computer is implemented, where the results keep the same as 
those of the zero initial condition. This verifies the system is not non-linear at present 
computation conditions. It can be seen  from Fig. 7 , that the moment time records increase 
monotonically with decreasing time step to Δτ =10-6, then it decreases with decreasing time 
step furthermore. The optimal time step should be 10-6, and the residuals are relatively small 
one (Table 4) in this case. Similarly, the method stated in section 2 for the selection time step 
is utilized again with sequentially reducing Δτ by factor two and comparison of the results. It 
can be got clearly that the correct time step should be 10-6.  
 

Table 4.  Comparisons of the mass and momentum residuals 
Case Time step   Mass residual Momentum residual 
A 0.0001 1.0177E-03 1.9489E-02 1.1435E-02 
B 0.00001 1.1858E-04 5.5880E-03 3.5529E-03 
C 0.000001 2.2849E-06 4.1785E-03 4.8898E-03 
D 0.0000001 3.2633E-08 4.1209E-03 4.6373E-03 
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Fig. 7. Comparison of V-velocity and temperature calculated by different time steps at 

the same moment time (τ=0.2) in a monitoring point (X,Y=0.25,0.483) of the cavity 
 

3.2.4 Time step validation for Pr = 0.01, Ha=7000 and Ra=15000 
The time-periodic solutions are predicted shown in Fig. 8 which reports the time dependent 
behavior of the dimensionless velocity and temperature at the monitoring point 
(X,Y=0.25,0.483) of the cavity. Fig.9 shows that the oscillations start at τ～0.08 and the 
computed U at a monitoring point takes the oscillatory center value of 230. 
 

 
Fig. 8.Evolution of U-velocity (left) and temperature ( right ) in a monitoring point 

(X,Y=0.25,0.483) of the cavity   for τ∆ =0.00001 
 
We find that the results are different in different time steps as shown in Table 5. For cases A 
and B, the time step width is of the order of 10-3 and 10-4, residuals for momentum equation 
and mass equation are of the order of 10-4. The time step width is of the order of 10-5 for case 
C, and the residuals are of the order of 10-5.For cases D and E, the considered smaller time 
steps are, 10-6and 10-7 respectively, the residuals of the order of 10-2.Such small time step 
width gives much larger residuals, the different truncation errors associated with different 
time-steps, in effect, lead to a series of residuals. A non-zero field in procedure at τ=0 whose 
components take random values from -1 to 1 which are generated by the computer is 
implemented and the experiment results are the same as the zero initial condition. Therefore, 
this confirms the system is not a non-linear system. 
 The convergence of the solution properties as the time step refined is no monotonically at the 
same zero initial condition, this can be seen from Fig. 9, where the moment time records 
increase monotonically with decreasing time step to τ∆  =10-5, then it decreases with 
decreasing time step. The correct time step should be 10-5. In this case the residuals (see Table 
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5) are the smallest one, accuracy of the solution can be obtained, and the total errors keep in 
an admissible bound. Consequently, we can also check these time steps as the step stated in 
section 2 by sequentially reducing (Δτ) by factor two. It is found that the results obtained are 
in excellent agreement with the analytical numerical results, and it is confirmed that the 
optimal time step should be 10-5 . 

 
TABLE 5.  Comparisons of the mass and momentum residuals 

 
Case Time step   Mass residual Momentum residual 
A 0.001 2.9206E-4 4.7253E-4 7.6886E-4 
B 0.0001 3.1185E-5 1.6895E-4 1.5762E-4 
C 0.00001 2.5432E-6 7.2870E-5 5.7573E-5 
D 0.0000001 2.4611E-6 1.8177E-2 1.4063E-2 
E 0.00000001 3.6968E-8 2.9424E-2 2.0477E-2 

 

  
Fig. 9. Comparison of  V-velocity (left) and temperature ( right ) calculated by 

different time steps at the same  moment time (Δτ=0.4) in a monitoring point (X, 
Y=0.25,0.483) of the cavity 

 
4. Conclusions 
The convergence method in the numerical simulation provided that the system is stable 
oscillation is present in the present paper , where the solution properties at the same point in 
the same moment time with refined time steps are non-monotonic for the stable oscillation 
model. So, the numerical solutions can converge at the inflection point with respect to the 
time step, therefore in this way it is possible to determine which time step is the appropriate 
convergence solution. In order to obtain the accurate solution as much as possible, the results 
of the numerical experiments are presented and they confirm our theoretical predictions. 
Therefore, an algorithm to verify the appropriate time step is suggested. First use one time 
step to compute a case until it reaches a stable periodic solution; then sequentially reducing 
time step to check its convergence. The numerical accuracy of the proposed method has also 
been demonstrated via its application to more complex two-dimensional Joule heating flow 
problem. The feasibility of the proposed method is further verified. It is found that the results 
obtained in all the test cases with the suggested algorithm are in excellent agreement with the 
analytical as well as the established numerical results, underlining the high validity of the 
method. The new methods are somewhat more complex and the accuracy of the results is 
greatly improved. Meanwhile, the proposed methods are considered universal and can be 
applied to other unsteady computation engineering calculations.  
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Abstract.

We investigate the convective heat and mass transfer in magnetohydrodynamic a nanofluid through a
porous medium over a stretching sheet subject to a magnetic field, heat generation, thermal radiation,
viscous dissipation and chemical reaction effects. The effects of porosity, heat generation, thermal
radiation, magnetic field, viscous dissipation and chemical reaction to the flow field are thoroughly
explained for various values of the governing parameters. We have further assumed that the nanoparti-
cle volume fraction at the wall may be actively controlled. Two types of nanofluids, namely Cu-water
and Al2O3-water are studied. The physical problem is modeled using systems of nonlinear differential
equations which have been solved numerically using the spectral relaxation method. Comparing the
results with those previously published results in the literature shows excellent agreement.

Keywords: MHD Nanofluids flow; Porous media; Thermal radiation; Spectral relaxation method.

Introduction

Nanofluids are suspensions of metallic, non-metallic or polymeric nano-sized powders in a base liquid which are employed
to increase the heat transfer rate in various applications. In recent years, the concept of nanofluid has been proposed as a
route for increasing the performance of heat transfer liquids. Due to the increasing importance of nanofluids, there is an
enormous amount of literature on convective transport of nanofluids and problems linked to a stretching surface. Today
nanofluid are sought to have more range of applications in power generation in nuclear reactors, medical application,
biomedical industry, detergency, and more specifically in any heat removal involved industrial applications. The ongoing
work ever since then has extended to utilization of nanofluids in microelectronics, fuel cells, pharmaceutical processes,
vehicle thermal management, domestic refrigerator, chillers, heat exchanger, nuclear reactor coolant, grinding, machining,
space technology, defence and ships, and boiler flue gas temperature reduction. The majority of the previous studies have
been restricted to boundary layer flow and heat transfer in nanofluids. Following the early work by Crane [1], Khan
and Pop [2] were the first to work on nanofluid flow due to stretching sheet. A mathematical analysis of momentum
and heat transfer characteristics of the boundary layer flow of an incompressible and electrically conducting viscoelastic
fluid over a linear stretching sheet was carried out by Abd El-Aziz [3]. In addition, radiation effects on the viscous flow
of a nanofluid and heat transfer over a nonlinearly stretching sheet were studied by Hady et al. [4]. Theoretical studies
include, for example, modelling unsteady boundary layer flow of a nanofluid over a permeable stretching/shrinking sheet
by Bachok et al. [5]. Rohni et al. [6] developed a numerical solution for the unsteady flow over a continuously shrinking
surface with wall mass suction using the nanofluid model proposed by Buongiorno [7]. The effect of an applied magnetic
field on nanofluids has substantial applications in chemistry, physics and engineering. These include cooling of continuous
filaments, in the process of drawing, annealing and thinning of copper wire. Drawing such strips through an electrically
conducting fluid subject to a magnetic field can control the rate of cooling and stretching, thereby furthering the desired
characteristics of the final product. In other work, Jafar et al. [8] studied the effects of magnetohydrodynamic(MHD) flow
and heat transfer due to a stretching/shrinking sheet with an external magnetic field, viscous dissipation and joule effects.
Murthy and Singh [9] studied viscous dissipation on non-Darcy natural convection regime in porous media saturated
with Newtonian fluid. In the past few years, convective heat and mass transfer in nanofluids has become a topic of
major contemporary interest. In this paper we examine the study analyzed of magneto-hydrodynamics (MHD), heat and
mass transfer in nanofluid flow over a stretching sheet subject to Porous media, hydromagnetic, heat generation, thermal
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radiation, viscous dissipation, chemical re- action and Soret effects. The spectral relaxation method (SRM ) was proposed
by Motsa [10]. It is used to solve the governing partial differential equations numerically. This spectral relaxation method
has been successfully applied to other problems of fluid mechanics and heat transfer. In this paper we discuss the fluid
flow and heat transfer as well as highlight the strengths of the solution method.

Governing Equations

Consider the two-dimensional steady boundary layer flow of an incompressible heat and mass transfer nanofluid past a
stretching sheet. The origin of the system is located at the slit from which the sheet is drawn. In this coordinate frame
the x-axis is taken along the direction of the continuous stretching surface. The y-axis is measured normal to the surface
of the sheet. It is assumed that the induced magnetic field is negligible in comparison to the applied magnetic field. It is
assumed that the induced magnetic field, the external electric field and the electric field due to the polarization of charges
are negligible in comparison to the applied magnetic field. In addition to these, the effects of chemical heating, agglomer-
ation and sedimentation of nanoparticles are not included in the work.
The fluid is a water based nanofluid containing two different types of nanoparticles; Copper (Cu) and Alumina (Al2O3)
nanoparticles. It is assumed that the base fluid and the nanoparticles are in thermal equilibrium and no slip occurs between
them. The thermophysical properties of the nanofluid are given in Table 1.
With the above assumptions, the governing boundary layer equations of the nanofluid flow, the continuity, momentum, en-
ergy and the concentration fields with diffusion with radiation, heat generation, viscous dissipation and chemical reaction
effects can be written in dimensional form as proposed by Tiwari and Das [11]

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

=
µn f

ρn f

∂2u
∂y2 −

µn f

ρn f

1
K

+
σB2

0

ρn f

 u, (2)

u
∂T
∂x

+ v
∂T
∂y

= αn f
∂2T
∂y2 +

Q
(ρcp)n f

(T − T∞) +
1

(ρcp)n f

16σ∗T 3
∞

3K∗
∂2T
∂2y

+
µn f

((ρcp)n f

(
∂u
∂y

)2

, (3)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT

T∞

∂2T
∂y2 − K0(C −C∞), (4)

Here qr is the radiation heat flux given by

qr = −
4σ∗

3K∗
∂T 4

∂y
(5)

where σ∗ is the Stefen-Boltzmann constant and K∗ is the Rosseland mean absorption coefficient. The temperature vari-
ation T 4 is expanded in a Taylor series expansion form. Neglecting higher order terms and expanding T 4 about T∞ we
obtain,T 4 � 4T 3

∞T −3T 4
∞. where u and v are the fluid velocity and normal velocity components along x− and y−directions,

respectively, µn f , ρn f , αn f are the effective dynamic viscosity of the nanofluid, nanofluid density and the thermal diffusivity
of the nanofluid respectively. The boundary conditions for equations (1) - (4) are as follows

u = ax, v = 0, T = Tw(x) = T∞ + H
(

x
ω

)2
,

C = Cw(x) = C∞ + Q
(

x
ω

)2
at y = 0,

u→ 0, T → T∞, C → C∞ as y→ ∞, (6)

where Q, H and a are constants, a > 0 and ω is the characteristic length. The effective dynamic viscosity of the nanofluid
was given by Brinkman [14] as

µn f =
µ f

(1 − φ)2.5 , (7)

where φ and µ f are the solid volume fraction of nanoparticles and the dynamic viscosity of the base fluid. In equations (1)
to (4) the heat capacitance of the nanofluid and the thermal conductivity of nanofluids restricted to spherical nanoparticles
is approximated by the Maxwell-Garnett model (see Maxwell Garnett [15]).

(ρcp)n f = (1 − φ)(ρcp) f + φ(ρcp)s,

ρn f = (1 − φ)ρ f + φρs, νn f =
µn f

ρn f
,

αn f =
kn f

(ρcp)n f
, kn f = k f

[
(ks+k f )−2φ(k f−ks)
(ks+k f )+φ(k f−ks)

]
, (8)
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where νn f , ρn f , (ρcp)n f , kn f , k f , ks, ρs, (ρcp) f , (ρcp)s are the nanofluid kinematic viscosity, the electrical conductivity, the
nanofluid heat capacitance, thermal conductivity of the nanofluid, thermal conductivity of the fluid, the thermal conduc-
tivity of the solid fractions, the density of the solid fractions, the heat capacity of base fluid, the effective heat capacity of
nanoparticles, respectively, (see Abu-Nada [16] and Kameswaran et al. [18]).
The continuity equation (1) is satisfied by introducing a stream function ψ(x, y) such that

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (9)

Introducing the following non-dimensional variables,

ψ =
[
aν f

] 1
2 x f (η), u = ax f ′(η), v = −

(
aν f

)
f (η), (10)

θ(η) =
T − T∞
Tw − T∞

, ϕ(η) =
C −C∞

Cw −C∞
, η =

[
a
ν f

] 1
2

y (11)

where η, is the similarity variable, f (η) is the dimensionless stream function, θ(η) is the dimensionless temperature and
ϕ(η) is the dimensionless concentration. By using (7), (8) and (11) the governing equations (2), (4) and (3) along with the
boundary conditions (6) are reduced to the following two-point boundary value problem:

f ′′′ + φ1

[
f f ′′ − f ′2 −

1
φ2

M f ′
]
− K1 f ′ = 0, (12)

(
1 +

4R
3

)
θ′′ + Pr

k f

kn f
φ3

[
f θ′ − 2 f ′θ + δθ +

Ec

φ4
f ′′2

]
= 0, (13)

ϕ′′ + S c
(
fϕ′ − 2 f ′ϕ + γϕ

)
+ S rθ′′ = 0, (14)

subject to the boundary conditions

f (0) = 0, f ′(0) = 1, θ(0) = 1, ϕ(0) = 1, η = 0, (15)

f ′(∞)→ 0, θ(∞)→ 0, ϕ(∞)→ 0, η→ ∞, (16)

Where primes denote differentiation with respect to η, α f = k f /(ρcp) f and ν f = µ f /ρ f are the thermal diffusivity and
kinetic viscosity of the base fluid, respectively. Other non-dimensional parameters appearing in equations (12) to (14) are
M, K1, R, Pr, δ, Ec, S c, γ and S r denote the magnetic parameter, porous medium parameter, thermal radiation parameter,
Prandtl number, heat generation parameter, Eckert number, Schmidt number, scaled chemical reaction parameter and
Soret number. These parameters are defined mathematically as

M =
σB2

0

aρ f
,K1 =

ν f

ak
,R =

4σ∗T 3
∞

k∗kn f
, S c =

ν f

D
, (17)

Pr =
ν f (ρcp) f

k f
, δ =

Q
a(ρcp)n f

, γ =
K0

a
, (18)

Ec =
u2

w

(Tw − T∞)(cp) f
, S r =

D1(Tw − T∞)
D(Cw −C∞)

. (19)

The nanoparticle volume fraction φ1 and φ2 are defined as

φ1 = (1 − φ)2.5
[
1 − φ + φ

(
ρs

ρ f

)]
, φ2 = 1 − φ + φ

(ρs)
(ρ f )

,

φ3 = 1 − φ + φ
(ρcp)s

(ρcp) f
, φ4 = (1 − φ)2.5

[
1 − φ + φ

(ρcp)s

(ρcp) f

]
. (20)

Skin friction, heat and mass transfer coefficients

The quantities of engineering interest are the skin friction coefficient C f , the local Nusselt number Nux and the local
Sherwood number S hx characterize the surface drag, wall heat and mass transfer rates respectively. The shearing stress at
the surface of the wall τw is defined as

τw = −µn f

(
∂u
∂y

)
y=0

= −
1

(1 − φ)2.5 ρ f

√
ν f a3 x f ′′(0), (21)
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where µn f is the coefficient of viscosity. The skin friction coefficient is obtained as

C f x =
2τw

ρ f U2
w
, (22)

and using equation (21) in (22) we obtained

1
2

(1 − φ)2.5 C f x = − Re−
1
2

x f ′′(0). (23)

The heat transfer rate at the surface flux at the wall is defined as

qw = −kn f

(
∂T
∂y

)
y=0

= −kn f
(Tw − T∞)

x

√
Uwx
ν f

θ′(0), (24)

where kn f is the thermal conductivity of the nanofluid. The local Nusselt number is defined as

Nux =
xqw

k f (Tw − T∞)
. (25)

Using equation (24) in equation (25), the dimensionless wall heat transfer rate is obtained as(
k f

kn f

)
Nux = − Re

1
2
x θ
′(0). (26)

The mass flux at the wall surface is defined as

qm = −D
(
∂C
∂y

)
y=0

= −DQ
( x
ω

)2 √
a
ν f

ϕ′(0), (27)

and the local Sherwood number is obtained as

S hx =
xqm

D (Cw −C∞)
. (28)

The dimensionless wall mass transfer rate is obtained as

S hx = − Re
1
2
x ϕ
′(0), (29)

where Rex represents the local Reynolds number and is defined as

Rex =
xuw

ν f
. (30)

Method of Solution

The equations (12) to (14) are highly non-linear, it is difficult to find the closed form solutions. Thus, the solutions of
these equations with the boundary conditions 15 and 16 were solved numerically using the SRM, Motsa [10].
The SRM is an iterative procedure that employs the Gauss-Seidel type of relaxation approach to linearise and decouple
the system of differential equations. The linear terms in each equation is evaluated at the current iteration level (denoted
by r + 1) and non-linear terms are assumed to be known from the previous iteration level (denoted by r). The linearised
form of (12) to (14) is

f ′′′r+1 + a1,r f ′′r+1 − a2,r f ′r+1 = R1,r, (31)

(1 + 4R
3 )θ′′r+1 + b1,rθ

′
r+1 + b2,rθr+1 = R2,r, , (32)

ϕ′′r+1 + c1,rϕ
′
r+1 + c2,rϕr+1 = R3,r, (33)

Results and Discussion

The nonlinear boundary value problem 12 to 14 subject to the boundary conditions 15 and 16 connot be solved in closed
form, so these equations are solved numerically using the spectral relaxation method (SRM) for Cu-water and Al2O3-water
nanofluids with water as the base fluid (i.e. with a constant Prandtl number Pr = 6.7850). The thermophysical properties
of the nanofluids used in the numerical simulations are given in Table 1. Extensive calculations have been performed to
obtain the velocity, temperature, concentration profiles as well as skin friction, local Nusselt number and local Sherwood
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number for various values of physical parameters such as φ, M, K1, R, Pr, S c, δ, Ec, γ and S r. To determine the accuracy
of our numerical results, the skin friction and the heat transfer coefficient are compared with the published results of
Hamad [17], Kameswaran et al. [18] and Grubka and Bobba [19]in Tables 2 and 3. Here we have varied the M with φ
while keeping other physical parameters fixed for Cu-water and Al2O3-water in Table 2. It is observed that increasing
the values of M results in an increase in the skin friction coefficient. The calculated values show good agreements with
Hamad [17] and Kameswaran et al. [18].

In Table 3 gives a comparison of the values of wall temperature gradient −θ′(0) results with those obtained by Kameswaran
et al. [18] and Grubka and Bobba [19] when M = Ec = K1 = δ = R = φ = 0, S c = 1, S r = 0.2 and γ = 0.08 for different
values of Prandtl number Pr. As it is shown in the table thewall temperature gradient −θ′(0) increases with an increase
of Prandtl number. This is fact because the definition of Prandtl number is the ratio of kinematic viscosity to thermal
diffusivity. An increase in the values of Prandtl number implies that momentum diffusivity dominates thermal diffusivity.
Hence, the rate of heat transfer at the surface increases with increasing values of Pr. It is observed that the present results
are in good agreement with results in the literature by Kameswaran et al. [18] and Grubka and Bobba [19]. In Table 4
approximate solutions of the skin friction coefficient, surface heat transfer and the surface mass transfer rates at different
values of flow parameters are presented. All SRM results were generated using L = 30, Nx = 60 and Nt = 1000, these
values were found to give accurate solutions after a numerical experimentation. The L and Nt in the tables represent the
maximum Lth and Ntth iteration required to produce converging results. It is observed that increasing the values of S r
increase Sherwood numbers in case of Cu-water but the opposite trend is observed with Al2O3-water. Also increasing the
values of S c increase the Sherwood numbers for both cases of nanofluids while increasing in heat generation parameter δ
is tend to decrease the heat transfer rate for both nanofluids. The table also shows that surface mass transfer rates increase
with increasing in the values of the chemical reaction parameter γ as can be seen from the table.

The effects of physical parameters on various fluid dynamic quantities are show in Figures 1 - 13. Figures 1 - 4 illustrate
the effect of the nanoparticle volume fraction φ on the velocity, temperature and concentration profiles, respectively, in
the case of a Cu-water nanofluid and Al2O3-water nanofluid. It is clear that as the nanoparticle volume fraction increases,
the Cu-water nanofluid velocity decreases while the Al2O3-water nanofluid velocity increases. As it is shown in Figure
1 while the temperature profile increases with increase in the values of nanoparticle volume fraction this is clear from
Figure 2. increasing the volume fraction of nanoparticles increases the thermal conductivity of nanofluid and in turn
results a thickening of the thermal boundary layer. It is also observed that the temperature distribution in a Cu-water
nanofluid is higher than that of Al2O3-water nanofluid; this is an anticipated results because Cu-water is good conductor
of heat and electricity. The Al2O3-water nanofluid concentration profile decreases as the nanoparticle volume fraction
increases but reveres it true to that of Cu-water nanofluid as shown in Figure 3.

Figure 4 shows the effect of the porous medium parameter K1 on the velocity in case of a cu-water and Al2O3-water
nanofluids. increasing the porous medium parameter K1 decreases the velocity profiles of both nanofluids. We observed
from the Figure, the velocity profile of Al2O3-water nanofluid is higher than that of Cu-water nanofluid. Figures 5 and 6
show the effect of porous medium parameter K1 on the temperature and solutal concentration profiles respectively, in the
case of Cu-water and Al2O3-water nanofluids. It is clear that as the porous medium parameter K1 increases the tempera-
ture and solutal concentration profiles increase.It is observed that the temperature and concentration profiles increment of
Al2O3-water nanofluid is less than that of Cu-water nanofluid. Figure 7 illustrates the influence of heat generation param-
eter δ on the temperature profile in the case of Cu-water and Al2O3-water nanofluids. We observed that the temperature
profile increases for both cases of nanofluids with increasing in the values of heat generation parameter δ. It found that
the temperature in case of Cu-water is more than that of Al2O3-water nanofluids. Increasing the values of heat generation
parameter δ increases the thermal conductivity of nanofluid and the thickening of the thermal boundary layer. Figure 8
shows the influence of the magnetic parameter M on nanofluid velocity profile in the case of Cu-water and Al2O3-water
nanofluids. When the magnetic parameter M increases, the nanofluid velocity profile of Cu-water and Al2O3-water de-
crease. This is because of the application of the transverse magnetic field in an electrically conducting fluid produces a
ratarding lorenz force slows down the fluid motion in the boundary layer and hence decreases the velocity at the expense
of increasing it is temperature and the solutal concentration. But we observed the opposite for solutal concentration of
Al2O3-water nanofluid is against this fact as illustrates in Figure 4. The velocity profile of the Al2O3-water nanofluid is
higher than that of the Cu-water nanofluid as it shown in the Figure.

Figure 9 shows the effect of the viscous dissipation parameter Ec on the temperature profile in the case of Cu-water and
Al2O3-water nanofluids. It is observed that the temperature profile increases of both nanofluids with increasing in the
values of Ec; we notice that the influence of an increment in Ec is to increase the temperature distribution. This is due
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to the fact that the energy is stored in the fluid region as a consequence of dissipation because the viscosity and elastic
deformation. It is observed that the temperature profile in the case of Cu-water nanofluid is higher than that of Al2O3-water
nanofluid. Figure 10 shows the effect of the thermal radiation parameter R on the temperature profile in the case of both
nanofluids. Increasing the thermal radiation Parameter R increases the temperature profile of Cu-water and Al2O3-water
nanofluids. We observed that the temperature increases of Cu-water is higher than that of Al2O3-water nanofluids. The
thermal radiation parameter R is responsible to thickening of thermal boundary layer. This enables the nanofluids to release
the heat energy from the flow region and cases the system to be cool. This is true because of increasing the Rosseland
approximation results in an increase in the temperature profile. Figure 11 illustrates the effect of the Schmidt number
S c on the solutal concentration profile in the case of Cu-water and Al2O3-water nanofluids. Increasing the values of S c
decreases the solutal concentration profile of both case of nanofluids. It is observed that the concentration profile of Cu-
water nanofluid increases more than that of AI2O3-water nanofluid. Figures 12 and 13 show the effect of two parameters
namely by chemical reaction parameter γ and the Soret number S r on the concentration profiles in the case of Cu-water
and Al2O3-water nanofluids in Figure 12 and 13 respectively. We observed that the concentration profiles decreases with
an increase in the values of the scale chemical reaction parameter γ whereas the chemical reaction parameter γ effect
shows no substation changes on the nanofluid velocity and temperature profile in the two case of the nanofluids. It is clear
that the solutal concentration profiles in case of Al2O3-water nanofluid is relatively less than that of Cu-water nanofluid
in Figure 12. While the Figure 13as the Soret number S r increases, the solutal concentration boundary layer thickness of
both case of nanofluids also increase. We found that the solutal concentration profiles increment of Al2O3-water nanofluid
exhibits less than that of Cu-water nanofluid.

Conclusions

We have investigated the heat and mass transfer in steady MHD boundary layer flow in nanofluids through a porous due
to an stretching surface subjected to a magnetic field, heat generation, chemical reaction, viscous dissipation and thermal
radiation effects. From the numerical simulations, some results can be drawn as follow:
[i] The velocity profile of Cu-water nanofluid decreases with increasing in the nanoparticle volume fraction whereas the
velocity profile of Al2O3-water nanofluids increases with increasing in the nanoparticle volume fraction while the velocity
profile of both nanofluids decrease with an increase in magnetic and porous medium parameters.
[ii] The temperature profile of both nanofluids increase with increasing in the values of the nanoparticle volume fraction
while the concentration of Al2O3-water nanofluids decreases with increasing in the values of the nanoparticle volume
fraction and the opposite trend is observed for the concentration of Cu-water nanofluids with increasing in the values of
the nanoparticle volume fraction.
[iii] The temperature profile of both nanofluids increase with increase in the values of the Viscous dissipation, heat gener-
ation and thermal radiation parameters.
[iv] The concentration profile of both nanofluids decreases with increase in the values of chemical reaction parameter and
Schmidt number while the opposite trend is observed for the increasing values of the Soret number in the both case of
nanofluids.
[v] The rate of thermal boundary layer thickness of both nanofluids decreases with the presence of nanoparticle volume
fraction, thermal radiation, porous media and viscous dissipation in the flow field.
[vi]In general, the Al2O3-water nanofluid shows thicker velocity layer at the plate than a Cu-water nanofluids; Al2O3-water
nanofluid exhibits thicker thermal and concentration boundary layer than that of a Cu-water nanofluid.
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Table 1. Thermophysical properties of the water and copper and alumina nanoparticles, (see
Sheikholeslami et al. [12] and Oztop and Abu-Nada [13])

Physical properties Base fluid (Water) Copper (Cu) Alumina (Al2O3)

Cp(J/kgK) 4179 385 765
ρ(Kg/m3) 997.1 8933 3970
k(W/mK) 0.613 401 40

α × 107(m2/s) 1.47 1163.1 131.7
β × 105(K−1) 21 1.67 0.85

Table 2. Comparison of − f ′′(0) for various values of M and φ when Pr = 6.2, S c = 1, S r =

0.2, Ec = 0, K1 = 0.0, R = 0, δ = 0.02, γ = 0.08

Hamad[17] Kameswaran et al.[18] Present results
M φ Cu-water Al2O3 Cu-water Al2O3 Cu-water Al2O3

0 0.05 1.10892 1.00538 1.108919904 ——- 1.108920 1.005385
0.1 1.17475 0.99877 1.174746021 ——- 1.174746 0.998781

0.15 1.20886 0.98185 1.208862320 ——- 1.208862 0.981854
0.2 1.21804 0.95592 1.218043809 ——- 1.218043 0.955931

0.5 0.05 1.29210 1.20441 1.292101949 ——- 1.292102 1.204412
0.1 1.32825 1.17548 1.328248829 ——- 1.328249 1.175484

0.15 1.33955 1.13889 1.339553714 ——- 1.339554 1.138892
0.2 1.33036 1.09544 1.330356126 ——- 1.330356 1.095444

1 0.05 1.45236 1.37493 1.452360679 ——- 1.452361 1.374930
0.1 1.46576 1.32890 1.465763175 ——- 1.465763 1.328901

0.15 1.45858 1.27677 1.458581570 ——- 1.458582 1.276766
0.2 1.43390 1.21910 1.433898227 ——- 1.433898 1.219104

2 0.05 1.72887 1.66436 1.728872387 ——- 1.728872 1.664356
0.1 1.70789 1.59198 1.707892022 ——- 1.707892 1.591984

0.15 1.67140 1.51534 1.671398302 ——- 1.671398 1.515336
0.2 1.62126 1.43480 1.621264175 ——- 1.621264 1.434799

Table 3. Comparison of the values of wall temperature gradient −θ′(0)
from currents with Kameswaran et al. [18] and Grubka and Bobba
[19] for different values of Prandtl numbers Pr when M = Ec = K1 =

δ = R = 0, S c = 1, S r = 0.2, γ = 0.08 and φ = 0.

Pr 0.72 1 3 10 100

Kameswaran et al. [18] 1.08852 1.33333 2.50973 4.79687 15.71163
Grubka and Bobba [19] 1.0885 1.3333 2.5097 4.7969 15.7120
Present result (SRM ) 1.088524 1.333333 2.509725 4.796873 15.711967
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Table 4. Comparison of the SRM solutions for f ′′(0), −θ′(0), and −ϕ′(0) for different values of
S r, S c, δ and γ. φ = 0.1, Ec = 1, M = 0.5, S c = 1, δ = 0.01, Pr = 6.2, K1 = 1, γ = 0.08, S r = 0.2.

Cu − water Al2O3 − water

φ = 0.1, Ec = 1 R = 2, Pr = 6.2 K1 = 1,M = 0.5
S r f ′′(0) −θ′(0) −ϕ′(0) f ′′(0) −θ′(0) −ϕ′(0)

0.0 1.662602 0.262150 1.202677 1.543296 0.387825 1.231631
0.1 1.662602 0.262150 1.203733 1.543296 0.387825 1.223237
0.3 1.662602 0.262150 1.205845 1.543296 0.387825 1.206449
0.4 1.662602 0.262150 1.206901 1.543296 0.387825 1.198055
Sc
0.6 1.662602 0.262150 1.204789 1.543296 0.387825 1.214843
0.7 1.662602 0.262150 1.574980 1.543296 0.387825 1.587530
0.8 1.662602 0.262150 1.887968 1.543296 0.387825 1.901663
0.9 1.662602 0.262150 2.163376 1.543296 0.387825 2.177705
δ

0.6 1.662602 2.350214 0.854174 1.543296 2.408433 0.877492
0.7 1.662602 2.305154 0.861916 1.543296 2.365163 0.884957
0.8 1.662602 2.258469 0.869887 1.543296 2.320555 0.892611
0.9 1.662602 2.044322 0.905376 1.543296 2.122996 0.925819
γ

0.6 1.662602 0.262150 1.140069 1.543296 0.387825 1.155418
0.7 1.662602 0.262150 1.219003 1.543296 0.387825 1.228159
0.8 1.662602 0.262150 1.438686 1.543296 0.387825 1.439333
0.9 1.662602 0.262150 1.642761 1.543296 0.387825 1.639504
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Figure 1. Effect of various nanoparticle values fraction φ on velocity profile for K1 = 1.0, M =

0.5, Ec = 1.0 , R = 2.0, Pr = 6.2, δ = 0.01, γ = 0.08, S c = 1 and S r = 0.4.
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Figure 2. Effect of various nanoparticle values fraction φ on temperature profile for K1 = 1.0,
M = 0.5, Ec = 1.0 , R = 2.0, Pr = 6.2, δ = 0.01, γ = 0.08, S c = 1 and S r = 0.4.
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Figure 3. Effect of various nanoparticle values fraction φ on the concentration profile for K1 =

1.0, M = 0.5, Ec = 1.0 , R = 2.0, Pr = 6.2, δ = 0.01, γ = 0.08, S c = 1 and S r = 0.4.
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Figure 4. Effect of various nanoparticle values fraction φ on the velocity profile for φ = 0.2,
M = 0.5, Ec = 1.0 , R = 2.0, Pr = 6.2, δ = 0.01, γ = 0.08, S c = 1 and S r = 0.2.
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Figure 5. Effect of the porous medium parameter K1 on temperature profile for φ = 0.2, M = 0.5,
Ec = 1.0 , R = 2.0, Pr = 6.2, δ = 0.01, γ = 0.08, S c = 1 and S r = 0.2.
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Figure 6. Effect of the porous medium parameter K1 on concentration profile for φ = 0.2, M =

0.5, Ec = 1.0 , R = 2.0, Pr = 6.2, δ = 0.01, γ = 0.08, S c = 1 and S r = 0.2.
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Figure 7. Effect of heat generation parameter δ on the temperature profile for φ = 0.2, M = 0.5,
Ec = 1.0 , R = 2.0, Pr = 6.2, K1 = 1.0, γ = 0.08, S c = 1 and S r = 0.2.
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Figure 8. Effect of magnetic parameter M on the velocity profile for φ = 0.1, K1 = 1.0, Ec = 1.0 ,
R = 2.0, Pr = 6.2, δ = 0.01, γ = 0.08, S c = 1 and S r = 0.2.
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Figure 9. Effect of viscous dissipation parameter Ec on the temperature profile for φ = 0.1,
K1 = 1.0, M = 0.5 , R = 2.0, Pr = 6.2, δ = 0.01, γ = 0.08, S c = 1 and S r = 0.2.
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Figure 10. Effect of thermal radiation parameter R on the temperature profile for φ = 0.1,
K1 = 1.0, M = 0.5 , Ec = 1.0, Pr = 6.2, δ = 0.01, γ = 0.08, S c = 1 and S r = 0.2.
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Figure 11. Effect of the Schmidt number S c on concentration profile for φ = 0.1, K1 = 1.0,
M = 0.5 , Ec = 1.0, Pr = 6.2, δ = 0.01, γ = 0.08, R = 2 and S r = 0.2.
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Figure 12. Effect of the chemical reaction parameter γ and Soret number S r on concentration
profiles for φ = 0.1, K1 = 1.0, M = 0.5 , Ec = 1.0, Pr = 6.2, δ = 0.01, S c = 1 and R = 2.
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Figure 13. Effect of the chemical reaction parameter γ and Soret number S r on concentration
profiles for φ = 0.1, K1 = 1.0, M = 0.5 , Ec = 1.0, Pr = 6.2, δ = 0.01, S c = 1 and R = 2.
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Abstract 

Certain traditional methods of Calculus for solving DEs and systems of  DEs in engineering 
analysis depend in one form or another on the use of some general initially assumed analytical 
representation of the intended solution. Unfortunately this often leads to defining one or several 
integrals that cannot always be resolved exactly.  In order to avoid this complication we propose 
that the complete "differential" of a general initially assumed analytical representation of the 
intended solution with unknown coefficients to solve for be used instead as a means of solving for 
DEs and systems of  DEs.   Such a novel method of differential analysis has led to the development 
of what appears to be some form of a unified theory of integration.   This would represent the 
greatest opportunity by which the complete Navier-Stokes equations for incompressible flow in the 
presence of any external forces may be investigated for the existence of any "generalized" 
analytical solutions under the three most commonly used coordinate systems. 

Keywords: Universal Polynomial Transform, ODEs,  PDEs, Multinomial Expansion Theorem, 
Quantum Physics, Quantum computers, Navier-Stokes equations, Theory of everything. 

Introduction 

Such a non-traditional method of using this unique form of differential analysis in Calculus would 
have the real potential of defining integrals that can be completely resolved because a certain 
number of these initially assumed "differentials" are expected to become "exact" from the 
application of a well defined computational process. This would represent a very significant 
departure from current traditional methods of engineering analysis favoring a purely "numerical" 
method of integration in cases by which no real analytical solution to many fundamental DEs and 
systems of DEs in engineering science is possible. The greatest advantage of performing such a 
type of analysis strictly at the differential level has led to the development of some type of a unified 
theory of integration that can be applied for finding approximate or in some cases exact analytical 
solutions to "all types" of  DEs and systems of DEs encountered in engineering analysis. The entire 
process of analytical integration now becomes a matter of pure computational analysis just for 
identifying those differentials that are exact and thus completely integrable.  Such a very unique 
method of differential analysis will be applied for the complete analytical solution of a number of 
randomly selected  DEs  that would include a first and second order ODE as well as a second order  
PDE.  The outcome of having performed such a detailed differential analysis on these very simple 
DEs may provide us in the long term with some basic fundamental tools of analysis by which a 
generalized theory of the Navier-Stokes equations may be possible in the foreseeable future.  Not 
surprisingly since such a novel method of differential analysis has led to the development of a  
computational based unified analytical  theory of integration.   Beyond the Navier-Stokes equations 
are other equations of significant importance to the physical sciences that would include Maxwell's 
equations, Einstein's field equations, the Schrödinger equation just to name a few.   Each of these 
fundamental equations of science would define their own very unique ideology all of which may 
one day be consolidated into one gigantic universal theory of everything.  
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1.  Universal differential form representation of all mathematical equations 

For solving a  DE  or a system of  DEs, an alternative representation in complete differential form 
for a generally assumed system of  "k"  number of implicitly defined multivariate mathematical 
equations in the form of   "𝑓𝑘(𝑧𝑚, 𝑥𝑛) = 0"   that consist of  "m"  number of  dependent variables and  
"n"  number of  independent variables  [Mikalajunas (2015)]  may be completely defined as :  

(1).  Primary Expansion: 

                  𝐹𝑖(𝑊1,𝑊2, … ,𝑊𝑝+𝑞)  =   0  =   ∑𝑎𝑖,𝑡 (∏𝑊
𝑗

𝐸𝑖,𝑘𝑗

𝑝+𝑞

𝑗

)

𝑟

𝑡

           (1 ≤ 𝑖 ≤ 𝑘)      (1) 

where "𝑊𝑗"  for  1 ≤ 𝑗 ≤ 𝑝  are arbitrarily defined auxiliary variables that take part in representing 

the complete initially assumed analytical solution of a  DE  or a system of  DEs.   For any number 

of basis functions that are present in a  DE or a system of DEs we would have to define an 

additional "q" number of known supplemental auxiliary variables for including each of their 

differential expansion as part of the complete overall expansion for representing the system of  "k" 

number of implicitly defined multivariate equations.  In such cases, the total number of auxiliary 

variables would grow from  "p"  to "𝑝 + 𝑞"  when such basis functions are present in these types of  

DEs.   Each of the "p" number of arbitrarily defined auxiliary variables are always initially assumed 

as raised to some floating point number and finally, "r"  refers to the total number of multivariate 

polynomial terms that are present in each of the  "k"  number of implicitly defined multivariate 

polynomial equations. 

 

(2).  Secondary Expansion: 

𝑑𝑧𝑖  =   𝑑𝑊𝑖                                        (1 ≤ 𝑖 ≤ 𝑚) (2) 

 𝑑𝑥𝑖  =   𝑑𝑊𝑚+𝑖                                   (1 ≤ 𝑖 ≤ 𝑛)    (3) 

 

∑𝑁𝑖(𝑚+𝑛+1)−𝑚−𝑛−1+𝑡𝑑𝑧𝑡   +    ∑𝑁𝑖(𝑚+𝑛+1)−𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

  

 

                                   =   𝑁𝑖(𝑚+𝑛+1)𝑑𝑊𝑗          [1 ≤ 𝑖 ≤ 𝑝 + 𝑞 − 𝑚 − 𝑛]  [𝑚 + 𝑛 + 1 ≤ 𝑗 ≤ 𝑝 + 𝑞]    (4) 

 

As in the case of the Primary Expansion, each of the expressions for  "𝑁𝑢"  in equation (4)  is also 
defined as a multivariate polynomial with unknown coefficients and floating point exponent values 
to solve for.  

And finally we have, 

∑𝑇𝑖(𝑚+𝑛+1)−𝑚−𝑛−1+𝑡𝑑𝑧𝑡   +    ∑𝑇𝑖(𝑚+𝑛+1)−𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

 

                                                         =   𝑇𝑖(𝑚+𝑛+1)𝑑𝑊𝑗         [1 ≤ 𝑖 ≤ 𝑞]  [𝑝 ≤ 𝑗 ≤ 𝑝 + 𝑞]    (5) 
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where each of the expression for  "𝑇𝑢" in equation (5) is also a multivariate polynomial but this time 
containing only known coefficient and exponent values that are reserved exclusively for defining 
each of the basis functions that would be present inside a DE  or a system of  DEs. 

At the present time there is no other known universal representation of all mathematical equations 
consisting only of algebraic and elementary basis functions other than the one suggested above.   
 
In complete expanded form we would write this as follow: 
 

(1).  Primary Expansion: 

 𝐹1  =   0  =    𝑎1,1𝑊1
𝑚11𝑊2

𝑚12 ∙∙∙ 𝑊𝑝+𝑞

𝑚1,𝑝+𝑞  +   𝑎1,2𝑊1

𝑚1,𝑝+𝑞+1𝑊2

𝑚1,𝑝+𝑞+2 ∙∙∙ 𝑊𝑝+𝑞

𝑚1,2(𝑝+𝑞)     

                                               + … +    𝑎1,𝑟𝑊1

𝑚1,(𝑝+𝑞)(𝑟−1)+1𝑊2

𝑚1,(𝑝+𝑞)(𝑟−1)+2 ∙∙∙ 𝑊𝑝+𝑞

𝑚1,𝑟(𝑝+𝑞)   (6) 

 𝐹2  =   0  =    𝑎2,1𝑊1
𝑚21𝑊2

𝑚22 ∙∙∙ 𝑊𝑝+𝑞

𝑚2,𝑝+𝑞  +   𝑎2,2𝑊1

𝑚2,𝑝+𝑞+1𝑊2

𝑚2,𝑝+𝑞+2 ∙∙∙ 𝑊𝑝+𝑞

𝑚2,2(𝑝+𝑞)     

                                               + … +    𝑎2,𝑟𝑊1

𝑚2,(𝑝+𝑞)(𝑟−1)+1𝑊2

𝑚2,(𝑝+𝑞)(𝑟−1)+2 ∙∙∙ 𝑊𝑝+𝑞

𝑚2,𝑟(𝑝+𝑞)   (7) 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

 𝐹𝑘  =   0  =    𝑎𝑘,1𝑊1
𝑚𝑘1𝑊2

𝑚𝑘2 ∙∙∙ 𝑊𝑝+𝑞

𝑚𝑘,𝑝+𝑞  +   𝑎𝑘,2𝑊1

𝑚𝑘,𝑝+𝑞+1𝑊2

𝑚𝑘,𝑝+𝑞+2 ∙∙∙ 𝑊𝑝+𝑞

𝑚𝑘,2(𝑝+𝑞)     

                                               + … +    𝑎𝑘,𝑟𝑊1

𝑚𝑘,(𝑝+𝑞)(𝑟−1)+1𝑊2

𝑚𝑘,(𝑝+𝑞)(𝑟−1)+2 ∙∙∙ 𝑊𝑝+𝑞

𝑚𝑘,𝑟(𝑝+𝑞)   (8) 

 

(2).  Secondary Expansion: 

𝑑𝑧𝑖  =   𝑑𝑊𝑖                                        ( 1 ≤ 𝑖 ≤ 𝑚 ) (9) 

  𝑑𝑥𝑖  =   𝑑𝑊𝑚+𝑖                                   ( 1 ≤ 𝑖 ≤ 𝑛 )    (10) 

[ 𝑁1𝑑𝑧1 +  𝑁2𝑑𝑧2  +  … +  𝑁𝑚𝑑𝑧𝑚 ]   +   [ 𝑁𝑚+1𝑑𝑥1  +   𝑁𝑚+2𝑑𝑥2   +  … +     

                                                                         + … +  𝑁𝑚+𝑛𝑑𝑥𝑛 ]    =   𝑁𝑚+𝑛+1𝑑𝑊𝑚+𝑛+1   (11) 

 [ 𝑁𝑚+𝑛+2𝑑𝑧1  +   𝑁𝑚+𝑛+3𝑑𝑧2   +  … +  𝑁2𝑚+𝑛+1𝑑𝑧𝑚]   +    [ 𝑁2𝑚+𝑛+2𝑑𝑥1   +     
 

                             +  𝑁2𝑚+𝑛+3𝑑𝑥2    + … +  𝑁2(𝑚+𝑛+1)−1𝑑𝑥𝑛 ]    =   𝑁2(𝑚+𝑛+1)𝑑𝑊𝑚+𝑛+2   (12) 
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                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

[ 𝑁(𝑝+𝑞−1)(𝑚+𝑛+1)+1𝑑𝑧1  +  𝑁(𝑝+𝑞−1)(𝑚+𝑛+1)+2𝑑𝑧2   +  … +  𝑁(𝑝+𝑞−1)(𝑚+𝑛+1)+𝑚𝑑𝑧𝑚 ]   +  

 +  [ 𝑁(𝑝+𝑞−1)(𝑚+𝑛+1)+𝑚+1𝑑𝑥1  +   𝑁(𝑝+𝑞−1)(𝑚+𝑛+1)+𝑚+2𝑑𝑥2    +  … +  𝑁(𝑝+𝑞)(𝑚+𝑛+1)−1𝑑𝑥𝑛 ]    = 

                                                                                                                =   𝑁(𝑝+𝑞)(𝑚+𝑛+1)𝑑𝑊𝑝+𝑞   (13) 

 
 
The actual process of transforming a complete mathematical equation or a system of mathematical 
equations in terms of the above universal differential form representation is referred to as taking its 
Multivariate Polynomial Transform.  The complete reverse process of going from a differential 
form representation back to the original complete mathematical equation or system of mathematical 
equations would be referred to as taking the inverse of a Multivariate Polynomial Transform.  This 
would involve following a very unique integration process in the Secondary Differential Expansion 
for determining the complete analytical expression corresponding to each auxiliary variable.  They 
in turn would each be substituting back into the  Primary Expansion  for arriving at the complete 
original expression in the form of   "𝑓𝑘(𝑧𝑚, 𝑥𝑛) = 0". 

Appendix A  provides a list of the Multivariate Polynomial Transform corresponding to a variety of 
univariate and multivariate mathematical equations.  For simplicity, both the Sine and Cosine 
function have been expressed as a rational combination of  the Tangent function using the following 
basic trigonometric identity: 

𝑆𝑖𝑛(𝑥) =   
2𝑇𝑎𝑛(𝑥/2)

1 + 𝑇𝑎𝑛2(𝑥/2)
 (14) 

 
Just by increasing the total number of dependent and independent variables, the concept of a 
Multivariate Polynomial Transform is still applicable for including all  systems of mathematical 
equations as well.  However, space limitation prevents the inclusion of these types of mathematical 
equations as good illustrative examples.  

 

2.  Unique template for investigating the probable existence of  complete "general" analytical     
      solutions to  DEs  and systems of  DEs  by using a method of  conjecture 

A necessary condition for defining a complete unified analytical theory of integration is by 
substituting an initially assumed version with unknown coefficients to solve for of the universal 
differential form representation of all mathematical equations as described  by equations (1) through 
(5) into any type of  DEs  and systems of  DEs.  This would always result into defining a very 
unique type of  system of nonlinear simultaneous equations to solve for.  The exact numerical 
solution sets obtained would then be used as a means of inverting the corresponding initially 
assumed differential expansions for arriving at an exact or approximate analytical solution that 
would be expressible only in terms of the algebraic and elementary basis functions. 

Such an initially assumed differential expansion form would possess all the characteristics of a 
complete mathematical transform so we would refer to it as an  initially assumed Multivariate 
Polynomial Transform  or  in short  IAMPT. 

𝐶𝑜𝑠(𝑥) =   
1 − 𝑇𝑎𝑛2(𝑥/2)

1 + 𝑇𝑎𝑛2(𝑥/2)
  (15) 
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The entire process of using an  IAMPT for solving DEs  and systems of  DEs can be divided into 
two fundamental stages.  The first, is the computational stage by which the corresponding nonlinear 
simultaneous equations of a DE or a  system of  DEs  are numerically derived and completely 
solved for.  The second, is the analytical stage by which every numerical solution set obtained is 
converted to pure analytical form.  This would involve the process of identifying and solving for 
those exact integrals that are present in the Secondary Expansion which have successfully pass the 
complete test for exactness.  From this exact integration process, the complete expression for each 
initially assumed set of auxiliary variables are obtained and substituted into the Primary Expansion  
for arriving at the complete analytical solution of  the  DE  or  system of  DEs. 

When selecting a suitable IAMPT for solving a particular DE or a system of  DEs, the total number 
of unknown coefficients and floating point exponent values to solve for becomes purely arbitrary 
and should be as high as possible.  This is necessary as a means of capturing those "exact"  
analytical solutions that can successfully resolve a  DE  or a system of  DEs uniquely in terms of 
some combination of algebraic and elementary basis functions.  The limitations on the total number 
of unknown coefficients and exponent values to solve for as defined from an  IAMPT  is generally 
set by the capacity of a computer system to handle extremely large numbers of very complex 
nonlinear simultaneous equations to solve for. 

The resultant system of nonlinear simultaneous equations to solve for will always consist of an 
infinite number of exact numerical solutions sets provided that the  IAMPT  has been chosen large 
enough to contain the exact solution of the  DE  or system of  DEs  that is being solved for. 

Some of the reasons that would account for the existence of such an infinite number of numerical 
solution sets are: 

 The ability for an exact solution to a  DE  or a system of  DEs  to satisfy an infinite number 
of  initial conditions. 
 

 The permutation of each auxiliary variable present in both the Primary and Secondary 
Expansion for representing the same identical exact analytical solution of  the DE  or system 
of  DEs.  

 
 As a result of the natural computational process involved in solving for a very large number 

of  complex nonlinear simultaneous equations, many numerical solutions sets obtained are 
expected to define numerous types of trivial algebraic identities from the process of 
inverting the corresponding IAMPT.  Such type of identities will always be present in one 
form or another in the final representation of the analytical solution.  A good example is the   
"𝑆𝑖𝑛2(𝑥)  + 𝐶𝑜𝑠2(𝑥) = 1"  or any other algebraic variations of  this trigonometric identify that 
would also include other types of basis functions as well. 
 

 The presence of  singular solutions.  
 

 As a result of the natural computational process involved in solving for a very large number 
of complex nonlinear simultaneous equations, many numerical solutions sets obtained will 
naturally lead to the formation of one or several expressions in the Secondary Expansion 
that would be represented as a ratio of two exactly identical multivariate polynomials.  
These types of ratios would be considered as trivial ratios that would have to be all 
completely eliminated before any attempts is made for  inverting a  Secondary Expansion. 

For every numerical solution set obtained as a result of solving for these nonlinear simultaneous 
equations there will always be a corresponding exact analytical solution satisfying a "unique" set  of 
initial conditions.  We would refer to the existence of such a type of exact analytical solution as an 
"instance solution".  As there are an infinite number of possible numerical solution sets of the 
nonlinear simultaneous equations this will give rise to an infinite number of such instance solutions.   
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By consolidating a sufficient number of such instance solutions we can by using a method of 
conjecture potentially uncover more complete "generalized" versions of analytical solutions 
satisfying a general DE or a system of  DEs.   It therefore becomes quite imperative that as a result 
of solving for the nonlinear simultaneous equations we always continuously keep track of all 
instance analytical solutions obtained in the form of a table that we would like to refer as a  
"numerically controlled system of analytics table"  or  in short an  (NCSA)  table.  

The following general system of  PDEs  of any order can be used for describing the most general 
case of an  NCSA  table: 

𝐺𝑘  =   𝐺𝑘 (𝑧1, 𝑧2, … , 𝑧𝑚, 𝑥1, 𝑥2, … , 𝑥𝑛,
𝜕𝑧1

𝜕𝑥1
, … ,

𝜕𝑧1

𝜕𝑥𝑛
,
𝜕𝑧2

𝜕𝑥1
, … ,

𝜕𝑧2

𝜕𝑥𝑛
, … ,

𝜕𝑧𝑚

𝜕𝑥1
, … ,

𝜕𝑧𝑚

𝜕𝑥𝑛
  , … ,     

                     , … ,
𝜕2𝑧𝑚

𝜕𝑥1𝜕𝑥1
  , …,   

𝜕2𝑧𝑚

𝜕𝑥1𝜕𝑥𝑛
  , …,   

𝜕2𝑧𝑚

𝜕𝑥2𝜕𝑥1
, … ,

𝜕2𝑧𝑚

𝜕𝑥2𝜕𝑥𝑛
 , …, 

 

                                                                                                      , … ,
𝜕2𝑧𝑚

𝜕𝑥𝑛
2

, … …,   
𝜕𝑟𝑧𝑚

𝜕𝑥𝑛
𝑟

 )  =   0  
(16) 

 
 
In this case, the  NCSA  table would be represented as follow: 
 

𝐺𝑘 =   0 

Initial                                             Coefficient                       Exact analytical solution 

Conditions                                     values present                 obtained using the Multivariate         

                                                       in the  DE or                  Polynomial Transform method 

                                                       system of  DEs  

𝑧01, 𝑧02, … , 𝑧0𝑚, 𝑥01, … , 𝑥0𝑛  …                   𝑎0, 𝑏0, 𝑐0, …                                                 𝑈1  =   0         
 

𝑧11, 𝑧02, … , 𝑧0𝑚, 𝑥01, … , 𝑥0𝑛  …                   𝑎1, 𝑏0, 𝑐0, …                                                 𝑈2  =   0         
 

𝑧01, 𝑧12 , … , 𝑧0𝑚, 𝑥01, … , 𝑥0𝑛 …                   𝑎0, 𝑏1, 𝑐0, …                                                 𝑈3  =   0         

 

         .   .   .                                        .    .    .                                        .    .    . 

         .   .   .                                        .    .    .                                        .    .    . 

         .   .   .                                        .    .    .                                        .    .    . 

 

Table 2.1 

 
 
where  "𝑈𝑖 = 0"  would then be referred to as an  instance solution  satisfying the unique set of 
parameters contained in this table. 
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Example (2.1).  For the simple two dimensional case that can be represented by the following 
general  first order  ODE,  

𝑥
𝑑𝑦

𝑑𝑥
 +   𝑎𝑦 +   𝑏𝑥𝑛𝑦2  =   0 

 

(17) 

the  corresponding  NCSA  table  may be constructed in the following manner:  

 

𝑥
𝑑𝑦

𝑑𝑥
 +   𝑎𝑦 +   𝑏𝑥𝑛𝑦2  =   0 

 

 

Initial                                            Coefficient                         Exact analytical solution 

Conditions                                     Values                               obtained using the Multivariate         

                                                                                                Polynomial Transform method 

 

𝑥0 = 1                                                  𝑎 = 1.0                              (−3𝑥 +  𝑥−1)𝑦 +   2 =  0 

𝑦0 = 1                                                  𝑏 = 1.0                                           
                                                               𝑛 = −1.0                                           

𝑥0 = 1                                                  𝑎 = 1.2                              (1.4𝑥1.2  −  𝑥2)𝑦 −   0.80 =   0 

𝑦0 = 2                                                  𝑏 = −1.0                                           
                                                               𝑛 = 2.0                                           

𝑥0 = 1                                                   𝑎 = 1.2                            (1.7𝑥1.2 +  1.5−2)𝑦 +  3.2 =   0  
𝑦0 = −1                                                𝑏 = 1.5                                           
                                                                𝑛 = −2.0                                           

𝑥0 = 1                                                   𝑎 = 2.0                             𝑥2𝑦(0.5 −  ln(𝑥))  −   1  =   0  
𝑦0 = 2                                                   𝑏 = −1.0                                           
                                                                𝑛 = 2.0                                           

𝑥0 = 1                                                   𝑎 = 1.5                             (−2.75𝑥1.5 +   2𝑥3)𝑦 −  1.5 =   0  
𝑦0 = −2                                                𝑏 = 2.0                                           
                                                                𝑛 = 3.0                                           

𝑥0 = 1                                                   𝑎 = 1.0                             𝑥𝑦(1 +  ln(𝑥))  −   1.0  =   0  
𝑦0 = 1                                                   𝑏 = 1.0                                           
                                                                𝑛 = 1.0                                           
                                                           

𝑥0 = 1                                                   𝑎 = −1.0                      𝑥−1𝑦(−1 +   1.5 ln(𝑥))  −   1.0 =  0 

𝑦0 = −1                                                𝑏 = 1.5                                           
                                                                𝑛 = −1.0                                           
 

Table 2.2 
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The evidence gathered from each of the above  instance solutions allows us to conclude by 

conjecture that: 

𝑓1(𝑥, 𝑦)  =   0 =   (𝐴𝑥𝐵  +   𝐶𝑥𝐷)𝑦 +   𝐸 (18) 

and: 

    𝑓2(𝑥, 𝑦)  =   0 =   𝑥𝐴𝑦(𝐵 +   𝐶 ln(𝑥))  +   𝐷 (19) 

both appear to be perfect candidates for the general exact analytical solution of the ODE where the 
coefficients  "A", "B", "C", "D" and "E"  are to be expressed in terms of the coefficients  "a", "b", 
"n" and the initial conditions of the  ODE. 

By substituting any one of these generally assumed analytical solution into the  ODE  and equating 
like terms to zero, we can derive a complete relationship that can exist between the known and the 
unknown coefficients. 
 
The general formula used for determining the first derivative of  "y"  is: 

𝑑𝑦

𝑑𝑥
 =   −

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
⁄   

(20) 
 

─ 
In our first assumption that  "𝑓1(𝑥, 𝑦) =   0 "  and upon equating like terms to zero in the  ODE,  

this would define the following system of equations to solve for: 

𝐴(𝑎 −   𝐵)                          =   0 (21) 

𝐶(𝑎 −   𝑛) −   𝑏𝐸             =   0 (22) 

(𝐴𝑥0
𝑎  +   𝐶𝑥0

𝑛)𝑦0  +   𝐸   =   0 (23) 

with exact solution [Mikalajunas 2015]: 

 𝐴  ≠   0 (24) 

𝐵 =   𝑎 (25) 

                               𝐶  =    
−𝐴𝑏𝑥0

𝑎𝑦0

𝑎 +   𝑏𝑥0
𝑛𝑦0 −   𝑛

 (26) 

                                                               𝐸  =    
(𝑎 −   𝑛)𝐶

𝑏
                            (𝑎 ≠ 𝑛) (27) 

Following the same type of logic for our second assumption that  "𝑓2(𝑥, 𝑦) =   0 ",  this would 

define the following system of nonlinear equations to solve for: 

𝐵(𝑎 −   𝑛) −   𝐶 −   𝑏𝐷        =   0 (28) 

𝐶(𝑎 −   𝑛)                                  =   0 (29) 

𝑥0
𝑛𝑦0(𝐵 +   𝐶 ln(𝑥0))  +   𝐷  =   0 (30) 
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with exact solution [Mikalajunas 2015]: 

     𝐷  ≠   0 (31) 

          𝐶   =  −𝑏𝐷 (32) 

𝐵  =   
−𝐷

𝑥0
𝑛𝑦0

  −   𝐶 ln(𝑥0)    =   
 −𝐷  −   𝐶𝑥0

𝑛𝑦0 ln(𝑥0)

𝑥0
𝑛𝑦0

 
(33) 

Without having constructed the NCSA table it would have been very difficult to have correctly 
arrived at the complete  "general analytical solution"  of this first order ODE  that would satisfy all 
initial conditions as well.   There are currently no known traditional method of integration capable 
of deriving complete "general" closed form solutions to "any type" of  DEs  and systems of  DEs 
that would be entirely based on the use of a well defined  "exact"  method of computational analysis 
such as the one being proposed in this paper. 

 

The very unique mathematical properties of an  IAMPT when substituted into a  DE or a system 
of  DEs allows for all initial conditions to be fully accounted for.  This is because the exact 
integration process that is performed in the Secondary Expansion for determining an exact 
expression for each auxiliary variable must  always include the constant of integration which in turn 
would automatically define each of their initial values.  For every instance solution obtained, the 
overall contribution of each of these initial values for the auxiliary variables can easily succeed in 
completely matching the initial conditions of a  DE or a system of  DEs.  This becomes very 
obvious by noticing that the Primary Expansion of an IAMPT is always expressed as some 
algebraic combination of initially assumed auxiliary variables as well as known auxiliary variables.  
Its the  initial values of each of these auxiliary variables that can easily be adjusted numerically for 
satisfying the overall initial conditions of a DE or a system of DEs  by solving for the type of 
system of  nonlinear  equations in which there will always be more unknowns than available 
equations to solve them. 

Based on our previous example for the general first order ODE, we notice that every instance 
solution obtained would potentially lead towards defining a more generalized version of the exact 
analytical solution.  It is only through the painstaking gathering of this type of information in the 
form of a large distribution sample of instance solution sets can we succeed in determining only  by 
the method of conjecture complete general closed form solutions of  a  DE  or a system of  DEs. 

The complete consolidation of a large number of these generalized exact analytical solutions which 
would be the result of having solved for a large number of very distinct classes of  DEs  and  
systems of  DEs can potentially lead to defining some very fundamental theorems.  Case in point is 
the superposition theorem  being the result of  having solved mostly by trial and error a very 
distinct class of  linear second order  ODEs.   

By consolidating each of these fundamental mathematical theorems into one gigantic universal 
theory might represent our most realistic hope yet of ever arriving at some unified theory of 
everything.   

 
3.  The theory of everything not just about modern physics anymore 

To this day, the most accepted  definition of the  theory of everything is that it must remain an 
integral part of modern physics on the principle of defining a unique Space-Time model that would 
explain all the basic laws of this universe. 

However, what appears to be clearly lacking in our attempt to create such a grandiose physical 
theory for explaining everything about this universe is an equivalent grandiose mathematical theory 
that would have to succeed in explaining everything about the complete analytical integration of all  
types of  DEs  as well as all types of  systems of  DEs. 
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Because  DEs are completely universal and not linked to any specific area of the physical sciences, 
there is  really no evidence to support that modern physics is the only real subject by which a 
complete theory of everything may be entirely constructed from. 

Rather, it would have to be  through the application of some unified theory of analytical integration 
that a theory of everything would be achievable.  This would be result of consolidating each 
fundamental theorem associated with a single Unified Physical System at a time  into one gigantic 
theory capable of explaining everything about this physical universe. 

The following block diagram suggests such a scenario by which DEs and systems of DEs would 
play a central role for establishing such a theory of everything where each  Unified Physical System   
would have its own very unique story to tell us that in the end we would need to know about: 
 

 

 

 

   THEORY OF  EVERYTHING       

 
Figure 3.1

The very mathematical nature of our proposed unified theory of analytical integration is built on the 
principle that  "analytical solutions"  to  DEs  and systems of  DEs  must be  constructed entirely on 
pure computational analysis.   

In the absence of  a unified theory of analytical integration, our understanding of the physical 
sciences cannot be complete as our method of analysis becomes reduced to a process that is mostly  
governed by unpredictable events.  Because Calculus is so deeply embedded into all of the physical 
sciences, how can we expect to devise a  theory of everything  without the use of some form of a  
unified analytical theory of integration that would be entirely driven by some  well defined method 
of  exact computational analysis ? 
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4.  Complete numerical example for a second order  ODE 

In our first example for the general first order ODE, we highlighted the importance of creating a 
special type of table called the NCSA table for providing much greater visibility towards the 
acquisition of  general closed form solutions.  Such a table would be constructed on the principle of 
creating a special type of database that would consist of a large number of instance solutions each 
satisfying  a predetermined number of control parameters that would include initial conditions and 
all the variable coefficients that take part in defining a  DE  or a system of  DEs.   

Corresponding to a unique set of control parameters would define a unique instance solution that 
would be obtained as a result of substituting an IAMPT  into a  DE or a system of  DEs and 
numerically solving for the resultant system of nonlinear simultaneous equations.  This would be 
followed by the complete transformation of the resultant  IAMPT  into a unique instance solution. 

As the number of  instance solutions grows, this would allow for much greater insight in 
determining by method of  conjecture if a more general analytical solution actually exists.  These 
types of closed form solutions have a far greater capacity towards a  much better  understanding on 
the very long term behavior of a physical system.  By consolidating each and every general 
analytical solutions obtained over a large class of  DEs  and systems of  DEs  into basic 
fundamental theorems, an even far much better understanding of the same physical system is 
possible.  Only as we progress further in the complete formulation of a large number of such 
specialized fundamental theorems can we expect to move closer towards the complete development 
of some form of a  theory of everything. 

 
In the following example, we have randomly selected a second order  ODE  and provided a 
complete step by step process for arriving at its complete exact analytical solution satisfying all 
initial conditions. 

Example (4.1).  Starting with the following second order  ODE: 

𝑦
𝑑2𝑦

𝑑𝑥2
    −    (

𝑑𝑦

𝑑𝑥
)
2

 { 1  −   
𝑑𝑦

𝑑𝑥
𝑆𝑖𝑛(𝑦)   −    𝑦

𝑑𝑦

𝑑𝑥
𝐶𝑜𝑠(𝑦) }   =    0 (34) 

there are two external inputs that are defined in terms of the  Sine  and  Cosine  function.   

For the sake of simplicity in our analysis, we can use the following  identities  for expressing each 
of the two trigonometric functions as a rational combination of  the half angle tangent function: 

𝑆𝑖𝑛(𝑢) =   
2𝑇𝑎𝑛(𝑢/2)

1 + 𝑇𝑎𝑛2(𝑢/2)
 

(35) 

 

𝐶𝑜𝑠(𝑢) =   
1 − 𝑇𝑎𝑛2(𝑢/2)

1 + 𝑇𝑎𝑛2(𝑢/2)
 (36) 

Based on the use of this half angle formula for the Tangent function, we begin by selecting a much 
simpler alternative representation for the  Sine  and  Cosine  function by defining: 

𝐻 =   𝑇𝑎𝑛(𝑦/2)  =   𝑊𝑝+1 (37) 

where  "𝑝"  is the total number of arbitrarily defined auxiliary variables from the  IAMPT  that will 
be selected for solving this second order  ODE. 
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For this choice of auxiliary variable the corresponding Multivariate Polynomial Transform would 
be defined  as follow: 

 (1).  Primary Expansion: 

         𝐻(𝑊𝑝+1)  =   𝑊𝑝+1 

 

 
(38) 

(2).  Secondary Expansion: 

        𝑑𝑦 =   𝑑𝑊2 
(39) 

         0 ∙ 𝑑𝑥  +    (1 + 𝑊𝑝+1
2 )𝑑𝑦 =    2𝑑𝑊𝑝+1   (40) 

 

We can arbitrarily select our  IAMPT  as consisting of a maximum of  five  arbitrarily defined 
auxiliary variables so that   "𝑝 = 5".  There will be a total number of  six  terms in the Primary 
Expansion so that  "𝑢𝑃 = 6"  and  a total number of  four terms in the Secondary Expansion  so that  
"𝑢𝑆 = 4".  Because there is only one external input in the form of the  Tangent function for 
representing both the Sine and Cosine function, "𝑞 = 1"  thereby bringing the total number of 
auxiliary variables in the entire initially assumed expansion to six.  
 
For this selection of parameters, the corresponding  IAMPT  for solving this second order  ODE  
can be expanded as: 

(1).  Primary Expansion: 

         𝐹 =   0  =    𝑎1𝑊1
𝑚1𝑊2

𝑚2 ∙∙∙ 𝑊6
𝑚6  +     𝑎2𝑊1

𝑚7𝑊2
𝑚8 ∙∙∙ 𝑊6

𝑚12   +  … +     

                                                                                      + … +    𝑎6𝑊1
𝑚31𝑊2

𝑚32 ∙∙∙ 𝑊6
𝑚36   (41) 

(2).  Secondary Expansion: 

        𝑑𝑥 =   𝑑𝑊1 
(42) 

        𝑑𝑦 =   𝑑𝑊2 
(43) 

        𝑁1𝑑𝑥    +   𝑁2𝑑𝑦   =   𝑁3𝑑𝑊3 (44) 

        𝑁4𝑑𝑥    +    𝑁5𝑑𝑦   =   𝑁6𝑑𝑊4 (45) 

        𝑁7𝑑𝑥    +    𝑁8𝑑𝑦   =   𝑁9𝑑𝑊5 (46) 

        𝑁10𝑑𝑥  +    𝑁11𝑑𝑦  =   𝑁12𝑑𝑊6 (47) 

 

where:  

 

N1   =    b1W1
m1W2

m2 ∙∙∙ W6
m6     +  … +    b4W1

m19W2
m20 ∙∙∙ W6

m24   
 

(48) 

N2   =    b5W1
m25W2

m26 ∙∙∙ W6
m30   + … +    b8W1

m45W2
m46 ∙∙∙ W6

m48 (49) 
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                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

N9   =    b33W1
m193W2

m194 ∙∙∙ W6
m198   +  … +    b36W1

m211W2
m212 ∙∙∙ W6

m216  (50) 

 

To account for the presence of both the Sine and Cosine function inside the ODE we must 
define the following  three multivariate polynomials with  known  coefficient values: 
 

 

N10  =   0  (51) 

N11  =   1 +  Wp+1
2  =   1 +   W6

2    (52) 

and : 
 

N12  =   2 (53) 

 

We can compute the total number of unknowns to solve for  in our  IAMPT  using the following 
general  formula with  "𝑝 = 5",  "𝑢𝑃 = 6",  "𝑢𝑠 = 4"  and   "𝑞 = 1"  : 

                                NTotal  =   NPrimary  +  NSecondary   (54) 

              =   𝑢𝑃(𝑝 + 𝑞 + 1)    +   3 𝑢𝑆(𝑝 + 𝑞 + 1)(𝑝 − 2)   (55) 

          =   6(5 + 1 + 1)    +   3(4)(5 + 1 + 1)(5 − 2)   (56) 
 

               =   6(7)   +   12(7)(3)  =  42   +   252  =  294   
 

(57) 
 

We can express the entire  ODE  in terms of the following single large multivariate polynomial by 
taking its complete Multivariate Polynomial Transform using equation (35), (36)  and  (37): 
 

𝑊2

𝑑2𝑌

𝑑𝑋2
   −    (

𝑑𝑌

𝑑𝑋
)

2

 { 1  −   
𝑑𝑌

𝑑𝑋
(

2𝑊𝑝+1

1 + 𝑊𝑝+1
2 )  −   𝑊2

𝑑𝑌

𝑑𝑋
(
1 − 𝑊𝑝+1

2

1 + 𝑊𝑝+1
2 ) }   =   0 

 

(58) 

where we have selected: 

       𝑊1  =   𝑋 
(59) 

       𝑊2  =   𝑌 
(60) 

and where capital letters are used to indicate that a transformation from rectangular to complete 
multivariate polynomial form has taken place.  
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A very general formula for calculating the first derivative of  a general IAMPT  may be defined as: 

               
 𝑑𝑌

𝑑𝑋
 =   

𝑃1

𝑄1
 =    −

𝜕𝐹

𝜕𝑊1
 ∏ 𝑁3𝑘  −   ∑ {𝑁3𝑗−8

𝜕𝐹

𝜕𝑊𝑗
∏ 𝑁3𝑘

𝑝+𝑞−2

𝑘=1
𝑘≠𝑗−2

}  

𝑝+𝑞

𝑗=3

𝑝+𝑞−2

𝑘=1

 

 
 
(61) 

                                                    _________________________________________ 

 

                                
𝜕𝐹

𝜕𝑊2
 ∏ 𝑁3𝑘   +   ∑ {𝑁3𝑗−7

𝜕𝐹

𝜕𝑊𝑗
∏ 𝑁3𝑘

𝑝+𝑞−2

𝑘=1
𝑘≠𝑗−2

}

𝑝+𝑞

𝑗=3

𝑝+𝑞−2

𝑘=1

 

where both  𝑃1  and   𝑄1  are each defined as a multivariate polynomial. 

By expressing this equation in the following form: 

  
 𝑑𝑌

𝑑𝑋
𝑄1  −   𝑃1  =   0 (62) 

 
we can numerically determine the second and higher derivatives of  the dependent variable by 
successively differentiating both sides of this equation using the product rule and the general 
formula provided in equation (61). 

Section 6 describes an exact computational method for calculating the various derivative of a 
product of two or more expressions using the Multinomial Expansion Theorem without resorting to  
any type of  symbolic algebraic manipulation. 

Our system of nonlinear simultaneous equations of interest to solve for is obtained by first taking 
the various derivatives of equation (58) that represents the ODE in complete multivariate 
polynomial form.   This would include the various derivatives of each auxiliary variable that define 
the  Multivariate Polynomial Transform of the single external input as provided in equations (37) 
through (40)  which are  "W2"  and  "Wp+1". 

Next, we replace the various derivatives of the dependent variable in equation (58) with the 
computed values obtained  from the various derivatives of our  IAMPT  using equations (61)  and  
(62). 

The resultant nonlinear simultaneous equations can then be numerically solved for using various 
optimization technics where our objective function to be minimized would be represented as the 
sum of the squares of each of the various derivatives of equation (58): 

𝐺𝑛  =  
𝑑𝑛

𝑑𝑥𝑛
[𝑊2

𝑑2𝑌

𝑑𝑋2
   −    (

𝑑𝑌

𝑑𝑋
)
2

 {1  −   
𝑑𝑌

𝑑𝑋
(

2𝑊𝑝+1

1 + 𝑊𝑝+1
2 )  −   𝑊2

𝑑𝑌

𝑑𝑋
(
1 − 𝑊𝑝+1

2

1 + 𝑊𝑝+1
2 )}]   

 

(63) 

Our main objective function to  minimize would thus be represented as: 

 𝐹 =   ∑𝐺𝑛
2

𝑛

   (64) 

 

 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

100



 

By succeeding in completely minimizing the above objective function to zero, the corresponding 
inverse Multivariate Polynomial Transform  would define an exact analytical solution of the  ODE  
that would satisfy a completely random set of  initial conditions.  Such a type of analytical solution  
obtained was earlier described as an instance solution.  Any numerical solution set that would 
depart from this minima would represent only an approximation of the actual exact analytical 
solution of the  ODE.  The further away we are from this minima, the greater will be the error of 
approximation between the exact analytical solution and the one arrived at. 

As we are only interested in obtaining as many exact instance solutions as possible each satisfying 
their own very unique initial conditions when  solving for these nonlinear simultaneous equations, 
we must treat all initial values of the auxiliary variables as unknown coefficients to solve for in 
order to achieve the highest numerical solution set rate possible.  It is the initial values of each 
auxiliary variable defined from the exact integration of a Secondary Expansion that when 
substituted into the Primary Expansion would completely define the initial conditions of a  DE or a 
system of  DEs.   Keep in mind that our primary objective in this type of analysis is to acquire as 
many instance solutions as possible so that by applying a unique method of conjecture, we would 
be able to arrive at a more  generalized version of the closed form solution satisfying a  DE or a 
system of  DEs. 

For solving these nonlinear simultaneous equations using an optimization technic,  all gradient 
calculations can become fairly complex quite often leading to very unpredictable results.  A 
preferred method of optimization that generally does not require any type of gradient calculations is 
the pattern search method as described in the book by  [Adby and Dempster 1974]. 

All calculations involving very high order partial derivatives of an IAMPT require a great deal 
amount of precision and thus not recommended to be performed on a regular PC.  Instead, the entire 
computational process would become more manageable if it were conducted on a very advanced 
super computer system.  

Future generations of computer hardware may begin to take full advantage of the multistate 
quantum bit (or Qubit) technology originating from the principles of quantum physics as they are 
expected to become much more powerful than the conventional types that operate only on the 
principle of two states being a 0 or 1.  Over time the semi conductor industry that currently powers 
our conventional computers will eventually reach its own physical limitations in terms of its ability 
for designing super fast switching devices.  Some estimate that because of the multi state capability 
of a Qubit, it would succeed in outperforming even the most powerful conventional super computer 
of our time in the billion-fold under the most demanding condition of computational requirements. 

Upon the gathering of as many numerical solution sets of the nonlinear simultaneous equations as 
possible, the next step to follow afterwards is in the complete construction of an NCSA  table that 
would be very specific to the  particular DE  or system of  DEs  being solved for. 

For solving our second order ODE, we were able to acquire a large number of instance solutions 
each satisfying its own very unique set of initial conditions that would also become the initial 
conditions of the ODE as well.   The greater the number of instance solutions that can be gathered 
and fully documented accordingly, the greater is the amount of information that can be made 
available for facilitating the entire process of deducing by conjecture the complete general exact 
analytical solution of the second order  ODE.  
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The  NCSA  table for our example of  a second order  ODE  would therefore appear as follow: 

 

𝑦
𝑑2𝑦

𝑑𝑥2
    −    (

𝑑𝑦

𝑑𝑥
)
2

 {1  −   
𝑑𝑦

𝑑𝑥
𝑆𝑖𝑛(𝑦)   −    𝑦

𝑑𝑦

𝑑𝑥
𝐶𝑜𝑠(𝑦)}   =    0 

 

 

Initial                                     Coefficient                       Exact analytical solution 

Conditions                              Values                             obtained using the Multivariate         

                                                                                        Polynomial Transform method 

 

x0    = −1.28                               N/A                             𝐶𝑜𝑠(𝑦)  +   𝑥 +   1.662  −  0.778 𝑙𝑛(𝑦)  
y0    =  1.591                                                                

x0    =  0.2473                             N/A                            𝐶𝑜𝑠(𝑦)  +   𝑥  −  0.111   +   3.138 𝑙𝑛(𝑦)  
y0    =  0.76                                      

x0    =  −3.2542                          N/A                           𝐶𝑜𝑠(𝑦) +   𝑥  +  2.662   +  1.267 𝑙𝑛(𝑦)  
y0    =  1.442                                      

x0    =  1.2223                              N/A                           𝐶𝑜𝑠(𝑦)  +   𝑥  +  0.579   −  0.778 𝑙𝑛(𝑦)  
y0    =  3.865                                    

x0    =  −0.837                             N/A                           𝐶𝑜𝑠(𝑦)  +   𝑥  −  1.051   +  2.817 𝑙𝑛(𝑦)  
y0    =  2.691                                    

x0    =  −1.668                             N/A                           𝐶𝑜𝑠(𝑦)  +   𝑥  −  0.871   +  4.511 𝑙𝑛(𝑦)  
y0    =  1.877                                     
 

Table 4.1 

 

Based entirely on the information provided in this table and following the same basic procedure as 
was done in our first example for a first order ODE, a plausible conjecture for the exact analytical 
solution of this second order  ODE  satisfying all initial conditions would be:   

𝑓(𝑥, 𝑦)   =   0  =   𝐶𝑜𝑠(𝑦)   +   𝑥  +   𝐴1    +  𝐴2 𝑙𝑛(𝑦)  (65) 

where  "A1 "  and  "A1"  are each defined as a constant of integration. 
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5.  Complete numerical example for a second order  PDE 

For PDEs and for systems of  ODEs as well as for system of  PDEs,  the  NCSA  table is always 
constructed in pretty much the same way as we did for the first order ODE described in the first 
example.  In all cases involved, we always allow for the initial conditions of a DEs or a system of  
DEs  to become part of the unknown coefficients to solve for as originally defined from within an  
IAMPT. 

In the following example, we have randomly selected a second order  PDE and provided a complete 
step by step process for arriving at its complete exact analytical solution satisfying all initial 
conditions. 

Example (5.1). For the following second order PDE : 

𝑥2 (
𝜕2𝑧

𝜕𝑥1𝜕𝑥2
)  −   

𝜕𝑧

𝜕𝑥1
    −  𝑥1𝑥2

2𝑆𝑖𝑛(𝑥1𝑥2)   =   0 (66) 

there is only one external input that is defined in terms of the  Sine  function.   

As we did in our previous example for a second order ODE, we can use the following trigonometric 

identity for expressing the  Sine  function as a rational combination of the tangent function: 

 

𝑓(𝑥1, 𝑥2)  =   𝑆𝑖𝑛(𝑥1𝑥2)  =   
2𝑇𝑎𝑛(𝑥1𝑥2/2)

1  +    𝑇𝑎𝑛2(𝑥1𝑥2/2)
  (67) 

Based on the use of this half angle formula for the Tangent function, we begin by selecting a much 
simpler alternative representation for the  Sine  function by defining: 

𝐻(𝑥1, 𝑥2)  =    𝑊𝑝+1   =    𝑇𝑎𝑛(𝑥1𝑥2/2)  =   𝑇𝑎𝑛(𝑊2𝑊3/2) (68) 

where  "𝑝"  is the total number of arbitrarily defined auxiliary variables from the  IAMPT  that will 
be selected for solving this second order  PDE. 

For this choice of auxiliary variable the corresponding Multivariate Polynomial Transform would 
be defined  as follow: 

(1).  Primary Expansion: 

         𝐻(𝑊𝑝+1)  =   𝑊𝑝+1 

 

(69) 

(2).  Secondary Expansion: 

         0 ∙ 𝑑𝑧  +    (1 + 𝑊𝑝+1
2 )𝑊3𝑑𝑥1   +   (1 + 𝑊𝑝+1

2 )𝑊2𝑑𝑥2  =    2𝑑𝑊𝑝+1  (70) 

 

where we have selected: 

       𝑊1  =   𝑧 
(71) 

       𝑊2  =   𝑥1 
(72) 

and: 

       𝑊3  =   𝑥2 (73) 
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We can arbitrarily select our  IAMPT  as consisting of a maximum of  eight arbitrarily defined 
auxiliary variables so that   "𝑝 = 8".   There will be a total number of  eight  terms  in the Primary 
Expansion so that  "𝑢𝑃 = 8"  and  a total number of  four terms in the Secondary Expansion  so that  
"𝑢𝑆 = 4".  Because there is only one external input in the form of the  Tangent  function for 
representing only the Sine function, "𝑞 = 1"  thereby bringing the total number of auxiliary 
variables in the entire initially assumed expansion to  nine.  

For this selection of parameters, the corresponding  IAMPT for solving this second order  PDE  can 
be expanded as: 

 (1).  Primary Expansion: 

         𝐹 =   0  =    𝑎1𝑊1
𝑚1𝑊2

𝑚2 ∙∙∙ 𝑊9
𝑚9  +     𝑎2𝑊1

𝑚10𝑊2
𝑚11 ∙∙∙ 𝑊9

𝑚18   +  … +     

                                                                                               + … +    𝑎8𝑊1
𝑚64𝑊2

𝑚65 ∙∙∙ 𝑊9
𝑚72   

 

(74) 

(2).  Secondary Expansion: 

        𝑑𝑧   =   𝑑𝑊1 (75) 

        𝑑𝑥1  =   𝑑𝑊2 (76) 

        𝑑𝑥2  =   𝑑𝑊3 (77) 

        𝑁1𝑑𝑧    +    𝑁2𝑑𝑥1     +    𝑁3𝑑𝑥2    =   𝑁4𝑑𝑊4 (78) 

        𝑁5𝑑𝑧    +   𝑁6𝑑𝑥1     +    𝑁7𝑑𝑥2    =   𝑁8𝑑𝑊5 (79) 

        𝑁9𝑑𝑧    +   𝑁10𝑑𝑥1   +    𝑁11𝑑𝑥2   =   𝑁12𝑑𝑊6 (80) 

        𝑁13𝑑𝑧   +    𝑁14𝑑𝑥1   +   𝑁15𝑑𝑥2  =   𝑁16𝑑𝑊7 (81) 

        𝑁17𝑑𝑧   +    𝑁18𝑑𝑥1   +   𝑁19𝑑𝑥2  =   𝑁20𝑑𝑊8 (82) 

        𝑁21𝑑𝑧   +   𝑁22𝑑𝑥1   +    𝑁23𝑑𝑥2  =   𝑁24𝑑𝑊9 (83) 

where : 

          𝑁1   =    𝑏1𝑊1
𝑚1𝑊2

𝑚2 ∙∙∙ 𝑊9
𝑚9     + … +    𝑏4𝑊1

𝑚28𝑊2
𝑚29 ∙∙∙ 𝑊9

𝑚36   (84) 

  

          𝑁2   =    𝑏5𝑊1
𝑚37𝑊2

𝑚38 ∙∙∙ 𝑊9
𝑚45   +  … +    𝑏8𝑊1

𝑚64𝑊2
𝑚65 ∙∙∙ 𝑊9

𝑚72 (85) 

                    .                                                .                                                      . 

                    .                                                .                                                      . 

                    .                                                .                                                      . 

          𝑁20   =    𝑏77𝑊1
𝑚685𝑊2

𝑚686 ∙∙∙ 𝑊9
𝑚693   +  … +    𝑏80𝑊1

𝑚712𝑊2
𝑚713 ∙∙∙ 𝑊9

𝑚720   
 

(86) 

 
To account for the presence of the Sine function inside the PDE we must define the 
following  three multivariate polynomials with  known  coefficient values: 

 
 
 

 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

104



 

N21  =   0  (87) 

N22  =   (1 + Wp+1
2 )𝑊3  =   (1 + W9

2)𝑊3  (88) 

N23  =   (1 + Wp+1
2 )𝑊2  =   (1 + W9

2)𝑊2   (89) 

and : 
 
N24  =   2 (90) 

We can compute the total number of unknowns to solve for  in our  IAMPT  using the following 

general  formula with  "𝑛 = 2",  "𝑝 = 8",  "𝑢𝑃 = 8",  "𝑢𝑠 = 4"  and   "𝑞 = 1"  : 

                         𝑁𝑇𝑜𝑡𝑎𝑙  =   𝑁𝑃𝑟𝑖𝑚𝑎𝑟𝑦  +   𝑁𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦   (91) 

                      =   𝑢𝑃(𝑝 + 𝑞 + 1)    +    𝑢𝑆(𝑝 + 𝑞 + 1)(𝑛 + 2)(𝑝 − 𝑛 − 1)   (92) 

              =   8(8 + 1 + 1)  +   4(8 + 1 + 1)(2 + 2)(8 − 2 − 1)   (93) 

             =   8(10)   +   4(10)(4)(5)  =  80  +    800  =   880   (94) 

As in the case for the second order ODE,  the entire PDE may be expressed in terms of the 
following single large multivariate polynomial by taking its complete Multivariate Polynomial 
Transform using equations (68) through (73): 
 

𝑊3 (
𝜕2𝑍

𝜕𝑊2𝜕𝑊3

)  −    
𝜕𝑍

𝜕𝑊2

  −   2𝑊2𝑊3
2 (

𝑊𝑝+1

1 + 𝑊𝑝+1
2 )  =   0 

 

(95) 

where we have selected: 

𝑊1  =   𝑧 (96) 

𝑊2  =   𝑥1 (97) 

𝑊3  =   𝑥2 (98) 

 
and where capital letters are used to indicate that a transformation to complete multivariate 
polynomial form has taken place.  

A very general formula for calculating the first partial derivative of  our IAMPT that is based on the 
use of the product rule and the Multinomial Expansion Theorem can also be derived in a very 
similar manner as was done in our last example of a second order  ODE  which was provided in  
equation (61).  

Our system of nonlinear simultaneous equations of interest to solve for is obtained by first taking 
the various partial derivatives of equation (95) that represents the PDE in complete multivariate 
polynomial form.   This would include the various partial derivatives of each auxiliary variable that 
define the  Multivariate Polynomial Transform of the single external input as provided in equations 
(68) through (73)  which are  "W2", "W3"  and  "Wp+1". 

Next, we replace the various partial derivatives of the dependent variable in equation (95) with the 
computed values obtained  from the various partial derivatives of our  IAMPT. 

The resultant nonlinear simultaneous equations can then be numerically solved for using various 
optimization technics where our objective function to be minimized would be represented as the 
sum of the squares of each of the various partial derivatives of equation (95): 
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𝐺𝑖  =   
𝜕𝑚1

𝜕𝑊2
𝑚1

  
𝜕𝑚2

𝜕𝑊3
𝑚2

 
𝜕𝑚3

𝜕𝑊4
𝑚3

  …   
𝜕𝑚𝑘

𝜕𝑊𝑝+1

𝑚𝑘
 … {𝑊3 (

𝜕2𝑍

𝜕𝑊2𝜕𝑊3

)  −    
𝜕𝑍

𝜕𝑊2

  −   2𝑊2𝑊3
2 (

𝑊𝑝+1

1 + 𝑊𝑝+1
2 )}  =   0 

 

(99) 

Our main objective function to  minimize would  therefore  be represented as: 

 𝐹 =   ∑𝐺𝑖
2

𝑖

   (100) 

By succeeding in completely minimizing the above objective function to zero, the corresponding 
inverse Multivariate Polynomial Transform  would define an exact analytical solution of the  PDE  
that would satisfy a completely random set of  initial conditions.  Such a type of analytical solution  
obtained was earlier described as an instance solution.  Any numerical solution set that would 
depart from this minima would represent only an approximation of the actual exact analytical 
solution of the  PDE.  The further away we are from this minima, the greater will be the error of 
approximation between the exact analytical solution and the one arrived at. 

As we are only interested in obtaining as many exact instance solutions as possible each satisfying 
their own very unique initial conditions when  solving for these nonlinear simultaneous equations, 
we must treat all initial values of the auxiliary variables as unknown coefficients to solve for in 
order to achieve the highest numerical solution set rate possible.  It is the initial values of each 
auxiliary variable defined from the exact integration of a Secondary Expansion that when 
substituted into the Primary Expansion would completely define the initial conditions of a  DE or a 
system of  DEs.   Keep in mind that our primary objective in this type of analysis is to acquire as 
many instance  solutions as possible so that by applying a unique method of conjecture, we would 
be able to arrive at a more  generalized version of the closed form solution satisfying a  DE or a 
system of  DEs. 

For solving these nonlinear simultaneous equations using an optimization technic,  all gradient 
calculations can become fairly complex quite often leading to very unpredictable results.  A 
preferred method of optimization that generally does not require any type of gradient calculations is 
the pattern search method as described in the book by  [Adby and Dempster 1974]. 

All calculations involving very high order partial derivatives of an IAMPT require a great deal 
amount of precision and thus not recommended to be performed on a regular PC.  Instead, the entire 
computational process would become more manageable if it were conducted on a very advanced 
super computer system.  

Upon the gathering of as many numerical solution sets of the nonlinear simultaneous equations as 
possible, the next step to follow afterwards is in the complete construction of an NCSA  table that 
would be very specific to the particular DE  or system of  DEs  being solved for. 

For solving our second order PDE, we were able to acquire a large number of instance solutions 
each satisfying its own very unique set of initial conditions that would also become the initial 
conditions of the  PDE as well.   The greater the number of instance solutions that can be gathered 
and fully documented accordingly, the greater is the amount of information that can be made 
available for facilitating the entire process of deducing by conjecture the complete general exact 
analytical solution of the second order  PDE.  
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The NCSA table for our example of  a second order  PDE  would therefore appear as follow: 

𝑥2 (
𝜕2𝑧

𝜕𝑥1𝜕𝑥2
)  −   

𝜕𝑧

𝜕𝑥1
    −   𝑥1𝑥2

2𝑆𝑖𝑛(𝑥1𝑥2)   =   0 

 
Initial                       Coefficient                               Exact analytical solution obtained using the  

Conditions               Values                                      Multivariate  Polynomial Transform method       

                                                                                          

 𝑥01   =  3.61                    𝑁/𝐴                                        2𝑥2𝑥1
1.68   +   𝑆𝑖𝑛(ln[𝑥2

−1.6] + 𝑥2
0.78)  −   𝑆𝑖𝑛(𝑥1𝑥2)  −   𝑧   =   0 

 𝑥02   =  1.771                                                                                           
                                                                                                   

 𝑥01   =   1.29                   𝑁/𝐴                    𝑥2 √𝑥1
0.23 + 1.78

6
  +  1.22 ln (√𝑥2

2 + 1 + 3.5 ) −  𝑆𝑖𝑛(𝑥1𝑥2)  −   𝑧   =   0 

 𝑥02   =  −1.88             
 

 𝑥01   =   3.555                𝑁/𝐴                  0.56𝑥2𝑒
𝑥1

−0.46
−  4.6𝑇𝑎𝑛(𝑥2

1.86 + √𝑥2
1.1 − 6.1

4
)   −   𝑆𝑖𝑛(𝑥1𝑥2)  −   𝑧   =   0 

 𝑥02   =   2.76                                                                                           
                                                                                         

 𝑥01   =  −0.723              𝑁/𝐴                                 3.06𝑥2𝑆𝑖𝑛ℎ(𝑥1
2)   −  2.45𝑥2

1.46√𝑥2
3.1−2.3

−   𝑆𝑖𝑛(𝑥1𝑥2)   −   𝑧   =   0 

 𝑥02   =   1.58             
                             

Table 5.1 
 

Based entirely on the information provided in the above table, there appears to be no obvious 
patterns by which a plausible conjecture for the exact analytical solution of this second order PDE  
satisfying all initial conditions can be made.   

The main reason for this is that the exact analytical solution consists of a number of expressions that 
are completely arbitrarily defined.  This would call for the development of a very sophisticated 
method of comparison analysis just for identifying those arbitrary expressions that are present in all 
of the instance solutions obtained.  Some of these arbitrarily defined expressions may be easier to 
detect than others for establishing a plausible conjecture by which a complete  analytical solution of 
the  PDE  satisfying all initial conditions may be arrived at. 

In the final analysis, all results would be pointing towards the following expression as representing 
the complete exact analytical solution of the  PDE  satisfying all initial conditions:  
 

𝑓(𝑧, 𝑥1, 𝑥2) =   0 =   𝑥2𝜑1(𝑥1)   +   𝜑2(𝑥2)  −   𝑆𝑖𝑛(𝑥1𝑥2)  −   𝑧     (101) 

where upon conducting such a type of special method of comparison analysis, each of the 
expression for  "𝜑1(𝑥1) "  and  "𝜑2(𝑥2)"  would eventually have been singled out in the end as 
completely arbitrarily defined. 

Once again it is very important to mention that without having constructed the  NCSA  table it 
would have been virtually impossible to have correctly arrived at the complete  general analytical 
solution of this second order  PDE  satisfying all initial conditions.    
 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

107



 

6.  Exact computational method  for calculating the various derivatives and partial derivatives 
     of  an  initially assumed  Multivariate Polynomial Transform (IAMPT) 

The method of substituting an  IAMPT  into a DE or a system of  DEs for defining a valid system of  
nonlinear simultaneous equations to solve for requires that the numerical values of each of the 
various derivatives of the DE or system of  DEs become equal to that of an IAMPT.  An alternative 
method is to substitute an  IAMPT  into a DE or a system of  DEs and afterwards equating like 
multivariate polynomial terms to zero.  However, this would result into defining a completely 
invalid system of  nonlinear simultaneous equations to solve for as it would automatically impose a 
major restriction on each auxiliary variable for becoming totally independent from one another.  
The evidence is clearly provided in  Appendix A  where as you will notice that for the vast majority 
of  the cases involved, it is always necessary to maintain a certain degree of dependency among 
auxiliary variables especially when very complex mathematical equations are involved. 

The actual process of computing the  exact  values for the various derivatives and partial derivatives 
of an IAMPT to any desirable order of differentiation without any loss of accuracy whatsoever can 
always be reduced at a computational level.  The reason for this is that we take full advantage of a 
well known fact in numerical analysis that taking the various derivatives of a product of several 
expressions is very much similar to  algebraically expanding to some exponent value the sum of 
several terms.  The only major difference between the two is that in the case of differentiation, 
exponentiation becomes treated purely as an order of differentiation while all the remaining 
algebraic operations remain completely identical.   

 
For the simple case of differentiating a product involving only two expressions, this would require  
the use of the  Binomial Expansion Theorem  which is defined by: 

𝑑𝑛

𝑑𝑥𝑛
 𝑓𝑔  =  ∑ (

𝑛

𝑘
) 𝑓(𝑘)𝑔(𝑛−𝑘)

𝑛

𝑘=0

 (102) 

where: 

(
𝑛

𝑘
)  =  𝐵𝑛,𝑘 =  

𝑛!

𝑘! (𝑛 − 𝑘)!
   (103) 

are the binomial coefficients and where it is to be clearly understood that all exponent values are to 

be treated purely as order of differentiation. 

In complete expanded form, the various derivatives of a product consisting of two expressions can 
be symbolically defined as : 

[𝑓 + 𝑔](𝑛)  =   𝑓(0)𝑔(𝑛)  +   𝐵𝑛−1,1𝑓
(1)𝑔(𝑛−1)  +   𝐵𝑛−2,2𝑓

(2)𝑔(𝑛−2)   + … +  𝑓(𝑛)𝑔(0) (104) 

where the product is being substituted by the sum inside a square bracket and  "n"  is the order of 
differentiation. 

When a product always involves more than two expressions, we can instead replace the  Binomial 
Expansion Theorem  with the following  Multinomial Expansion Theorem: 
 

(𝑎1  +  𝑎2  + ⋯+  𝑎𝑘)
𝑛  =  ∑

𝑛!

𝑛1! 𝑛2! ∙∙∙ 𝑛𝑘!
𝑛1,𝑛2,…,𝑛𝑘≥0

𝑛1+𝑛2+⋯+𝑛𝑘=𝑛

  𝑎1
(𝑛1)

 𝑎2
(𝑛2)

 ∙∙∙  𝑎𝑘
(𝑛𝑘)

   (105) 

where  𝑛 =  𝑛1  +   𝑛2  +  … +  𝑛𝑘 
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For determining the various derivatives of a product involving any number of  expressions and in 
accordance  to our previously defined notation we can define: 

𝑑𝑛

𝑑𝑥𝑛
(𝑓1𝑓2 ∙∙∙ 𝑓𝑘)   =   [𝑓1  +   𝑓2  + ⋯+  𝑓𝑘]

(𝑛)                   (106) 

  

                                                            =  ∑
𝑛!

𝑛1! 𝑛2! ∙∙∙ 𝑛𝑘!
𝑛1,𝑛2,…,𝑛𝑘≥0

𝑛1+𝑛2+⋯+𝑛𝑘=𝑛

  𝑓1
(𝑛1)

 𝑓2
(𝑛2)

 ∙∙∙  𝑓𝑘
(𝑛𝑘)

   (107) 

where the square bracket is used to symbolize differentiation with all exponents treated as order of 
differentiation. 

 

Example (6.1).  To test the validity of our symbolic notation, let us consider the simple two 
dimensional case for calculating the various derivatives up to the 5

th
 order  at  "x = 2"  for the 

following equation: 

𝑦 =   𝑒2𝑥  =  𝑒−𝑥𝑒0.5𝑥𝑒2.5𝑥 (108) 

  

Here we can start by letting: 

 

 f1 = e−x,    f2 = e0.5x  and    f3 = e2.5x   (109) 

so that each of their various derivatives up to  5  may be defined as: 

𝑓1
(0)

= e−x,   𝑓2
(0)

= e0.5x    and    𝑓3
(0)

= e2.5x    (110) 

𝑓1
(1)

= −e−x,   𝑓2
(1)

= 0.5e0.5x   and    𝑓3
(1)

= 2.5e2.5x    (111) 

𝑓1
(2)

= e−x,    𝑓2
(2)

= 0.25e0.5x   and    𝑓3
(2)

= 6.25e2.5x    (112) 

𝑓1
(3)

= −e−x,   𝑓2
(3)

= 0.125e0.5x  and    𝑓3
(3)

= 15.625e2.5x    (113) 

𝑓1
(4)

= e−x,   𝑓2
(4)

= 0.0625e0.5x   and    𝑓3
(4)

= 39.0625e2.5x    (114) 

𝑓1
(5)

= −e−x,   𝑓2
(5)

= 0.03125e0.5x   and    𝑓3
(5)

= 97.65625e2.5x    (115) 

At  "x = 0.5"  we thus have: 

𝑓1
(0)

= e−0.5 = 0.607,   𝑓2
(0)

= e0.25 = 1.284   and    𝑓3
(0)

= e1.25 = 3.490  (116) 

𝑓1
(1)

= −e−0.5 = −0.607,   𝑓2
(1)

= 0.5e0.25 = 0.642   and    𝑓3
(1)

=  2.5e1.25 = 8.726    (117) 

𝑓1
(2)

= e−0.5 = 0.607,    𝑓2
(2)

= 0.25e0.25 = 0.321   and    𝑓3
(2)

= 6.25e1.25 = 21.815   (118) 

𝑓1
(3)

= −e−0.5 = −0.607,   𝑓2
(3)

= 0.125e0.25 = 0.161  and    𝑓3
(3)

= 15.625e1.25 =  54.537    (119) 

𝑓1
(4)

= e−0.5 = 0.607,   𝑓2
(4)

= 0.0625e0.25 = 0.080  and    𝑓3
(4)

=  39.0625e1.25 = 136.342   (120) 

𝑓1
(5)

= −e−0.5 = −0.607,   𝑓2
(5)

= 0.03125e0.25 = 0.040  and    𝑓3
(5)

= 97.65625e1.25 = 340.854    (121) 
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Applying the Multinomial Expansion Theorem on these three individual components, we arrive at: 

𝑑5𝑦

𝑑𝑥5
  =   [𝑓1  +   𝑓2  + 𝑓3]

(5)   =  ∑
𝑛!

𝑛1! 𝑛2! 𝑛3!𝑛1,𝑛2,𝑛3≥0
𝑛1+𝑛2+𝑛3=5

  𝑓1
(𝑛1)

  𝑓2
(𝑛2)

 𝑓3
(𝑛3)

               

 

(122) 

=      (1)(-0.607)(1.284)(3.490)  +  (5)(0.607)(0.642)(3.490)  +  (10)(-0.607)(0.321)(3.490)  +  (10)(0.607)(0.161)(3.490)  +   

        (5)(-0.607)(0.080)(3.490)  +  (1)(0.607)(0.040)(3.490)  +  (5)(0.607)(1.284)(8.726)  +  (20)(-0.607)(0.642)(8.726)  +   

        (30)(0.607)(0.321)(8.726)  +  (20)(-0.607)(0.161)(8.726)  +  (5)(0.607)(0.080)(8.726)  +  (10)(-0.607)(1.284)(21.815)  +   

        (30)(0.607)(0.642)(21.815)  +  (30)(-0.607)(0.321)(21.815)  +  (10)(0.607)(0.161)(21.815)  +  (10)(0.607)(1.284)(54.537)  +   

        (20)(-0.607)(0.642)(54.537)  +  (10)(0.607)(0.321)(54.537)  +  (5)(-0.607)(1.284)(136.342)  +  (5)(0.607)(0.642)(136.342)  +   

       (1)(0.607)(1.284)(340.854)   (123) 

where there are a total number of  21  terms satisfying the criteria  that   "𝑛1, 𝑛2, 𝑛3 ≥ 0"   and  
 "𝑛1 + 𝑛2 + 𝑛3 = 5". 

 

We can define the  multinomial coefficient vector  has having a total number of  21 elements and 
these are: 

𝐶𝑀 =  [ 1, 5, 10, 10, 5, 1, 5, 20, 30, 20, 5, 10, 30, 30, 10, 10, 20, 10, 5, 5, 1 ] (124) 

We can also define the  multinomial exponent vector  as also consisting of  21 elements and they 

are:  

𝐸𝑀 = [500, 410, 320, 230, 140, 050, 401, 311, 221, 131, 041, 302, 212, 122, 032, 203, 113, 023, 104, 014, 005] (125) 

By writing a short computer program for performing the arithmetical operation in equation (123) 
using equation (122) but with higher precision, the value obtained based on  the  Multinomial 
Expansion Theorem  was determined as   "𝟖𝟔. 𝟗𝟖𝟓𝟎𝟏𝟗". 

The 5
th

 derivative of   "𝑒2𝑥"  is   "25𝑒2𝑥"  so that at  "x = 0.5"  this value becomes  32𝑒2(0.5) =
32𝑒 =   𝟖𝟔. 𝟗𝟖𝟓𝟎 1851  which is roughly the same value as the one computed using the  
Multinomial Expansion Theorem  in equation (123). 
 

For calculating the various partial derivatives with respect to any number of independent 
variables involving any number of products of multivariate expressions, the Multinomial Expansion 
Theorem  is still applicable but with some minor modifications of the general formula that was 
derived for the  two dimensional case. 

The various partial derivatives of a product of several multivariate expressions may be written in a 
more general form as: 
 

𝜕𝑚1

𝜕𝑥1
𝑚1

  
𝜕𝑚2

𝜕𝑥2
𝑚2

 
𝜕𝑚3

𝜕𝑥3
𝑚3

  …   
𝜕𝑚𝑘

𝜕𝑥𝑗
𝑚𝑘

 [𝑓1(𝑥1, 𝑥2, … ,   𝑥𝑗) ∙  𝑓2(𝑥1, 𝑥2, … ,   𝑥𝑗) ∙∙∙ 𝑓𝑖(𝑥1, 𝑥2, … ,   𝑥𝑗)]   
 
(126) 

  

which can symbolically be expanded as: 
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[ 𝑓1
(0)

+ 𝑓2
(0)

+ …+ 𝑓𝑖
(0)

 ]
1(𝑚1)

𝑚1
  ∆    [ 𝑓1

(0)
+ 𝑓2

(0)
+ …+ 𝑓𝑖

(0)
 ]

2(𝑚2)

𝑚2
        ∆   ∙∙∙   ∆   

                                                                                             ∆   ∙∙∙   ∆       [ 𝑓1
(0)

+ 𝑓2
(0)

+ …+ 𝑓𝑖
(0)

]
𝑗(𝑚𝑘)

𝑚𝑘
 (127) 

where  "∆"    is a special operator that is used to mimic the process of algebraically expanding  term 
by term  the product of two or more expressions with the only exception that all exponents are to  be 
treated as order of differentiation. 

In complete notational form using the Multinomial Expansion Theorem this may be rewritten as: 

[
 
 
 

 ∑
𝑛!

𝑛1! 𝑛2! ∙∙∙ 𝑛𝑘!
 

𝑛1,𝑛2,…,𝑛𝑖≥0
𝑛1+𝑛2+⋯+𝑛𝑖=𝑚1

  𝑓1,1(𝑛1)
(𝑛1)

 𝑓2,1(𝑛2)
(𝑛2)

 ∙∙∙  𝑓𝑖,1(𝑛𝑖)
(𝑛𝑖)

]
 
 
 

  ∆    

 

                   

[
 
 
 

 ∑
𝑛!

𝑛1! 𝑛2! ∙∙∙ 𝑛𝑘!
 

𝑛1,𝑛2,…,𝑛𝑖≥0
𝑛1+𝑛2+⋯+𝑛𝑖=𝑚2

  𝑓1,2(𝑛1)
(𝑛1)

 𝑓2,2(𝑛2)
(𝑛2)

 ∙∙∙  𝑓𝑖,2(𝑛𝑖)
(𝑛𝑖)

]
 
 
 

           ∆   ∙∙∙   ∆   

 

     

[
 
 
 

 ∑
𝑛!

𝑛1! 𝑛2! ∙∙∙ 𝑛𝑘!
 

𝑛1,𝑛2,…,𝑛𝑖≥0
𝑛1+𝑛2+⋯+𝑛𝑖=𝑚𝑘

  𝑓1,𝑗(𝑛1)
(𝑛1)

 𝑓2,𝑗(𝑛2)
(𝑛2)

 ∙∙∙  𝑓𝑖,𝑗(𝑛𝑖)
(𝑛𝑖)

]
 
 
 

 

 
 
 
 
 
(128) 

 

When expanding the various partial derivatives of a product of several multivariate expressions 
using the above notational form, it is very important to insure that  "all" the multivariate 
expressions present in "each product" are also "all"  present in "each term"  of  the resultant 
expansion. 

 

Example (6.2).  Based entirely on our  standard  notation for representing the various partial 

derivatives of a  product of  several multivariate expressions,  we will determine  " 
𝜕𝑓1𝑓2

𝜕𝑥1𝜕𝑥2
2"  where  

"𝑓1"  and  "𝑓2"   are each defined as  arbitrary multivariate function. 

 

𝜕3𝑓1𝑓2

𝜕𝑥1𝜕𝑥2
2   =   [𝑓1 + 𝑓2]1(1)

(1)
  ∆   [𝑓1 + 𝑓2]2(2)

(2)
  (129) 

 

                 =    [𝑓1,1(1)
(1)

 +   𝑓2,1(1)
(1)

]  ∆  [𝑓1,2(2)
(2)

 +   2𝑓1,2(1)
(1)

𝑓2,2(1)
(1)

+  𝑓2.2(2)
(2)

]     (130) 
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Algebraically performing a term by term symbolic multiplication by treating all exponent values as 
order of differentiation, we obtain: 

 

                 =    𝑓1,1(1)
(1)

𝑓1,2(2)
(2)

 +   2𝑓1,1(1)
(1)

𝑓1,2(1)
(1)

𝑓2,2(1)
(1)

 +   𝑓1,1(1)
(1)

𝑓2,2(2)
(2)

 +     

                                                                +    𝑓2,1(1)
(1)

𝑓1,2(2)
(2)

 +   2𝑓2,1(1)
(1)

𝑓1,2(1)
(1)

𝑓2,2(1)
(1)

+ 𝑓2,1(1)
(1)

𝑓2,2(2)
(2)

 (131) 

 

which in the conventional symbolic form may be translated as: 
 

       =    
𝜕3𝑓1

𝜕𝑥1𝜕𝑥2
2   +   2

𝜕2𝑓1
𝜕𝑥1𝜕𝑥2

 
𝜕𝑓2

𝜕𝑥2

  +    
𝜕𝑓1
𝜕𝑥1

𝜕2𝑓2

𝜕𝑥2
2   +    

𝜕2𝑓1

𝜕𝑥2
2

𝜕𝑓2

𝜕𝑥1

  +   2
𝜕𝑓1
𝜕𝑥2

 
𝜕2𝑓2

𝜕𝑥1𝜕𝑥2

  +   
𝜕3𝑓2

𝜕𝑥1𝜕𝑥2
2  (132) 

 

To insure that every term in the above expansion always contains the two functions that is being 
differentiated, we must  include  " 𝑓2"  and  "𝑓1"  in the first and last term of the expansion 
respectively.   

The final results are: 

                 =   
𝜕3𝑓1

𝜕𝑥1𝜕𝑥2
2 𝑓2   +  2

𝜕2𝑓1
𝜕𝑥1𝜕𝑥2

 
𝜕𝑓2

𝜕𝑥2

  +    
𝜕𝑓1
𝜕𝑥1

 
𝜕2𝑓2

𝜕𝑥2
2   +    

𝜕2𝑓1

𝜕𝑥2
2

𝜕𝑓2

𝜕𝑥1

  +    2
𝜕𝑓1
𝜕𝑥2

 
𝜕2𝑓2

𝜕𝑥1𝜕𝑥2

 +   𝑓1
𝜕3𝑓2

𝜕𝑥1𝜕𝑥2
2 (133) 

 

We can validate the use of our symbolic notations by performing the same operation manually and 
compare the results with the one obtained in the above equation: 
 

 
 𝜕2𝑓1𝑓2

𝜕𝑥2
2   =   

𝜕

𝜕𝑥2

 (
𝜕𝑓1
𝜕𝑥2

𝑓2  +   𝑓1
𝜕𝑓2

𝜕𝑥2

)   =   
𝜕2𝑓1

𝜕𝑥2
2 𝑓2  +   2 

𝜕𝑓1
𝜕𝑥2

 
𝜕𝑓2

𝜕𝑥2

 +   𝑓1
𝜕2𝑓2

𝜕𝑥2
2   

 
(134) 

𝜕3𝑓1𝑓2

𝜕𝑥1𝜕𝑥2
2  =  

𝜕

𝜕𝑥1

( 
𝜕2𝑓1𝑓2

𝜕𝑥2
2 )   =   

𝜕

𝜕𝑥1

(  
𝜕2𝑓1

𝜕𝑥2
2 𝑓2  +   2 

𝜕𝑓1
𝜕𝑥2

 
𝜕𝑓2

𝜕𝑥2

 +   𝑓1
𝜕2𝑓2

𝜕𝑥2
2 ) 

 
(135) 

 

         =    
𝜕3𝑓1

𝜕𝑥1𝜕𝑥2
2 𝑓2   +   

𝜕2𝑓1

𝜕𝑥2
2

𝜕𝑓2

𝜕𝑥1

  +   2
𝜕2𝑓1

𝜕𝑥1𝜕𝑥2

 
𝜕𝑓2

𝜕𝑥2

 +   2
𝜕𝑓1
𝜕𝑥2

 
𝜕2𝑓2

𝜕𝑥1𝜕𝑥2

   +  
𝜕𝑓1
𝜕𝑥1

 
𝜕2𝑓2

𝜕𝑥2
2  +   𝑓1

𝜕3𝑓2

𝜕𝑥1𝜕𝑥2
2  (136) 

 
 
As can be verified, the above expansion is exactly identical to the one in equation (133) thereby 
completely validating our standard use of special notations for taking the various partial derivatives 
of a product of several multivariate expressions.   

 
The greatest advantage for using this  notational convention is that it can reduce the entire process 
of determining the various partial derivatives of a product consisting of any number of expressions 
entirely on a  "computational level". 

In general, an IAMPT will always consist of multivariate polynomials as well as the differential of 
multivariate polynomials where each multivariate polynomial term will always be expressible as a 
product of several auxiliary variables.  For calculating the various derivatives and partial derivatives 
of an IAMPT would require that each of the products of several auxiliary variables be differentiated 
under the product rule.  So its therefore quite easy to visualize how the use of  the  Multinomial  
Expansion Theorem  would become a very valuable tool for computing the various derivatives and 
partial derivatives of an IAMPT  to any desirable degree of accuracy. 
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The complete development of all the formulas related to the calculations of the various derivatives 
and partial derivatives of an  IAMPT  for solving all types of  DEs  and  systems of  DEs is of 
course much beyond the scope of this paper.  However, this can always be made available to 
anyone by special request provided you contact me at either one of the following email addresses  
michelmikalajunas@bellnet.ca   or  at   jpnelson_mfc@yahoo.ca .  
 

7.  General  closed form solutions of the  Navier-Stokes equations by method of conjecture     
     involving the use of computational differential analysis 

The Navier-Stokes equations is the direct application of  Newton's second law of motion for the 
complete analysis of  both compressible and  incompressible fluids. 

For the case of incompressible flow and assuming constant viscosity, the equations may be 
described as follow:    

                                    Inertia          =     Pressure      +      Viscosity     +       Other 
                                                                  gradient                                             forces 

                  𝜌 (
𝜕𝐯

𝜕𝑡
  +   𝐯 ∙ ∇𝐯)    =      −∇𝑃        +       𝜇∇2𝐯       +          𝐹 

(137) 

 

along with the mass continuity equation which states that: 

𝜕𝜌

𝜕𝑡
   +    ∇ ∙ (𝜌𝐯)    =    0 (138) 

 
Since we will restrict our analysis to  incompressible  flow only,  the density is always assumed 
constant so that  the above equation may be rewritten as: 
                                     

 ∇ ∙ 𝐯 =   0 (139) 

 
By assuming that gravitational forces are the only external forces present, the vector equations in 
Cartesian coordinates expand as follow:  

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
)   =   −

𝜕𝑃

𝜕𝑥
  +   𝜇 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑢

𝜕𝑧2)   +   𝜌𝑔𝑥 

 

(140) 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
)    =   −

𝜕𝑃

𝜕𝑦
  +   𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
)   +   𝜌𝑔𝑦 

 

(141) 

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
)   =   −

𝜕𝑃

𝜕𝑧
  +   𝜇 (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 +
𝜕2𝑤

𝜕𝑧2 )  +   𝜌𝑔𝑧 (142) 

along with the mass continuity equation defined as: 

𝜕𝑢

𝜕𝑥
  +   

𝜕𝑣

𝜕𝑦
  +  

𝜕𝑤

𝜕𝑧
 =   0 (143) 

 

We would construct the  NCSA  table by defining the  variable coefficients as the fluid density "𝜌",  
the fluid dynamic viscosity  "𝜇"  and  the gravitational force components in the x, y and z direction.   
Since no external inputs are present in these equations other then the external forces due to  gravity 
then we can set  "q = 0"  in the  IAMPT  that will be selected for solving these vector equations. 
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In the Secondary Expansion of our IAMPT, the first set of auxiliary variables will be used for 
representing the dependent and independent variables in that order.  This will be followed by the 
remaining initially assumed auxiliary variables used for representing all basis functions in complete 
differential form that will be present in the exact analytical solution of  the system of  PDEs. 

Our IAMPT will be selected on the basis of solving the above system of  PDEs  in terms of a 
system of  implicitly defined equations that would consist only of the algebraic and elementary basis 
functions.  The various initial conditions possible for this type of  generalized flow are of course 
expected to be infinite.  So in order to maximize our numerical solution rate of the corresponding 
nonlinear simultaneous equations, we can  set all the coefficients defining the initial conditions in 
our  IAMPT  as part of the unknowns to solve for that would be represented by the initial values of 
each initially assumed auxiliary variable.  Other unknowns to solve for are the variable coefficients 
defined in our NCSA table as well as those present in both the Primary and Secondary Expansion 
of our  IAMPT. 

Over time, the NCSA table should eventually succeed in capturing from the numerical solution set 
of the  nonlinear simultaneous equations all those exact instance analytical solutions that would 
conform with experimental results obtained under controlled  laboratory conditions.  

It is only through the gathering of this type of information over a span of say many years or even 
many decades that a large number of generalized analytical solutions may potentially be uncovered.  
This would in the very long term enable us to acquire a far better understanding of general fluid 
behavior than having to depend entirely on the use of  laboratory experiments as a result of the non- 
integrability of many integrals that would  have originated from the use of conventional methods of 
pure mathematical analysis. 

 

In terms of  Cylindrical  coordinates this would be written as: 

𝜌 (
𝜕𝑢𝑟

𝜕𝑡
 + 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
 + 

𝑢𝜃

𝑟

𝜕𝑢𝑟

𝜕𝜃
 + 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧
 − 

𝑢𝜃
2

𝑟
 )   =   −

𝜕𝑃

𝜕𝑟
   +  

                                                                                              𝜇 [(
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑟

𝜕𝑟
) + 

1

𝑟2
 
𝜕2𝑢𝑟

𝜕𝜃2
 +  

𝜕2𝑢𝑟

𝜕𝑧2
 −

 𝑢𝑟

𝑟2
 −  

2

𝑟2

𝜕𝑢𝜃

𝜕𝜃
)]     +    𝜌𝑔𝑟 (144) 

𝜌 (
𝜕𝑢𝜃

𝜕𝑡
 + 𝑢𝑟

𝜕𝑢𝜃

𝜕𝑟
 + 

𝑢𝜃

𝑟

𝜕𝑢𝜃

𝜕𝜃
 +  𝑢𝑧

𝜕𝑢𝜃

𝜕𝑧
+ 

𝑢𝑟𝑢𝜃

𝑟
 )  =  −

1

𝑟

𝜕𝑃

𝜕𝜃
  +  

                                                                                                  𝜇 [(
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝜃

𝜕𝑟
)  +  

1

𝑟2
 
𝜕2𝑢𝜃

𝜕𝜃2
 +  

𝜕2𝑢𝜃

𝜕𝑧2
 −

 𝑢𝜃

𝑟2
+

2

𝑟2

𝜕𝑢𝑟

𝜕𝜃
)]   +    𝜌𝑔𝜃 (145) 

𝜌 (
𝜕𝑢𝑧

𝜕𝑡
 + 𝑢𝑟

𝜕𝑢𝑧

𝜕𝑟
 + 

𝑢𝜃

𝑟

𝜕𝑢𝑧

𝜕𝜃
 +  𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
)  =  −

𝜕𝑃

𝜕𝑧
  +   𝜇 [(

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑧

𝜕𝑟
) + 

1

𝑟2  
𝜕2𝑢𝑧

𝜕𝜃2  +  
𝜕2𝑢𝑧

𝜕𝑧2  )]    +   𝜌𝑔𝑧 
(146) 

along with the mass continuity equation defined as: 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟)   +  

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
  +  

𝜕𝑢𝑧

𝜕𝑧
  =   0 (147) 

 
 
Such a coordinate system may in some cases prove to be easier for the analysis of certain types of 
fluid motion that would mainly involve symmetry thereby allowing for the elimination of a velocity 
component.    
 
A very common case is axisymmetric flow where there is no tangential velocity (𝑢𝜃 = 0)  and the 
remaining quantities are independent of  θ: 
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𝜌 (
𝜕𝑢𝑟

𝜕𝑡
 +  𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
 + 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧
  )   =  −

𝜕𝑃

𝜕𝑟
  +   𝜇 [(

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑟

𝜕𝑟
) +  

𝜕2𝑢𝑟

𝜕𝑧2  −
 𝑢𝑟

𝑟2  )]    +   𝜌𝑔𝑟 (148) 

𝜌 (
𝜕𝑢𝑧

𝜕𝑡
 + 𝑢𝑟

𝜕𝑢𝑧

𝜕𝑟
 + 𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
)  =  −

𝜕𝑃

𝜕𝑧
  +   𝜇 [(

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑧

𝜕𝑟
) + 

𝜕2𝑢𝑧

𝜕𝑧2  )]    +   𝜌𝑔𝑧 
(149) 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟)   +   

𝜕𝑢𝑧

𝜕𝑧
  =   0 (150) 

For this type of coordinate system we would proceed in constructing the  NCSA table in exactly the 
same manner as for the Cartesian coordinate system where in both cases there are no external 
inputs so that "q = 0".   This would also include managing in exactly the same manner all initial 
conditions and the variable coefficients defined by the fluid density "𝜌",  the fluid dynamic 
viscosity  "𝜇"  and  the gravitational components  in the x, y and z direction. 
 
 
In  terms of  Spherical  coordinates this would be written as: 

𝜌 (
𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
 +   

𝑢𝜃

𝑟𝑆𝑖𝑛(∅)

𝜕𝑢𝑟

𝜕𝜃
 +   

𝑢∅

𝑟

𝜕𝑢𝑟

𝜕∅
 −  

𝑢𝜃
2+𝑢∅

2

𝑟
)   =    

𝜕𝑃

𝜕𝑟
 +   𝜌𝑔𝑟  +   

 +   𝜇 {
1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝑢𝑟

𝜕𝑟
) + 

1

𝑟2𝑆𝑖𝑛(∅)2
𝜕2𝑢𝑟

𝜕𝜃2   +   
1

𝑟2𝑆𝑖𝑛(∅)

𝜕

𝜕∅
(𝑆𝑖𝑛(∅)  

𝜕𝑢𝑟

𝜕∅
) − 2(

𝑢𝑟 + 
𝜕𝑢∅
𝜕∅

 + 𝑢∅𝐶𝑜𝑡(∅)

𝑟2 ) +
2

𝑟2𝑆𝑖𝑛(∅)

𝜕𝑢𝜃

𝜕𝜃
}  

 
 
(151) 

𝜌 {
𝜕𝑢𝜃

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜃

𝜕𝑟
 +   

𝑢𝜃

𝑟𝑆𝑖𝑛(∅)

𝜕𝑢𝜃

𝜕𝜃
 +   

𝑢∅

𝑟

𝜕𝑢𝜃

𝜕∅
 +  (

𝑢𝑟𝑢𝜃 + 𝑢𝜃𝑢∅𝐶𝑜𝑡(∅)

𝑟
)}   =   −

1

𝑟𝑆𝑖𝑛(∅)

𝜕𝑃

𝜕𝜃
  +   𝜌𝑔𝜃   +   

 +    𝜇 {
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑢𝜃

𝜕𝑟
) + 

1

𝑟2𝑆𝑖𝑛(∅)2

𝜕2𝑢𝜃

𝜕𝜃2   +   
1

𝑟2𝑆𝑖𝑛(∅)

𝜕

𝜕∅
(𝑆𝑖𝑛(∅) 

𝜕𝑢𝜃

𝜕∅
) + (

2
𝜕𝑢𝑟

𝜕𝜃
 +  2𝐶𝑜𝑠(∅)

𝜕𝑢𝜃

𝜕𝜃
 − 𝑢𝜃

𝑟2𝑆𝑖𝑛(∅)2 )} 
 

(152) 

𝜌 {
𝜕𝑢∅

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢∅

𝜕𝑟
 +   

𝑢𝜃

𝑟𝑆𝑖𝑛(∅)

𝜕𝑢∅

𝜕𝜃
 +   

𝑢∅

𝑟

𝜕𝑢∅

𝜕∅
 +  (

𝑢𝑟𝑢∅ − 𝑢𝜃
2𝐶𝑜𝑡(∅)

𝑟
)}   =   −

1

𝑟

𝜕P

𝜕∅
  +   𝜌𝑔∅   +   

      +    𝜇 {
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑢∅

𝜕𝑟
)  +  

1

𝑟2𝑆𝑖𝑛(∅)2

𝜕2𝑢∅

𝜕𝜃2   +   
1

𝑟2𝑆𝑖𝑛(∅)

𝜕

𝜕∅
(𝑆𝑖𝑛(∅) 

𝜕𝑢∅

𝜕∅
)  + 

2

𝑟2

𝜕𝑢𝑟

𝜕∅
 −  (

𝑢∅  +  2𝐶𝑜𝑠(∅)
𝜕𝑢𝜃

𝜕𝜃
 

𝑟2𝑆𝑖𝑛(∅)2 )} 
 
 
(153) 

 

along with the mass continuity equation defined as: 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝑢𝑟)  +   

1

𝑟𝑆𝑖𝑛(∅)

𝜕𝑢𝜃

𝜕𝜃
 +  

1

𝑟𝑆𝑖𝑛(∅)

𝜕

𝜕∅
(𝑆𝑖𝑛(∅)𝑢∅)   =    0 (154) 

 
In this coordinate system, there are two external inputs in the form of  the Sine and Cosine function 
which according to equation (35) and (36) can each be expressed in terms of the Tangent half angle 
formula so that we can set  "q = 1"  in our IAMPT.  All initial conditions and variable coefficients 
are handled in exactly the same manner as with the  Cartesian  and  Cylindrical  coordinate system. 

Because of the universality of the new method of analytical integration we can extend this analysis 
to cover all possible cases for both compressible and incompressible flow where the concept of an  
NCSA  table would still be applicable throughout.   
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8.  The development of  a  universal  software for the analytical solutions of all  DEs and 
     systems of  DEs  under a single unified theory of analytical integration 

The highly computational nature of the universal differential expansion described by  equations (1) 
through (5) for representing all mathematical equations makes it very difficult for conducting any 
real meaningful numerical experimentations even for solving the simplest type of  DE.  For solving 
the vast majority of  DEs  and systems of  DEs  of greatest importance to the physical sciences, 
super computers are by far more suitable for this type of high level and very advanced form of 
computational analysis. 

The advent of Quantum computers in the near future could significantly improve the performance 
of handling even the most complex systems of  PDEs.  They would by far exceed the capabilities of 
even our most powerful  super computer of our time because they would operate entirely on the 
fundamental principles of  Quantum theory which is based on the study of energy at the atomic and 
subatomic level.  Such advanced computer technology would allow for the capability of performing 
multiple tasks in parallel thereby resulting in a significant increase in the billion-fold when 
compared to conventional computer systems.    

Among the many possible states of operation is the binary state of a  Quantum bit or Qubit that 
would either be defined as spin-down or spin-up with each mode entirely controlled by a pulse of 
energy originating from a laser beam.  Major centers of research in Quantum computing are 
currently in operation that would include MIT, IBM, Oxford, Harvard, Stanford  and the Los 
Alamos National Laboratory. 

The greatest advantage for having arrived at a unified theory of analytical integration is that it can 
be converted into a  single major universal software  by which  all  DEs and systems of  DEs  may 
be resolved under a single common mathematical ideology.  Such a universal software development 
would be referred to as a "Numerical Control Analytics Software"  or  NCAS.  It would operate on 
the principle of determining the existence of  general  analytical solutions  to DEs and systems of 
DEs through the application of a very unique method of conjecture that would be driven entirely by 
computational analysis.  This would represent a far better alternative than having to maintain a large 
number of highly dispersed mathematical theories all of which could never be consolidated in terms 
of a single universal software development package such as the one proposed here. 

If such a Numerical Control Analytics Software would be applied only to Physics, it would certainly 
qualify as being “the complete unified theory of physics”  but only in its most “raw state”.   Human 
intervention would then only be necessary for complete translation of all computer results that 
would appear in the form of  exact  numerical computations into practical decipherable 
mathematical equations.  

If such a Numerical Control Analytics Software would be applied only into Engineering Science,  it 
would become the standard method of all engineering analysis  by which the concept of an  IAMPT  
would be applied very rigorously for resolving all  relevant DEs and systems of  DEs in the form of  
general closed form solutions only.  This would set the stage for the complete formulation of many 
fundamental key theorems similar to what the famous Superposition Theorem has succeeded in 
accomplishing in the general theory of  linear physical systems. 

 

9.  Conclusions 

The problem of integration has always presented itself as a real challenge when attempting to find 
closed formed solutions for the vast majorities of DEs and systems of DEs.   The main reason for 
this is the frequent occurrences of integrals from which the vast majority of them cannot always be 
resolved exactly under any existing methods of mathematical analysis.  This complication can be 
completely avoided altogether if rather than proceeding with some initially assumed closed form 
solution for attempting to solve a DE or a system of  DEs,  we instead work only with the complete 
differential representation of the same initially assumed closed form solution. The greatest 
advantage for proceeding in that fashion is the highest expectation that many of the assumed 
differentials will in the end appear exact and thus  always completely integrable in the end.  This in 
fact is quite achievable because every differentiable mathematical equation can always be converted 
in complete differential form by following the same basic unique mathematical structure as the one 
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introduced by equations (1) through (5).  Such a unique differential expansion form is so universal 
to all mathematical equations that it would certainly qualify by all mathematical standards as being 
a complete unified analytical theory of integration for resolving all types of DEs and systems of  
DEs in terms of closed form solutions.  Many key mathematical properties of this unified analytical 
theory of integration have been quite extensively investigated in the past mainly by myself.  But the 
one that stands out the most is the ability for resolving "all types" of  DEs  and systems of DEs 
uniquely in terms of  "general closed form solutions"  by utilizing a method of conjecture that 
would be driven entirely on computational analysis alone.  We use the Navier-Stokes equations as a 
perfect model for illustrating this very unique approach of working with initially assumed 
differentials.  In our example, we explore the various types of systems of PDEs that were developed 
in the past under the three most popular set of coordinate systems.  In the final analysis, we were 
able to establish that independent of the type of flow whether compressible or incompressible,  the 
boundary conditions and various external forces present can always be completely accounted for 
during the process of working with these types of initially assumed differential forms.   From the 
very unique properties of such a proposed unified differential method of analysis, it is expected that 
many cases of the Navier-Stokes equations will always be completely integrable in terms of such 
"general" closed form solutions by following a very unique method of conjecture.  From the 
Navier-Stokes equations we can apply the same type of universal differential analysis for 
investigating other types of fundamental equations that would include Maxwell's equations, 
Einstein's field equations, the Schrödinger equation just to name a few.   Figure 3.1 provides a 
direct relationship between the method of universal differential analysis and the elusive "theory of 
everything".  From this table, one is very tempted to conclude that for arriving at such a gigantic 
theory for explaining everything about our universe may no longer be just a matter for modern 
physics to resolve over time.  Rather, it is expected that such a  theory of everything may only be 
achievable in the end from the complete consolidation of every single theory describing its own 
unique physical system under one big gigantic universal theory that in the end will succeed in 
explaining everything about our universe. 
 

10.  Appendix A 

 

(𝟏. 𝟏)    𝐟(𝐱, 𝐲)  =   𝟎  =   𝒂𝟏𝒙
𝟐  +   𝒂𝟐𝒚

𝟐  +   𝒂𝟑𝒙𝒚 +  𝒂𝟒 

𝑊1 =   𝑥 

𝑊2 =   𝑦 

 (1).  Primary Expansion: 

 

        𝐹(𝑊1,𝑊2)  =  0 =    𝑎1𝑊1
2  +   𝑎2𝑊2

2  +   𝑎3𝑊1𝑊2  +   𝑎4  

(2).  Secondary Expansion:  

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 
 

(𝟏. 𝟐)     𝐟(𝐱, 𝐲)  =   𝟎  =   𝒂𝟏𝒚 + 𝒂𝟐𝒆
𝒂𝟑𝒙𝑺𝒊𝒏(𝒂𝟒𝒙) 

𝑊1 =   𝑥 

𝑊2 =   𝑦 

𝑊3 =  𝑒𝑎3𝑥 

𝑊4 =   𝑇𝑎𝑛(𝑎4𝑥/2) 
 

(1).  Primary Expansion: 

 

        𝐹(𝑊1,𝑊2,𝑊3,𝑊4)  =  0 =    𝑎1𝑊2(1 + 𝑊4
2) +   2𝑎2𝑊3𝑊4 
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(2).  Secondary Expansion: 
 

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 

                    𝑎3𝑊3𝑑𝑥   +   0 ∙ 𝑑𝑦  =   𝑑𝑊3 

        𝑎4(1 + 𝑊4
2)𝑑𝑥  +   0 ∙ 𝑑𝑦  =   2𝑑𝑊4 

 
 

 

(𝟏. 𝟑)    𝐟(𝐱, 𝐲)  =   𝟎  =  𝒙𝟐  +  𝒚𝟐√(𝒙 − 𝒚) +   𝟑𝒆𝟑𝒙 

𝑊1 =   𝑥 

𝑊2 =   𝑦 

𝑊3
2 =   𝑥 −   𝑦  =   𝑊1  −   𝑊2 

𝑊4 = 𝑒𝑥  =   𝑒𝑊1 
 

(1).  Primary Expansion: 

 

        𝐹(𝑊1,𝑊2,𝑊3,𝑊4)  =  0 =   𝑊1
2  +   𝑊2

2𝑊3  +   3𝑊4
3 

(2).  Secondary Expansion: 
 

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 

        𝑑𝑥  −   𝑑𝑦  =  2𝑊3 𝑑𝑊3 

        3𝑊4𝑑𝑥 +   0 ∙ 𝑑𝑦  =   𝑑𝑊4 

 

 

(𝟏. 𝟒)     𝐟(𝐱, 𝐲)  =   𝟎  =  𝐱√𝒙𝟐 + 𝒚𝟐  +   𝒚√𝒙𝟐 − 𝒚𝟐 

𝑊1 =   𝑥 

𝑊2 =   𝑦 

𝑊3
2 =   𝑊1

2   +   𝑊2
2 

𝑊4
2 =   𝑊1

2  −   𝑊2
2 

 

(1).  Primary Expansion: 

 

        𝐹(𝑊1,𝑊2,𝑊3,𝑊4)  =  0 =    𝑊1𝑊3  +   𝑊2𝑊4 

(2).  Secondary Expansion: 

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 

        𝑊1𝑑𝑥  +   𝑊2𝑑𝑦  =   𝑊3𝑑𝑊3 

        𝑊1𝑑𝑥  −   𝑊2𝑑𝑦  =   𝑊4𝑑𝑊4 

 

 

 (𝟏. 𝟓)     𝐟(𝐱, 𝐲)  =   𝟎  =   𝐥𝐧(𝟏 + √𝒙 + 𝟏
𝟑

)  −  √𝒚 + 𝟏𝟔  −   𝟏 

𝑊1 =   𝑥 

𝑊2 =   𝑦 

𝑊3
3 =   𝑥 +   1 =   𝑊1  +   1 

𝑊4 =   ln(1 + √𝑥 + 1
3

)  =   ln( 1 + W3)  

𝑊5
6 =   𝑦 +   1 =   𝑊2  +   1   
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(1).  Primary Expansion: 

 

        𝐹(𝑊1,𝑊2,𝑊3,𝑊4,𝑊5)  =  0 =    𝑊4  −   𝑊5  −   1 

(2).  Secondary Expansion: 

 

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 

 

        𝑑𝑥  +   0 ∙ 𝑑𝑦  =   3𝑊3
2𝑑𝑊3 

        𝑑𝑥  +   0 ∙ 𝑑𝑦  =   3𝑊3
2(1 + 𝑊3)𝑑𝑊4 

  0 ∙ 𝑑𝑥  +         𝑑𝑦  =   6𝑊5
5𝑑𝑊5 

(𝟏. 𝟔)     𝐟(𝐱, 𝐲)  =   𝟎  =   𝟑𝐒𝐢𝐧(𝐱 + 𝐲) −   𝒍𝒏 (𝒆𝒙 + √𝑪𝒐𝒔(𝒙))  +   𝒍𝒏 (
𝒙

𝒚
) +  √𝑨𝒓𝒄𝑻𝒂𝒏(𝟐𝒙) 

𝑊1 =   𝑥 

𝑊2 =   𝑦 

𝑊3 =   𝑇𝑎𝑛 (
𝑥 + 𝑦

2
) 

𝑊4 = 𝑒𝑥 

𝑊5  =   𝑇𝑎𝑛(
𝑥

2
) 

𝑊6
2  =   𝐶𝑜𝑠(𝑥) =   

1 − 𝑊5
2

1 + 𝑊5
2 

𝑊7  =   𝑙𝑛(𝑒𝑥 + √𝐶𝑜𝑠(𝑥))   =   𝑙𝑛(𝑊4 + 𝑊6) 

𝑊8  = 𝑙𝑛(𝑥)   

𝑊9  = 𝑙𝑛(𝑦) 

𝑊10
2  =   𝐴𝑟𝑐𝑇𝑎𝑛(2𝑥)  

 

(1).  Primary Expansion: 

𝐹(𝑊1,𝑊2, … ,𝑊10)   =   0  =    
6𝑊3

1 + 𝑊3
2  −  𝑊7  +   𝑊8  −   𝑊9  +   𝑊10  

(2).  Secondary Expansion: 
 

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 

 

                               (1 + 𝑊3
2)𝑑𝑥  +   (1 + 𝑊3

2)𝑑𝑦    =   2𝑑𝑊3 

                                           𝑊4𝑑𝑥   +               0 ∙ 𝑑𝑦    =   𝑑𝑊4 

                              (1 + 𝑊5
2)𝑑𝑥   +               0 ∙ 𝑑𝑦    =   2𝑑𝑊5 

                                      −𝑊5𝑑𝑥     +               0 ∙ 𝑑𝑦   =   𝑊6(1 + 𝑊5
2)𝑑𝑊6 

{𝑊4𝑊6(1 + 𝑊5
2) −   𝑊5}𝑑𝑥      +               0 ∙ 𝑑𝑦   =   𝑊6(1 + 𝑊5

2)(𝑊4 + 𝑊6)𝑑𝑊7   

        𝑑𝑥    +       0 ∙ 𝑑𝑦   =   𝑊1𝑑𝑊8 

  0 ∙ 𝑑𝑥    +            𝑑𝑦   =   𝑊2𝑑𝑊9 

       𝑑𝑥    +        0 ∙ 𝑑𝑦  =   (1 + 4𝑊1
2)𝑊10𝑑𝑊10 
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(𝟐. 𝟏)    𝐟(𝐳, 𝒙𝟏, 𝒙𝟐)  =   𝟎  =   𝐳 +  𝒛𝟑𝒙𝟏𝒙𝟐  −   𝒙𝟐  +   𝟏 

𝑊1  =   𝑧 

𝑊2  =   𝑥1 

𝑊3  =   𝑥2 

 

(1).  Primary Expansion: 

 

        𝐹(𝑊1,𝑊2,𝑊3)  =  0 =    𝑊1  +   𝑊1
3𝑊2𝑊3  −  𝑊3  +  1 

(2).  Secondary Expansion: 
 

        𝑑𝑧  +   0 ∙ 𝑑𝑥1   +   0 ∙ 𝑑𝑥2   =   𝑑𝑊1 

  0 ∙ 𝑑𝑧  +        𝑑𝑥1    +   0 ∙ 𝑑𝑥2   =   𝑑𝑊2 

  0 ∙ 𝑑𝑧  +   0 ∙ 𝑑𝑥1   +         𝑑𝑥2   =   𝑑𝑊3 

 
 

(𝟐. 𝟐)     𝐟(𝐳, 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, )  =   𝟎  =   𝟓𝒙𝟐𝒙𝟑𝑺𝒊𝒏(𝒛𝒙𝟏𝒙𝟐)  +   (𝒙𝟏  +   𝒙𝟐)𝑪𝒐𝒔(𝒛 +   𝟑𝒙𝟐  + 𝟐𝒙𝟑)    +    𝟑 

 
𝑊1  =   𝑧 

𝑊2  =   𝑥1 

𝑊3  =   𝑥2 

𝑊4  =   𝑥3 

 

𝑊5 =   𝑇𝑎𝑛(𝑧𝑥1𝑥2/2) 

 

𝑊6  =   𝑇𝑎𝑛 {
𝑧 + 3𝑥2 + 2𝑥3

2
} 

 

 

(1).  Primary Expansion: 

       𝐹(𝑊1,𝑊2,𝑊3,𝑊4,𝑊5,𝑊6)  =  0 =    5𝑊3𝑊4 [
2𝑊5

1 + 𝑊5
2]    +   (𝑊2  +  𝑊3) [

1 − 𝑊6
2

1 + 𝑊6
2]   +   3 

(2).  Secondary Expansion: 
 

        𝑑𝑧   +    0 ∙ 𝑑𝑥1    +    0 ∙ 𝑑𝑥2    +    0 ∙ 𝑑𝑥3   =   𝑑𝑊1 

  0 ∙ 𝑑𝑧   +          𝑑𝑥1    +    0 ∙ 𝑑𝑥2    +    0 ∙ 𝑑𝑥3   =   𝑑𝑊2 

  0 ∙ 𝑑𝑧   +    0 ∙ 𝑑𝑥1    +          𝑑𝑥2    +    0 ∙ 𝑑𝑥3   =   𝑑𝑊3 

  0 ∙ 𝑑𝑧   +    0 ∙ 𝑑𝑥1    +    0 ∙ 𝑑𝑥2    +         𝑑𝑥3    =   𝑑𝑊4 

 

(1 + 𝑊5
2)𝑊2𝑊3𝑑𝑧  +  (1 + 𝑊5

2)𝑊1𝑊3𝑑𝑥1  +   (1 + 𝑊5
2)𝑊1𝑊2𝑑𝑥2   +   0 ∙ 𝑑𝑥3   =   2𝑑𝑊5 

 

 (1 + 𝑊6
2)𝑑𝑧 +   0 ∙ 𝑑𝑥1  +   3(1 + 𝑊6

2)𝑑𝑥2  +   2(1 + 𝑊6
2)𝑑𝑥3   =    2𝑑𝑊6 
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(𝟐. 𝟑)     𝐟(𝐱, 𝐲)  =   𝟎  =   𝟑 𝐥𝐧(√𝒛 + 𝒙𝟏
𝟐 + 𝒙𝟐

𝟐𝟑
   −    𝟐𝟓𝒆𝟐𝒛𝒙𝟏𝒙𝟑   )   + 

                                                                                                             +   √𝒙𝟏
𝟐 + 𝒙𝟐

𝟐  +  𝒙𝟑
𝟐𝟓
   −   𝟒𝒛𝟑   +    𝟏 

W1  =   z 

W2  =   x1 

W3  =   x2 

W4  =   x3 

 

W5
3  =   z +  x1

2  +   x2
2  =   W1  +   W2

2  +   W3
2 

 

W6  =   e2zx1x3   =    e2W1W2W4  

 

W7  =  ln ( √z + x1
2 + x2

23
  −    25e2zx1x3  )  −    ln (W5  −   25W6) 

 

W8
5  =   x1

2  +   x2
2  +   x3

2  =   W2
2  +   W3

2  +   W4
2  

 

 

(1).  Primary Expansion: 

 

        F(W1,W2,W3, … ,W8)  =  0 =    3W7   +   W8   −   4W1
3   +   1 

(2).  Secondary Expansion: 
 

        𝑑𝑧   +    0 ∙ 𝑑𝑥1    +    0 ∙ 𝑑𝑥2    +    0 ∙ 𝑑𝑥3   =   𝑑𝑊1 

  0 ∙ 𝑑𝑧   +          𝑑𝑥1    +    0 ∙ 𝑑𝑥2    +    0 ∙ 𝑑𝑥3   =   𝑑𝑊2 

  0 ∙ 𝑑𝑧   +    0 ∙ 𝑑𝑥1    +          𝑑𝑥2    +    0 ∙ 𝑑𝑥3   =   𝑑𝑊3 

  0 ∙ 𝑑𝑧   +    0 ∙ 𝑑𝑥1    +    0 ∙ 𝑑𝑥2    +         𝑑𝑥3    =   𝑑𝑊4 

𝑑𝑧   +   2𝑊2𝑑𝑥1   +   2𝑊3𝑑𝑥2   +   0 ∙ 𝑑𝑥3   =  3𝑊5𝑑𝑊5
2 

2𝑊2𝑊4𝑊6𝑑𝑧  +   2𝑊1𝑊4𝑊6𝑑𝑥1   +    0 ∙ 𝑑𝑥2   +    2𝑊1𝑊2𝑊6𝑑𝑥3   =    𝑑𝑊6 

(1 − 150𝑊2𝑊4𝑊5
2𝑊6)𝑑𝑧  +    (2𝑊2 − 150𝑊1𝑊4𝑊5

2𝑊6)𝑑𝑥1   +    2𝑊3𝑑𝑥2   −    

                                                                                                                   150𝑊1𝑊2𝑊5
2𝑊6𝑑𝑥3  =    3𝑊5

2(𝑊5 − 25𝑊6)𝑑𝑊7 

0 ∙ 𝑑𝑧  +    𝑊2𝑑𝑥1   +    𝑊3𝑑𝑥2   +    𝑊4𝑑𝑥3   =    2.5𝑊8
4𝑑𝑊8 
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Abstract 

Traditional slope stability analysis is limited to the use of single valued parameters to analyze 

a slope‟s characteristics. Consequently, traditional analysis methods yield single valued 

estimates for factor of safety of a slope‟s stability. However, the inherent variability of the soil 

characteristics which affect slope stability indicates that the stability of a slope is a 

probabilistic rather than a deterministic situation. In other words, the stability of a slope is a 

random process which is dependent on the relative distribution of controlling soil parameters. 

For a natural slope, the stability deciding parameters vary considerably throughout the extent 

of slope. In this paper, the variability of soil properties and their effect on stability of a natural 

slope has been studied incorporating the probabilistic analysis using Monte Carlo simulation 

and deterministic analysis using Geo-Studio and PLAXIS. The factors of safety have been 

determined using the two approaches and effect of dynamic loading input on slope stability 

has been studied. 

 

Keywords: Slope stability, deterministic approach, probabilistic analysis Monte Carlo 

method. 

 
Introduction 

Slope instability is responsible for damage to public and private property every year. Slope 

failures can be manifested as landslides or by other slowly occurring processes such as soil 

seriously damaged or destroyed.  Slope instability is a complex phenomenon that can occur at 

many scales and for many reasons. Slope stability analyses and stabilization require an 

understanding and evaluation of the processes that govern the behavior of slopes. 

 

Real life failures in naturally deposited mixed soils are not necessarily circular, but prior to 

computers,  it  was  far  easier  to  analyze  such  a  simplified  geometry.  Nevertheless, 

failures in 'pure' clay can be quite close to circular. Such slips often occur after a period of 

heavy rain, when the pore water pressure at the slip surface increases, reducing the effective 

normal stress and thus diminishing the restraining friction along the slip line. This  is  

combined  with  increased  soil  weight  due  to  the  added  groundwater.  A 'shrinkage' crack 

(formed during prior dry weather) at the top of the slip may also fill with rain water, pushing 

the slip forward.  At the other extreme, slab-shaped slips on hill sides can remove a layer of 

soil from the top of the underlying bedrock. Again, this is usually initiated by heavy rain, 

sometimes combined with increased loading from new buildings or removal of support at the 

toe (resulting from road widening or other construction work). Stability can thus be 

significantly improved by installing drainage paths to reduce the destabilizing forces. A 

weakness along the slip circle may remain at the reoccurrence of the next monsoon. If the 

forces available to resist movement are greater than the forces driving the movement, the 

slope is considered stable.  Factor  of safety  is  calculated  by  dividing  the  forces  resisting  

movement  by  the  forces  driving movement. In earthquake-prone areas, the analysis is 
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typically run for static conditions and pseudo-static conditions, where seismic forces from an 

earthquake are assumed to add static loads to the analysis. 

 

The slope stability analyses are performed to assess the safe and economic design of human-

made or natural slopes (e.g. embankments, road cuts, open-pit mining, excavations, landfills 

etc.) and the equilibrium conditions [1]-[3]. The term slope stability may be defined as the 

resistance of inclined surface to failure by sliding or collapsing. The main objectives of slope 

stability analysis are finding endangered areas, investigation of potential failure mechanisms, 

determination of the slope sensitivity to different triggering mechanisms, designing of optimal 

slopes with regard to safety, reliability and economics, designing possible remedial measures, 

e.g. barriers and stabilization. Successful design of the slope requires information about site 

characteristics, e.g. properties of soil/rock mass, slope geometry, alteration of materials by 

faulting, joint or discontinuity systems, movements and tension in joints, earthquake activity, 

etc. Choice of correct analysis technique depends on both site conditions and the potential 

mode of failure,  with  consideration  being  given  to  the  varying  strengths,  weaknesses 

and  limitations inherent in each methodology. The hypothesis of this research is that analysis 

of slope stability can be more methodological using the information about probability 

distribution of the slope‟s characteristics to determine the slope stability from the output of the 

analysis. Knowledge of the probability distribution of the output allows the engineer to assess 

the probability of slope failure. Therefore, an allowable risk criterion can be used to establish a 

consistent target for the design process [4]. 

Scope and Objectives 

Stability of slopes, natural or man-made, is particularly important for any hill road. 

Disturbance to slope can occur due to erosion by rainfall and run-off and consequent slides. 

During monsoons the hill roads experience slips, erosions and major and minor landslides at 

many places. Check for the stability of the slopes is very necessary in order to  ensure  the  

stability  of  the  slope  as  it  would  affect  the  life  of  people  directly  as landslide causing 

life loss and indirectly as the hindrance to flow of the traffic. Since the profile is along the 

National Highway 21, so its failure can cause the closing of the highway and it has been 

observed many times that it has closed previously. Rainy season causes the maximum 

disturbance in its stability. Hence, slope stability is vital for prevention of landslides/slips [5]. 

If the cut slopes are not properly designed, it will fail and would causes huge  loss  to  

mankind  in  a  direct  or  indirect  way.  Taking  into consideration  above factors  and  

importance  of  the  stability,  essential  remedial  measures  are  required  and should be 

properly designed.  Moreover consideration of various uncertainties involved in the properties 

of the soil which ultimately determine the stability of slope should be taken into account. For 

that purpose, statistical analysis or reliability analysis of slope becomes necessary and should 

be performed for a particular slope to check the reliability index of that particular slope. 

Reliability analysis of slope stability has attracted considerable research attention in the past 

few decades [6]-[10]. Reliability of slope stability is frequently measured by „„reliability 

index,‟‟ and slope failure probability, Pf, which is defined as the probability that the minimum 

factor of safety (FS) is less than unity (i.e., Pf = P (FS < 1)). Various solution methods have 

been proposed to estimate Pf and Reliability Index. Among the most widely used methods are 

the first order second moment (FOSM) method, first order reliability method (FORM, also 

referred to as the Hasofer-Lind method) [11] and direct Monte Carlo simulation [12]. The  

objective  of  this  research  is  to  develop  a  probabilistic  model  for  slope analysis by (a) 

understanding the concept of reliability analysis and its application in slope stability analysis, 

(b) performing the reliability analysis of slope stability using Monte Carlo simulation (using 
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RiskAMP [13]; and Geo5 [14], (c) performing the slope stability analysis with the help of 

PLAXIS [15] and (d) comparing the results obtained from different methods.  

Methodology  

The methodology include the preparation of the contour map of the slope to determine the 

geometry and assessing the soil characteristics over the entire slope by collecting fairly 

representative sample and determining the input soil parameter in the laboratory.  

Figure 1. Typical view of slope failure near Gambhar Bridge on NH 21 

The slope stability was assessed using the deterministic analysis and commonly used methods 

of analysis along with the software SLOPEW and PLAXIS (including dynamic loading 

input). Finally, the results obtained from the two approaches are compared and their efficacy 

for slope stability is determined. The site selected for the study is located in district Bilaspur, 

Himachal Pradesh, India on NH-21 highway namely Gambhar bridge. The height of the site is 

1230 meter above sea level respectively. The study area lies in earthquake zone IV at latitude 

31° 20´ N and longitudes 76º 45‟ E. Average annual rainfall of the area is around 135 cm. A 

typical view of the slope failure is shown in figure 1. 

Determination  of  basic  geometrical  characteristics  of  the  slope  was  done  using total 

station survey. Total station surveying was done for both the sites in order to generate contour 

maps of the slopes. The reduced levels, horizontal distance, vertical and horizontal angle 

readings were recorded using total station. These are fed as input in the software LISCAD to 

generate contour map as shown in figure 2. Three predominant sections 1-1, 2-2 and 3-3 of 

slope failure have been identified on the basis of the field observations as indicated in figure 3.  

Fairly large numbers of representative samples of soil were collected from soil slope 

considering the variability of soil strata throughout the extent of slope. The soil parameters for 
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the drained conditions were determined. The mean value of different properties was 

calculated. Typical results obtained for different properties are summarized in table 1. 

 
Figure 2. Contour map of site (near Gambhar bridge) 

Table 1. Properties of different soil samples 

 

Results and Analysis 

 

Deterministic Approach 

 

The traditional methods of slope stability normally use single valued parameters to analyze 

the characteristics of a slope. The output from traditional analysis methods yields single 

valued estimates of factor of safety of the stability of a slope. However, the parameters 

governing the stability of a slope vary considerably throughout the extent of the slope. Most 

commonly employed method of analysis of the stability a slope is Bishop‟s method [16] 

which yields the factor of safety as:  

                    F=                                  (1) 

S. 

No. 

Water content (%)  

 

Density 

(kN/m³) 

Cohesion (kN/m²) (IS 

2720  Part XIII, 

1972) 

Angle of internal 

friction (Φ) (IS 2720  

Part XIII)[24] 

1 6.80 17.63 27.16 9.85 

2 3.69 18.97 19.03 24.96 

3 14.79 17.39 7.57 21.4 

4 14.85 19.79 18.24 15.97 

5 13.95 22.40 5.13 21.03 

6 12.56 20.06 17.72 21.76 
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Where, F = Factor of safety, W = weight of slice, c = cohesion, b = width of slice, α = angle 

of inclination of slope,  = angle of internal friction and U = pore pressure at each slice. 

Figure 3. Three sections selected for slope stability analysis 

An iterative analysis is necessary to obtain the factor of safety. Since this is a trial and error 

method, the assumed factor of safety F is entered with respect to which the new factor of 

safety is calculated and the iteration process is continued till the difference between the two 

values of factor of safety calculated is negligible. Three different sections namely 1-1, 2-2 and 

3-3 were analyzed using SLOPE-W module of Geo Studio. The factor of safety for different 

sections was calculated with the help of different deterministic method namely ordinary 

method, Bishop‟s method [16], Janbu [17] method and Morgenstern Price Method [18][19]. 

Table 2 shows the values of factor of safety with the help of different methods. The results 

indicate that the slope is critically stable at sections 1-1 and 2-2 but the slope is unstable at 

section 3-3. The results show that the factor of safety values given by ordinary method of 

slices and Janbu method are in close proximity whereas the values indicated by Bishop‟s 

method and Morgenstern Price method are closer. However, the factor of safety determined 

using all methods for section 3-3 is nearly same which indicates that the factor of safety 

values is dependent upon slope geometry and characteristics.  

Table 2. Factor of safety calculated for different sections using deterministic analysis 

Sections Ordinary 

Method 

Bishop 

Method 

Janbu Method Morgenstern Price 

Method 

1-1 1.041 1.071 1.039 1.069 

2-2 1.091 1.245 1.086 1.128 

3-3 0.839 0.840 0.818 0.839 
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Further, the slope sections have been analyzed as infinite slope using a MATLAB program. A 

MATLAB code was written for the slope stability considering the slope as infinite slope. The 

results obtained from code are represented through table 3. The results show that for an 

infinite slope the factor of safety values are very low even under dry condition and 

particularly very low under the condition when the tension crack is filled with water. The 

results, however, are not observed to be realistic as the slope is a finite one. 

 

Table 3. Factor of safety for infinite slope 

Section Dry condition Tension crack filled with water 

1-1 0.90 0.44 

2-2 0.88 0.43 

3-3 0.78 0.38 

 

 
Figure 4. Accelerogram used to simulate dynamic loading input 

PLAXIS version 8 has been used to carry out two-dimensional finite element analysis. A 

Plane strain model is used for geometries with a (more or less) uniform cross section and 

corresponding stress state and loading scheme over a certain length perpendicular to the cross 

section (z-direction). Displacements and strains in z-direction are assumed to be zero. 

However, normal stresses in z-direction are fully taken into account. In this software after 

defining geometry of the problem, assigning geotechnical specifications of soil layers, 

segment material and water table, settlement calculation and stress-strain analysis are done 

through two phases by stage construction capability of the software. The 15-node triangle is 

the default element which provides a fourth order interpolation for displacements and the 

numerical integration involving twelve Gauss points (stress points) has been used. The 15-

node triangle is a very accurate element that has produced high quality stress results for 

difficult problems, as for example in collapse calculations for incompressible soils. Three 

different sections have been analyzed with the help of PLAXIS 8.2 for the following four 

different conditions: (i) slope is dry, (ii) tension crack filled with water, (iii) cohesion reduced 

to zero due to vibrations and (iv) Dynamic loading input. The accelerogram used to simulate 

the dynamic loading input used in the analysis is shown in figure 4.  
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The finite element modeling of the most critical failure plane at section 1-1 with simulation of 

dynamic loading is shown in figure 5. The deformed mesh at section 1-1 with simulation of 

dynamic loading at most critical plane is shown in figure 6.  

The boundary elements, particularly at the sharp transitions are observed to incur appreciable 

displacements. The elements at the toe of the slope indicate large displacements and lead to 

stress concentrations as is observed from figure 7 showing the stress distribution across the 

cross-section 1-1. Similarly, the finite element modeling of the most critical failure plane 

along with the deformed mesh and the stress distribution at sections 2-2 and 3-3 for other 

conditions was performed to determine factor of safety. The factor of safety values computed 

using PLAXIS incorporate the consideration of all soil parameters and include the effect of 

tension crack filled with water, loss of soil cohesion due to vibrations as well as the effect of 

dynamic loading. The results obtained from PLAXIS for four different conditions are given in 

table 4. 

Table 4. Factor of safety using PLAXIS 

Section 1-1 2-2 3-3 

Case I II III IV I II III IV I II III IV 
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The factor of safety values indicate that the slope is critically stable at section 1-1 under the 

two conditions for dry slope and when the tension crack filled with water; whereas at section 

2-2 for dry condition of slope only. For the remaining conditions i.e. when cohesion is 

reduced to zero due to vibrations and under dynamic loading, the slope is unstable at section 

1-1 and for the section 2-2 the slope is unstable for the remaining three conditions.  At section 

3-3, the slope is unstable for all the loading conditions which indicate that the slope 

stabilization measures have to be undertaken at this section. 
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Figure 5. Finite element modeling at section 1-1 with dynamic loading at most critical 

plane 

Figure 6. Deformed mesh at section 1-1 with dynamic loading at most critical 

plane 
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Figure 7. Stress distribution at section 1 with dynamic loading at most critical plane 

Probabilistic Slope Stability Analysis Methods 

Slope stability is one of the most important issues of concern to geotechnical engineers. 

Analysis of slope stability is composed of many uncertainties pertinent to lack of accurate 

geotechnical parameters, inherent spatial variability of geo-properties, change of 

environmental conditions, unpredictable mechanisms of failure, simplifications and 

approximations used in geotechnical models. Due to the importance of dam projects and its 

pertinent costs, determination of dam performance has a significant consequence to decision 

makers. With respect to the uncertainties of geotechnical parameters, utilizing risk analysis is 

inevitable in dam projects [20]. Conventional approaches do not take into account many 

uncertainties in their calculations quantitatively. Also, several conservative safety factors are 

using to cover some uncertainties which in most cases are more than required, and in some 

cases less than what is necessary. Actually, it is not possible to distinguish the accurate effect 

of these safety factors on safety level. By contrast, in probabilistic approaches the safety 

determination applies more accurately and clearly [21]. Uncertainties in soil properties, 

environmental conditions, and theoretical models are the reason for a lack of confidence in 

deterministic analyses [22].  Compared to a deterministic analysis, probabilistic analysis takes 

into consideration the inherent variability and uncertainties in the analysis parameters.  

Judgments are quantified within a probabilistic analysis by producing a distribution of 

outcomes rather than a single fixed value.  Thus, a probabilistic analysis produces a direct 

estimate of the distribution of  either  the  factor  of  safety  or  critical  height  associated  with  

a  design  or  analysis situation.  There  are  several  probabilistic  techniques  that  can  be  

used  to  evaluate geotechnical situations. Specifically, for geotechnical analysis, researchers 

have conducted probabilistic evaluations using Monte Carlo simulations, Point Estimate 
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method, and in conjunction with a probabilistic analysis a reliability assessment. Monte Carlo 

probabilistic analysis has been performed in this study. 

Monte Carlo Simulation 

The Monte Carlo method was developed in 1949 by John von Neumann and Stanislaw Ulam 

[23]-[25]. They designated the use of random sampling procedures for treating deterministic 

mathematical situations.  The foundation of the Monte Carlo gained significance with the 

development of computers to automate the laborious calculation. The first step of a Monte 

Carlo simulation is to identify a deterministic model where multiple input variables are used to 

estimate a single value outcome. Step two requires that all variables or parameters be 

identified.  Next, the probability distribution for each independent variable is established for 

the simulation model, (i.e., normal, beta, lognormal, etc.).  Next, a random trial process is 

initiated to establish probability distribution function for the deterministic situation being 

modeled. During each pass, a random value from the distribution function for each parameter 

is selected and entered into the calculation.  

 

Figure 8. Steps involved in Monte Carlo simulation 
 

Numerous solutions are obtained by making multiple passes through the program to obtain a 

solution for each pass. The appropriate number of passes for an analysis is a function of the 

number of input parameters, the complexity of the modeled situation, and the desired precision 

of the output. The final result of a Monte Carlo simulation is a probability distribution of the 

Generating „n‟ sets of random samples according to prescribed 

probability distributions 

Searching for critical slip surface and calculating the minimum factor of safety 

using limit equilibrium (Bishop‟s method) and one set of random samples as input 

Repeated „n‟ times? 

Performing statistical analysis of resulting „n‟ sets of output 

Calculate probability of failure „Pf‟ and reliability index 

Characterization of slope geometry, other necessary information and 

probability distributions of uncertainties concerned 

No 
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output parameter. Monte Carlo simulation is a powerful tool for slope stability risk analysis. 

An iterative process using deterministic methods of slope stability analysis is applied in this 

technique. Monte Carlo simulation is a popular method of slope stability risk analysis among 

engineers because of its simplicity and no need of comprehensive mathematical and statistical 

knowledge. This method consists of four steps (figure 8) as below [26][27]: (a) choosing a 

random value for each input variable according to assigned probability density function, (b) 

calculating factor of safety by using a proper deterministic slope stability analysis method 

(such as Janbu, Bishop, Spencer, etc.)[16][17][28] based on selected values in step 1, (c) 

repeating steps 1 and 2 for many times as necessary and (d)  determining distribution function 

of factors of safety and probability of failure. For the above mentioned sections, probabilistic 

analysis was performed using Monte Carlo simulations. According to Monte Carlo simulation 

method, a random value has been selected for each input parameter based on the assigned 

probability density function and its amplitude. Theoretically, more are Monte Carlo trials the 

more accurate the solution will be, but the number of required Monte Carlo trials is dependent 

on the level of confidence in the solution and the amount of variables being considered. 

Statistically, the following equation has been recommended [29]: 

                                                (1) 

Where: N = number of Monte Carlo trials, d = the normal standard deviation corresponding to 

the level of confidence, e = desired level of confidence, and m = number of variables. The 

probability density functions of unit weight, cohesion and angle of internal friction, φ adopted 

in the analysis are shown in figures 9, 10 and 11 respectively. Based on equation (1) for three 

variables (unit weight, cohesion and phi) and for 90% confidence level 309610 trials have 

been done with respect to standard deviation of 1.645. The various variables involved in the 

study, their mean values and type of distribution adopted is summarized in table 5. Reliability 

index is a rational probabilistic criterion for safety level which can be calculated by the 

following equation: 

                                                      𝛽= (𝐸(𝐹𝑆) −1)/𝜎(𝐹𝑆)                                            (2) 

Table 5. Variables involved in Monte Carlo simulations in this study 

Variable Mean value Standard deviation Distribution adopted 

Unit weight 19.37 1.84 Normal 

Cohesion 15.81 8.13 Normal 

Phi 19.16º 5.40 Normal 
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Figure 9. Probability density function of unit weight 

 

Figure 10. Probability density function of cohesion 
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Figure 11. Probability density function for Phi, φ (angle of internal friction) 

 

Figure 12. Probability distribution for factor of safety at section 1-1 
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Where E(FS) and 𝜎(𝐹𝑆) are average and standard deviation of safety factors respectively. 

Reliability index represents the level of reliability of an engineering system and reflects the 

effects of uncertain parameters on probabilistic analysis. The probability distribution for 

factor of safety at section 1 - 1, section 2 -2 and section 3 - 3 are shown in figures 12, 13 and 

14. The results of probabilistic analysis are represented in Table. 6. As it appears from the 

table 6 that section 3-3 is most vulnerable towards failure. According to U.S. Army Corps of 

Engineers [20], for embankment dams, slopes with reliability index of more than 3 are stable. 

But from table 6, it can be observed that all three sections are having reliability index less 

than 3 so this slope is not reliable and requires slope stabilization techniques to stabilize it.  

 

 

Figure 13. Probability distribution for factor of safety at section 2-2 

 

Figure 14. Probability distribution for factor of safety at section 3-3 
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The results of probabilistic analysis infer that, corresponding to the maximum factor of safety 

values, the slope at section 2-2 is stable but critically stable at sections 1-1 and 3-3. However, 

the minimum values of factor of safety indicate that the slope is highly unstable at all the three 

sections. Corresponding to mean value of factor of safety, slope is critically stable at sections 

1-1 and 2-2 but unstable at section 3-3 (higher probability of failure). The results of 

probabilistic analysis are observed to be more realistic as compared to the results obtained 

from other methods. Further, the results obtained from probabilistic analysis can be used to 

determine the probability of failure corresponding to a particular of factor of safety. Therefore 

an allowable risk criterion can be used to establish a consistent target for the design process. 

The reliability of the proposed factor of safety can be assessed and the design of the cut slope 

can be decided accordingly. 

Table 6. Results of probabilistic analysis 

Section Mean 

factor of 

safety 

Min. 

factor of 

safety 

Max. 

factor of 

safety 

Reliability 

index 

Probability 

of failure 

Standard 

deviation 

1-1 1.025 0.52 1.48 0.125 44.77 0.205 

2-2 1.083 0.54 1.58 0.394 35.74 0.212 

3-3 0.8059 0.40 1.17 -1.234 87.78 0.157 

Conclusions 

The deterministic approach considering different methods of stability analysis namely 

ordinary method, Bishop‟s method, Janbu's method and Morgenstern Price method using the 

iterative capabilities of software SLOPEW and PLAXIS (using dynamic loading input) have 

been used to assess the stability of a large natural slope. Deterministic approach generally 

yields conservative values of factor of safety since the input parameters assigned are single 

valued and the spatial variation of the input parameters is not accounted for. The results 

obtained from probabilistic approach can be used to determine the probability of failure 

corresponding to a particular of factor of safety and an allowable risk criterion can be used to 

establish a consistent target for the design process. The factor of safety obtained from the 

deterministic analysis indicates that Janbu's method gives the least factor of safety and 

Bishop's method giving the highest one with Morgenstern Price method yielding the values 

closer to Bishop's method. While considering the slope as an infinite slope, a smaller factor of 

safety was obtained which appears to be unrealistic. From probabilistic analysis, it is observed 

that section 3-3 is most vulnerable towards failure with reliability index of -1.234. Section 1-1 

and section 2-2 too have reliability index less than 3 (recommended one for a slope for its 

stability). Thus, whole slope is vulnerable towards failure and that can be seen during rainy 

season when the slope faces failures and leads to disruption of traffic on the national highway. 

Further, the slope is vulnerable towards the dynamic loading with factor of safety reduced to 

nearly 0.5 under the dynamic loading input. 
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Abstract 

There are numerous methods available on date for the structural assessment of masonry arch 

bridges. Each of these methods has been developed, at different times and places, having its 

own limitations of use and none of these is a commonly putative method. Among the 

problems of development of such an approach, the problem of selection of a suitable failure 

criterion for the prediction of the collapse load is critical. Particularly for arch bridges, 

involving moments, normal thrust and tangential thrust, the interaction of the axial force and 

the moments play a vital role in the choosing failure criteria. In view of this, different axial 

force and moment interactions are reviewed, along with the implementation of the same 

through a developed stiffness approach based on mechanism method for the prediction of load 

carrying capacity of the masonry arch bridges. The application of the method has been 

demonstrated on the bridges tested in field, and the load carrying capacity has been compared. 

 

Keywords: Masonry, Stiffness, Arch Bridges, Mechanism, MEXE 
 

Notations 

 

[Sc] Complete structure stiffness matrix 

 c  Complete joint displacement matrix 

[JLc] Joint load matrix for complete structure 

[Rc] Complete support reaction matrix 

[Ki] Member stiffness matrix 

Po Maximum concentric axial force 

Mo Maximum moment at an eccentricity of d/4 

t  Tensile strength of masonry 

Introduction 

Masonry arch bridges have been a legacy of past, but are built hardly now-a-days. The newer 

materials with better structural properties have overshadowed the use of masonry and the art 

of masonry arches has been kerbed to the papers. In most of the countries where masonry arch 

bridges exist on railway and road network, the first choice of the bridge owners is to use 

MEXE (Military Engineering Experimental Establishment) [1] method for assessment of such 

bridges. This mechanism approach to arch collapse, originated from the first work of Pippard 

and Ashby [2] and Pippard [3]. The identification of location of a number of hinges at the 

arch intrados and extrados to transform it into a mechanism yielded the minimum load. The 

limit load is obtained through the application of the kinematic theorem [4] that takes the 

position of the hinges as the unknowns of the problem. This approach finds its latest results in 

the work by different authors [5]-[11]. The method was originally developed, based on the 

minimum strain energy principle and later used it during Second World War to develop tables 

of allowable weights for wheeled and tracked vehicles for military use [12]. The original 

MEXE method was then developed from these basic tables in form of readily usable 
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nomogram. The referred MEXE method is empirical and is a working stress method based on 

the elastic analysis but provides little information in regard to the considerations of the 

serviceability. All the subsequent methods are marginal improvement over the original one 

and have tried to overcome the shortcomings in the earlier methods. More so, with the 

increasing advent of computers, many computer based assessment methods have developed in 

recent years, which are in use in different parts of the world. To list, such methods include, 

CTAP developed by Bridle and Hughes, which is based on Castigliano’s elastic strain energy 

method, MINIPONT developed by Department of Transport is computerized version of 

MEXE method, program ARCHIE developed by Harvey and Smith and program ARCH 

developed by Cascade Software Ltd [13]. The program ARCHIE and ARCH are based on the 

mechanism method of assessment. Heyman has described in detail the development and use 

of mechanism method of assessment [4]. 

 

 Assessment of existing structures is always considered more tedious than the design of new 

structure. The confidence in new design can be well achieved through properly designing well 

understood part and relying on unquantified additional safety for the remainder part. Existing 

structures often rely on behaviours that the engineer prefers to keep as safety factor. How 

those actions are used in assessment is a matter for individual judgement and any guidance 

that obscures the reliance on alternative load paths is inherently dangerous because it reduces 

the scope of the engineer’s judgement [14].  

 

The assessed load carrying capacities of bridges using different methods also vary widely, due 

to variety of assumptions underlying the idealisation, load application, material properties, 

hinge formation criteria and mechanism etc. In the proposed formulation, the four obvious 

hinge positions are not selected, but, instead based upon the interaction of bending moment 

and axial force present at the section at different instants of loading, the successive formation 

of the hinges takes place until a mechanism is formed. The approach has been fully 

computerized through a program written in Fortran [15]. From the assessed capacity of a 

bridge, the procedure to determine the load rating is also laid down.  

Experimental Investigation of Moment –Axial Force Interaction 

The control specimens were constructed in 1:4 cement sand mortar, having average cross- 

section 105 mm x 223 mm. Hand moulded class-A bricks of conventional size were used for 

the construction of prisms. The average height of the prisms was 681 mm, which was greater 

than the span of the test specimens. Three specimens were tested each at six different 

precompression levels. The arrangement was simply supported over the knife-edge supports 

to avoid any fixity. These were tested after curing of 28 days, under monotonically increasing 

two point load system at middle third points as shown in the Figure 1a. The test arrangement 

is shown in Figure 1b. The weight of the assembly was added to the load value. The 

experimental failure loads in masonry at different levels of precompression is given in Table 

1. 

 

The horizontal compressive force was applied along the centerline of the prism specimens. 

Three specimens each have been tested at different levels of the precompression 

corresponding to axial stress of 0%, 10%, 20%, 40%, 50%, and 60% of the crushing strength 

of the masonry from the uniaxial compression test on similar type of prism.  

 

The bending tensile strength t  without any precompression can be found on equilibrating 

the internal and external moments, as given under. 
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Figure 1a Test specimen and loading details (Dimensions in mm) 

 

At 0% precompression, the bending tensile strength of the specimens tested has been 

determined as 0.29 N/mm2. The plot of non-dimensional parameters P/Po versus M/Mo is 

drawn (Figure 2) for the experimental values. The axial loads are normalized with respect to 

dbP co   and moments are normalized with respect to 2125.0 dbM co  . 

Table 1. Experimental failure loads in masonry at different levels of precompression 

No. of 

specimens 

Average size Precompression Exp. Failure 

Load, W 

(kN) 
Width, b 

(mm) 

Depth, d 

(mm) 

L (mm) % of  crushing 

strength 

Load,  

P (kN) 

3 109.67 229.17 681 0 0.00 2.803 

3 110.17 228.73 683 10 13.42 17.756 

3 108.96 229.33 680 20 26.84 29.194 

3 109.83 229.35 677 40 53.68 41.496 

3 110.50 228.56 682 50 67.10 51.709 

3 108.50 227.89 684 60 80.52 62.490 
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Figure 1b Test arrangements for determination of flexural bond strength of masonry 
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Figure 2 Comparison of experimental axial force-moment interaction and limit state 

interaction developed by Taylor and Malinder [16] 
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It has been observed during the testing that at higher precompression levels, with the increase 

in the transverse loads, the precompression automatically increased. Although, this has been 

taken care of by releasing the pressure in the load cell to maintain constant precompression. 

This may be one of the reasons that at precompression levels of 50% and 60% of crushing 

strength the transverse failure loads recorded are on the higher side, leading to M/Mo ratio 

greater than 1 as seen in Figure 2. The moment-axial force relationship has been extrapolated 

corresponding to all range of precompression levels and a parabolic equation is fitted to the 

normalized data as given under: 
2
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Keeping in view the problem encountered during the test program, the reliability of the point 

corresponding to precompression levels of 50% and 60% of crushing strength of masonry are 

low. Hence, discarding the points corresponding to these precompression levels modifies the 

best-fit equation and bring to the close proximity of that derived by Taylor and Mallinder 

[16]. Discarding the one point corresponding to precompression level of 60% of crushing 

strength would modify the equation as under: 
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Discarding two points corresponding to precompression levels of 50% and 60% of crushing 

strength modifies the equation as:  
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All these equations are plotted in Figure 2. Neglecting last two points provides an equation 

closely matching with the one available in the literature.  

 

Taylor and Mallinder have reported the axial force/bending moment interaction for the limit 

state of rectangular masonry section. The strain distribution was assumed linear whereas a 

non-linear parabolic relation was assumed for the variation of stresses with strains. The 

moment-axial force interaction diagram represented by Eqns. 2, 3, and 4 has been compared 

in Figure 2 with that of analytically developed interaction (Eqn. 5) by Taylor and Mallinder 

[16].  
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The proposed interaction equations take into account the masonry tensile strength, indicated 

by the presence of constant term in the equations. Despite the lack of the sophisticated 

equipment used in the present investigation, a reasonable correlation has been obtained.  

The Basis of Proposed Method 

Although the behaviour of the arches is fundamentally non-linear due to the axial force-

moment interaction, the proposed method utilizes linear elastic theory. The linear elastic 

analysis under the action of unit live load is carried out and the load factors are computed by 

steering the analysis moments and axial forces to satisfy the axial force-moment interaction to 

incorporate plastic hinge at appropriate locations, until the formation of a collapse 

mechanism.  
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The moment-axial force interaction is the most important parameter to determine the load 

carrying capacity of the masonry arch bridges. Wherever the combination of moment and 

axial force developed in the section lies on this surface, a hinge shall be assumed to form at 

that section and the hinge will continue to rotate when further load is applied till the arch is 

converted to a mechanism.  

 

Considering the unit width of the arch ring, it can be divided into a sufficient number of 

segments along the barrel centerline. Each segment can be assumed to be a straight line 

joining the two nodes. These segments can be represented by a beam element having 

appropriate material and sectional properties. The end nodes are fixed at the springing line to 

provide restraint against any horizontal, vertical, or rotational movement. The arch is analysed 

first under the dead loads imposed due to self-weight of the arch ring and the load of the 

overlaying fill. The weight of the fill is calculated over each segment and is applied as 

equivalent nodal loads at its two nodes. The arch is then analysed under a unit live load 

applied at quarter point. The obtained values of bending moment and axial force due to dead 

and live load so obtained are modified to satisfy the limit state envelope at every node. A 

step-by-step linear analysis is performed to locate the four hinge locations and the 

corresponding total load on the bridge is the failure load. The details of the method are 

reported elsewhere [15]. 

The Stiffness Method  

The proposed formulation is based on stiffness approach, where a set of simultaneous 

equations in form of matrices are developed and solved. The representative set of equation 

can be expressed as  

 

      cccc RJLS        (6) 

Defining  cS as the complete structure stiffness matrix,  c  as the complete joint 

displacement matrix,  cJL as the complete joint load matrix, and  cR  as complete support 

reaction matrix. In the development of the several matrices of Eqn. 6 all components of joint 

displacement, joint load and support reaction, which form the elements of respective matrices, 

must be described with respect to a same system of axes, i.e. the reference axes for the entire 

structure. The formulation of this method is given in many standard texts [17][18]. 

 
Each segment is modelled as a beam element that has either constant or variable moment of inertia 

over its length positioned in the local axis Xm-Ym, with origin at j-end of the member and Xm axis 

directed towards k-end of the member.  If the beam element is subjected to general displacements p , 

q , r , s , t  and u  of its ends, the resulting end actions can be determined as shown in Figure 3. 

Hence, the force - displacement relationship in local system, for a prismatic member can be expressed 

as given by Eqn.  7. 

 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

144



The Beam Element 

Li

   

   

  

  

i
p

q

i

pm

i

qm

i

rp

i

tp

i

up

i

sp

  

t

r

u

s

j

k

Ym

Xm

 
Figure 3 General displacement of a typical beam element with restrained ends. 
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  (7) 

    iii Kp        (8) 

where the matrix  i  represent the components of end displacements of member i, the matrix  ip  

represents the components of end actions required to maintain equilibrium of member i when 

subjected to general end displacements and the matrix  iK  represent the components of member end 

actions resultant from independent application of unit values of the possible end displacements. This is 

also referred to as member stiffness matrix.  

Transformation Matrix: Beam Element 

For general end displacements of the restrained member, the components of end actions have been 

defined with respect to the local axis.  The components of end actions in local axes can be transformed 

in terms of the components of end actions with in the frame of the global axes as  

    iii pTp         (9) 
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where the matrix  ip  represents the components of end actions for member i in local system; the 

matrix  ip  represents the components of end action for member i in the frame of global axes and  iT  

is the transformation matrix as given below.  
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where yx C and C  are direction cosines. 

On the similar basis the relation between the components of end displacements of member i with 

respect to local axis Xm-Ym and the reference axes X-Y can be established as 

    iii T         (11) 

where matrix  i  represents the components of member end displacements in the system of local 

axes and the matrix  i  represents the components of member end displacements in a system of 

global axes. 

Thus Eqn. 13 gives member stiffness matrix with respect to global axes. 

       iii

T

ii TKTp           (12) 

      ii

T

ii TKTK         (13) 

is defined as the transformed member stiffness matrix expressed with respect to the arbitrary system of 

global axes X-Y. The Eqn. 11 describes the relationship between the components of the end 

displacements and the end actions of member i in the frame of global axes. Once the system of 

equilibrium equations are generated in the global axes, the independent components of the 

unrestrained joint displacements are evaluated by substituting the boundary conditions and solving the 

set of residual equations expressed as 

    uuuu JLS        (14) 

and the components of the support reactions are determined by solving that set of equations expressed 

as 

      rruru RJLS       (15) 

Assumptions of Method 

The method is based on the following assumptions: 

 At the point of hinge the axial force and shear force resisting capacity is not impaired and it 

continues to resist the axial force and shear force. 

 The effect of the shear forces on moment-axial force interaction envelope has been ignored. 

 The point where a hinge is formed will continue to rotate. 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

146



Comparison of Proposed Analysis to Field Results 

In order to validate the proposed model for indigenous constructions, the two sets of arches 

were constructed and tested in the laboratory. The description of these arches can be found 

elsewhere [19]. The material properties and other input data used in the analysis are tabulated 

in Table 2. The obtained results with different axial force moment interaction have been 

compared with the experimental results in Table 3. 

 

From the comparison of the results, it can be observed that inclusion of tensile strength of the 

masonry considerably improves the results. The loads predicted by using Eqn. 2 are in excess 

of test maximum loads. The estimated load carrying capacity is 40.94% in excess for first set 

of arches and 38.41% in excess for second set of arches in comparison to the experimental 

loads. The use of Eqn. 4 can reliably simulate the test results using the material properties 

given in Table 2. These properties have achieved through the experimental investigations on 

the indigenous masonry in the laboratory. The estimated load carrying capacity is only 11.96 

% in excess for first set of arches and 5.52 % in excess for second set of arches in comparison 

to the experimental loads. On the other hand, using Eqn. 5 derived by Taylor and Mallinder 

[16], the estimated load carrying capacity is too low in comparison to the test results for both 

the sets of test arches. In view of this the equation derived from the experimental 

investigations after neglecting the points with unreliable data is proposed to be used for 

correctly predicting the load carrying capacity of a masonry arch bridge in fairly good 

condition with indigenous constructions.  

Table 2. Material properties used in the analysis 

Material Property Value Units 

Brick Masonry Modulus of Elasticity 3723 N/mm
2
 

 Compressive Strength 5.84 N/mm
2
 

 Tensile Strength 0.29 N/mm
2
 

 

Table 3. Comparisons of failure loads (kN) 

Bridge 
Test Maximum 

Load (kN) 

Load Predicted from Proposed Method (kN) 

Using Eqn. 2 Using Eqn. 4 Using Eqn. 5 

Arches AV1 & AV2 55.10 *
 

77.66 61.69 31.36 

Arches AF1 & AF2 74.25 * 103.07 78.35 55.55 

* The values are average for the two similar models. 

Because of the difference in the method of analysis (Step-by-step linear) and the actual 

behaviour (non-linear) of the structures it is difficult to get the actual response of the 

structures from the proposed analysis. The load-deflection response achieved from the 

structures has been compared with the experimental behaviour of both the set of the arches. 

The comparison of the load deflection under the load point for test arches is shown in Figures 

4 and 5 respectively. The predicted average deflections for test arches AV1 and AV2 are only 

8.7 % of the experimentally observed value and 31.2 % for arches AF1 and AF2.  It can be 

inferred from the comparison that the method can predict the load carrying capacity but not 

the deflections. 
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Figure 5 Comparison of predicted and experimental load-deflection behaviour of the 

arches AV1 and AV2 
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Figure 6 Comparison of predicted and experimental load-deflection behaviour of the 

arches AF1 and AF2 

Conclusions 

The axial force-moment interaction can be effectively used for the prediction of load carrying 

capacity of the masonry arch bridges. In the proposed method the experimentally determined 

axial force-moment interaction has been verified and implemented successfully to predict the 
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collapse load. The method can predict the load carrying capacity within an acceptable range 

of variation. For first set of test arches the predicted values differ by 11.56 % and by 5.52 % 

for second set of test arches. The predicted values are on higher side, which may be attributed 

to the use of material properties determined from the control specimens.  

 

The proposed interaction, accounts for some minimum tensile strength of the masonry. The 

proposed method can predict the collapse load on the basis of formation of adequate number 

of hinges leading to conversion to a mechanism.  

 

The frame analysis program automated for the formation of the hinges and further leading to 

failure on formation of the mechanism provides a sufficiently quick and simple method for 

determination of the load carrying capacity of the masonry arches assuming a unit width of 

the arch ring. 
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Abstract 

Various types of spaces for different purposes on various positions at various times are 

required to execute various construction activities on a construction site. Labors, equipment, 

materials, temporary facilities, and structure to be developed share the limited space available 

on a construction site. Planners use four-dimensional (4D) CAD modeling of the execution 

sequence to understand and generate the space requirements. The 4D CAD modeling 

simulates the construction process by linking execution schedule with a 3D model to visualize 

the construction sequence. 4D modeling is found helpful in the construction space planning. 

However, 4D CAD modeling lacks in considering the topography and surroundings when 

construction is in the hilly regions. In the present study, a geographic information system 

(GIS) has been utilized for the space planning. GIS facilitates the modeling of topography and 

existing surroundings. The components corresponding to different activities in the schedule 

and multiple types of spaces corresponding to various activities defined in the execution 

schedule have been generated in the SketchUP. A GIS-based procedure has been developed in 

ArcGIS 10, a GIS software, that enables identification and computation of the construction 

space conflicts before actual implementation of the schedule.  

Keywords: Geographic Information System, Project Management, Workspace  

Introduction 

Deficiencies in the space planning results congested jobsite, loss of productivity, space 

conflicts, and schedule interference or delay [Guo (2002)]. Construction site engineers usually 

arrange daily activities on the jobsite according to the planned execution sequence. Existing 

literature suggests that like any other resource, construction activities also need execution 

space as a resource that need to be planned before the finalization of a schedule [Akinci et al. 

(2002a)]. It is impractical for a planner to visualize the dynamic multiple types of space 

requirements mentally because it changes with time/schedule like any other resource 

requirement in the construction industry. 4D CAD-based production models were used for the 

automated generation of spaces required by the construction activities to reduce time-space 

conflicts [Akinci et al. (2002b)].  

 

Despite of many researches and applications of the 4D CAD technologies their use is not very 

common in the construction industry. After 4D CAD, there has been a major revolution of 

building information modeling (BIM) that also provides a mechanism to develop a conflict 

free construction schedule [Choi et al. (2014)]. BIM facilitates 3D modeling, scheduling, and 

linking them together to visualize the execution sequence that helps in the identification of 

space conflicts. However, construction space planning is not only related to the construction 

sequence visualization developed in CAD or BIM. For example, space planning for gravity 

dam construction where topography plays a major role cannot be done without geospatial 
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capabilities (available in GIS) which are missing in both, BIM and 4D CAD-based systems 

[Zhong et al. (2004)]. 

 

Keeping the importance of geospatial capabilities in view, contractors or organizations create, 

store, and share 3D modeling along with its surroundings [Bansal and Pal (2008)]. 3D model, 

topography, surroundings, 4D scheduling, and geospatial analyses capabilities together in a 

single platform help in the space planning much better way [Bansal (2011)]. In addition, 

modeling of the spatial relationships through GIS-topology is of great use in the spatial 

computing perspective because GIS-based topology has been matured in the last decade. 

However, recent efforts to represent topology in BIM still need further investigation 

[Borrmann et al. (2009)].  

 

The use of 4D models in the GIS is found helpful in the space planning. The visualization of 

execution sequence in 4D along with its neighborhood supports space planning of a 

construction planning in hilly regions. A 3D model acts as an input in the development of a 

4D model. However, the 3D modeling capabilities available in the GIS have not been 

developed like BIM or CAD-based systems [Bansal and Pal (2008)]. A few commercially 

available GIS tools offer 3D formats. In this respect, researchers have the challenging role to 

mature 3D GIS. The researchers have to show the GIS users the possibilities and constraints 

of 3D GIS in order to obtain a serious breakthrough of the 3D GIS. Therefore, at present, an 

alternative to the 3D modeling has been 

explored. The present study discusses how 

space-planning procedure in the 4D GIS 

has been designed for conflicts 

identification and computation.        

Purpose of GIS in Construction Planning 

A construction either big or small cannot 

remain in isolation but is closely related to 

all other facilities in its surroundings. Even 

as a single entity, it creates a vast amount of 

information by its existence in in its 

surroundings. A construction cannot be 

planned as a single entity; careful 

consideration has to be given to the 

immediate neighborhood. Usually, this is 

done manually based upon previous 

experience. Software tools like building 

information modeling (BIM) and CAD 

mainly consider the inside geometry of a 

construction project, while, GIS is more 

concerned with the space outside a 

building. Therefore, any new construction using BIM and CAD systems can be planned in 

isolation only. GIS helps in efficient decision making with its capability to handle both spatial 

and attributes information which is queried, analyzed, and displayed together in various 

graphical and non-graphical forms. Spatial data describe features’ geometry whereas; 

attributes stored in tabular form describe characteristics of different features. The 3D models 

of a construction project should be prepared along with topography to consider the 

surroundings. Layouts of existing utility services like: electric lines, gas supply, water 

distribution systems, sewerage network, etc. which play a major role in locating new facilities, 

 

 

4D modeling of 

construction sequence 

  

Assessment of spaces 

availability and 

demand 

Modeling of space 

requirements 

  
Linking space 

requirements with 

execution sequence 

 

Computations of 

space conflicts 

Figure 1: Process of space planning. 
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can easily be stored in GIS environment. Construction planning especially in hilly regions 

where topography plays a major role cannot be simulated without geospatial modeling and 

analysis capabilities which are available in GIS. The CAD and VR-based systems lack 

geospatial analytical capabilities such as evaluation of a location for flooding, drainage 

pattern, and route planning for vehicles carrying consignments from different access routes to 

construction site. Further, a planner also needs spatial information about the neighborhood of 

a facility to be developed to determine its dependence on project under consideration. Such 

dependence is not easily modeled in CAD and VR-based systems. The use of GIS allows a 

planner to view and analyze the effects of a new construction on existing facilities. GIS-based 

approach also helps in incorporating environmental aspects in the early phases of construction 

planning. 

Process of Space Planning 

In the space planning, to finalize a construction plan in terms of when, where, and how long a 

space is required on the jobsite, a link between workspace requirements and the execution 

schedule is found significant. 3D model along with its surroundings, a 4D sequence, and 

geospatial analysis capabilities into a single GIS platform helps in the space planning. The 

modeling of an area with spatial constraints using GIS-based topology contributes in the 

identification of space conflicts. Therefore, the main objective behind the present study was to 

explore the use of GIS in the space planning to identify spatial conflicts. The procedure for 

the identification of spatial conflicts was designed in which workspaces corresponding to 

various activities in the schedule were generated in the SketchUP. A link between workspaces 

and the 4D model of construction sequence was established in the ArcGIS 10. After the 

identification of space conflicts, their computation was done in ArcGIS 10 (Fig.1). 

Identification of Space Conflicts 

4D Modeling of Construction Sequence 

Initially, the execution schedule of the project under construction was finalized. The modeling 

of building interior in 3D was done in the SketchUP. The terrain modeling around the 

building was done in ArcGIS 10 [Bansal (2014)]. The modeling of building interior depicts 

floor level detail whereas digital terrain model represents topographical condition of the 

jobsite. Linking of the project execution schedule with 3D components developed in the 

SketchUP [SketchUp (2010)] to make 4D construction sequence was done in ArcGIS 10 

[Bansal and Pal (2008)]. The degree of detail in a 4D model depends upon the detail in the 

execution schedule. Hence, it is better to use full work breakdown structure. Detail in a 

schedule and division of a 3D model into small components have serious implication on the 

time required in the 4D modeling. 

Assessment of Spaces Availability and Demand  

Three categories of the available spaces were considered in the present study. These spaces 

includes: space provided by the jobsite on the ground, space provided by the temporary 

structures such as scaffolding or working platforms, and space provided by the structure to be 

constructed with time. The categories of the available spaces were characterized in terms of 

their sizes, locations, and time of availability. An activity requires working and path spaces 

for labors, equipment, and materials storage. Hence, various categories of space requirements 

for each activity were calculated. The spaces were positioned outward, inward, above, below, 

or around the reference component to be constructed. Site engineers describe each space 

requirement with respect to component to be constructed, component’s location, size, and 

shape. The present study does not focus on the volumes and types of different spaces required, 
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for more details about this, readers are directed to the earlier studies [Akinci et al. (2002a; 

2002b)]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modeling of Space Requirements 

The position, size, shape, schedule, and reference component corresponding to each space 

decide its characteristics on the jobsite. SketchUP was used to model the spaces 

corresponding to each activities’ space requirement estimated in the earlier step. Any shape of 

a space can be modeled in the SketchUP. The modeled spaces from the SketchUP were 

exported to ArcGIS 10 in the Multipatch format [ArcGIS (2014)], The Multipatch format 

supported in the ArcGIS 10 is used to represent spaces or components in 3D. 

Linking Space Requirements with Execution Sequence 

Project specific space requirements on a jobsite changes with time, therefore, the developed 

space requirements were linked with the execution sequence to generate dynamic space 

requirements. This link finds the start and finish times of each space corresponding to an 

activity defined in the execution schedule. 4D model of the execution sequence integrated 

with space requirements shows work space demand of various activities along with 3D 

components to be constructed along with its surrounding (Fig. 2). To finalize a plan, 4D 

model of the execution sequence integrated with space requirements was found helpful 

because the overlaps among various spaces were identified visually. 

Computations of the space conflicts 

The overlaps/conflicts between two spaces were identified visually with the help of integrated 

4D model of the space requirements and execution sequence. The volume of an 

overlap/conflict between two spaces was computed in the ArcGIS 10 (Fig. 3). A closed space 

in the multipatch format is required for the analysis in ArcGIS 10 for finding an overlap; this 

is checked with Is Closed 3D tool. The Enclose Multipatch tool is used to eliminate gaps in 

multipatch features used to represent space requirements [ArcGIS (2014)]. Spaces in the 

SketchUP may be produce in extremely complex geometries. If one input is given, the 

Intersection of features in that multipatch dataset are computed, whereas if two were given, 

Figure 2: Work space requirement of the brick wall in the construction of a small 

house. 
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the Intersection of features from both datasets are determined and intersections found in only 

one input get ignored. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The volume of an overlap/conflict between two input spaces computed 

in the ArcGIS 10 

Figure 4: The case study building consists of two portions, left and right, left 

portion is of four floors and right is of five floors. 
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Case Study 

The National Institute of Technology (NIT) Hamirpur, India is the premier technical institute 

of the region located in hilly terrain, covering an area of about 200 acres. The demand of 

buildings in the institute campus has been growing due to the increased academic and non-

academic activities. The construction planning of a building is hilly region is highly 

influenced by site topography. Hence, construction of the building located in the hilly region 

of NIT campus was taken as the case study. The modeling of facilities/utilities around the 

case study building included institutional buildings, administrative block, health center, 

library, auditorium, and lecture hall complex. Other existing buildings modeled were food 

courts, water tanks, and stores. The existing public utility networks included were layouts of 

water distribution system consisting of main supply line and sub-mains, sewer network, road 

network, and overhead electric lines. Electric poles, telephone poles, and lamp posts were also 

modeled on their respective locations. The attributes corresponding to all existing 

facilities/utilities were kept in the relational database. For more detail about the modeling of 

surrounding readers are directed to the earlier study by [Bansal (2014)]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The case study building consists of two portions, left and right. The left portion is of four 

floors and right is of five floors as shown in figure 4. The construction plan of each portion 

was broadly divided into five parts. The construction of sub-structure was included in the first 

part of plan. It involved activities like: preparation of land, excavation, construction of 

foundation, and backfilling of foundation trenches. The second part of plan involved 

construction of reinforced cement concrete frame. The exterior walls, interior partition walls, 

and flooring were included in the third part of plan. The plastering, fixing of door and window 

Figure 5: Identified space conflicts in the case study building through 

modeling in ArcGIS. 
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frames, and fixing of panels were included in the fourth part of plan. The electrical fitting, 

plumbing, and finishing works were included in the fifth part of plan. The identified space 

conflicts in the case study building through modeling in ArcGIS have been shown in figure 5. 

Conclusions 

Without considering the space requirements, execution schedule cannot be finalized. 

Displaying spaces required along with the corresponding components in the 4D helps in the 

detection of time-space conflicts and accordingly modification of the execution schedule to 

resolve conflicts before construction. In the space planning, if the execution schedule leads to 

space conflicts, it is changed until it becomes conflict free. This facilitates in the rapid 

generation of a conflict free schedule. Various graphical operations on spatial and non-

graphical operations in GIS improve and speed up construction planning and space planning. 
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Abstract 
A numerical simulation model has been developed, to compute vadoze zone soil moisture 
content profiles under transient field conditions by coupling soil moisture flow equation with 
a non linear root water uptake model. The model has been tested for the sensitivity of its non 
linear uptake parameter, for obtaining its optimal value. Computation takes into account a 
variable transpiration rate and a field measured initial moisture content. Rainfall, irrigation 
and evaporation have been treated as sources of non-uniform potential surface flux. Solutions 
to the computation have been obtained numerically by a fully implicit finite difference 
scheme, involving a non linear system of equations, which has been linearized using Picard’s 
iterations. Field crop data of maize (Zea mays), which is among the most important crops in 
India and several other countries in the world, has been used to evaluate the results of the 
simulation. Determining the water requirements of crops is important for improved scheduling 
of irrigation, which in turn requires accurate measurement of crop evapotranspiration (ETc). 
As the first objective, daily and seasonal ETc of maize are computed using Lysimeter set up in 
an experimental field from May 2006 to September 2006 at Roorkee, India. The average daily 
ETc of maize varied from a range of 1.4 to 3.4 mm day–1 in the early growing period to 8.3 
mm day–1 at peak that occurred 9 weeks after sowing (WAS) at the silking stage of maize, 
when leaf area index (LAI) was 4.54. Average daily ETc declined sharply to 2.57 mm day–1 
during late season stage of crop. The measured seasonal ETc of maize was 495 mm. 
Development of computation based schedules of irrigation is the second objective of the 
study. Plant parameters like root depth and crop height have been continuously observed 
throughout the crop period. Top 0.3 m depth of root zone is considered to represent the soil 
moisture status governing the schedules of irrigation. Application of the computation 
technique to field conditions and comparison of the results with filed measured data shows 
very good agreement. 
  
Introduction 
 
The availability of water for plant roots is an important topic, which has been explored by a 
number of investigators (Feddes et al., 1978; Molz, 1981; Kang et al., 2001). Recently the 
attention is being given to irrigation management, by optimizing the frequency of irrigation, 
particularly in arid and semi-arid regions. Such management strongly depends upon 
knowledge of soil moisture movement through the root zone of the crops. Prediction of 
available moisture for plant roots also has significant effect on irrigation scheduling. The 
studies in this direction followed basically two approaches; microscopic, where a single root 
is assumed to be represented by a narrow infinitely long cylinder of constant radius which 
absorbs water (Afshar and Marino, 1978) and macroscopic, which focus on the removal of 
moisture from the differential volume of soil as a whole, without considering the effect of 
individual roots (Feddes et al., 1978). However, the basic assumptions along with the 
drawbacks and the difficulties involved in microscopic scale models under natural field 
conditions have restricted their applicability for field situations. 
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Soil moisture dynamics under cropped conditions are affected by soil, plant and climatic 
factors. The boundary between soil and the root system of plants is a major hydrologic 
interface across which well over 50% of evapotranspiration moves. Mathematical models of 
soil moisture dynamics on a macroscopic scale are mostly employed for predicting soil 
moisture distribution in the crop root zone on a day-to-day basis. Root water uptake in the 
crop root zone is represented as a sink term in the soil moisture flow equation. There are many 
different forms of sink term functions developed till date, of which, hypothetical linear 
distribution pattern of 40, 30, 20, 10 % moisture uptake in each quarter of root zone by Molz 
and Remson (1970), Feddes et al. (1978)’s constant rate model, Prasad (1988)’s linear rate 
model and Ojha and Rai (1996)’s non linear root water uptake model are the prominent ones. 
Precise estimation of soil moisture depletion in the crop root zone, accurately determines the 
soil moisture availability for the plant use. It has been established by many recent studies that 
plant moisture uptake involves considerable non-linearity owing to the non-linear root density 
distribution in the root zone (Ojha and Rai, 1996; Kang et al., 2001). 
 
Present work couples Ojha and Rai (1996) non-linear root water uptake model, with Richards 
(1931) equation. A numerical simulation model is developed to compute the soil moisture 
dynamics in the crop root zone. Requisite soil and crop data is obtained by conducting the 
field crop experiments. Maize, which is a major crop in this region, has been grown during 
relevant crop season. Variation of crop evapotranspiration during the crop season has been 
determined. The first objective of the work is to accurately predict the soil moisture profiles in 
crop root zone. Based on the simulated soil moisture depletion in root zone, study also aims to 
compute optimal irrigation schedules for the crop grown in the field at different allowable 
moisture depletion levels. 
 
Materials and Methods 
 
Water Movement in Soil 
The mixed form of Richards’s equation governing water flow in the unsaturated zone, 
considering root water uptake can be written as 
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Where, θ is the volumetric moisture content of soil, ψ is the pressure head, t is the time, z is 
the vertical coordinate taken positive upwards, K is hydraulic conductivity, and S(z, t) is the 
water uptake by roots expressed as volume of water per unit volume of soil per unit time. 
Richards’s equation is highly non linear due to changes in pressure head and hydraulic 
conductivity in unsaturated soils. In order to solve Richards’s equation, it is required to 
specify constitutive relationships between the dependent variable (moisture content in this 
case) and the non linear terms (pressure head and hydraulic conductivity). Present study uses 
K-θ-ψ relationships proposed by Van Genuchten’s (1980), given as: 
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In equation (2), α and n are unsaturated soil parameters with m = 1-(1/n) and Θ is effective 
saturation defined as 
 

                             
rs

r

θ−θ
θ−θ

=Θ                                         (3) 

 
Where, θs is saturated moisture content and θr is residual moisture content. 
 
Based on Mualem’s (1976) model the relation between moisture content and hydraulic 
conductivity is given by (Van Genuchten, 1980) 
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Where Ksat = saturated hydraulic conductivity of soil 
 
Root Water Uptake 
Ojha and Rai (1996), non-linear root water uptake model, referred as O-R model hereafter, 
has been used to represent the sink term in Eqn (1). According to O-R model, for potential 
transpiration conditions, the potential rate of soil moisture extraction Smax is given by the 
relation   
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Where, β is model parameter, z is depth below soil surface, and zrj is root depth on the jth day. 
For z = zrj, Smax is zero as per (5) and at z = 0, Smax attains a maximum value. Thus (5) 
satisfies the desired extraction conditions, that extraction is maximum at the top and zero at 
the bottom of the root. It is to be noted that for β = 0, (9) reduces to a constant rate extraction 
model of Feddes et al. (1978) with Smax = Tj/zrj while for β = 1, (9) reduces to linear extraction 
model of Prasad (1988) with Smax = 2Tj/zrj – 2Tj (z/zrj

2). Present work considers the moisture 
uptake under potential moisture condition.  
 
Initial and Boundary Conditions 
Measured pressure head values in the soil profile at the start of crop season have been used as 
the initial condition, i.e.  
  
   ψ = ψ0 (z, 0)    0 ≤ z ≤ L                   (6) 
 
Where ψ0 is the measure pressure head value at corresponding soil depth. For intermediate 
depths values are linearly interpolated. 
 
The upper boundary condition is a prescribed flux boundary condition accounting for the 
evaporation taking place from the top soil and a Drichlet boundary condition, during irrigation 
or rainfall. Thus 
 

        ψ (L, t) = ψs   during irrigation/rainfall                    (7a) 
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Where ψs is the pressure head corresponding to the saturated soil moisture condition. E is the 
evaporation from the top soil. 
 
At lower boundary gravity drainage type condition has been assumed, where a unit hydraulic 
gradient is considered. 
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Numerical Model  
 
A numerical model has been developed to solve equation (1) along with the sink term 
subjected to initial and boundary conditions (6) to (8), and employing the constitutive 
relationships (2) to (4). The numerical model is based on a mass conservative, fully implicit 
finite difference scheme proposed by Celia et al. (1990). The non linear system of equations is 
linearized using Picard’s methods (Paniconi et al., 1991) and resulting system of equations are 
solved using Thomas algorithm. The model yields spatial distribution of pressure head and 
moisture content at successive advancing times in the soil. From the model computed 
moisture contents, the moisture depletion values at different zones of crop root at different 
times are computed by numerical integration. 
 
Field Crop Experiments 
 
Field crop experiments have been conducted at the field experimental station of Civil 
Engineering Department, Indian Institute of Technology, Roorkee, India, from April to 
September, 2006. The average annual rainfall at Roorkee is 1032 mm, of which about 75 % is 
usually received between July and September. The required meteorological data for the 
computation of corresponding crop evapotranspiration using crop coefficient approach is 
obtained from the Department of Hydrology, Indian Institute of Technology Roorkee. For 
measuring the soil moisture profile throughout the crop season soil moisture measurement 
sensors have been embedded at 0.15, 0.30, 0.45, 0.60, 0.75, 0.90, 1.05 and 1.20 m, however at 
the ground surface the moisture content is measured using TDR soil moisture meter. 
 
Crop details 
Maize (Variety K-99 HYBRID) was sown uniformly in Lysimeters and the surrounding field 
so that the field conditions could be simulated in and around the Lysimeters. Crop period of 
Maize lasted from May 20th to September 1st, 2006 (105 days). The sampling site for different 
plant parameters such as leaf area index (LAI) and root length is about 4 to 5 m away from the 
Lysimeter. The entire crop growth period for the crops is divided into four stages; I-Initial, II-
Crop Development, III-Mid Season and IV-Late Season. Growth stages have been considered 
on the basis of study by Doorenbos and Pruit (1977). Initial stage corresponds to the 
germination and early growth when the soil surface is not or is hardly covered by the crop 
(ground cover < 10 %). Crop development stage starts from the end of initial stage to 
attainment of effective full ground cover (ground cover: 70-80 %). Mid season commences 
from the attainment of effective full ground cover to time of start of maturing as indicated by 
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discoloring of leaves or leaves falling off and late season stage begins from end of mid-season 
until full maturity or harvest. Duration of stage I, II, III and IV accordingly has been found to 
be 17, 30, 34 and 24 days respectively. Irrigations have been provided on 24th, 33rd and 42nd 
day of the crop period. 
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            Figure 1. Field observed plant parameters for the Maize  
 
Two major parameters; LAI, and root depth have been recorded at discrete time intervals 
throughout the growth period. Leaf area index (LAI) required for the partitioning of the crop 
evapotranspiration into plant transpiration and soil evaporation, was measured by direct 
method suggested by Jesus et al., (2001). Leaf area measurements are made once in a week 
during the initial stage, once in five days during development stage, twice a week during 
middle stage and once a week during last stage. Root depth has been measured by trench 
profile method described by Wolfgang (1979). At initial stages of crop growth root depth has 
been measured at 7-10 days interval, where as in later stages this interval has been reduced to 
5 day interval. Figure 1 show the variation of root depth and LAI measurements with crop 
growth period for maize.  
 
 
 
Soil parameters  
Representative soil samples were obtained from the 0-0.3 m, 0.3-0.6 m, 0.6-0.8 m, 0.8-1.0 m 
and 1.0-1.2 m depths, in the experimental site for testing the soil properties. The cumulative 
particle size curves obtained through grain size and hydrometer analysis reveal that the soil 
profile up to 1.2 m is fairly uniform in texture. The upper 0-0.3 m depth however, shows a 
slight deviation from the general trend with higher silt and lower clay fractions being 
indicated, but it is within limits and hence a uniform soil textural classification is considered 
for 0-1.2 m depth. USDA soil textural class for the experimental field soil is sandy loam. The 
bulk density, particle density and porosity for the field soil are 1.62 g/cm3, 2.61 g/cm3 and 
0.38 respectively.  
 
Soil-moisture characteristic curve provides a convenient method for describing the moisture 
retention properties of different soils (Winter 1974). In-situ determination of SMC has been 
performed, which involves simultaneous measurement of soil matric potential (ψ) and 
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moisture content (θ) at 0.3, 0.6, 0.9 and 1.2 m depths below the ground level. No clear depth-
wise relationship is discernible, indicating the similarity of the retention characteristics of the 
soil profile and as such a single SMC has been used for the entire zone. Van Genuchten 
Relationship (1980) described by Eqns (2)-(4) has been used to determine the soil hydraulic 
characteristics.  
 
The saturated moisture content θs in eqn. (3) is assumed to be equal to the measured soil 
porosity (0.38 cm3 cm-3). A standard residual moisture content value equal to 0.065 cm3 cm-3 
(Carsel and Parrish, 1988) for sandy loam soil (soil type for experimental plot) has been 
considered. A non linear optimization algorithm E04FDF (N.A.G., 1990) has been used to 
estimate the Van Genuchten parameters α and n, which are 6.2 m-1 and 1.68 respectively. The 
value of average field saturated hydraulic conductivity (Ksat) determined at different depths 
using Guelph type Permeameter is 3.9 cm/hour. Experimentally obtained value of field 
capacity (θfc = 0.208) and SMC deduced value of wilting point (θpwp = 0.068) has been used in 
the present study. The available moisture which is the difference of θfc and θpwp is 0.14. The 
irrigation has been provided at 50% depletion of the available moisture in the effective root 
zone.  
 
Computation of Crop Evapotranspiration (ETc) 
 
Crop evapotranspiration has been determined as the product of daily crop coefficient and 
reference evapotranspiration. Reference evapotranspiration (ET0) is a complex phenomenon 
and depends on several climatological factors, such as temperature, humidity, wind speed, 
radiation, and, type and growth stage of crop. During the study period ET0 (mm/day), has been 
computed by Penman Monteith method. The Penman-Monteith equation for the ET0 is given 
as (Allen et al., 1998) 
 

                         
( ) ( )

( )2

as2n

0 u34.01

eeu
273T

900GR408.0
ET
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−
+

γ+−∆
=                 (9) 

Where, Rn = net radiation at the crop surface [MJ m-2 day-1], G = soil heat flux density [MJ m-

2 day-1], T = mean daily air temperature at 2 m height [°C], u2 = wind speed at 2 m height [m 
s-1], es = saturation vapour pressure [kPa], ea = actual vapour pressure [kPa], (es - ea) = 
saturation vapour pressure deficit [kPa], Δ = slope vapour pressure curve [kPa °C-1], γ = 
psychrometric constant [kPa °C-1].  
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Figure 2. Daily reference evapotranspiration during study period 

 
Different parameters involved have been computed using the mathematical formulations 
provided by Allen et al. (1998). Fig. 2 shows the daily ET0 (mm/day) computed using 
Penman-Monteith method for the study period. 
 
The crop coefficient (Kc) value represents crop-specific water use and is needed for accurate 
estimation of irrigation requirements of different crops. Comprehensive list of stage-wise crop 
coefficients is available in literature (Allen et al, 1998). The crop coefficients for initial, 
development, mid-season and end-season stages are denoted as Kc ini, Kc dev, Kc mid and Kc end 
respectively. In case the local calibration of the crop coefficients is not possible then a 
procedure has been outlined by Allen et al. (1998), to modify the reported crop coefficients 
for the local climatic conditions, and crop and irrigation practices. FAO proposed Kc ini, Kc mid 
and Kc end values are 0.3, 1.2 and 0.6 for Maize. These values have been modified for the local 
climatic, crop and soil characteristics according to the procedure outlined in FAO guidelines. 
The modified values of Kc ini, Kc mid and Kc end are 0.33, 1.126 and 0.55 respectively.  
 
From the stage wise crop coefficients, daily Kc values during the growing period are 
determined either graphically or numerically (Allen et al., 1998). The daily crop coefficient 
depends on the plant characteristics as well as the meteorological factors, which are 
represented in the stage specific crop coefficients. Allen et al. (1998) had observed that Kc 
values remain constant for early and mid season stages. However, during the crop 
development and late season stage, Kc varies linearly between the Kc at the end of the 
previous stage (Kc prev) and the Kc at the beginning of the next stage (Kc next), which is Kc end in 
the case of the late season stage. Following Allen et al. (1998), the crop coefficient for an ith 
day in a particular stage is computed as:    
 

                                 
( ) ( )prev,cnext,c

stage

prev
prev,cci KK

L
Li

KK −

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




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

 −
+= ∑              (10) 

 
Where, i is the day number within the growing season, Kc i crop coefficient on day i, Lstage is 
length of the stage under consideration [days], and Lprev is the sum of the lengths of all 
previous stages [days]. Using equation (10) daily crop coefficients for Maize are determined. 
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Daily crop evapotranspiration is determined as the product of daily Kc value and reference 
evapotranspiration. Further, the daily crop evapotranspiration is partitioned into plant 
transpiration and soil evaporation using eqn. (11) method proposed by Belmans et al. (1983), 
where soil evaporation (Es) is calculated as a fraction of the ETc using the LAI of the soil 
surface. 
 

            Es = f *EXP(− c * LAI) ETc              (11) 
 
Where, f and c are regression coefficients, with f = 1.0, and c = 0.6. This relation gives an 
acceptable estimation of soil evaporation (Belmans et al., 1983). Plant transpiration is part of 
the ETc, and it can be calculated after Es is determined from Eqn. (12). Since ETc = Es+Tp, 
plant transpiration (Tp) is 
 

                     Tp = ETc − Es                                       (12) 
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Figur
e 3. Daily Crop Evapotranspiration, Evaporation and Transpiration for Maize. 

 
The plant transpiration is used as the sink term in the Richards equation and the soil 
evaporation is used as the boundary condition at the ground surface. Fig. 3 shows the variation 
of crop evapotranspiration and its components, evaporation and transpiration for Maize 
throughout the crop period. The average daily crop evapotranspiration of Maize varied from a 
range of 1.4 to 3.4 mm day–1 in the early growing period to 7.2 mm day–1 at peak that 
occurred 9 weeks after sowing (WAS) at the silking stage of maize, when leaf area index 
(LAI) was 4.54. Average daily ETc declined sharply to 2.57 mm day–1 during late season 
stage of crop. 
 
 
Results and Discussion 
 
The obtained soil moisture characteristics, crop evapotranspiration and root depth variation 
over the crop period applied to the numerical model formulated by coupling Richards 
equation with O-R model to simulate plant moisture uptake. Initially the optimal value of the 
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non-linearity parameter β of O-R model is determined using observed and simulated soil 
moisture depletion pattern. The optimal value of β for Maize has been found to be 1.5. 
Observed and simulated soil moisture profiles in the vadoze zone on discrete days and soil 
moisture status during the crop period of Maize has been compared. 
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Figures 4, 5 and 6. Moisture status during crop period at 0-15, 30 and 60 cm depths in 

root zone 
                        
Figs 4, 5 and 6, show the observed and simulated soil moisture status during crop period, and 
Figs 7 and 8, show the observed and simulated soil moisture profiles on discrete days in crop 
period of Maize. 
 
It can be observed from the Figs 4-8, that there exists a reliable agreement between simulated 
and observed values. However, for quantitative evaluation, error statistics e.g. coefficient of 
determination (COD), coefficient of variation (COV) and average relative error (ARE) 
(Ambrose and Roesch, 1982) are used for each set of values. 
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Where, θsi is the simulated sil moisture content at ith point, θmi is the corresponding field 
observed value, θm is the average of the field measured values, and n is the number of 
observations. A value of COD close to the unity indicates a high degree of association 
between  
 
The observed and simulated values, The COV quantifies the amount of “random scatter of the 
simulated and measured values about 1:1 line and ARE quantify the extent to which model 
simulations overestimate (positive ARE) or underestimate (negative ARE) the measured 
values. Corresponding values of error statistics for observed and simulated soil moisture at 
different depths are shown in the Figs 5-7. In case of observed and simulated soil moisture 
profiles the COD, COV and ARE values range between 0.74-0.92, 0.08-0.32 and -5.4-9.6 
respectively. The values of error statistics fall in satisfactory-high agreement range.  
 
It can be postulated from the above discussion that numerical model involving O-R model 
coupled with soil moisture flow equation, when applied to precisely determined soil 
parameters, crop data and crop evapotranspiration accurately simulates the soil moisture 
dynamics in the crop root zone. This provides the exact soil moisture availability for the plant 
moisture uptake in the crop root zone. Generally the irrigation is practiced when the average 
moisture content with in the root zone depth attains certain value between the field capacity 
and permanent wilting point (Prasad, 1988). This value of moisture content is called the 
allowable depletion level. 
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Figures 7 and 8. Vadoze zone soil moisture profiles on discrete days in the crop period 

 
 
For different depletion levels required scheduling of irrigation is carried out. For optimal 
scheduling, adequate scheduling criterion is an important parameter in determining the 
frequency of irrigation events. The two parameters which contribute to assigning an adequate 
scheduling criterion are; allowable moisture depletion level and root depth considered for 
accounting the average soil moisture level. The hypothetical condition of no-rainfall is 
considered during the crop period of Maize. Though, allowable moisture depletion level is 
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dependent on the type of crop and the moisture retention capacity of the soil, 50 % and 75 % 
moisture depletion levels are considered in the present study. The effective root depth 
considered for accounting the average soil moisture status is 0.3 m. The optimal irrigation 
schedule at 50 and 75 % allowable moisture depletion level are given in Fig. 9 and 10. 
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Figures 9 and 10. Irrigation schedule for Maize at different allowable moisture depletion 

levels. 
 

Summary and Conclusions 
 
A numerical model has been formulated to compute the soil moisture content profiles under 
transient field conditions. A non-linear root water uptake model has been used as sink term to 
represent plant moisture uptake. Numerical model takes into account a variable transpiration 
rate and non-uniform initial soil moisture content. Rainfall, irrigation and evaporation are 
treated as sources of non-uniform potential surface flux. Plant control on water uptake when 
soil moisture is a limiting factor is not considered. The input parameters have been precisely 
determined using the field crop experiments. 
 
Non-linear root water uptake model involving the optimal non-linearity coefficient has been 
found to represent the actual plant moisture uptake dependably. Application of the numerical 
model to field conditions and comparison of the results with field measured data showed good 
agreement. Precisely determined crop evapotranspiration is the dominant factor in predicting 
soil moisture dynamics. The practical significance of the study lies in the computation of 
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optimal irrigation schedules for field condition using the numerical model coupled with 
adequate scheduling criterion. Accurately computed soil moisture profiles result in generating 
optimal frequency of the irrigation and hence, results in irrigation water saving.  
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Abstract 
Reduced order model constitutes an efficient option to decrease the high computational cost of 
dynamical systems governed by partial differential equations (PDE). The technique based on proper 
orthogonal decomposition (POD) was first presented in the article [1] to generate a reduced set of 
basis functions for Galerkin representation of PDEs which results in approximate the simulation at 
any time point by solving an ODEs of time dependent coefficients. Our approach in this article 
targets the development of a non-intrusive reduction technique. We keep the same manner of 
obtaining basis functions, while approximating the time dependent coefficients using Kriging based 
surrogate model. The proposed method is then illustrated with an application to the simulations of 
heat diffusion systems on a thin rod and on a square plate. The numerical results illustrate the 
simulation using the proposed idea.   
Keywords: Proper Orthogonal Decomposition, Kriging surrogate model, heat diffusion system. 

1 Introduction 

Most of engineering problems may be presented as systems governed by partial differential 
equations. With the development of science, more rigorous device requirements arise to capture the 
characteristics of more complex systems, which are common for example in semiconductor 
manufacturing. The purpose, however, is not to provide an introduction to the complexity of such 
systems, Instead, we wish to propose a general methodology for implementation of one or two 
techniques based on surrogate models and apply them to a linear system of heat diffuse equation. 
 
A widely used approach is performing a set of computer experiments ‘a priori’. The data sampling 
is then used for construction of meta-models linking design variables with responses. The literature 
shows that a wide range of approximation methods that has been used for this purpose, such as 
polynomial response surfaces [3], least squares approximation [4], Kriging [5], radial basis 
functions [6] etc. In particular, surrogate model, developed by Krige [7] and then improved by 
Matheron [8], is emphasized here, as it is an exact interpolation method and a form of generalized 
linear regression for the formulation of an optimal estimator in a minimum mean square error sense. 
Due to the superiority of Kriging, it is widely used in structural reliability [9] and in optimization 
analysis [10]. 
 
Another class of among so-called physical based models, the popular one is Proper Orthogonal 
Decomposition (POD) also known as Karhunen-Loeve expansions in signal analysis and pattern 
recognition [11], or the Principal Component Analysis in statistics [12], or the method of empirical 
orthogonal functions in geophysical fluid dynamics [13,14]. Detailed description of the POD can be 
found in [15]. POD provides a useful tool for efficiently approximating a large amount of data. 
Lumley [16] first used POD to study turbulent flows. In 1987, Sirovich [17] incorporated the 
method of ‘snapshots’ into the POD framework and made important progress in this field. Other 
applications of POD are given in [18-20]. 
 
In this paper, a technique combining the advantages of Kriging surrogate model and POD model is 
proposed to represent heat diffusion on a one- or two- dimensional spatial domain. Suppose a given 
set of data sampling, discretization of PDE is approximately executed with the Galerkin method. 
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Then, we construct a basis of the finite dimensional function space of interest. In [2], the time 
dependent coefficients are obtained by solving an ODE. Here we propose a “non-intrusive” 
technique. Based on the original discrete data information, the approximated representation is built 
with Kriging surrogate model for the POD coefficients. It is finally applied to obtain the 
temperature field for any untried time point. 
 
The paper is organized as follows: In section 2 we present the simulation of heat diffusion on a thin 
rod (one-dimensional spatial domain) and on a square plate (two-dimensional spatial domain) using 
infinite series expansion and finite difference scheme. Then we review the Galerkin projection and 
the POD model in the section 3. In section 4, a new method combining POD and Kriging surrogate 
model is described, and illustrates feasibility and efficiency of the proposed technique, followed by 
the numerical results in Section 5. The paper ends with conclusions and prospects. 

2 Description of Heat Diffusion Equation 

We consider an initial boundary value problem (IBVP) of heat equation. The methodology of “high 
fidelity” simulation is then explained to get the sampling data. 
Case1: the one-dimension (1D) simulation of heat diffusion equation: 
 

                
PDE (0,1); 0
BCs (0, ) 0 (1, ) 0
IC ( ,0) 1 (0,1)

t xx x t
t t t

x x

  

  
 

u u
u u
u

                                                    (1) 

 
where ( , )x tu represents the temperature field on a thin rod.  
Similarly, the case 2 is given by the following IBVP with two-dimension (2D) simulations: 
 

PDE (0,1); (0,1); 0

BCs (0, , ) 0 (1, , ) 0
( ,0, ) 0 ( ,1, ) 0

IC ( , ,0) 1 (0,1); (0,1)

t xx yy x y t
y t y t t

x t x t t
x y x y

    

  
  
  

u u u
u u
u u
u

                             (2) 

 
where ( , , )x y tu represents the temperature field on a flat plate. 

2.1 Methodology 

In order to obtain a set of “high fidelity” simulation data. A convenient method is to evaluate the 
infinite series solutions to the respective IBVPs at a set of spatial points and temporal values.  
The infinite series solution to IBVP (1) is given by 
 

                    2 2

1
( , ) ( )n t

n
n

t e sin n 






u x A x                                                               (3) 

 

where 2 (1 cos( ))n n
n




 A . And the infinite solution to IBVP (2) is given by 

 
2 2 2( )

, 1
( , , ) ( ) ( )m n t

mn
m n

t e sin m sin n  


 



 u x y A x y                                       (4) 
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where 2

4 (1 cos( ))(1 cos( ))mn m n
mn

 


  A . 

An alternative method is to solve this equation numerically. We approximate all the derivatives by 
finite differences with a second-order central difference scheme for the spatial derivative at position 
and the forward difference in time. The discrete form is then written as: 
1D: 
 

1
1 1

2

2n n n n n
i i i i iu u u u u

t x


   


 

                                                         (5) 

 
2D: 
 

2
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1
, 22
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uuu
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ji
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ji
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ji
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ji
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ji
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ji
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ji
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ji













 


                                  (6) 

 
where t is time step, x and y are space steps in direction x and y respectively, 0,1,2, ;n    

0,1, ; 0,1, ,i I j J   . 
So, with these recurrence relations, and knowing the values at time n , one can obtain the 
corresponding values at time 1n  . 0 0,0,n nu u and ,,n n

I I Ju u must be replaced by the boundary conditions. 
Furthermore, based on the initial conditions, 0 0

,,i i ju u are all given. 

2.2 “High fidelity” simulation analysis 

The aim in this section is to compare the difference of two “high fidelity” simulations. More 
precisely, above two methodologies are used to simulate the temperature field at each value of time 
in the set for IBVP (1) {0.00, 0.001, 0.002, …, 0.200} and in IBVP (2) in the set {0.00, 0.05, 
0.10, …, 0.45, 0.50}. The space step is 0.01 in 1D and 0.01×0.01 in 2D. Several temperature 
distributions are shown in Figure 1. The data was stored for use as empirical data in the POD.       
                                                

 
Figure 1. Top Left: Simulation of IBVP (1): time dependent heat diffusion on 1D rod with 
constant initial condition and zero boundary conditions. Bottom Left: The finite differences 
simulation of IBVP (1). Right: Simulation of IBVP (2): time dependent heat diffusion on 2D 
plate with constant initial condition and zero boundary conditions. 
 
From Figure 1, we can observe that the simulations using analytical functions coincide with those 
obtained by the numerical method. 
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3 Approximate simulation based on the Galerkin Method and the POD 

This section includes a brief overview of the Galerkin method for PDE discretization and 
implementation of POD to get an orthogonal basis of space domain.  

3.1 Discretization with the Galerkin method 

The Galerkin method is a discretization scheme for PDEs which is one type of spectral methods or 
methods of weighted residuals. The main idea is to separate variables and to represent a field with a 
truncated series expansion given by 
 

1

( , ) ( ) ( )
N

i i
i

t t


u x φ x                                                                (7) 

 
where ( )iφ x are trial functions which can form an orthonormal basis for the approximate function 
space. ( )i t are time dependent coefficients obtained by minimizing the residuals or errors between 
approximate and exact values. Equivalently, the residuals must be orthogonal to each one of the 
given trial functions. Thus, the original infinite dimensional system can be approximated by an N- 
dimensional one. 

3.2 Construction of reduced basis function via the POD 

As stated earlier, a set of “high fidelity” simulations is recorded yielding the snapshots of the heat 
equation solution for IBVP (1) at M=200 equally spaced sample times between 0t  and 0.200t  , 
and at M=20 equally spaced sample times between 0t  and 0.5t  for IBVP (2) (the IC was also 
used as the first snapshot ). These snapshots are used as the empirical data for computing a set of 
basis functions via the POD. 
If we denote the set of original snapshots as { ( , ) : 1,2,..., }kt k Mu x then the average snapshot is 
computed as 
  

1

1( ) ( , )
M

k
k

t
M 

 u x u x                                                                      (8) 

 
and the centered snapshots are given by  
 

)(),(),()( xutxutxvv kk
k                                                           (9) 

 
This adjustment leaves us with a new ensemble of data samples{ ( , ) : 1,.... }kt k Mυ x . These snapshots 
are then used to compute the M M  empirical correlation matrix C whose entries are given by 
 

  Mjidxxvxv
M

ji
ij ,,1,)()(1)( )()( C                                            (10) 

 
where Ω is the spatial domain ([0,1]). The problem is reduced to finding the eigenvectors and 
eigenvalues of C , and the eigenvectors ( )nA of C and the corresponding eigenvalues n satisfy 
 

( ) ( ) 1,...,n n
n n M CA A                                                           (11) 
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which can be solved for corresponding system of M eigenvalues and M eigenvectors. The 
numerical integration (10) is hard-coded using a simple approximation technique. The eigenvalues 
and eigenvectors of C  are then used to compute the empirically determined eigenfunctions, and the 
basis functions are then computed as linear combinations of data samples using 
 

    ( ) ( )

1
( ) ( ) 1, ,

M
n k

n k
k

n M


 φ x A υ x                                                     (12) 

 
It is easy to check 
  

1
( , )

0l m

l m
l m


  
φ φ .                                                                    (13) 

 
This completes the construction of the orthonormal set 1 2{ , , , }Mφ φ φ . 
By utilizing the properties of the POD one can specify an energy level e  to be captured and then 
seek N<<M such that 
 

1

1

N

i
i
M

i
i

e












. 

 
Then, based on the Galerkin method, the approximation v̂ to the ( , )tυ x is given by the truncated 
series expansion 
 

1

ˆ( , ) ( ) ( )
N

n n
n

t t


υ x φ x .                                                           (14) 

 
The average snapshot u is then added  
 

ˆ ˆ( , ) ( ) ( , )t t u x u x υ x                                                             (15) 
 
to reconstruct the original data samples. The approximation order N can be varied to achieve the 
desired degree of accuracy.  
The ( )n t  are time-dependent coefficients chosen to ensure the original PDE satisfied as closely as 
possible by (14). This is achieved by minimizing the residual. More details are discussed in the 
following section.  

3.3 Calculation of the coefficients by solving an ODE 

We suppose we have a system governed by the PDEs (in symbolic form) 
 

( ); : (0, )D D
t


   


υ υ υ                                                          (16) 

 
with appropriate boundary conditions and initial conditions, where ( )D �  is a spatial operator , e.g. 
the Laplacian in the case of heat diffusion. Define the residual as 
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ˆ ˆ( , ) ( )t D
t


 

υr x υ .                                                                (17) 

 
We force the residual to be orthogonal to a suitable number of eigenfunctions, i.e. 
 

( , ), ( ) 0 1, ,nt n N r x φ x  .                                                       (18) 
 
Substituting (14) into (17) yields, 
 

1 1
( , ) ( ) ( ) ( ( ) ( ))

N N

n n m m
n m

t t D t 
 

  r x φ x φ x .                                             (19) 

 
Applying the orthogonality condition (18) and using the orthonormality property of the set of 
eigenfunctions results in 
 

1
( ) ( ( ) ( )) ( ) 1, ,

N

i m m iD
m

t D t d i N 


  φ x φ x x                                         (20) 

 
Thus, requiring the residual be orthogonal to the first N  eigenfunctions yields a system 
of N ordinary differential equations in t (an thN -order system) 
 

( )Fα α                                                                      (21) 
 
where 1( , , )N α  and : N NF   . 
The initial conditions for the resulting system of ODEs are determined by a second application of 
the Galerkin approach. We force the residual ˆ( ) ( ,0) ( ,0) I x υ x υ x of the initial conditions to also be 
orthogonal to the first N  eigenfunctions. We obtain a system of N linear equations 
 

(0) ( ,0) ( ) 1, ,i iD
d i N   υ x φ x x  .                                             (22) 

 
The heat diffusion system dynamics are described by  
 

2( ) ( ) ( )D
t


  


υ+ u υ υ + u                                                (23) 

 
Applying (20) yields the system of linear ODEs 
 

2 2

1
( ) ( ) ( ) ( ) ( ) ( ) 1, ,

N

i j i j iD D
j

t t d d i N 


      φ x φ x x u x φ x x                                 (24) 

 
with initial conditions  
 

(0) ( ) (0, ) 1, ,i iD
d i N   φ x υ x x                                               (25) 

 
where [0,1]D  for the rod. This results in linear system of ODEs 
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( ) Γ ( )+t tα α b                                                                 (26) 
 
where ( )tα is an N -vector, Γ is the N N matrix with entries 
 

2( ) ( ) ( )Γ ij i jD
d  φ x φ x x                                                           (27) 

 
and b is an N -vector with elements 
 

2 ( ) ( )i iD
b u d  x φ x x .                                                               (28) 

 
The solution to (26) is given by the variation of constants formula 
 

0
( ) (0)Γ Γ( )tt tt e e d   α α b                                                            (29) 

 
where the IC (0)α is an N -vector with entries given by (22). However, rather than hard-code the 
solution (29) we can numerically integrate (26) using Runge-Kutta method. 
Once the ODE (26) is solved and evaluated at the desired values of t , the ˆ( , )tu x is known. 

4 Calculation of the coefficients by Kriging interpolation 

Once the set of snapshots{ ( , ) : 1, , }kt k Mυ x  and reduced basis functions nφ are obtained, the set of 
coefficients can be calculated by the projection of those snapshots on the basis fuctions: 
 

( ) ( , ), , 1, , ; 1, ,i
k k it i M k M    υ x φ                                                 (30) 

 
or 
 

( ) ( , ) , , 1, , ; 1, ,i
k k it i M k M     u x u φ                                            (31) 

 
where , � � denotes the inner product. 
Then, any general approximation technique may be used to build surrogate response surfaces of 
each coefficient ( ), 1, ,i t i M   . Here, Kriging interpolation is used as it can capture the local 
phenomena. The simulation of heat diffusion is finally assembled at any time point: 
 

1
( , ) ( ) ( ) ( )

M

n n
n

t t


 u_approx x u x φ x                                                    (32) 

 
Same as the before, we can using the truncated expansion to evaluate ( , )tu x as 
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4.1 Kriging surrogate model 

Kriging meta-model is an interpolation technique based on statistical theory, which consists of a 
parametric linear regression model and a non-parametric stochastic process. It needs a design of 
experiments to define its stochastic parameters and then predictions of the response can be 
completed at any unknown point. Given an initial design of experiments (initial 
DoE): (1) (2) ( ){ , , , }n X x x x , with observed responses, (1) (2) ( ){ , , , }ny y y Y  .Y could be generated 
by high fidelity simulations or experiments.  
Kriging surrogate model presumes the real function relationship between the DoE and the response 
as  
 

( ) ( )y Z X X                                                                      (34) 
 
where   is a hyperparameter which is determined part and ( )Z X is a Gaussian stochastic process 
with zero mean and covariance in the form of  
 

( ) ( ) 2 ( ) ( )Cov( ( ), ( )) ( , )i j i j
zZ Z X X R X X                                                   (35) 

 
where R  is the correlation function between two sample points and 2

z  the Gaussian process 
variance. For R , most applications use Gaussian function 
 

( ) ( ) ( ) ( )( , ) exp( ( , ))i j i jd R X X X X                                                          (36) 
 
where ( ) ( )( , )i jd X X is the distance function between ( )iX and ( )jX . Usually it is a weighted distance 
function 
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( ) ( ) ( ) ( )

1
( , )

z
i j i j

k k k
k

d x x


 X X                                                          (37) 

 
Hyperparameters k  control the degree of nonlinearity in kriging surrogate model. Sometimes we 
choose k  equal to 2. Through maximum likelihood prediction, the estimates for   and 2

z  is given 
 

T 1

T 1

2 T 1

ˆ
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I Y
I I

Y I Y I
                                                      (38) 

 
where Ψ  is a n n  matrix ( ) ( )( ) ( , )Ψ i j

ij  R X X , I is the unit matrix. Thus the prediction model could 
be built as 
 

T 1ˆ ˆ( ) ( ) ( )Ψy    X r X Y I                                                          (39) 
 
Here (1) (2) ( ) T( ) [ ( ), ( ), , ( )]nr X R X,X R X,X R X,X . 
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5 Numerical Analysis 

Now, we present some results of the above computations and simulations. The whole process has 
been performed in four steps: 
- A set of basis functions was determined using the POD (according to from Eq.(8) to Eq.(11)) for 
the 1D heat diffusion system with 201M  snapshots and 21M  in 2D  
-  Calculation of the coefficients α by projection of snapshots on the basis  
- Based on the data obtained in step 1 and 2, the Kriging surrogate model can determine an 
approximation of coefficients α(t) for any time point 
-  The simulation is then approximated by Eq. (32) or Eq.(33) 

5.1 Eigenvalues and corresponding eigenfunctions 

As stated earlier, the eigenvalues measure the relative energy of the system dynamics. Figure 2 
shows the resulting empirically determined eigenfunctions for the 1D and 2D heat diffusion systems 
corresponding to first four eigenvalues in decreasing order.  
 

 
Figure 2. The first four basis functions of the system with corresponding eigenvalues for IBVP 

(1) (Left) and for IBVP (2)(Right). 
 
From Fig.2, it is readily observed that the four modes contain virtually all of the energy.  

5.2 Reconstruction error analysis 

The reconstruction errors are calculated for the original snapshots. Figure 3 shows that the relative 
errors ‖u-ữ‖/‖u‖ on the temperature field (Figure 3,left for 1D, right is about 2D) decrease quickly 
with increasing the number of modes. Furthermore, we observe that the reconstruction errors at the 
initial time point are slightly smaller than those at other time points. So that’a why in the following 
Garlerkin approximations, only the first three modes are used (N=3). 
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Figure 3. The construction errors on the temperature field u for both two IBVPs. 

 

5.3 Comparison of exact temperature field and its reconstruction  

From Figure 4, middle, we observe that the reconstruction temperature field is similar to the exact 
one. As expected, solution approximated with coefficients based on Kriging interpolation 
reproduces the original data when the number of POD modes N is chosen to equal the number of 
snapshots M. While a slight error with the truncation of POD modes, N =3. This can be seen more 
clearly in Figure 5. 
 

 
Figure 4. Original heat diffusion data u  (top, left) from infinite series solution, and 
reconstruction temperature field of IBVP(1) using modes N=M=201 or empirical data 
determined eigenfunctions N(top, right) and ones with N=3 (bottom, left) for 0t  , 0.04, 0.08, 
0.12, 0.16, 0.20 respectively. 
 

Table 1. The reconstruction error with N=201 and N=3 respectively 

Error t=0.0 t=0.001 t=0.004 t=0.009 
u u_appox u  3.3829e-12 1.0317e-12 1.8553e-12 8.1031e-13 
u u_tru u  0.0270 0.0481 0.0091 0.0156 
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Figure 5. Heat diffusion profiles for 0,0.001,0.004,0.009t  . 

   
Figure 5 gives to the exact temperature field and reconstruction one at different time points. The 
errors are given in table 1. We observe that the approximations are accurate. That is to say, the 
approximation accuracy increases rapidly with time, although there is difficulty in reproducing the 
initial condition. This phenomenon is due to the fact that the solution progress from a discontinuous 
initial condition to smooth profiles requires fewer terms to get equivalent accuracy. Similar 
conclusion is observed for the 2D domain, Figure 6. 

 

 
Figure 6. Approximate solutions of IBVP (2) using empirically determined eigenfunctions for 
t=0, 0.025, 0.05, 0.075. Left: 201 eigenfunctions are used. Right: 3 eigenfunctions are used. 

 
As stated earlier, Kriging meta-model is a technique that can provide the predictions of the response 
at arbitrary point. Therefore, the advantage we used the Kriging to interpolation the coefficient 

( )tα of POD is that we can calculate the value of u at any time point different from the sampling 
points. Figure 7 shows the comparison of original data u and others two approximate values with 
N=201 denoting u_approx and N=3 for u_tru  at 0.0045, 0.1255, 0.201, 0.210t  . 
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Figure 7. The values of u , u_approx ,and u_tru  at 0.0045, 0.1255, 0.201t   and 0.210t  . 
 
From Figure 7, we can conclude that the prediction of u can get good accuracy when the time 
point t is in the region [0,0.2]. However, when t becomes larger than 0.2, the errors between exact 
field u and the approximations u_approx become much bigger with the time increasing. That is 
obviously due to the average field computed from the snapshots at the time points belonging in the 
region [0,0.2]. 

 

 
Figure 8. The first three ( ), 1, 2,3i t i  for both two heat diffusion equation systems. 

 
In Figure 8 we show the first three αi(t) ,i=1,2,3 computed using inner product. It appears better to 
choose the second order polynomial function for regression in Kriging. While, the linear function 
for regression in IBVP(2) seeing from the right of Fig.8. 
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6 Conclusions 

In this article, a technique combining the advantages of two types of surrogate models has been 
proposed to approximate the simulation of PDEs. After descritization of PDEs with the Galerkin 
method, the basis functions of space are first obtained by the standard POD. The second part 
consists in approximating the coefficients of Garlerkin discretization form of PDEs using Kriging 
surrogate model. The resulting reduced order model is then applied to simulate the heat diffusion in 
one-dimension rod and two-dimension plate. The numerical results show that reconstructed 
temperature field is efficiently approximated with the non-intrusive POD approach. The 
reconstruction errors are only controlled by the number of POD basis functions, as the Kriging 
interpolation of coefficients does not influence the precision of Garlerkin approximation. 
 
In terms of future prospects, we will be interested in using this method to reconstruct the reduced 
order model for more complex systems and consider the multi-fidelity data at the same time. 
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Abstract 

Collecting functional quantitative intra matrix data in experimental samples of articular 

cartilage is still challenging due to its delicate complex heterogeneous structure in which 

constituents are intermingled right up to the ultramicroscopic level. Any attempt to insert a 

transducer inside this material via piercing would damage the structure leading to 

unrepresentative data. Traditional non-invasive methods are technically difficult for obtaining 

precise functional data. This paper presents a novel computational approach, using the agent-

based concept, to create a ‘virtual microscope’ that can be used to provide functional 

information throughout a heterogeneous complex medium, such as articular cartilage, in silico. 

The method involves two-dimensional cellular automata, a hybrid agent, new local agent rule 

and a traditional neighbourhood rule. The hybrid agent combines constituents of the system 

(solid and fluid) where the local rule determines intra-agent evolution. The proposed approach 

was validated by simulating diffusion into a model of cartilage matrix that was characterized 

with anisotropic permeability. The simulated results were then compared to magnetic 

resonance imaging (MRI) data. Spatial map of diffusion at different times and depth-

dependent diffusion profiles were provided in colour-coded pictures. Qualitative and 

quantitative comparison of results with experimental data shows that this novel approach can 

accurately and efficiently represent diffusion of fluid into the cartilage matrix. It demonstrates 

the potential of hybrid agent and local rule to enhance agent-based techniques for porous 

materials and other areas of research. We conclude that the ability to establish a “virtual 

microscope” offers a viable opportunity for in-silico experiments that can extend our 

knowledge beyond the capability of traditional laboratory experiments, while also facilitating 

information for creating models for numerical methods such as finite element analysis, 

meshless and smoothed particle hydrodynamics. The combination of the approach presented 

here with conventional simulation methods can provide a framework for modelling and 

analysis of complex porous materials. We concluded that the hybrid agent and local rule 

concept introduced in this paper can also be potentially exploited to enhance many of the 

existing agent-based techniques. 

  

 

Keywords: Articular cartilage, hybrid agent, local and global rules, porous materials, agent-

based method  
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Introduction 

 

Articular cartilage is a semipermeable porous biomechanically functional material that is 

saturated with an osmotically active fluid which occupies between 65 and 80 %, 

proteoglycans and collagen components that constitute its solid skeleton occupying 5-10% 

and 15-22% respectively of its matrix [2]. These components are intermixed right up to the 

molecular level [3] such that the tissue is highly heterogeneous and anisotropic in nature [4]. 

Quantitative observation and understanding of the underlying mechanisms of articular 

cartilage’s functional characteristics at the microscopic and submicroscopic scales is still a 

major challenge due to the non-phasic nature of the tissue and the complex interactions 

between its components. Any physical interference, such as probing the matrix with a 

transducer via piercing can destroy the articular cartilage structure and lead to an 

unrepresentative tissue in experimental analysis. As a result, classical laboratory experiments 

are arguably deficient in their ability to provide functional information such as fluid dynamics 

with simultaneous osmotic activities which plays a significant role in the mechanical function 

of the tissue [5, 6].  

 

The ability to probe the real time response of articular cartilage during function can provide a 

view beyond experimental curve-fitting that can only provide an estimated range of physical 

properties of the tissue [7]. Non-invasive methods, i.e. magnetic resonance imaging (MRI) 

and computed tomography (CT) scan, have been successfully used to obtain intra-matrix data 

from the tissue without disturbing its structure, where different components are distinguished 

based on their radio-densities or radio frequency signals contrast [8-11]. External contrast 

agents have been applied with MRI techniques to observe function-related properties of 

articular cartilage such as diffusion [1, 12, 13], however, it is still difficult and technically 

challenging to obtain accurate data such as time-varying diffusion and fluid percolation 

characteristics during deformation [14].  

 

Methods based on continuum mechanics and physical laws have been developed to describe 

the behaviour of porous materials with respect to their phenomenological characteristics under 

known imposed external conditions [15, 16], while mechanical theories have also been  

employed to establish governing equations for cartilage behaviour where the tissue was 

described as a porous media or mixture [17-20]. These  are usually represented as differential 

equations that determine characteristics of the medium as a function of parameters [21] and 

physical laws, e.g. Darcy’s law. However, the solid skeleton and fluid components 

intermingle right up to the ultramicroscopic molecular level [3], leading to extremely complex 

responses that require a different approach beyond those available with current mathematical 

models and traditional experimental techniques. A close scrutiny of the results of such 

theoretical models demonstrates that they are inadequate for explaining the mechanisms 

behind observed material or system responses of this important tissue [22-24].  

 

Agent-based methods (ABM) have recently improved capacity to simulate complex systems’ 

behaviours [25, 26]. ABM is suitable for capturing complex emergent phenomena in which 

the “whole” seems to be more than the sum of its components because of the intricate 

interactions between the components [27, 28]. In our opinion further elucidation of the 

behavior of articular cartilage requires agent-based computational simulation, especially if we 

were to obtain critical insight into the micro-mechanisms underlying its complex responses 

under external stimuli. In this paper, we present a novel agent-based approach using an 

enhanced agent (hybrid agent) with local and global rules [29] that can be used to develop 

representative structural model of this tissue where the interactivities of the hybrid agent and 
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the neighbourhood rules provide a “virtual microscope” into the internal working of the 

system to provide critical knowledge in the area of cartilage biomechanics. This methodology 

would provide spatial and temporal functional data that could then facilitate other models 

such as finite element, mesh free, course-grained particle and smooth particle hydrodynamics. 

The method described below is a preliminary examination of the concept of the hybrid agent 

and use of a combination of local and global neighbourhood rules.   

 

 

Material and methods 

 

Adaptation of the hybrid agent for the articular cartilage 

Hybrid agent contains within it the system’s elements. It was adopted for articular cartilage in 

this study where fluid and solid skeleton are considered to be two major constituent 

components of the tissue. Hybrid agent (cell) consists of both solid and fluid within it, such 

that it is neither fully solid nor fluid while it can simultaneously exhibit the characteristics of 

both solid and fluid in time. Evolution of the hybrid agent occurs by changing and updating 

its solid and fluid proportion. Hybrid agent is also characterised by poroelastic material 

properties such as porosity and semi-permeability.  

 

 

The matrix model 

A two dimensional (2D) cellular automata (CA) lattice of hybrid cells, consisting of 29 x 46 

cells, was employed to represent the extracellular matrix of the cartilage where all the hybrid 

cells in the lattice are equal and constant size since diffusion does not cause tissue 

deformation. Therefore a cell can be identified and characterized by the relevant fluid to solid 

ratio it contains (fs).  

 

The distribution of fs in the lattice was determined based on known layered weight 

distribution of fluid and solid [30]. In this simulation diffusion was allowed from every 

direction except at the bottom of the lattice because of the assumed effect of the subchondral 

bone that results this region impervious. One layer of pseudo cells filled by marked fluid was 

added to the lattice at the left, right and top sides (figure. 1). This marked fluid penetrates into 

the lattice via fluid exchange between the pseudo and hybrid cells that represent the boundary 

of the cartilage matrix. The progression of the time-dependent flow (diffusion) within the 

matrix was followed by tracking marked fluid. The simulation ends when all initial fluid 

(unmarked) in hybrid cells has been replaced by marked fluid. A program in Matlab 

(Mathworks Inc, MA, USA) was developed to simulate the diffusion process over the time 

steps. 

 

 

 

 

 

 

 

 

 

 

 

 

               
              Pseudo cell (Marked fluid) 
             
                  
              Pseudo cell (Impervious) 
             
               
              Hybrid agent (Cartilage) 
             
               
               
                
 

Figure 1: Schematic illustration of the lattice.  
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Rules 

This simulation also incorporates a novel concept of simultaneous combination of local (intra- 

element) and global (inter-element) responses where intra-agent (local) and neighbourhood 

(global) rules apply. The local rule determines change within the hybrid cell (intra-agent 

change) in which the fluid-solid ratio (fs) of the agent changes and the global rule determines 

inter-agent interactions, e.g. interaction of a cell with its neighbours in the lattice.  

 

Global rule: 2D van Neumann neighbourhood was implemented for interaction between 

neighbours in which each cell interacts with its orthogonally-adjacent neighbours as 

demonstrated in Figure 2. Van Neumann neighborhood defines a regular lattice that enables 

very efficient visualizations of diffusion processes [31]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Local rule: The following local rules were developed and used in this study: 

- Cells are permeable and only fluid, including marked and unmarked, can move in and 

out of the cell. Since there is no deformation in the matrix, the amounts of fluid types 

that move in and out are equal.  

- The amount of total fluid, marked and unmarked combined, in a cell is constant and 

does not change over time. Therefore, the ratio of total fluid to contained solid (fs) 

does not change in a cell. However, the proportion of marked and unmarked fluid may 

change as a result of fluid exchange.  

- Only certain proportion of contained fluid in a cell can move out as a consequence of 

fluid exchange with neighbours at each time step. This proportion of exchangeable 

fluid depends on fs of the cell and location of the neighbours. The exchangeable fluid 

of a cell when interacts with another cell (a neighbour) is estimated as:  

Proportion of exchangeable fluid = k * fs , where k is constant.  

The parameter k depends on cell’s neighbour location and indicates the direction of 

fluid movement. It is assumed that k in the horizontal direction is two times greater 

than in the vertical direction since hydraulic permeability of cartilage in the axial is 

half of that in radial direction when the tissue is unloaded [32]. In this simulation, k 

was set to 0.1 in the horizontal direction and 0.05 in the vertical direction. If a cell 

exchanges with more than one neighbour, the total exchangeable fluid proportion 

would be equal to the sum of the individual proportions. For example, when cell C in 

figure 1 interacts with all of its neighbours (W,E,N and S), the total fluid exchanged  

equals the sum of fluid exchanged with each neighbour:  

 

 

 N  

E C W 

 S  

 

Figure 2. 2D van Neumann neighbourhood. Central cell (cell c) interacts with cells 

East (E), West (W), North (N) and South (S) at each time step.   
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Where, FEPC is fluid exchange proportion of cell C, fsC is ratio of fluid to solid 

content in cell C, and kN, kS,  kW and  kE are constant values of k in the N, S, W and E 

directions which are equal 0.05, 0.05, 0.1 and 0.1 respectively in this simulation.    

 

The results obtained from cellular automata (CA) simulation were compared and validated 

with experimental data using contrast enhanced cartilage tomography (CECT) and peripheral 

quantitative computed tomography (pQCT) technique, taken from the literature [1] while 

1800 time steps of the CA simulation is equivalent to 12 hours of diffusion. Therefore, each 

time step corresponds to 2.5 seconds. Width of the experimental samples is 2.5mm while the 

thickness is 4mm, corresponding to a width to thickness ratio of 0.625 and a simulation lattice 

dimensional ratio of 29 / 46 (approximately 0.63).  

 

 

 

 

Results 

 

The diffusion patterns of marked agents into the lattice at T=300, 600, 900 and 1800 are 

presented in figure 3A. The colour-coded map shows the spatial distribution of the ratio of 

marked fluid to total fluid content within the matrix based on percentage at a given time step. 

Each colour represents a certain percentage of concentration according to the legend attached 

to the pictures. Red colour illustrates regions where the initial fluid has almost been replaced 

by the marked fluid while blue represents areas with very little proportion of marked fluid. 

Initially (at T=0) concentration of the marked fluid in the lattice was zero (not shown in the 

figure). Then the marked fluid percolated into the lattice resulting in increased proportion of 

marked fluid over time (T=300, 600 and 900). The process of diffusion reaches equilibrium 

after about 1800 time steps, when all initial fluid was replaced by marked fluid.  

 

Figure 3B presents experimental results [1] at time points 2, 4, 6 and 12 hours (left to right), 

corresponding to time steps in figure 3A. The legend on the right shows contrast agent 

concentration based on mM in which red illustrate maximum concentration (15 mM) that can 

be reached at equilibrium state (after 12 hours) and light blue demonstrate zero concentration. 

In order to compare the experimental with the simulated data, percentage of contrast agent 

concentration (left legend) was calculated based on ratio of contrast agent concentration to 

maximum concentration.    

  

 

Comparison between CA and experimental data (micrographs) demonstrate similar patterns of 

diffusion into the cartilage. At T=300 and its experimental corresponding time (2 hours), the 

concentration at area near surface is high and fluid could not penetrate deep during this time. 

At T=600 (4 hours) concentration of marked fluid (or contrast agent) has been increased 

significantly up to the centre of the tissue along its thickness while at T=900 which is equal to 

6 hours, only the region close to the bone did not undergo a significant concentration change. 

Both CA simulation and experimental test reached steady state condition at the same time 

(T=1800, T=12 hours). 

 

The depth-dependent bulk concentration of marked fluid after 600 time steps and 

corresponding four-hour diffusion of contrast agents [1] (in percentage) are plotted in figure 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

188



 

 

4. The concentration is maximum at the surface and then drops gradually to about 40% near 

the bone with almost the same trend for both experimental and CA simulation results. The 

discrepancy between results in the middle region can be attributed by biological variation of 

tissue samples.  The CA results compare resonably well with experimental data which 

substantiates the validity of the results of our CA simulation. 
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            T=300                                  T=600                            T=900                             T=1800 

 
B 

                 
                                                              

                     
Percentage of contrast agent concentration                   Contrast agent concentration (mM) 

 

Figure 3. Diffusion into human articular cartilage at different times. A: Percentage of 

marked fluid in the lattice at time steps 300, 600, 900 and 1800. B: Contrast agent 

diffusion after 2, 4, 6 and 12 hours immersion [1].  

 
Figure 4. Percentage of depth concentration of marked agent (at T=600) and 

contrast agent in the human cartilage after 4 hours of immersion [1].  
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Figure 5 shows depth-dependent bulk concentration percentage of marked fluid collected at 

various areas in depth including surface, middle (½ thickness depth), ¾ thickness depth and 

bottom. Overall, the concentrations are lower towards the bottom regions (close to the 

bone) in time. The curve representing concentration at the surface illustrates that unmarked 

fluid is replaced by marked fluid rapidly and after about 400 time steps all of unmarked 

fluid move out of this region.  The profile of concentration at the bottom layer follows 

different trends over time and takes significantly longer time to replace all initial fluid with 

marked fluid. All curves demonstrate growth of marked fluid over time while the rate of 

increase over time drops with depth.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

 

In the present paper, an enhanced agent-based approach involving the combination of a novel 

hybrid element, local intra agent and neighbourhood inter agent rules was applied to articular 

cartilage. This methodology provided a unique opportunity for investigating the transient 

intramatrix diffusion of the cartilage. For the first time, diffusion and percolation of fluid into 

cartilage as a non-phasic material was successfully investigated quantitatively (fig. 3) and 

qualitatively (figs 4 and 5) using an agent-based method. The comparison of results of this 

novel approach with corresponding experimental data shows a reasonably close agreement. 

The success of this approach suggests that it can be used for further investigation of the 

functional characteristics of loaded and deforming articular cartilage, and also tissues that are 

affected by degeneration and disease where current methods are technically or ethically 

inadequate.  

 

The hybrid agent provides us an opportunity to create multi-component structures without any 

obligation to distinguish constituent components. This capability makes hybrid agent suitable 

for non-phasic porous materials such as biological tissues and articular cartilage in particular. 

In addition, as cells (agents) are micro-scale elements of an agent-based structure, hybrid 

agent, by means of local rule, is capable of intra-agent evolution that provides the feasibility 

 
Figure 5. Depth- and time-dependent profiles of marked fluid concentration for 

surface, bottom, ½ and ¾ thickness depths.  
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of studying system change in time at micro-scale level. Therefore, micro-scale spatial and 

temporal data can be obtained in a manner describable as using a “virtual microscope” in 

which tissue can be probed unlimitedly. It proposes a viable opportunity for in-silico 

experiments that can facilitate provision of input data for numerical methods such as finite 

element analysis, meshless and smoothed particle hydrodynamics. The combination of the 

approach presented here with numerical methods can prepare a framework for modelling and 

analysis of complex porous materials where the constituents of the system may be 

indistinguishable in the manner of known mixtures.  
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Abstract 

This paper presents a 3D smoothed particle hydrodynamics (SPH) modeling procedure to 

simulate surface erosion of ductile materials subjected to impacts of angular particles. Our 

SPH model is a meshfree, Lagrangian particle method, based on the standard SPH 

formulation, and the materials are discretized with a set of particles, in which the targeted 

ductile material is modeled as an elastic-plastic material, and the angular particles are 

modeled as a rigid bodys. The present SPH has been improved developing SPH formulations 

for the Johnson-Cook’s plasticity model and failure model to describe plastic behavior and 

ductile fracture process. The particle interactions between the angular particles and targeted 

material are taken into account by employing a contact algorithm. Our SPH erosion model is 

applied to simulate multiple and overlapping impacts of particles on ductile targets. Two 

modified schemes in terms of density correction and kernel gradient correction are adopted to 

improve the accuracy of the SPH approximation. Besides, stabilities are ensured using 

artificial viscosity and density correction, and the numerical oscillations in conventional SPH 

method are effectively suppressed. The present SPH method and algorithm are then further 

performed to model solid particle erosion process. The results are compared with available 

experimental data, and good agreement has been achieved. It is demonstrated that the present 

SPH procedure is superior to the conventional numerical methods in treating problems of 

extremely large deformations and with breakages, which usually occurs in the surface erosion 

process by angular particles.  

 

Keywords: 3D smoothed particle hydrodynamics (SPH); surface erosion; angular particles; 

multiple and overlapping impacts; kernel gradient correction 
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1.Introduction  

The material removal caused by impacts of particles is generally described as surface erosion 

by impacts. Impact onductile materials using foreign particlesmay be viewed as either 

constructive useful engineering technique (e.g. shot blasting[1], abrasive jet[2]) or destructive 

harmful processes (e.g. impeller erosion[3], pipe erosion[4, 5]. Study of the mechanisms of 

surface erosion by impacts is helpful in promoting this engineering technique effectively or 

reducing possible erosive wear. 

Material deformation and removal are two main material behaviors involved in surface 

erosion by impacts. For ductile material, the impacts of the foreign particles cause localized 

plastic strain[6, 15] at the contact site on the surface and material is removed when the strain 

exceed a threshold value[7]. It has been known that material removal does not necessarily 

occur during the process of foreign particles impacting on ductile targets. It depends on many 

factors[9,5,19,22], some of which may individually or synthetically determine the erosion 

mechanisms, such as particle velocity, angle of attack, particle shape and size of particle, etc. 

Besides, these erosive factors also affect removal rate of targeted material, i.e., erosion rate. 

Usually, correlations between erosion rate and erosive factors are obtained through 

experiments by measuring mass loss or analyzing eroded surface. However, the interaction of 

these factors makes it difficult to take a close look at the mechanisms experimentally.  For 

example, it is hard to observe the dynamic process of material removal (also called material 

spallation) or analyze the dependency on some single erosive factor through experiment due 

to the process is too fast and complex. Computer modeling allows studying the effect of 

factors separately. And, as a complement to experiment, it can obtain detail informations by 

controlling the simulation procedure, which can help to reveal the fundamental behaviors 

involved in the erosion process and predict the erosion performace with respect to different 

erosive factors. 

Early computation models tried to build the correlations between erosion rate and 

concerned erosive variables[8 14,19,21]. These models simplified the eroded ductile targets 

as elastic–perfectly plastic materials, of which the yield stress is assumed to be constant. 

However, the targeted materials would endure high–strain–rate deformation during the short 

time of real process of surface erosion, especially by hard and angular particle[15−𝟏𝟏𝟏𝟏]. The 

yield stress is rate–dependent rather than a constant[18, 20]. Therefore, these models can only 

obtain correct results after tuning parameters by experiments, which then limited their 

developments and applications. 
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Finite element method (FEM) is an effective numerical method in solving completed 

problems in solid mechanics and has been applied widely to model the surface erosion 

impacted by spherical particles[7, 23 28]. With appropriate constitutive material models, 

FEM is capable to simulate the relevant damage phenomena in surface erosion process. These 

models can be validated by experimental observations or analytical solutions. However, these 

FEM models mainly focused on predictions of erosion rate quantitatively or analysis of 

erosion mechanisms qualitatively. It is difficult to observe and reveal the erosion mechanisms 

for these FE models due to the poorly simulating of dynamic process of material removal. 

Moreover, actual foreign particles usually have complex geometry shape with angularity. 

Impacts of angular particle can cause large plastic deformation and rapid material removal, 

which may result in the heavily distorted elements with poor quality. Thereofore, standard 

FEM may be not suitable for modelling surface erosion by impacts involving large plastic 

deformation and material removal. Takaffoli[12] proposed a new model for modeling impact 

of angular particle on OFHC Copper. The model is able to handle these damage behaviors 

using techniques of adaptive re–meshing and element erosion. Although these techniques 

overcome the element distortion problems in FE model, they are computationally expensive 

and may lead to numerical instabilities, especially for multiple overlapping impacts. It can be 

concluded that these difficulties originate from grid limitation. Almost all the grid–based 

numerical methods have the difficulties to handle large deformation and material removal. 

Smoothed particle hydrodynamics (SPH) is a Lagrangian meshfree particle method. It 

was initially developed for astrophysical problems[29 31]. Since its invention, SPH has been 

extensively applied in the many fields of science and engineering including fluid mechanics 

and solid mechanics, such as free surface flows [32,33], viscous flow[34,35], high velocity 

impacts[36 38], geophysical flows[39,40], etc. As a meshfree method, SPH does not need a 

mesh or elements to discretize computation domain. Instead of nodes, particles are adopted to 

carry the field variables such as mass, density, stress, and to approximate the governing 

equations. These particles have a spatial distance (named as the “smoothing length”), over 

which their properties are “smoothed” by a kernel function. SPH has great advantages over 

the grid–based numerical methods to deal with large deformation and material removal due to 

its adaptive nature[40]. Then, SPH method may be a better option to simulation of surface 

erosion by impacts. 

In the past few years, several preliminary applications of SPH method to surface erosion 

by impacts have been performed andsome encouraging results have been obtained. For 
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example, Wang and Yang [41] investigated multiple impacts spherical particles on Ti–6AL–

4V under the scheme of SPH method. The predicted erosion dependency on impact factors 

agrees well with the analytical and experimental results. However, this study focused on 

predictions of erosion ratewithoutdemonstrating the advantageous of SPH over conventional 

numerical method. Takaffoli[42] proposed a SPH model to simulate the impact of single 

angular particles on AL6061–T6 targets. This model implemented Johnson–Cook flow stress 

and failure model. The dynamic process of material removal caused by impacts was first 

revealed and the resluts showed that SPH method can account for both material deformation 

and chip separation. It demonstrated that the SPH method is able to capture the major 

fundamental dynamic behavior of surface erosion by impacts. However, the traditional SPH 

method encounters the problem of low accuracy as the accuracy is closely related to the 

distribution of particles[43, 44]. Also, another crucial aspect is the phenomena of numerical 

oscillations, which highly affect the numerical stability of the SPH calculation[38, 45].  

This paper is to establish a general SPH framework for modeling surface erosion by 

impacts which comprises reproduction of material behavior in terms of both plastic 

deformation and material removal and improvement of numerical stability/accuracy. It is then 

necessary to extend of the SPH method to handle general material constitutive models with 

plastic flow rules and material failure. In Section 2, the general concepts of the SPH 

modelling for continuum material are given, and the SPH formulations are presented. Two 

modified schemes for density correction and kernel gradient correction are then implemented. 

This paper provides a general approach to resolve the material constitutive relations in SPH, 

in which small time step ensures the constitutive relations be computed correctly. In Section 

3, the model is applied to simulate impacts of diamond particles on OFHC Copper and 

AL6061-T6 surface. Firstly, the SPH model is validated by reproducing the experimental data 

from published literature. Secondly, the validated model is used to simulate the multiple and 

overlapping impacts. The impact behaviors related to overlapping impacts are investigated by 

particularly selecting the impact points of the particles. Thirdly, the multiple and overlapping 

impacts are simulated by using randomly distributed impact points. 

 

2. SPH surface erosion model 
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2.1 Model description 

 
Fig1.Single angular particle impact on targeted material  

 
Fig2.Many angular particle impact on targeted material resulting in multiple and 

overlapping impacts  

In this paper, surface erosion by impacts is modeled based on the rigid–plastic theory[57, 

59]. Targeted materials which may have large deformation and chip separation are represented 

and discretized by SPH particles (not the ‘angular particle’), and the angular particle is treated 

as rigid body assuming it is hard enough to keep non–deformable during erosion process. 

Fig1 shows the initial geometry of the two dimensional model of surface erosion by 

impact, in which angular particle is given a velocity and the targeted material is in steady state 

with the velocity and stress being zero at the initial time. The bottom particles are held fixed 

during the simulation to realize displacement boundary condition. Besides, in order to 

eliminate the effect of model width (L), periodic boundary conditions were prescribed on the 

side faces of the target block. As shown in Fig.1, the use of periodic boundary conditions 

assume an infinite plate in width direction. Moreover, the dimensions of the targeted block 
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(L,W) should also be determined so that the impact simulations would be not affected by edge 

effects. 

 The rigid foreign particle, as shown in Fig1, is discretized by one layer of ‘surface 

particles’. The interaction between foreign particle and targeted material is considered by 

applying a particle contact algorithm developing for meshfree method. The proposed rigid–

plastic SPH model allows the simulation of the entire event of particle impact with respect to 

different erosive factors (eg. impact velocity, angle of attack, particle shape etc.), including 

dynamic process of interaction between angular particle and targeted material, the particle 

kinematics in terms of rebound behavior and particle trajectory, the erosion performance. 

 

2.2 Governing equations and SPH formulations 

The governing equations of ductile targeted material which consist of mass and 

momentum conservation equations can be expressed following 

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= −𝜌𝜌
𝜕𝜕𝑣𝑣𝛼𝛼

𝜕𝜕𝑥𝑥𝛼𝛼
 (1) 

𝐷𝐷𝑣𝑣𝛼𝛼

𝐷𝐷𝐷𝐷
=

1
𝜌𝜌
𝜕𝜕𝜎𝜎𝛼𝛼𝛼𝛼

𝜕𝜕𝑥𝑥𝛽𝛽
+ 𝑓𝑓𝛼𝛼 (2) 

where 𝛼𝛼 and 𝛽𝛽 denote the Cartesian components x, y with the Einstein convention applied to 

repeated indices; 𝜌𝜌 is the material density; t is the time; v is the velocity; 𝜎𝜎𝛼𝛼𝛼𝛼 stands for the 

total stress tensor; the total stress tensor 𝜎𝜎𝛼𝛼𝛼𝛼 has two parts, one is isotropic pressure p and the 

other one is deviatoric shear stress 𝜏𝜏𝛼𝛼𝛼𝛼 ; 𝑓𝑓𝛼𝛼  is the component of acceleration caused by 

external force. 

To solve the above governing equations in the SPH framework, one has to approximate 

these equations using SPH interpolation functions. Since the computation domain has been 

discretized by particles, the field function at a particle can be obtained simply through 

summations over all particles within the support domain of the particle using a kernel 

weighting function, of which the process is so–called particle approximation. The particle 

approximation for a function and its spatial derivatives at a particle ican be expressed in the 

form as 

〈𝑓𝑓(𝒙𝒙𝑖𝑖)〉 = �
𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗

𝑁𝑁

𝑗𝑗=1

𝑓𝑓�𝒙𝒙𝑗𝑗� ∙ 𝑊𝑊�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗 , ℎ� (3) 
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〈𝛻𝛻 ∙ 𝑓𝑓(𝒙𝒙𝑖𝑖)〉 = −�
𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗

𝑁𝑁

𝑗𝑗=1

𝑓𝑓�𝒙𝒙𝑗𝑗� ∙ 𝛻𝛻𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 (4) 

where 𝑊𝑊�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗 ,ℎ� the smoothing function or kernel function,  and 𝛻𝛻𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖is gradient of 

kernel, 𝛻𝛻𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 = xi−xj
rij

∂Wij

∂rij
= xij

rij

∂Wij

∂rij
 

According to the continuity equation (Eq.(1) and momentum equation (Eq.2), the 

governing equations can be expressed as[46] 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑑𝑑𝜌𝜌𝑖𝑖

𝑑𝑑𝑑𝑑 = 𝜌𝜌𝑖𝑖 ∑
𝑚𝑚𝑗𝑗
𝜌𝜌𝑗𝑗

𝑛𝑛
𝑗𝑗=1 𝑣𝑣𝑗𝑗𝑗𝑗

𝛽𝛽 ∙
𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝛽𝛽

𝑑𝑑𝑣𝑣𝑖𝑖𝛼𝛼
𝑑𝑑𝑑𝑑 = ∑ 𝑚𝑚𝑗𝑗

𝑛𝑛
𝑗𝑗=1

𝜎𝜎𝑖𝑖
𝛼𝛼𝛼𝛼 + 𝜎𝜎𝑗𝑗

𝛼𝛼𝛼𝛼

𝜌𝜌𝑖𝑖𝜌𝜌𝑗𝑗
∙
𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝛽𝛽 + 𝑓𝑓𝑖𝑖𝛼𝛼

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 1

2∑ 𝑚𝑚𝑗𝑗 �
𝑃𝑃𝑖𝑖 + 𝑃𝑃𝑗𝑗
𝜌𝜌𝑖𝑖𝜌𝜌𝑗𝑗

�𝑛𝑛
𝑗𝑗=1 𝑣𝑣𝑖𝑖𝑖𝑖

𝛽𝛽 ∙
𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝛽𝛽 +

𝜏𝜏𝑖𝑖
𝛼𝛼𝛼𝛼𝜀𝜀𝑖𝑖

𝛼𝛼𝛼𝛼

𝜌𝜌𝑖𝑖
𝑑𝑑𝑥𝑥𝑖𝑖𝛼𝛼
𝑑𝑑𝑑𝑑 = 𝑣𝑣𝑖𝑖𝛼𝛼

 (5) 

where e is internal energy, p is isotropic pressure, 𝜏𝜏𝛼𝛼𝛼𝛼 is deviatoric shear stress, 𝜀𝜀𝛼𝛼𝛼𝛼is strain 

rate tensor.  

In SPH, there are many possible choices of the smoothing function 𝑊𝑊 in Eq(3)–(5). The 

cubic spline function, which was originally proposed by Monaghan and Lattanzio[47], has 

been the most widely used smoothing function in the published SPH literatures since it closely 

resembles a Gaussian function while having a narrower compact support[37]. The cubic spline 

function is used in this study 

𝑊𝑊𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑑𝑑 × �

2
3
− 𝑞𝑞2 +

1
2
𝑞𝑞3,    0 ≤ 𝑞𝑞 < 1

1
6

(2 − 𝑞𝑞)3,          1 ≤ 𝑞𝑞 < 2
 (6) 

where 𝛼𝛼𝑑𝑑  is the normalization factor, which is 15/(7πh2)  for 2D problem and q is the 

normalized distance between particle i and j defined as 𝑞𝑞 = 𝑟𝑟𝑖𝑖𝑖𝑖/ℎ. 𝑟𝑟𝑖𝑖𝑖𝑖 is the distance between 

particle i and j. 

As discussed above, the total stress tensor 𝜎𝜎𝛼𝛼𝛼𝛼  was decomposed into two parts: an 

volumetric part p (named ‘pressure’ in this paper) and a deviatoric shear stress 𝜏𝜏𝛼𝛼𝛼𝛼 

 𝜎𝜎𝛼𝛼𝛼𝛼 = −𝑝𝑝𝛿𝛿𝛼𝛼𝛼𝛼 + 𝜏𝜏𝛼𝛼𝛼𝛼 (7) 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

199



In this paper, the pressure (P) is computed by means of an equation of state (EOS). The Mie–

Gruneisen equation, which has been shown to be suitable for solid materials under 

compressive shock loading[38], is employed to describe pressure–volume–energy behavior of 

ductile materials under particle impact. The pressure is related to density and internal energy 

in the form of 𝑃𝑃 = 𝑃𝑃(𝜌𝜌, 𝑒𝑒).  

For elastic solid of dynamics, the shear stress (𝜏𝜏) can be integrated by time following the 

incremental formulation of Hooke’s law, in which the linear elastic relation between stress 

and deformation tensors has been derived in time. In order to guarantee the independence 

from rigid rotations, the Jaumann rate is adopted here with the following elastic constitutive 

equation as[46] 

𝑑𝑑𝜏𝜏𝛼𝛼𝛼𝛼

𝑑𝑑𝑑𝑑
= 2𝐺𝐺 �𝜀𝜀̇𝛼𝛼𝛼𝛼 −

1
3
𝛿𝛿𝛼𝛼𝛼𝛼𝜀𝜀̇𝛾𝛾𝛾𝛾� + 𝜏𝜏𝛼𝛼𝛼𝛼 ∙ 𝑟̇𝑟𝛽𝛽𝛽𝛽 + 𝜏𝜏𝛾𝛾𝛾𝛾 ∙ 𝑟̇𝑟𝛼𝛼𝛼𝛼 (8) 

where G is the shear modulus of the concerned material, 𝜀𝜀̇𝛼𝛼𝛼𝛼 is the strain rate tensor given by 

𝜀𝜀̇𝛼𝛼𝛼𝛼 =
1
2
�
𝜕𝜕𝑣𝑣𝛼𝛼

𝜕𝜕𝑥𝑥𝛽𝛽
+
𝜕𝜕𝑣𝑣𝛽𝛽

𝜕𝜕𝑥𝑥𝛼𝛼
� (9) 

𝑟̇𝑟𝛼𝛼𝛼𝛼is the rotation rate tensor defined through 

𝑟̇𝑟𝛼𝛼𝛼𝛼 =
1
2
�
𝜕𝜕𝑣𝑣𝛼𝛼

𝜕𝜕𝑥𝑥𝛽𝛽
−
𝜕𝜕𝑣𝑣𝛽𝛽

𝜕𝜕𝑥𝑥𝛼𝛼
� (10) 

The above elastic constitutive relations can be extended to plastic behavior based on the 

von Mises yield criterion 

𝑓𝑓𝑦𝑦 =
𝜎𝜎𝑦𝑦
𝜎𝜎𝑣𝑣𝑣𝑣

< 1 (11) 

where 𝜎𝜎𝑣𝑣𝑣𝑣  is von Mises equivalent stress, 𝜎𝜎𝑦𝑦  is yield stress. When the von Mises yield 

criterion is met (𝑓𝑓𝑦𝑦 < 1) the material is considered to be yielded and a plastic behavior is 

identified. Then the stress tensor is scaled back to the yield surface. For the elastic–perfectly 

plastic material, the yield stress is considered to be constant. However, the eroded targets can 

not be treated as elastic–perfectly plastic material due to the yield stress is rate–dependent. In 

this paper, the Johnson–Cook flow stress model[55], which is one of the most popular 

consititutive models for numerical simulations of impact, is adopted to account for rate–

dependent plastic behavior of eroded ductile targets. Johnson–Cook flow stress model is a 
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purely empirical model and can accout for strain rate hardening and thermal softening. The 

yield stress in Johnson–Cook model can be written as 

 𝜎𝜎𝑦𝑦 = �𝐴𝐴 + 𝐵𝐵�𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒
𝑝𝑝 �

𝑁𝑁
� �1 + 𝐶𝐶𝐶𝐶𝐶𝐶 �

𝜀𝜀𝑒̇𝑒𝑒𝑒𝑒𝑒
𝑝𝑝

𝜀𝜀0̇
�� [1 − (𝑇𝑇∗)𝑀𝑀] (12) 

where 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒
𝑝𝑝  is the equivalent plastic strain, 𝜀𝜀𝑒̇𝑒𝑒𝑒𝑒𝑒

𝑝𝑝 is the equivalent plastic strain rate, 𝜀𝜀0̇ is 

reference equivalent plastic strain rate, and A, B, C, N, and M are material dependent 

constants. The normalized temperature (𝑇𝑇∗) is given by 

𝑇𝑇∗ =
𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟
 (13) 

where 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 is reference temperature, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is melting temperature of concerned material, and 

real temperature Tis calculated by a simplified thermal mechanical coupling equation 

𝑇𝑇 =
𝜑𝜑𝑊𝑊𝑝𝑝

𝜌𝜌𝐶𝐶𝑝𝑝
+ 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 (14) 

where 𝑊𝑊𝑝𝑝 is the plastic work, 𝜑𝜑 is the coefficient represents the fraction of the plastic work 

changing to heat, 𝐶𝐶𝑝𝑝 is the specific heat of concerned material. 

In order to model the material removal due to impact of angular particles, it is necessary 

to employ a failure model. Here, a cumulative–damage failure model, which was also 

proposed by Johnson and Cook [56], is adopted to simulate material removal during the 

impact process. In the failure model, a parameter D is introduced to measure the local damage 

state and given by 

𝐷𝐷 = �
∆𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒𝑃𝑃

𝜀𝜀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 (15) 

where 𝛥𝛥𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒
𝑝𝑝  is the increment of equivalent plastic strain occurring during an integration cycle 

and εfailure is the equivalent strain to failure given by 

 𝜀𝜀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = [𝐷𝐷1 + 𝐷𝐷2𝑒𝑒𝑒𝑒𝑒𝑒(𝐷𝐷3𝜎𝜎∗)] �1 + 𝐷𝐷4𝑙𝑙𝑙𝑙 �
𝜀𝜀𝑒̇𝑒𝑒𝑒𝑒𝑒
𝑝𝑝

𝜀𝜀0̇
�� [1 + 𝐷𝐷5𝑇𝑇∗] (16) 

where 𝐷𝐷1 − 𝐷𝐷5 are material constants, 𝜎𝜎∗is defined as the ratio of the mean stress 𝜎𝜎𝑚𝑚 to the 

von Mises equivalent stress 𝜎𝜎𝑣𝑣𝑣𝑣.  
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When parameter D is greater than 1, the material failure is considered to occur and the 

corresponding stress is reduced to zero, which considers the reduction of stress level due to 

the material failure. 

To solve above constitutive relations, i.e. Eq. (7)~(16), two steps are proposed. Firstly, 

the equations should be discretized into the SPH framework for every particle. For example, 

the strain and rotation rate tensors (Eq.(9), Eq.(10)) of a particle are discretized into the SPH 

formulations given by 

𝜀𝜀𝑖𝑖
𝛼𝛼𝛼𝛼 = 1

2��
𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
𝑣𝑣𝑗𝑗𝑗𝑗𝛼𝛼

𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝛽𝛽 +

𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
𝑣𝑣𝑗𝑗𝑗𝑗
𝛽𝛽𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

𝛼𝛼 �
𝑁𝑁

𝑗𝑗=1

 (17) 

𝑟𝑟𝑖𝑖
𝛼𝛼𝛼𝛼 = 1

2��
𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
𝑣𝑣𝑗𝑗𝑗𝑗𝛼𝛼

𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝛽𝛽 −

𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
𝑣𝑣𝑗𝑗𝑗𝑗
𝛽𝛽𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

𝛼𝛼 �
𝑁𝑁

𝑗𝑗=1

 (18) 

Then, the discretized equations and corresponding variables are interpolated and updated 

following the updated Lagrangian formulations. Besides, the procedure of stress–rescaling 

and judgment of failure are performed during every integration cycle following the 

corresponding criterion we presented above. This paper adopt a very small timestep in the 

explicitly updated Largrangian procedure, which can reduce the inaccuracy of incrementally 

updating the stress state following the constitutive relations. 

 

2.3 Corrective terms 

In this paper, two modified schemes in terms of density correction and kernel gradient 

correction are adopted, which have been proved effectively to improve computational 

accuracy[33, 53, 54]. For the density correction, we adopt a so–called Moving Least 

Squares(MLS)[49] approach, which is a interpolation scheme on irregularly scattered points. 

This scheme has been applied successfully by Colagrossi and Landrini[53] in SPH dam break 

simulation. And the linear variation of the density field can be exactly reproduced by using 

this first order correction scheme to correct the density. Besides, it is found that for the cases 

with irregular particle distribution a smoother pressure field can be obtained through MLS 

density correction, which may be helpful in improving the stability in this simulation. Herein, 

we use MLS approach to correct the density field as  

〈𝜌𝜌𝑖𝑖〉 = �𝜌𝜌𝑗𝑗𝑊𝑊𝑖𝑖𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀

𝑗𝑗

𝑉𝑉𝑗𝑗 = � 𝑚𝑚𝑗𝑗𝑊𝑊𝑖𝑖𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀

𝑗𝑗
 (19) 
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where the moving–least–square kernel 𝑊𝑊𝑗𝑗
𝑀𝑀𝑀𝑀𝑀𝑀 is computed through (for 3D problem) 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝑊𝑊𝑖𝑖𝑖𝑖

𝑀𝑀𝑀𝑀𝑀𝑀 = �𝛽𝛽0(𝒙𝒙𝑖𝑖) + 𝛽𝛽1(𝒙𝒙𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽2(𝒙𝒙𝑖𝑖)𝑦𝑦𝑖𝑖𝑖𝑖 + 𝛽𝛽3(𝒙𝒙𝑖𝑖)𝑧𝑧𝑖𝑖𝑖𝑖�𝑊𝑊𝑖𝑖𝑖𝑖

𝛽𝛽(𝒙𝒙𝑖𝑖) = [𝛽𝛽0 𝛽𝛽1 𝛽𝛽2𝛽𝛽3]𝑇𝑇 = 𝐴𝐴(𝒙𝒙𝑖𝑖)[1 0 0 0]𝑇𝑇

𝐴𝐴(𝒙𝒙𝑖𝑖) =

⎣
⎢
⎢
⎢
⎢
⎡

�𝑊𝑊𝑖𝑖𝑖𝑖

⎣
⎢
⎢
⎢
⎢
⎡

1 𝑥𝑥𝑖𝑖𝑖𝑖
𝑥𝑥𝑖𝑖𝑖𝑖 �𝑥𝑥𝑖𝑖𝑖𝑖�

2
𝑦𝑦𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖

𝑥𝑥𝑖𝑖𝑖𝑖∙𝑦𝑦𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖∙𝑧𝑧𝑖𝑖𝑖𝑖

𝑦𝑦𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖∙𝑦𝑦𝑖𝑖𝑖𝑖
𝑧𝑧𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖∙𝑧𝑧𝑖𝑖𝑖𝑖

�𝑦𝑦𝑖𝑖𝑖𝑖�
2

𝑦𝑦𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖 �𝑧𝑧𝑖𝑖𝑖𝑖�

2
⎦
⎥
⎥
⎥
⎥
⎤

𝑗𝑗

𝑉𝑉𝑗𝑗

⎦
⎥
⎥
⎥
⎥
⎤
−1

 (20) 

where 𝑉𝑉𝑗𝑗(= mj/ρj) is the volume of particle 𝑗𝑗. It should be noted that the density is still 

integrated by time using continuity equation(Eq. (1)) and density correction is applied 

periodically.  

As to kernel gradient correction, the accuracy is restored with the following correction on 

the kernel gradient by multiplying the original kernel gradient with a matrix 𝐿𝐿(𝑟𝑟𝑖𝑖), which is 

obtained from Taylor series expansion method [33]. In two dimensional spaces, the new 

kernel gradient can be obtained as follows 

𝛻𝛻𝑖𝑖new𝑊𝑊𝑖𝑖𝑖𝑖 = 𝐿𝐿(𝑟𝑟𝑖𝑖)𝛻𝛻𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 (21) 

where 𝑥𝑥𝑗𝑗𝑗𝑗 = 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑗𝑗𝑗𝑗 = 𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖 . It has been proved that the SPH particle approximation 

scheme with kernel gradient correction is of second order accuracyfor general cases with 

irregular particle distribution[33, 54]. 

Then, the standard SPH formulation of momentum equation is rewritten based on our 

improved method in the following way 

𝑑𝑑𝑣𝑣𝑖𝑖𝛼𝛼

𝑑𝑑𝑑𝑑
= �𝑚𝑚𝑗𝑗

𝑁𝑁

𝑗𝑗=1

�−�
𝑃𝑃𝑖𝑖 + 𝑃𝑃𝑗𝑗
𝜌𝜌𝑖𝑖𝜌𝜌𝑗𝑗

� 𝛿𝛿𝛼𝛼𝛼𝛼 +
𝜎𝜎𝑖𝑖
𝛼𝛼𝛼𝛼 + 𝜎𝜎𝑗𝑗

𝛼𝛼𝛼𝛼

𝜌𝜌𝑖𝑖𝜌𝜌𝑗𝑗
+ 𝛱𝛱𝑖𝑖𝑖𝑖𝛿𝛿𝛼𝛼𝛼𝛼�

𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛

𝜕𝜕𝑥𝑥𝑖𝑖
𝛽𝛽 + 𝑓𝑓𝑖𝑖𝛼𝛼 (22) 

where the last term(𝛱𝛱𝑖𝑖𝑖𝑖) between brackets is called artificial viscosity and is used to reduce 

the unphysical oscillations in the numerical results around the shocked region[46]. Of several 

proposals for artificial viscosity developed so far, the most widely applied is derived by 

Monaghan[31] 

𝛱𝛱𝑖𝑖𝑖𝑖 = �
−𝛼𝛼𝑐𝑐𝑖̅𝑖𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖 + 𝛽𝛽𝜇𝜇𝑖𝑖𝑖𝑖2

𝜌̅𝜌𝑖𝑖𝑖𝑖
𝑉𝑉�⃗ 𝑖𝑖𝑖𝑖 ∙ 𝑥⃗𝑥𝑖𝑖𝑖𝑖 < 0 

         0                      𝑉𝑉�⃗ 𝑖𝑖𝑖𝑖 ∙ 𝑥⃗𝑥𝑖𝑖𝑖𝑖 ≥ 0
 (23) 
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where 𝜇𝜇𝑖𝑖𝑖𝑖 = ℎ𝑖𝑖𝑖𝑖�𝑉𝑉��⃗ 𝑖𝑖𝑖𝑖∙𝑥⃗𝑥𝑖𝑖𝑖𝑖�

�𝑥⃗𝑥𝑖𝑖𝑖𝑖�
2
+0.01ℎ𝑖𝑖𝑖𝑖

2 , 𝑐𝑐𝑖̅𝑖𝑖𝑖 = �𝑐𝑐𝑖𝑖 + 𝑐𝑐𝑗𝑗�/2 , 𝜌̅𝜌𝑖𝑖𝑖𝑖 = �𝜌𝜌𝑖𝑖 + 𝜌𝜌𝑗𝑗�/2 , ℎ𝑖𝑖𝑖𝑖 = (ℎ𝑖𝑖 + ℎ𝑗𝑗)/2 , c is the 

speed of sound, h is the smoothing length; 𝛼𝛼, 𝛽𝛽 are constants and should be chosen according 

to particular applications.  

It should be note that for our improved SPH formulations only kernel and kernel gradient 

are modified. And a field function and its derivatives are approximated separately as the 

standard SPH method does, which means that there is no need to change the procedure of 

computation of previous standard SPH. The main structure of SPH code remains unchanged. 

Therefore, it is relatively convenient to implement above improved SPH formulations. 

 

2.4 Time integration scheme  

The discrete SPH formulations are generated for every particle in the form of ordinary 

differential equations as described above. In order to solve these ordinary differential 

equations, time integration scheme is used to integrate the field variables. In this work, the 

Leap Frog (LF) algorithm is adopted due to its low memory requirement and high efficiency. 

In LF algorithm, the field variables are updated by using the following equations: 

𝜌𝜌𝑛𝑛+1/2 = 𝜌𝜌𝑛𝑛−1/2 + �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑛𝑛
∙ ∆𝑡𝑡 (24) 

𝑣𝑣𝑛𝑛+1/2
𝛼𝛼 = 𝑣𝑣𝑛𝑛−1/2

𝛼𝛼 + �
𝑑𝑑𝑣𝑣𝛼𝛼

𝑑𝑑𝑑𝑑
�
𝑛𝑛
∙ ∆𝑡𝑡 (25) 

𝜏𝜏𝑛𝑛+1/2
𝛼𝛼𝛼𝛼 = 𝜏𝜏𝑛𝑛−1/2

𝛼𝛼𝛼𝛼 + �
𝑑𝑑𝜏𝜏𝛼𝛼𝛼𝛼

𝑑𝑑𝑑𝑑
�
𝑛𝑛
∙ ∆𝑡𝑡 (26) 

𝑥𝑥𝑛𝑛+1𝛼𝛼 = 𝑥𝑥𝑛𝑛𝛼𝛼 + 𝑣𝑣𝑛𝑛+1/2
𝛼𝛼 ∙ ∆𝑡𝑡 (27) 

where ∆𝑡𝑡 is time step length. 

The stability of the above LF integration scheme is governed by the CFL(Courant–

Friedrichs–Levy) contidition 

∆𝑡𝑡 ≤ 0.2
ℎ
𝑐𝑐

 (28) 

where c  is sound speed of the concerned material. 

According to basic principles presented above, a SPH procedure and code are established 

based on the SPH code written in Fortran[46]. 
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3.Simulation of multiple and overlapping impacts using well-defined particles  

 
Fig. 1. Typical crater profile resulted by a well-defined angular particle[42] 

3.1 Single impact and  multiple impact 

In this section, we simulate the impact of single angular particle on ductile surface 

(OFHC Copper and Al6061-T6).  The Johnson-Cook parameters of two ductile materials are 

listed in Table.1.  Smulation of single particle helps to validate the numerical model using 

available experimental results of single impact test. For example, M.Takaffoli and 

M.Papini[12] studied the single diamond particle impact on OFHC Copper. In their 

experiment, the launching device was specially designed to realize the adjustment of incident 

conditions of single particle such as initial orientation (𝜃𝜃𝑖𝑖 ), impact angle (𝛼𝛼𝑖𝑖) and impact 

velocity (𝑣𝑣𝑖𝑖). Figure 1 shows the definitions of incident parameters, geometry parameters and 

rebound parameters. In this section, we use the same test configuration as the experiment and 

the predicted results are compared with experimental data, then model validation could be 

performed. 

 
Fig. 2. Geometry, incident, rebound parameters of foreign particle 
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Table. 1 Material parameters for Johnson-Cook model 

Material type A (MPa) B (MPa) n C m 

AL6061-T6 324 114 0.42 0.002 1.34 

OFHC Copper 90 292 0.31 0.025 1.09 

 

 
Fig. 3. Dynamic impact process of single angular particle (time interval 10𝛍𝛍𝛍𝛍) 

 𝑣𝑣𝑖𝑖 = 81𝑚𝑚/𝑠𝑠 𝛼𝛼𝑖𝑖 = 60°, 𝜃𝜃𝑖𝑖 = 20° 

Figure 2 shows the simulated impact process of diamond shaped particle on OFHC 

Copper. The length of the particle size is 5.46mm, the impact velocity is 81m/s. As shown in 

the figure, the particle impacts on the surface at an oblique impact angle (60°) resulting in an 

asymmetric erosive crater. In Fig. 3, the predicted crater is compared to measured crater 

profile, which shows that the predicted crater profile matches well with measured data. It 

illustrates the model could effectively and accurately obtained reliable results, which ensures 

further application on multiple and overlapping impact simulation. 

OFHC Cooper 
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Fig. 4.Single particle impact on OFHC Copper surface at vi = 81m/s αi = 60°, θi = 20°  

 

 
Fig. 5. Second particle impact on previous crater: illustration of different impact points 

for the second particles  (𝜃𝜃𝑖𝑖 = 20°, 𝛼𝛼𝑖𝑖 = 60°, 𝑉𝑉𝑖𝑖 = 80m/s) 

In surface erosion process, impact on piled-up material is usually considered as the main 

mechanism of material removal when particles repeatedly impact on the surface. In order to 

simplify the problem and reveal the fundamental process, two impacts are considered in one 

simulation. In other words, two angular particles given same incident conditions impact on the 

surface successively to make sure overlapping impact occur. Then, we investigate the effect of 

previously resulted crater on the impact behavior and erosion mechanism of subsequent 

impact. Figure 4 presents the predicted crater profile caused by the first impact and the 
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corresponding measured profile[12]. It shows good agreement both in crater shape and 

dimensions.  

As shown in Fig.4, six impact points are particularly selected for the second particle 

along the crater surface resulted from the first impact. Accordingly, six predicted craters of 

overlapping impacts are obtained and shown in Fig.5. The crater profile of the first impact 

(black line) is also plotted in the figure for comparison purposes. 

 
Fig. 6. Erosive craters by overlapping impacts of two particles (black line represents crater 

profile by the first impact) 

 

Fig. 7 Illustration of effect of location of impact point on the parameters related to 

particle motion 

Figure 6 illustrates the effect of impact point on the predicted parameters of particle 

motion including 𝑣𝑣𝑟𝑟, 𝛼𝛼𝑟𝑟, 𝜔𝜔𝑟𝑟 and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚. It can be clearly seen that the influence of impact 
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point on the maximum angular velocity (ωmax) is bigger than that on any other predicted 

variables. It means that the existing crater (the first crater) highly influences the initially 

generated particle rotation, including not only the magnitude but also the rotation direction. 

For example, for the impact of number 4, the second particle impacts on the inner side of the 

crater, as shown in Fig.5, the actual θi relative to the contact surface is a negative value which 

results in particle tumbling forward with a far higher ωmax(up to 250% higher) than the first 

impact. Compared with ωmax, other variables (vr, αr, ωr) have smaller change when 

changing the impact point. It should be noted that these three variables are all rebound 

parameters, of which αr is mostly heavily affected with the maximum difference up to 25% 

(Number 3). 

 

3.2 Multiple and overlapping impacts using random impact points 

 

 
Fig. 8 Group of particles impact on the surface 

Real particle erosion system usually involves many particles impact on component 

surface randomly. In order to reproduce the erosion process as realistic as possible, a random 

multiple impact model is proposed in this section. As shown in Fig.7, particles are launched to 

impact on  surface group by group, each group contains several particles (two particle in this 

study). Total particles number is calculated by multiplying group number with particle 

number in one group. The random characteristic is realized through assigning a random 

impact point for each particle. 
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Fig. 9 Six group of particles impact on surface successively 

Group 1 Group 2 

Group 3 Group 4 

Group 5 Group 6 
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In Fig.8, six group of particles impact on the surface successively. As discussed above,  

the impact point for each particle in one group is randomly selected. Therefore, overlapping 

impact may occur when successive particle just impacts on the craters caused by previous 

particles. Overlapping impacts make the surface materials continuously deform and damage is 

cumulated until failure occurs, which result in severe deformation on the surface. As shown in 

Fig.9, overlapping impacts increase the surface roughness. Besides, in the overlapping impact 

process, chip separation is likely to occur due to the gross failure of the chip materials.  

 
Fig. 10 Surface morphology resulted by 15 particles impact  (𝜃𝜃𝑖𝑖 = 39°, 𝛼𝛼𝑖𝑖 = 51°, 

𝑉𝑉𝑖𝑖 = 60m/s) 

In Fig.9, same incident conditions (θi = 39°, αi = 51°, Vi = 60m/s) are assigned for all 15 

particles. Even though incident conditions do not keep constant in real erosion process (such 

as 𝜃𝜃𝑖𝑖), it is reasonable to assume the particles have same incident conditions (especially for 

impact angle and impact velocity) in order for comparative study.  

 
Fig. 11 Surface morphology resulted by 20 particles impact  (𝜃𝜃𝑖𝑖 = 0°, 𝛼𝛼𝑖𝑖 = 30°, 𝑉𝑉𝑖𝑖 =

60m/s) 

 

AL6061-T6 

AL6061-T6 
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Fig. 12 Surface morphology resulted by 20 particles impact  (𝜃𝜃𝑖𝑖 = 0°, 𝛼𝛼𝑖𝑖 = 40°, 𝑉𝑉𝑖𝑖 =

60m/s) 

 

In Fig.10 and Fig.11, 20 particles impact on the surface at θi = 0° , at αi = 30°  or 

αi = 40° and at Vi = 60m/s. Figure 12 (a) and (b) show 40 particles impact on the surface 

using the same incident conditions in Fig.11. Overlapping impacts make surface materials fail 

and the failed materials (SPH particles) are still maintained on the surface due to this study 

assume hydrostatic pressure could have negative value. The failed materials could be removed 

for better observation of the broken surface, as shown in Fig.12(b). 

 

 
(a) 

AL6061-T6 

AL6061-T6 
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(b)  

Fig. 13 Surface morphology resulted by 40 particles impact  (𝜃𝜃𝑖𝑖 = 0°, 𝛼𝛼𝑖𝑖 = 40°, 𝑉𝑉𝑖𝑖 =

60m/s) 

 

 

 
Fig. 14 Comparison of surface morphology between different impact angle 

 

 

 

4.Discussion 

 

The SPH has several advantages over element-based numerical methods, such as it can 

handle large deformation and material removal due to its Lagrangian and adaptive nature; it is 

relatively easy to incorporate complicated physics. For the present simulation, particle impact 

on ductile targets usually involves rapid deformation and quick damage, which may result in 

disordered particle distribution. As described in above sections, the SPH discretization 

AL6061-T6 

AL6061-T6 
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procedure based on the improved algorithm is employ. Two modified algorithms may help to 

improve the computational accuracy. Besides, there are many other aspects affecting the 

accuracy, efficiency and stability of the numerical solutions, such as the choice of the 

smoothing function, the artificial viscosity, and the neighbouring searching strategy, etc. 

These aspects degrade the repeatability of numerical test to some extent and make SPH not 

attractive as some element-based methods. Therefore, it is essential to properly address these 

issues before applying the method to particular applications.  

In this study, the artificial viscosity  is introduced into the momentum equation to damp 

out the undesirable oscillations. For the value of α, Monaghan[32] selected α = 0.01 for the 

free surface flow; Libersky et al.[38] selected α = 2.5  for solid mechanics problem. 

Monaghan also recommended that α close to 1 may be the best choice for most cases. The 

other term associated with parameter β is devoted to suppress particle interpenetration at high 

Mach number[40], which dose not have much effect in the present simulation since the 

velocity (<100m/s) is small compared with the speed of sound (~103). Our tests give similar 

results for the value of β between 0 and 2.5, which is the commonly used range recommended 

by researchers[38, 46]. It has been found that α = 1.0 and β = 1.0 are proper for the present 

simulation in terms of suppressing numerical oscillations on one hand and leading to less 

unphysical energy dissipations on the other hand. 

Another important aspect affecting the efficiency of the computation is the neighbouring 

searching procedure. Generally, the easiest way to do this job is to calculate the distance 

between every two possible neighbouring particles in the computation domain. However, this 

direct way has low efficiency because it involves a number of interactions on the order of 

N × N. In the present work, an efficient strategy named linked-list method is adopted. It is 

suitable for uniformly distributed particles, which is the case for this simulation. For more 

details on implementing this strategy one can refer to Ref. [49]. 

5.Conclusion 

This paper developed a 3D–SPH model to simulate surface erosion of ductile materials 

subjected to impacts of angular particles travelling a given velocity. In the model, both the 

targeted material and the rigid angular particle are discretized bymeshfree particles. Once the 

rigid–target interaction has been detected, contact forces are imposed to particles close to the 

interface. In particular, the action of the rigid particle on the target is computed through 

particles contact algorithm based on penalty force approach. On the contrary, the action on the 
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rigid particle is computed by summing up all reaction forces from targeted particles which 

satisfy the action–reaction principle. 

The SPH model, thanks to its Lagrangian and adaptive nature, has the great advantage of 

modeling large deformation and material removal, and does not need any specific treatment 

for the distorted computational domain. By incorporating the Johnson–Cook plasticity and 

failure model, the developed SPH model can capture the rate–dependent plastic behavior and 

damage behavior, which are the key components in erosion mechanisms of ductile material. 

Further on, chip separation caused by particle impacts is revealed and presented as a dynamic 

process, which is helpful in taking a close look at the fundamental mechanisms. 

To solve the problem of low accuracy in standard SPH method, MLS density correction 

and kernel gradient correction are implemented into our SPH code. By using the density 

correction and artificial viscosity together, the stress oscillations in standard SPH model are 

effectively alleviated. And the unphysical energy dissipation of artificial viscosity is also 

significantly reduced by appropriately applying the MLS density correction. 

The numerical analyses of angular particle impact on AL6026–T6 and OFHC Copper are 

applied to validate the capability and accuracy of the model.The obtained numerical results 

clearly demonstrate that the presented SPH model can effectively simulate particle erosion 

problems. The present work thus forms the basis from which the more realistic multiple 

particle impact erosion mechanisms can be simulated. However, the present work only 

simulates solid particle erosion on ductile materials. Future work will be applications in brittle 

materials using presented method.  
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Abstract 
In this paper, the Runge-Kutta discontinuous Galerkin method is used in solving compressible two-
medium flow. The material interface is explicitly tracked by the front tracking method and the 
interface boundary conditions are defined via the real ghost fluid method. Several numerical 
examples are presented to show the accuracy and capacity of this method. It is found that the mass 
errors are smaller compared to the results obtained by the same order accurate finite difference 
method. 
Keywords: Runge-Kutta discontinuous Galerkin method, front tracking method, real ghost fluid 
method, mass errors. 

Introduction 
One major difficulty in solving compressible two-medium flow is how to treat the material interface 
accurately. The front tracking method [3] provides an explicit way to track the moving interface and 
a sharp interface boundary is maintained during the computation. The ghost fluid method (GFM) [2] 
introduced by Fedkiw et al. presents a simple and flexible way of treating the material interface. 
However, when the pressure or the velocity experiences a large jump across the interface, the GFM 
can lead to inaccuracy or even incorrect solution. To better consider the effect of wave interaction 
and material property, the real ghost fluid method (RGFM) [9] is proposed to update the real fluid 
states and obtain the ghost fluid states by defining a Riemann problem at the interface. With these 
ghost fluid states, the mediums can be solved separately as if it is in a single medium. 
 
In recent years, the Runge-Kutta discontinuous Galerkin (RKDG) method [1] performed very well 
and has been broadly applied to the simulation of single medium flow. For the RKDG method, the 
higher accuracy is easily obtained in smooth region and we can get the numerical solution 
everywhere from the solution polynomials.  In many earlier works, the basic scheme used to solve 
the compressible multimedium flow is usually finite difference method [4]. For higher order 
accurate finite difference method, more ghost fluid states across the interface are solved. Since the 
geometrical information far from the interface is not solved precisely by the front tracking method, 
the corresponding ghost fluid states are less accurate especially for the complex interface in the later 
stage evolution [5][6]. However, due to the good compactness of the RKDG method, we only need 
to define the ghost fluid states in the ghost fluid cells which have the common edges with the real 
fluid cells. This is very simple but also favorable. The intention of this work is to apply the RKDG 
method in the simulation of compressible two-medium flow and compare the mass errors obtained 
by the same order accurate finite difference method. The material interface is explicitly tracked by 
several connected marker points and the RGFM is used to define the interface boundary conditions. 
A Riemann problem is constructed in the normal direction of each marker point, and the Riemann 
solutions are used to advance the interface and obtain the ghost fluid states directly. 

Equations and interface treatment 

Governing equations 

The two-dimensional hyperbolic conservation laws can be written as follows: 
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pressure, E is the total energy per unit volume. The total energy is given as: 

    2 2( ) / 2E e u vρ ρ= + +      (2) 

where e is the internal energy per unit mass. The stiffened gas equation of state is used: 

    ( 1)p e Bγ ρ γ= − −      (3) 

here γ and B are characteristic parameters of material and can be treated as constants. For the ideal 
gas γ represents the ratio of the specific heats and B is zero. 

Interface tracking 

As indicated in Fig. 1, medium 1 and medium 2 are separated by the material interface. The marker 
points are represented by the intersections of the interface and the grid lines. N


 is the normal 

vector and T


 is the tangential vector of each marker point. Point ( , )A AA x y  and point ( , )B BB x y  are 
obtained by the same distance Δn [3] from the marker point ( , )P PP x y : 
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where ( , )P Px PyN N N=


is the unit normal vector of the marker point P and Δx and Δy are the cell 
sizes. A Riemann problem is constructed at the marker point P with the initial conditions: 

    0
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B
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

U
U

U
     (6) 

where UA and UB are the fluid states at point A and point B and can be solved from the solution 
polynomials directly in the RKDG method [1]. An approximate Riemann problem solver (ARPS) 
based on a two shock structure can be employed to obtain the Riemann solutions. We denote the 
Riemann solutions by [ , , , ]L R N T

P I I I Iu pρ ρ=R , where the subscript "I" refers to the interface, and the 
superscript "L" and "R" denote the left and right side of the interface, respectively. The tangential 
velocity of the marker point P depends on the sign of the normal velocity and is defined as: 

    
, if 0

, otherwise

T N
A IT

I T
B

v u
v

v

 ≥= 


     (7) 

where T
Av  and T

Bv  are the tangential velocity of point A and point B, respectively. After the velocity 
of each marker point has been solved, its new position is updated simultaneously: 
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where n
fx  and 1n

fx +  are the positions of the interface at time tn and tn+1, respectively. fv  is the 
interface velocity, and Δt is the time step. 

 
Figure 1.  Construct the Riemann problem 

RGFM 

Since the Riemann problem has been solved at the marker point in the interface tracking, the 
Riemann solutions can be used directly to update the real fluid states and obtain the ghost fluid 
states. As shown in Fig. 2, points R, S, P and Q are the marker points near the grid cell A, PN


 is the 

normal vector of the marker point P and AN


 is the normal vector of the grid cell A. The flow states 
at the cell A can be updated by the marker point nearby. The marker point P is selected if the angle 
between PN


 and AN


 is the minimum compared with other marker points. We project the Riemann 

solutions at the marker point P to the base function space to obtain the average values in cell A 
while the tangential velocity in cell A remains unchanged. It is similar for other real fluid cells 
adjacent to the interface. The ghost fluid states are obtained by solving the advection equation: 

    0N
t
φ φ∂
± ∇ =

∂


�      (9) 

where φ is the density, the normal velocity, the tangential velocity and the pressure, N


 is the unit 
normal vector of the ghost cells.  

 
Figure 2.  Update the fluid states adjacent to the interface  
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Numerical examples 

In this section, several two dimensional compressible two-medium flow problems are simulated on 

uniform Cartesian meshes. The governing equations for each medium are solved by the P2 (third-

order accurate) RKDG method and the TVB limiter constant [1] is taken as 0.1. The time 

integration is solved by a third-order TVD Runge-Kutta scheme. The RKDG method combined 

with the front tracking method is named as RKDG-FT method for convenience.  

Shock bubble interaction 

The computational domain is shown in Fig. 3 and the geometrical parameters are: =50 mm, a  
=25 mm, =100 mm, =325 mm, =44.5 mm.b c d e A shock wave propagates to the left and hits a 

helium bubble with a Mach number of 1.22. Only the upper half domain is computed since the flow 
field is symmetric about the center axis. On the left and right boundaries, nonreflecting boundary 
condition is used and the upper boundary is treated as slip-wall. The speed of sound and the 
diameter of bubble are used for nondimensionalization. The computational domain is divided into 
650×89 mesh cells. The initial conditions are: 1, 0, 0, 1/1.4, 1.4,u v pρ γ= = = = =  for pre-shocked 
air, 1.3764, 0.3336, 0, 1.5698 /1.4,u v pρ = = − = =  for post-shocked air, 0.1819, 0, 0,u vρ = = =  

1/1.4, 1.648,p γ= =  for helium. The time histories of density field are shown in Fig. 4. The 
evolution of the bubble shape and the refracted shock wave can be seen clearly. In Fig. 5, it shows 
the space-time diagram for three characteristic points (Jet, Downstream, Upstream shown in the 
figure) with earlier results from [8]. In general, these results are in a relatively good agreement. To 
make quantitative comparisons with the finite difference method, here we replace the RKDG 
method by the third order accurate weighted essentially non-oscillatory (WENO) method and keep 
everything else unchanged in the code [4]. The WENO method combined with the front tracking 
method is named as WENO-FT method for convenience. The relative mass error of helium bubble 
is computed and shown in Fig. 6. It is found that the relative mass errors are limited within 7% 
before the helium bubble collapses for both methods. The general trends of the relative mass errors 
with time are similar but the error caused by the RKDG-FT method is much smaller. 

 
Figure 3.  A schematic of computational domain (not to scale) 

 

(a) t=102μsec 
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(b) t=427μsec 

 
(c) t=674μsec 

Figure 4.  The evolution of density field (60 equally spaced density contours from 0.1 to 1.6) 

 
Figure 5.  Space-time diagrams for three characteristic interface points 

 
Figure 6.  Comparison of relative mass error of helium bubble 

Richtmyer-Meshkov instability 

This example consists of two simulations of problems with gas-gas and gas-liquid interfaces. As 
indicated in Fig. 7, a computational domain of [0,4]×[0,0.5] is used and the initial location of the 
interface is represented by: 2.9 0.1sin(2 ( 0.25)), 0 0.5.x y yπ= − + < <  The upper and lower 
boundaries are periodic and the nonreflecting boundary condition is applied at the left and right 
boundaries. The computational domain is divided into 1000×125 mesh cells. The first one is a gas-
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gas interface. At x=3.2 there is a planar shock wave with Mach number 1.24 in air propagating from 
the right to the left of the SF6-air interface. The initial conditions are: 5.04, 0, 0, 1,u v pρ = = = =  

1.093,γ =  for SF6, 1, 0, 0, 1, 1.4,u v pρ γ= = = = =  for pre-shocked air, 1.411, 0.39,uρ = = −  
0, 1.628, 1.4,v p γ= = = for post-shocked air. The flow evolution in the density field is presented in 

Fig. 8. The interface is accelerated by a shock wave coming from the light-fluid to the heavy-fluid 
region. Fig. 9 presents the time evolution of the location of the spike and the leading edge of the 
bubble along with the results in [8]. It shows that these results are almost identical. The relative 
mass error of the SF6 medium is shown in Fig. 10 before the shock wave transmits to the left 
boundary in order to make comparisons between the RKDG-FT method and the WENO-FT method. 
It is found that these errors are similar at the initial stage. Later, the error by the WENO-FT method 
increases quickly while the error curve by the RKDG-FT method is much smoother. 

 
Figure 7.  A schematic of flow field at t=0 

 
(a) t=2.3099 

 
(b) t=4.6062 

 
(c) t=6.9045 

Figure 8.  Density field (230 equally spaced density contours from 0.5 to 9.5) 

 

Figure 9.  Comparison on time histories of characteristic positions 
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Figure 10.  Comparison of relative mass error of SF6 

The second one is a gas-liquid interface that is interacting with a Mach number 1.95 shock wave at 
x=3.025 initially in liquid. The initial conditions are: 1, 0, 0, 1, 1.4,u v pρ γ= = = = =  for air, 

5, 0, 0, 1, 4, 1,u v p Bρ γ= = = = = =  for pre-shocked liquid, 7.093, 0.7288, 0, 10,u v pρ = = − = =  
4, 1,Bγ = =  for post-shocked liquid. The density field is shown in Fig. 11 where the complex wave 

structure is once again presented and is relatively well captured. To check the correctness of the 
results, in Fig. 12 we compare the distributions of density and pressure along y=0.5 at t=0.5 with the 
results ('  ') in [7]. Good agreement of the solutions is clearly observed. Similar to the gas-gas 
interface, the relative mass error of the air medium is measured and shown in Fig. 13. The error by 
the WENO-FT method increases quickly after the shock wave transmits into the air medium and it 
shows that the RKDG-FT method has good behaviors for the mass conservation in this problem. 

 
(a) t =0.3 

 
(b) t =0.5 

 
(c) t =1.0 

Figure 11.  Density field (100 equally spaced density contours from 0.5 to 7.5) 

 
Figure 12.  Comparison of density and pressure along y=0.5 
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Figure 13.  Comparison of relative mass error of air 

Conclusions 

In this paper, the RKDG method is applied to solve compressible two-medium flow. The interface 
is advanced by the front tracking method and the RGFM is used to define the interface boundary 
conditions. Due to the good compactness of the RKDG method, the ghost fluid states far from the 
interface which are less accuracy need not to be solved and used in the computation. Numerical 
results show that these procedures can work efficiently under different initial conditions. It also 
demonstrates that the RKDG-FT method has better mass conservation property compared to the 
WENO-FT method in general. 
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Abstract 

In this paper, the solution domain is divided into multi-patches on which B-Spline basis 
functions are used for approximation. The different B-Spline patches are connected by a 
transition region which is described by several elements. The basis functions in different B-
Spline patches are modified in the transition region to ensure the basic polynomial 
reconstruction condition and the compatibility of displacements and their gradients. This new 
method is applied to the stress analysis of 2D elasticity problems in order to investigate its 
performance. Numerical results show that the present method is accurate and stable. 

Keywords: B-Spline patches, Transition region, B-Spline basis functions. 

Introduction 

B-spline functions have been widely used in numerical analysis and simulation for decades. In 
fact, a considerable body of literature now exists on the application of uniform and non-
uniform B spline techniques to the solution of partial differential equations (PDEs) and 
mechanics problems. The recent studies of B-spline method can be found in some articles [1]-
[7]. The B-spline basis functions have compact support and lead to banded stiffness matrices. 
They can be used to construct piecewise approximations that provide higher order of 
continuity depending on the order of the polynomial basis. The B-spline basis functions form 
a partition of unity, which is an important property for convergence of the approximate 
solutions. As they are polynomials, accurate integration can be performed by using the Gauss 
quadrature. The B-spline approximation has good reproducing properties; thus, it is able to 
represent constant strains exactly. Compared to orthogonal or biorthogonal wavelets scaling 
functions and the shape functions constructed by meshless method, B spline functions are 
more simple and easy to work with for numerical analysis. 
The main disadvantage of the general B-spline-based methods is that the scale used in 
approximation is usually uniform. In order to effectively simulate the local complicated 
deformation, the scale used in approximation should be very small. In this case, the 
computational efficiency will be very low. So it is desirable that the scales used for function 
approximation in solution domain are different. A more general approach that uses non-
uniform rational B-splines (NURBS) [8]-[11] for the analysis has been developed. The 
method is referred to as the isogeometric analysis method because the geometry is also 
represented using NURBS basis functions to get an exact geometric representation. This 
method can achieve the traditional h- and p-adaptive refinement as well as k-refinement and 
get better solutions due to the superior basis functions. However, it is necessary to generate 
meshes that conform to the geometry of the analysis in this method. 
In this paper, the solution domain is divided into multi-patches. The B-spline basis functions 
are directly used to approximate the unknown field functions in each patch. Thus, generation 
of conforming mesh is avoided in this approach. Different scales can be used in 
approximation for corresponding patch. The fine scale is used for function approximation in 
the patches where the deformation is complicated. The coarse scales are used for 
approximation in other patches where the deformation is relatively simple. A transition 
domain is used for combination of different B-spline patches. An algorithm is developed to 
modify the B-spline basis functions in the transition domain. The compatibility conditions on 
the interface between the different patches can be satisfied. The numerical examples of 2-D 
elasticity analysis are given to illustrate the stability and the effectiveness of the present 
method. 
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2. Approximation of 2-D functions by B-spline with single scale 

   The m degree B-spline is defined as 
1

1 1 1
0

( ) ( ) , 2m m mN x N N N x t dt m       
(1) 

where 

1
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0,        else
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N x
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 
  
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The major properties of B-spline are 
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B-spline functions can be used as basis functions to approximate the function u defined on 

interval[ , ]a b . 

,( ) ( )i k

k m

k

u x c N x
 

(4) 

where, 
, ( ) (1/ )i k

m mN x N i x k   and i denotes the scale in approximation. According to 

properties of B-spline, the support of 
, ( )i k

mN x is 
,Supp [ , ( )]i k

mN ik i m k 
 

(5) 

In approximation Eq.(4), the B-spline functions 
, ( )i k

mN x should satisfy the following condition  
,Supp [ , ]i k

mN a b 
 

(6) 

The basis functions for the higher-dimensional problems are constructed by taking the product 

of the basis functions for 1-D B-spline. In this case, the approximation of 2-D function 

( , )u x y by B-spline function can be expressed as 

, ,

,

,

( , ) ( ) ( )i k j l

k l m m

k l

u x y c N x N y
 

(7) 

where, 
, ,( ) ( )i k j l

m mN x N y  are 2-D B-spline basis functions, i and j are respectively the scales of 

x direction and y  direction in approximation. For 2-D problems in general domainsΩ , the 2-

D B-spline basis functions which meet the following condition should be used in function 

approximation.  
, ,Supp ( ) ( ) Ω 0i k j l

m mN x N y  
 

(8) 

Similar to finite element method and meshless methods, the approximation equation can be 

written as  

1

( , ) ( , )
N

h h

h

u x y x y c

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(9) 

where, 
, ,( , ) ( ) ( )i k j l

h m mx y N x N y   is similar to shape functions in finite element method and 

meshless methods, hc are the generalized displacement related to ( , )h x y  and N  is the 

number of 2-D B-spline functions used in approximation. 

3. Coupling of different B-Spline patches 

3.1 Basic formulations 

The equations for the elastic problem are expressed as follows 
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where ij is the stress tensor, ib is the body force, it and iu are respectively the prescribed 

boundary tension and displacement, and jn is the unit outward normal to domainΩ . Consider 

the virtual displacement principle 

0   t

dutndub iijijiiij,j 
 

(11) 

where iu  is the variation of real displacement. From Eq. (11), the weak form is 

Ω Ω
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ij ij i i i ie d u t d u b d


       

 
(12) 

where iu vanishes and ii uu   on u . 

   Consider a division with two patches and a transition region in a given regionΩ as shown in 

Figure 1. In 2-D problem, the approximation for the displacement field u  and v  can be 

respectively written as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  The problem domain is divided into two patches and a transition region 
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where, An and Bn  is respectively the number of basis functions used in approximation. It is 

obvious that the two kinds of approximation functions are not compatible and should be 

modified in the transition region. 

3.2 Transition region and modified basis functions  

In 2D problems, the transition region can be described by several elements.  
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where, 
F

iN is the shape function of four nodes plain element and Fn  is the number of element. 

The basis functions should be modified in transition region. A weight function based on the 

transition region should be introduced into modification. The modified basis functions in the 

transition region can be expressed as 
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The following functions can be chosen as weight function 
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Then, the approximation in transition region can be expressed as 
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Then, the approximation formula (13) and (14) should be rewritten as 
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Eventually, a group of linear algebraic equations can be obtained by introducing the 

approximations formula (18), (19) and (20) into weak form (12).  
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D  is the 2-D elasticity matrix. 
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4  Numerical examples 

In this part, numerical simulation of some 2-D plain elasticity problems is presented using the 

present method. The results are compared with those calculated by finite element method or 
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analytical results to show the validity of the proposed method. For simplification, the units are 

omitted in this paper.  

Cantilever beam 

A cantilever beam is analyzed by the presented method. As shown in Figure 2, the beam has a 

dimension of length 10L  and height 2h   and is subject to a parabolic traction 

with 300P   and ))1(1(75.0 2 yPpy . The beam has a unit thickness and a plane strain 

problem is considered. The Young’s modulus is set to 42.1 10E    and Poisson’s ration is set 

to 0.49  . In this problem, the analytical results of stress are expressed as follows  
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Figure 2.  Cantilever beam under a parabolic traction at the free end 

 

The problem domain is divided into two patches and a transition region as shown in Figure 3. 

Cubic B-Spline is used in this simulation. The scales used for approximation in two patches 

are denoted by A x
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 and B x
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, respectively. The width of transition region is expressed 

by t  and the 
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Figure 3.  The patches in 2D beam problem  

 

transition region are studied in this simulation. Figure 4 shows the results of xy  

along 3x  and 5x   with 0.2t  . It can be found that the results computed by the present 

method agree well with the analytical results. 
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Figure 4. The comparison of shear stress 

Conclusions 

In this paper, the B-spline basis functions are directly used to approximate the unknown field 

functions in multi-patches. The generation of conforming mesh is avoided in this approach. 

Different scales are used in approximation for corresponding patch. A transition domain is 

used for combination of different B-spline patches. The B-spline basis functions are modified 

to satisfy the high-order compatibility conditions on the interface between the different 

patches. The computational efficiency of this method is much higher than single patch based 

single scale approach. Numerical examples for 2-D elasticity problems illustrate that this B-

spline method is effective and stable for solving elasticity problems.  
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Abstract 

This paper presents a spectral element based numerical method for calculating the vibro-
acoustic response of sandwich plates with adhesively-bonded corrugated cores. The study is 
motivated by the need of optimal designs for improving the structural-acoustic performance 
of the considered structures. A two-dimensional plate model is firstly developed based on the 
spectral element method (SEM) for obtaining the frequency-domain vibration response of the 
whole structure subject to incident harmonic acoustic wave. Thereafter the Rayleigh integral 
formula is used to calculate the transmitted sound power via its structure-borne path. 
Comparing with the conventional finite element method, the SEM, since it is formulated in 
the frequency domain by using the exact wave solutions for the governing differential 
equation, provides exact frequency-domain solutions meanwhile using much fewer number of 
degrees-of-freedom. This is proven by the numerical results of structural vibration response. 
Furthermore, parametric studies are performed to investigate the influence of the inclined 
angle of bonded corrugated core and the thickness of face plates on the transmitted sound 
power of sandwich plates. Although these design parameters have different effects on the 
sound transmission loss in different frequency-bands of interest, the impacts of both of them 
become more evident with the increase of targeted sound-insulating frequency. 

Keywords: Sandwich plate; corrugated core; spectral element; Sound transmission. 

Introduction 

Metallic sandwich plates with corrugated cores are used extensively in the high speed 
transportation engineering field for their lower area density, higher specific strength and 
stiffness than those of a homogeneous type. Vibro-acoustic response of this kind of structures 
subject to airborne excitation have been a concern in acoustic comfort design of high speed 
transportation systems such as airplanes and express trains. 

Considering the wide usage of the sandwich structure, various theoretical studies have been 
performed aiming at understanding the mechanism of sound transmission through such kind 
of structure. The early studies of acoustic radiation problem for periodic stiffened structure 
are limited to single beam or plate[1–3], and the main concern of these works is the vib-
acoustic response of periodic stiffened structure under mechanical forces. For the double layer 
structure, starting from the double-leaf partitions made up of homogeneous panels with no 
structural stiffener in the core, Pellicier and Trompette[4] reviewed various wave approach 
based methods for calculating the partitions transmission loss, and proposed a simple 
mechanism on the theory of sound transmission through such kind of structure. Considering 
the stiffened double layer structure, Wang et al.[5] studied the double-leaf lightweight 
partitions stiffened with periodically placed studs, and presented a theoretical model to predict 
the sound transmission loss of the structure. Legault et al.[6] studied the sound transmission 
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through an aircraft sidewall representative double panel structure theoretically by using space 
harmonic analysis, which was also used by Xin and Lu[7] to investigate the transmission loss 
of sound through infinite orthogonally rib-stiffened double-panel structures with cavity 
absorption.  

According to the results of these theoretical analyses, both the structural topology and 
material properties have a great impact on the sound insulation capability. To balance the 
mechanical and acoustical properties of the sandwich structures, many researchers turn their 
attention focus on the structural-acoustic optimization problem[8–10], and in most of these 
work, the conventional finite element method is used to calculate the objective function. 
However, since most optimization and parametrical study requires tremendous computing 
workload, the computational time could be a bottleneck when a complex structural model is 
involved. Considering the drawback of the conventional finite element method[11], a more 
efficient alternative method is needed. 

The spectral element method (SEM) is firstly proposed in the 80’s[12]. Birgersson et al.[13] 
proposed a general theory for the analysis of structural vibration of an uniform plate under 
high frequency random excitation, Żak[14] presented a novel formulation of a spectral plate 
finite element for analysis of propagation of elastic waves in isotropic plate structures, and 
Wu et al.[15] studied the dynamic behavior of periodic plate structures by using SEM. All the 
results showed that the spectral element method appears to be an effective tool for modeling 
structural dynamic equations.      

In this paper, a vibro-acoustic model of metallic sandwich plates with adhesively-bonded 
corrugated cores is presented in the first place. The governing dynamic equations are derived 
based on spectral element method and the structural vibration response of the sandwich plates 
subject to air borne sound excitation is calculated. By using the Rayleigh integral, the sound 
power radiated from the structure is obtained. Furthermore, parametric studies are performed 
to determine the influence of the inclined angle of the stiffener and the thickness of the face 
plate on the averaged radiated sound power.  

Theoretical formulation 

Structural configuration 
As illustrated in Figure. 1(a), the sandwich plates considered here consists of two metallic 
face plates and a trapezoidal corrugated core while the core is press-formed and glued on both 
of the two face plates. Because of the simple manufacturing process, this kind of sandwich 
structure is favored by the transportation industry, like being used in the carriages of air 
planes and high speed trains. 

  
(a) 3-demensional model                                      (b) 2-dimensional cross section 

Figure. 1 Geometric schematic of the sandwich plates 
As shown in Figure 1(a), the sandwich structure is periodically stiffened by the adhesively-
bonded corrugated cores along the z-direction, the sandwich plate can be considered as a one-
way stiffened structure. Following the traditional method of modeling the vibration and sound 
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transmission of sandwich structures with cellular cores or truss-like periodic panels[10,16,17], 
the sandwich plate with corrugated core is assumed infinite along the z-axis. Thus the three-
dimensional sandwich plates can be simplified a sandwich beam structure represented by the 
cross section as shown in Figure 1(b). 

Spectral element method modeling 
For spectral element method, the governing equation of motion of the global system is 
assembled by all the spectral elements, and it is given in the frequency-domain as 

          (1) 

where ,  and  represent the global dynamic stiffness matrix, the global spectral nodal 
DOFs vector, and the global nodal force vector, respectively. For beam structure, the exact 
dynamic stiffness matrix is formulated based on the exact wave solutions to the governing 
differential equations[18]. Thus, theoretically, SEM can provide accurate solution to the 
dynamic response of the beam structure, but, comparing to the conventional finite element 
method, SEM only uses a minimum number of DOFs, which makes SEM much more 
computationally efficient[19]. 

 
Figure. 2 Geometric configuration of sandwich beam 

Figure. 2 gives the details of the sandwich beam with a finite total length of L and total height 
of H. h1, h2 and h3 represent the thickness of the lower face plate, core plate and the upper 
face plate. The inclined angle of the stiffened core is defined as θ. Both the face plates and 
core are made of the same isotropic, homogeneous material with the elasticity modulus E and 
density ρ. In order to apply the spectral element method, the sandwich beam structure is firstly 
divided into a number of spans, and each span can be treated as a single spectral element.  

 
Figure. 3 Local & global coordinate system of a beam element 

An illustration of a single spectral beam element in the local coordinates system is shown in 
Figure 3, the classical governing equations of free longitudinal and flexural vibration are： 
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 (2) 

where ,  are respectively, the longitudinal and flexural displacement in the local 
coordinate system. A is the cross-sectional area, I is the cross sectional moment of inertia. The 
solution to Eq. (2) is assumed in the spectral form as:  

                                                               

 (3) 

at a specific discretization frequency , the general solution to Eq. (2) can be written as: 

        (4) 

where  and  are both constant column vectors. The longitudinal and transverse nodal 
displacement at both ends of the beam element can be written as: 

                            (5) 

u, w and θ are, respectively, longitudinal displacement, deflection and slope. Considering the 
force-displacement relation, the internal axial force , shear force  and moment  
are given by: 

                (6) 

According to the compatibility condition, using Eq. (4) and Eq. (6), the external spectral nodal 
forces and moments acting on the two nodes of the beam element can be given as the form of: 

                                                 
 (7) 
Eliminate the constant vectors using Eq. (5) and Eq. (7), it gives: 

             (8) 

where  and  are known as spectral element matrix for longitudinal and transvers 
vibration of a single beam element. Combining the longitudinal and transvers equation into 
one single spectral equation, it gives: 
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                      (9) 

where  is the general spectral element matrix of a single beam. The continuous 
displacement field can be represented by the spectral nodal displacements  as 

                                                                                     (10) 

 represents both the longitudinal and flexural displacements, and  is the dynamic shape 
function which can be obtained from Eq. (4) and Eq. (5). When the structure is exposed to a 
distributed force loading, the distributed force  must be transferred to each node of the 
spectral elements by using the virtual work principle in the frequency-domain. 

                                                                (11) 

Now the governing equation of motion of a single spectral element can be symbolically 
represented by 

                                                     (12) 

With the coordinate transformation matrix T: 
        (13) 

The spectral equations of the whole sandwich structure can be written as the assembly of the 
coordinate transformed local equations: 

                                                                                                     (14) 

Acoustic radiation 

 
Figure 4. The acoustic transmission model 
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It is assumed that the sandwich beam is baffled at both the top and bottom surface, as shown 
in Figure 4. Considering a unit magnitude acoustic plane wave impinged on the bottom beam 
surface with an incident angle of α. The acoustic pressure is transmitted to the top beam via 
the structure-borne path and radiates sound to the semi-infinite space. The half-circle 
illustrated in Figure 4 is the observation surface where the acoustic power radiated from the 
top beam surface is calculated. 

The transmitted acoustic pressure  at a specific observation point r due to the surface 
normal velocity vi on the top beam can be calculated using the Rayleigh’s integral[20]: 

                                                                                             (15) 

where ρ0 is the air density,  and   is the Hankel function of the second kind. 
The acoustic power radiated from the baffled beam at frequency ω can be obtained by an 
integration over the receiver surface (the half round surface S’ shown in Figure 4): 

                                       (16) 

Numerical validation 

To verify the accuracy of present spectral element method, both the conventional FEM and 
SEM are used to calculate the vibration response of the sandwich beam structure. The 
structural drawing of the validation model has been given in Figure 3, in order to be more 
rigorous, two sets of design parameters are chosen to test the present method. The details of 
the two models are listed in Table 1. Another is worth mentioning, the whole structure is 
made of aluminum, with the modulus of elasticity is 7.1×1010 Pa, structural damping factor is 
0.01, and the mass density is 2700 kg/m3.  

Table 1.  Validation model parameters 

Parameter Model 1 Model 2 

Total length of the sandwich structure (L) 1200.0 mm 

Total height of the sandwich beam (H) 50.0 mm 

Number of inclined stiffener (N) 11 

Inclined angle of the stiffener (θ) 40° 60° 

Thickness of the top face beam (h3) 2.0 mm 

Thickness of the bottom face beam (h1) 2.0 mm 

Thickness of the core beam (h2) 2.0 mm 
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Figure 5. FEM mesh convergency 

To ensure the reliablity of the FEM results, a mesh convergency study is performed based on 
model 2 given in Table 1. The mesh convergency diagram is shown in Figure 6, the 1st , 10th 
and 15th natural frequency of the sandwich structure are chosen to be criteria of the 
convergency study. As shown in Figure 5, high frequency analysis requires high mesh density, 
in consideration of the computational efficiency, under 1000Hz, the mesh density of 1000/m 
is chosen to perform the FEM harmonic analysis.  

 
Figure 6. SEM element convergency 

As for the present spectral element method, the convergency study is also performed as shown 
in Figure 6, the test model is also model 2 given in Table 1 and the observation point is 
located at 1/3 L of the top beam. The results indicate that when the element density is bigger 
than 2/span, the difference between the curves of the dynamic response is quite small, thus, 
the element density of 4/span is used in this paper which is much smaller than the FEM. 

Considering a uniform distributed acoustic pressure with a unit magnitude is acting on the 
whole bottom beam surface, and the simply supported boundary conditions are applied at both 
ends of the top and bottom beams. The displacement response of two observation points, 
respectively, located at 1/3L and 1/2L of the top beam are given in Figure 7. 
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(a) model 1, point 1/3 L                                           (b) model 1, point 1/2 L 

           
(c) model 2, point 1/3 L                                         (d) model 2, point 1/2 L 

Figure 7. Point displacement of the validation model 
According to  Fingure 7, the numerical results of present SEM agree very well with the results 
provided by the conventional FEM. It should be emphasized that when SEM is used to 
compute the vibration response of the validation model, a single computational run takes 21.7 
seconds only. comparing with 401.3 seconds of FEM, SEM uses only 5.4% computaional 
time of the conversional FEM to obtain the same accurate results.  

Parametric study 

Benefit from the computational time and accuracy of present spectral element method, the 
vibration response of the sandwich structure subject to external sound wave excitation with 
wide frequency range can be calculated more effectively. Furthermore, by using the 
Rayleigh’s integral, as given by Eq. (18), the transmitted sound power can be easily obtained. 
To provide a reference for the structural-acoustical design of the sandwich structure with 
adhesively-bonded corrugated cores given in this paper, parametric studies are implemented 
to reveal the effect of the thickness of the face plates and the inclined angle of stiffener on the 
transmitted sound power. The details of the reference model for the parametric study is 
tabulated in Table 2. 

Table 2.  Reference model for parametric study 

Parameter value 

Total length of the sandwich structure (L) 1200.0 mm 

Total height of the sandwich beam (H) 50.0 mm 
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Number of inclined stiffener (N) 11 

Inclined angle of the stiffener (θ) Variate, 30° ~ 90° 

Thickness of the top face beam (h3) Variate, 1.0 ~ 3.0 mm 

Thickness of the bottom face beam (h1) Variate, 1.0 ~ 3.0 mm 

Thickness of the core beam (h2) 3.0 mm 

As illustrated in Figure 4, considering a unit magnitude plane wave of acoustic pressure is 
impinged on the bottom beam surface with an incident angle of α=30°. The frequency range 
of the excitation is 1~800Hz, and the frequency averaged sound power is introduced here as 
an evaluation index for the acoustic performance of the sandwich structure, which is: 

                                                                                              (18) 

Effect of the thickness of the face plate 
Figure 8 gives the effect of the thickness of the face plates on the radiated sound power with 
the target frequency range from 0 to 800Hz. As is shown in the graph, for the univariate study, 
because of the periodicity of the sandwich structure, h1 and h3 affect the frequency averaged 
sound power in much the same way. 

 
(a) Inclined angle of stiffener θ=30° 

 
(b) Inclined angle of stiffener θ=40° 
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(c) Inclined angle of stiffener θ=50° 

Figure 8. Influence of the thickness of the face plates 
Just for one specific inclined angle, as the increase of the thickness, there are less differences 
between the two curves in each sub-figure, and also, the influence become more obvious and 
the variation tendency become more violent. The spectral distribution of structural radiated 
sound power of the maximum and minimum points in Figure 8 are plotted in Figure 9. It can 
be seen that the main difference between the maximum curve and minimum curve is in the 
high frequency range, the changing of the thickness of the face plates has a limited impact on 
the radiated sound power in the low frequency range. 

 
(a) Inclined angle of stiffener θ=30° 

 
(b) Inclined angle of stiffener θ=40° 
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(c) Inclined angle of stiffener θ=50° 

Figure 9. Spectral distribution of the radiated sound power of the maximum and 
minimum point in Figure 8 

Effect of inclined angle θ 
By fixing both the thickness of the top and bottom beam at 3mm, the effect of the inclined 
angle of the stiffener is illustrated in Figure 10. In order to avoid the interference between two 
adjacent stiffeners, the variation range of the inclined angle is limited from 30 to 90 degrees. 

Due to the structural inhomogeneity of the adhesively-bonded corrugated core layer, as there 
is any change of the inclined angle, not only the structure layout, but also the structural mass 
and stiffness are changed simultaneously. These complex relationships eventually lead to an 
erratic curve as shown in Figure 10 with the target frequency range from 0 to 500Hz. 

 
Figure 10. Influence of the inclinde angle of the stiffener 

Since h1 and h3 have the same effect on the radiated sound power, either one could be used to 
perform the thickness and angle conbined influence study on the radiated sound power. As 
shown in Figure 11, in zone 1, with big thickness and less inclination of the stiffeners, the 
change tendency of the sound power is relatively gently. To the contrary, in zone 2, small 
thickness and small inclined angle lead to less structural stiffness and dramatic flactuation of 
sound power in this zone. 

According to the data of Figure 11, the maximum and minimum value are 128.8dB and 
89.1dB, which appear when  h1=2.0mm, θ=87° and h1=1.5mm, θ=84°, respectively. The 
spectral distribution of radiated sound power is given in Figure 12, obviously, the main 
difference between the two curves is high frequency range. In fact, for the sandwich structure, 
the sound radiation in low frequency range gives the greatest contribution to the averaged 
radiated sound power and it is hard to control. 
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Figure 11. Frequency averaged sound power related to both the thickness of the face 

plate and the inclined angle of the stiffener 

 
Figure 12. Spectral distribution of the radiated sound power 

Conclusions 

In this paper, a finite-length numerical 2D model of sandwich plates with adhesively-bonded 
corrugated cores is developed using spectral element method. The numerical result shows that 
SEM has a much higher computational efficiency than the traditional FEM without losing any 
accuracy, which makes SEM an efficient method for the vibro-acoustic analysis of such 
periodic structure. By using the Rayleigh’s integral, parametric studies are performed to test 
the influence of two main design parameters, the thickness of the face plates and the inclined 
angle of the stiffener, on the radiated sound power when the structure is subjected to external 
sound wave excitation. The result shows that for the periodic structure, both the thickness of 
the top and bottom beam have almost the same effect on the frequency averaged radiation 
sound power. Comparing with the thickness of the face plates, the averaged sound power is 
more sensitive to the inclined angle of the stiffener. From the perspective of reducing the 
radiated sound power, the sound radiation in high frequency range can be affected more easily 
by changing these two parameters. Since the sound radiation in low frequency range gives the 
greatest contribution to the averaged radiated sound power, suppressing the sound radiation in 
low frequency range would be more important to reduce sound radiation of the whole 
structure. 
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ABSTRACT

The paper deals with the setting up of a stochastic homogenization method in the framework of domain decomposition. We
focus our investigation on the random fibre composites in the elasticity field. We generate a random representative volume
elements (RVE) of the composite and evaluate its elastic properties by the double-scale homogenization. We propose an
adaptation of this latter in the domain decomposition framework in order to drastically reduce the calculation cost which
is important in this context.

Keywords:Domain decomposition, RVE, Random composites materials,Stochastic homogeneization.

Introduction

Random fibre composites are difficult to model and study. The complexity of their strongly entangled network of fibres
leads to technical drawbacks related to the mesh generation. In addition, their study requires the generation of large and
numerous RVE during the numerical evaluation of the effective properties. Domain decomposition methods are efficient
tools to decrease the calculation time which is important ( give a value for example gain of 50% or 30%) in this context.
Two adaptations of the homogenization method are proposed in this paper: a modified Schur complement method, and a
combination of the FETI-1 method, and the method of Schur complement. In this article, we present both concepts and
provide some relevant results demonstrating their ability in the context of random fiber composites. First, a 2D square RVEs
with the help of random parameters describing the morphology of the network of fibres is generated. A meshing process,
according to voxelisation approach of RVEs is made: the model with an n-order approximate geometry [2, 4, 6]. Then a
finite element study is realized in order to estimate elastic properties with the help of the double-scale homogenization [1, 7].
In order to use the double-scale homogenization method we had to make two main adaptations. First, when generating the
RVEs we take care of the continuity of fibers between each sub-domains, second we have to eliminate redundant information
over the edges. The calculation is performed according to one of two proposed domain decomposition methods. The paper is
outlined as follows. First, we present the minimization problem associated to the double-scale homogenization and describe
both modified domain decomposition methods. Second, we provide some numerical results in effective properties.

Domain decomposition methods

This section is devoted to the implementation of the homogenization method in order to adapt it to the domain decompo-
sition method. A brief recall of the equations governing a linear elastic boundary value problem is done. Two approaches
of domain decomposition are proposed to solve it. The first method is the modified Schur complement method, whereas
the second one, is a mixture of FETI-1 method and the Schur complement.

Setting up of the problem

Let Ω be a open bounded set of R2 or R3 . Let ∂Ω = ∂1Ω ∪ ∂2Ω designates the border of Ω. The periodic multi-scale ho-
mogenization is a powerful tool to evaluate effective properties [1, 7]. The method consists in expanding some constitutive
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equations according to several scales of the medium. In the present contribution, we consider the framework of the linear
elasticity. Thus,



−divσ(uε) = f a.e in Ω

σi j(uε) = Cε
i jkhekhx(uε)

ekhx(uε) =
1
2

(
∂ui

∂x j
+
∂u j

∂xi
)

σi j(uε)n j|∂1Ω = F j

uε |∂2Ω = O

(1)

where σ is the stress tensor, e is the strain-displacement, Cε
i jkh is the local stiffness tensor, f is the loading and uε is the

displacement which is expanded according to the ε parameter. We suppose a pseudo-periodic medium and consider a two-
scale expansion of Equation 1. The first scale called macroscopic is denoted as x, and the second one called microscopic
is denoted as y. Variational considerations lead to a new formulation of the equations at the macro-scale which take into
account the local disruptions related to the heterogeneities. Hence, we can extract the following formulation of the effective
stiffness tensor,

C̃i jkl =
1
|Y |

∫
Y

Ci jmn

[
δmkδnl + emny

(
ωkl(y)

)]
dy (2)

Y denotes the periodic cell and |Y | its volume. Ci jmn is the local stiffness tensor which depends on both the medium
(heterogeneity or matrix) and the corresponding behaviour law. ωkl is a local solution in the cell with periodic boundary
conditions. Thus, the effective tensor turns out to be the sum of the mean of properties and a corrective term related to the
local disruption at the microscopic scale.

Partitioning of the RVEs

We generate 2D square RVEs according to a set of random parameters describing the complex microstructure of a random
fibre composite. The RVEs are conceived and meshed according to the technique outlined in [4] and with the help of
CASTEM we generate properly the RVEs. The basic idea consists in approximating the real geometry according to a grid
of quadrangular elements. Such a concept turns out to be suitable in the framework of domain decomposition due to the
uniformity of the elements. Thus, we evenly subdivide the RVEs into several square subdomains without remeshing. The
similarity between the RVE and each subdomain enables us to denote them as sub-RVEs. Figure 1 illustrates an example of
partitioning of a RVE into four sub-RVEs. One can notice that we consider non-overlapping domains, both the periodicity
and the continuity of fiber at the interfaces are ensured by taking a special care to maintain the geometrical continuity so
that they match together once the sub-domains are together. Γi designates the set of inner boundaries, and Γe the set of outer
boundaries. Γ = Γi ∩ Γe represents the gathering of the both previous sets. Ωn represents the area of the nth subdomain.

Modified Schur complement method

In a first approach, we adapt the Schur complement method to the calculation of effective properties by the double-scale
homogenization. Once Equation 1 is descretized using finite elements, for the considered example (see Figure 1) in which
we consider four subdomains, this one leads to a discrete system which reads as follows:



K11 0 0 0 K̃′
Γ1

0 K22 0 0 K̃′
Γ2

0 0 K33 0 K̃′
Γ3

0 0 0 K44 K̃′
Γ4

K̃Γ1 K̃Γ2 K̃Γ3 K̃Γ4 K̃ΓΓ

︸                                  ︷︷                                  ︸
K



ωkl
1

ωkl
2

ωkl
3

ωkl
4

ω̃kl
Γ

︸︷︷︸
u

=



fkl
1

fkl
2

fkl
3

fkl
4

f̃kl
Γ

︸︷︷︸
f

(3)
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Figure 1: Partitioning of a RVE in 4 subdomains

Kii designates the stiffness tensor of the ith subdomain, ωkl
i is the microscopic displacement and fkl

i the applied strength
which is zero in the present context. K̃Γi is typically the tensor of the nodes located on the boundary Γ for each subdomain
i. ω̃kl

Γ
is the vector of solutions in both displacement on the boundary and homogenized coefficients. Generally speaking,

the ˜ denotes 3 additional terms in 2D (6 in 3D) relative to the assessment of elastic coefficients. Practically, the solving is
realized with the help of a new system S uΓ = b where S is the Schur complement and b its corresponding second member
which is equal to f̃kl

Γ . We have,

S = K̃ΓΓ −
∑

i

K̃ΓiK−1
ii K̃′Γi (4)

Mixed FETI-1 and Schur complement method

We propose an adaptation of the FETI method in the framework of the double-scale homogenization. The method is the
dual of the Schur complement one in the sense that the interface problem is formulated in Lagrange multipliers and not in
displacements. We consider the basic form of the process called FETI-1 [2, 3]. Different modifications have to be performed
to adapt the approach to the double-scale homogenization. First, the hypothesis of periodicity leads to practical difficulties
related to an excessive number of rigid body modes when taking into account by Lagrange multipliers. A possible way to
get round the drawback is to rewrite the problem in another base which leads to the appearance of unsuitable coupling terms
between subdomains. Our choice is to consider the periodicity on the outer boundaries Γe by the primal Schur complement.
Hence, we talk about a mixed FETI-1 and Schur complement method. Second, we must consider additional terms related
to the homogenized coefficients. The terms are added to the tensor describing the connections on the outer boundaries and
consequently taken into account by the Schur complement as well. Thus, the only connections on the inner boundaries are
described by Lagrange multipliers. Under these hypotheses, the matrix-vector system to solve is similar to the previous
one,
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

K11 0 0 0 R′1

0 K22 0 0 R′2

0 0 K33 0 R′3

0 0 0 K44 R′4

R1 R2 R3 R4 KR





ωkl
1

ωkl
2

ωkl
3

ωkl
4

Λkl


=



fkl
1

fkl
2

fkl
3

fkl
4

fkl
R


(5)

where Ri and KR are two tensors describing the connections at the interfaces and, fkl
i and fkl

R the second members corre-
sponding to the subdomains and the interfaces respectively. Such a system can not be directly solved by the conjugate
gradient method because of the floating subdomains. A classical FETI interface problem has to be performed on the La-
grange multipliers, for which a second level of multipliers are provided by the rigid body modes. The new system is then
solved by a preconditioned conjugate gradient and leads us to a direct assessment of the homogenized coefficients.

Numerical results

Algorithms of the two previous methods have been implemented in C++ language. The present section provides some
numerical results obtained from the modified Schur complement method. Effective elastic properties are assessed and
compared with a direct calculation.

Hypotheses

We consider a set of 2D unit RVEs for which the fibres are randomly oriented and distributed. A special care is carried
out to guarantee the periodicity, this treatment is ensured during the generation of the RVE with the help of the n-order
approximate geometry to build meshes. The length and the width of each heterogeneity is fixed at 0.2 and 0.01 respectively,
and we suppose no curvature. Each RVE is subdivided into 4, 9, 16 and 36 non-overlapping subdomains. We suppose the
continuity of the medium as well as the connection of the meshes on the boundaries of each part. Thus, one heterogeneity
can be located on several domains and crosses several inner boundaries. The density of fibres is randomly distributed be-
tween 0 and 30 fibres per unit cell. The meshes are generated according to the concept of 0-order approximate geometry. In
other words, each inclusion is approximated by a grid of quadrangular elements the size of which is equal to the diameter of
the heterogeneities. The elastic properties are assessed in two steps. First, we evaluate some coefficients for each RVE with
the help of the modified Schur complement method. Second, we take the average of the results obtained from a complete
set of representative patterns. The suitable number of realizations is estimated according to statistical considerations. Each
fibre is supposed to follow a transverse isotropic behaviour law. The longitudinal and transverse Young’s modulus are set
at 1050 and 600 GPa respectively. The shear modulus is set at 450 GPa. The matrix is an isotropic polymer resin with
Young’s and shear moduli set at 4.2 and 1.55 GPa respectively. We deliberately choose a high-contrast of properties to
maximise the conditioning of the matrix in the solving which one is realized by a preconditioned conjugate gradient.

Elastic moduli

A sample of 86 RVEs is built according to the previous hypotheses. Figure 2 exhibits the evolution of the effective Young’s
modulus depending on the density of fibres for different levels of partitioning. A comparison is realized with a usual direct
calculation performed on the same sample of representative patterns without partitioning. One must keep in mind that we
consider the same grid of quadrangular elements whatever the level of subdivision is such that the degrees of freedom
number is constant. Globally the differents curves fit together which highlights the consistency of the method. However,
the greater both the number of fibres and subdomains are the more some small discrepancies are observable between the
different curves. Thus, the relative error is 3.48% between the calculation realized with 36 subdomains and the direct
calculation for a density of fibres set at 30.

”Once the RVEs are split into several subdomains in order to guarantee the continuity of fibres through the interfaces, we
have to replace some elements labelled as matrix in fibre. This process ensures the continuity of cross fibres, but modifies
the rate of matrix for the global RVES, especially for a high contrast of properties of fibre and a large number of subdomains,
what leads an effect on the calculation of the effective mechanical properties and explains why we observe a discrepancies
on numerical results between the global RVEs, and RVEs, themselves divided into several subdomains.“Figure 2 illustrates
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Figure 2: Influence of the density of fibres on the effective Young’s modulus in the case of a direct calculation

the same results in the case of a direct calculation of the matrix-vector system of Equation 3 with partitioning. One can
observe the same discrepancies as previously seen in the case of a domain decomposition calculation.

Conclusion

Two domain decomposition methods have been adapted and set up to evaluate elastic properties of a random fibre com-
posite with the help of the double-scale homogenization. Both modified Schur complement method and mixed FETI-1
Schur complement method take into account some additional tensors related to both the homogenized coefficients and
the hypothesis of periodicity, but are solved as classical ones. Numerical results highlight the consistency of the modified
Schur complement method in the framework of a high entanglement of fibres and a high contrast of properties between
the matrix and the heterogeneities.
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Abstract 

Underwater landslide is a serious nature hazard which could occur at both sea floor and 
reservoir banks and results in massive destruction. It generally involves large deformation of 
landslide and water body, especially the interface between them. A numerical model for 
describing the soil-water interface and its large deformation in the framework of smoothed 
particle hydrodynamics (SPH) method is employed to simulate the evolution of underwater 
landslides. The elasto-plastic-viscous model with Dracker-Prager plastic yield rule is used for 
soil deformation simulation. And the direct forces exchange between interfacial soil and water 
particles is implemented to characterize the interface deformation. Both quasi-steady and 
dynamic behaviors of soil and soil-water interface during underwater landslide post-failure 
stage are revealed. Simulated results shows that the landslide body experiences strong 
deformation during the impact process.  

Keywords: underwater landslide, soil-water coupling, interface, smoothed particle 

hydrodynamics. 

Introduction 

Underwater landslide could occur at both sea floor and reservoir banks, causing massive 

destruction. In this hazard, the underwater landslide failures during earthquake or underwater 

excavation or all kinds of porous pressure accumulation. The plastic bands will form in the 

landslide body and cause fast movement of the landslide like it in subaerial landslides. 

However fast opposite movement of landslide body and water surrounding it is a unique 

feature comparing with subaerial landslides. As the density of landslide body and the water is 

basically in the same magnitude order comparing with the subaerial landslide, the water 

resistance effect is much stronger than it of subaerial landslides. Thus the interface between 

slide and water must be considered in the simulation. What is more, this process also involves 

very large deformation of the landslide and water body, especially the interface between them. 

If we ignore the seepage force in the landslide body which might always be true for fine grain 

soil, the problem is basically dealing with a gravity controlled deformable interface between 

soil and water. So, two crucial characteristics, i.e. the soil-water interfacial coupling and large 

deformation of interface, should be well addressed in the simulation of the underwater 

landslides evolution process.  

 

However these two features raise great challenge to classical mesh based simulation methods 

such as FEM due to the large deformation nature. Many studies simplify this problem into the 

interaction between two fluids, i.e. Newtonian fluid and non-Newtonian fluid, and thus both 

mesh based FVM with VOF interfacial model and mesh-free methods such as SPH could be 

employed. Rzadkiewicz et al. [1] have used such an approach to simulate the landslide 

generated wave problem. However, the non-Newtonian model for granular flow is not 

designed for quasi-steady problems as the static stress state could not be represent truly due to 

its fluid nature, thus could not been used to predict not only the failure form of the slope but 

also localized particle-solid state during the slide evolution. As geo-engineers often prefer 
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elasto-plastic models for landslide simulation which could describe the quasi-steady state of 

soil very well, a coupled model including elasto-plastic-viscous soil model and Naiver-Stokes 

equation based fluid model with an interaction model between soil and water is the best 

choose. Thus a recently developed mesh free soil-water coupling model which could deal 

with both quasi-steady and dynamic behaviors of soil, water and the interface is employed in 

the framework of smoothed particle hydrodynamics method. 

Numerical Model for Soil 

The model is constituted of three parts: model for soil, model for water flow, and model for 

the interface between. Different with non-Newtonian models which are commonly used for 

granular flow simulation, this study employs the elasto-plastic-viscous model for soil 

deformation simulation as the latter could reproduce more phenomena in landslide evolution, 

i.e. from stable state to granular flow. The steady state is ruled by elastic model, while the 

quasi-steady state is ruled by plastic model with Dracker-Prager plastic yield criterion. The 

post-plastic behavior of soil (particle-fluid state) is modelled with the plastic-viscous model 

which is similar with non-Newtonian models. This model could also profit from extensive 

existing constitutive laws and plastic yield rules which all have large amount of experimental 

data to support. Pioneering work of Bui et al. [2] has introduced SPH method into the elasto-

plastic simulation of soil slopes. Following Bui’s work, this study uses similar approach for 

landslide simulation, the detailed equation is list below: 
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where 
n

ij ijF R 
 is the artificial stress term, helping to remove the tensile instability when soil 

is stretched; Fij = Wij / W(Δx, h), and the exponent n is set as 2.55 in this paper. 

= +ij i jR R R  
 where iR  and jR 

are the components of the artificial stress tensor for 

particles i and j, respectively. 
  is the total stress tensor, while the elastic–plastic soil 

constitutive model with the Drucker–Prager criterion can be expressed as: 
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where e is the deviatoric shear strain rate tensor, s is the deviatoric shear stress rate tensor, 
  is Kronecker’s delta.   is the rate of the plastic multiplier   dependent on the state of 

stress and load history:  
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where the 
  and 

  are the elastic strain rate tensor and the spin rate tensor, respectively. 

1 2( , )f I J is the yield function, 1I and 2J  are the first and second invariants of the stress tensor, 

respectively;  and ck are Drucker–Prager’s constants, which are related to the Mohr–

Coulomb material constants c (cohesion) and (internal friction), and  is a dilatancy factor 

related with the dilatancy angle.  
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Numerical Model for Water and Soil-Water Coupling 

The traditional weak compressible SPH model is used for modeling water flow. The artificial 

viscosity model calibrated with Viroulet et al.’s [3] experiment is employed to describe the 

viscous effect as we found that laminar+SPS model could not give better results for this 

complex problem with limited particle sizes. For example, if we choose the sub-particle scale 

viscosity model, we need at least 0.04mm spatial resolution in the first case to make the first 

grid space from boundaries located in logarithmic zone (y+~[10-100]). This resolution will 

make the calculation cost unbearable even if we can handle the numerical viscosity properly 

so as to not overestimate the viscosity in other zones. Secondly, although the viscosity of 

water is important in the underwater landslide evolvement problems, its influences 

concentrate in the shear stress between water and soil. While the normal stress might play a 

more important role in describing the soil deformation, especially when the soil is modeled as 

an elasto-plastic-viscous material which is “stiffer” than Bingham fluid. Thus, although 

introducing the artificial viscosity may not be elegant enough, but neither it is notably worse 

than other choices nor it alters the significance of interactions between soil and water, 

especially in the situation of this study. 

 

The interfacial coupling method is crucial for this problem. We use explicit time evolution 

scheme and the consistency of both the displacement of the interface and the pressure on the 

interface to setup the coupling model (Fig. 1). The displacement of interfacial particles is 

determined by the soil phase calculation while the stress on the interface is corrected to 

represent the effect of water pressure. Then the obtained displacement is used as the 

displacement of the interfacial moving wall for water phase calculation. As dynamic boundary 

condition is employed for wall boundaries, we simply use the interfacial soil particles to act as 

boundary particles for water phase to support the water calculation. Thus, we can directly 

obtained force pairs between water and boundary particles. These force pairs is exactly the 

same as them between water particles and the interfacial soil particles. So we can use them to 

correct the interfacial stress for the soil phase calculation. In this way, a direct coupling model 

is implemented in the framework of SPH method. Although this method is very simple, but 

due to its external interfacial coupling nature, it is robust and easy to extend to more complex 

situation such as considering three phases or rigid stones.  

 

 

 

 

 

 

 

 

 

 

Figure 1.  Illustration of the coupling model 

Model Validation and Application on Underwater Landslide 

Fritz et al.’s (2009) [4] laboratory experiment is used to validate this model and good 

agreements between simulated results and experimental data are obtained on slide shape 

evolutions, as shown in Fig. 2. We can see that although the simulated result is slightly 

different from experiment at the bottom of the slide: the simulated result has water cushion at 

the head of slide while it is not observed in the experiments, the simulated slide head position 
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and the thickness is similar to the experimental data which proves the validity of this model 

applying on the soil-water coupling simulation.  

 
Figure 2.  Comparison of simulated result and Fritz’s experiment 

The proposed model is use to study the subaqueous landslide evolution. We choose a typical 

experiment work on underwater landslide evolution by Rzadkiewicz et al. (1997) [1]. A 

submerged triangle slide made of fine-grain sands is placed on a 45o slope and a vertical 

board is placed at one end of the slide to keep it steady. When the board is suddenly removed, 

the landslide body collapses. The lower part of the landslide body deforms firstly, and the left 

part of the landslide body moves afterwards. In this process, the interaction force between 

grain landslide and water phase results large deformation of the head of the landslide body.  

 

The comparison of experimental snapshots and results from the proposed model is shown in 

Fig. 3a,b. The accumulated plastics strain (ADPS) which could be considered as indication of 

the shear induced plastics band are shown in simulated results. It is clear that the plastics 

zones are located at two interfaces: (1) interface between the slide and the bottom due to the 

shear of the wall, which also leads many inner plastics zones, (2) interface between the slide 

surface and the water. As the time goes, the inner plastics zone gets larger which is a conjunct 

result of the slide slowdown and the slide getting thinner. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Simulated underwater landslide evolution 

against experimental data and previous numerical studies 
 

Previous studies on the same problem, which are carried out by Rzadkiewicz et al. (1997) [1] 

and Mariotti et al. (1999) [6] respectively, are also presented (Figure 3c,d). It should be note 

that although these models could all reproduce the main features in the experiments, the 

parameters used in their studies are very different. How to choose suitable values of 

parameters is one of the difficulties when using non-Newtonian fluid models. Besides, most 

of non-Newtonian fluid based model could not represent the shear band in the landslide body, 

not even the initial failure prediction. 

(a) 

(b) (d) 

t=0.4s t=0.8s t=0.4s t=0.8s 

(c) 
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Discussion 

Due to the mesh free characteristics, this model do not need mesh and remesh, and is robust 

enough in very large deformation situation which is not easy to achieve in traditional FEM 

methods. And because the SPH method is a mesoscale model, parameters in this method is 

easy to obtained. Comparing with previous studies using non-Newtonian fluid models to 

describe soil deformation, all parameters in our model have their physical meaning in soil 

mechanics and can be obtained from conventional soil mechanics experiments. Besides, as we 

use the elasto-plastic-viscous constitutive law and Drucker-Prager yield model of soil, the 

deformation of the soil is better represented than it of non-Newton models. 

 

In Fig. 3b, a different shape of the landslide leading edge can also been seen between the 

experiment and simulation. That is because the velocity of water phase is large and the 

confining pressure of soil grain is weak at the leading edge of the landslide, which leads to 

rolling up of the grains in the experiments, while the proposed model cannot reproduce this 

mechanism properly, which results a smaller thickness. However, dense fluid as these rolling 

up grains are, they will have little influence on neither internal stress of soil nor the leading 

wave. 

Conclusions 

The post-failure evolution of underwater landslides is numerically studied based on a soil-

water interfacial coupled smoothed particle hydrodynamics method. The elasto-plastic-

viscous model with Dracker-Prager plastic yield rule instead of traditional non-Newtonian 

model is used for soil deformation simulation and good agreement between simulated results 

and experiment are obtained. Simulation results show that the landslide body experiences 

strong deformation during the impact process. 
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Under the strong earthquake conditions, this paper use the GPU acceleration technology and discrete
element method of continuous media mechanics to study the soil along the metro line and it's shock
absorption stability, in order to play a guiding role in metro long-term safety operation.

Discontinuous deformation theory

The block in the calculation of discontinuous deformation is formed by one or more finite element
units, continuous structure is used in the block, and discontinuous structure is used on the block
boundary.

Governing equation

The governing equation of the discontinuous deformation calculation theory is the motion equation,
the block body is subjected to internal force and external force. Internal force include the force
which is caused by the deformation of the block and the damping force, external force include the
out boundary force and the force between springs. In mechanics, because of the block body is
regarded as a continuous, isotropic linear elastic body, so its mechanical properties are described by
the basic differential equations of three-dimensional elastodynamics theory, That is:

Equilibrium equation: , , 0ij j i i n if u u     

Geometric equation: , ,
1 ( )
2ij i j j iu u  

Physical equation: ijkkijij G 2

Boundary condition: ii uu  (on the displacement boundary of u ), ijij Tn  (On the force
boundary of  )

In the formula,  ij, ui, fi and Ti respectively represent stress, displacement, volume force and area
force;  and  respectively represent the rock block region and its boundary, =u,  and G are
lame constant,  and  respectively represent mass density and damping coefficient, ij is Kronecker
delta symbol. Based on the elastic variational principle, the governing equation of the calculation is
the motion equation of block body:

          ( ) ( ) ( ) ( )t t t t   M u C u K u Q (1)
In the formula,  ( )u t ,  ( )u t ,  ( )u t respectively represent acceleration array, speed array,

displacement array of all the nodes of block body.  M ,  C ,  K ,  Q respectively represent mass
matrix, damping matrix, stiffness matrix and nodal load array.

The calculation of each time step for solving the governing equations is divided into two parts. The
first step is to loop each deformable block body, and complete the corresponding continuous
deformation calculation. The Second step is to calculate the force of contact surface. Firstly, from
the stiffness matrix and the nodal displacement obtain the elastic force, then, from damping matrix
and nodal velocity obtain damping force, finally, combining the direct integral method and external
force to solve motion equation. Specific equations are:
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Elastic force:
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Damping force:
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Combining the direct integral method and external force to solve motion equation:
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As shown in the formula (4), through the resultant force to obtain the acceleration, velocity and
displacement of block body nodes. out

if include the forces of boundary surface and the forces of
contact surface, boundary conditions provide boundary force.

Model boundary

Figure 1 show the normal and tangential spring of the interface. j
nF and j

sF are normal and
tangential forces of springs, j

nK and j
sK are normal and tangential stiffness of springs, j

nd
and j

sd are normal and tangential displacements of springs.

Figure. 1 The normal and tangential spring of the interface

Three dimensional calculation model and parameter selection

The study object is an excavation section of metro engineering, its numerical calculation model size
is 24m × 17m × 17m. Circular cross section is adopted to calculate, and its size is ￠ 3m×15m.
Elastic plastic model as the calculation model, and the calculation model is divided into four layers，
from top to bottom: gravel-boulder bed (5m), roof layer (3m), excavation layer (6m), bottom layer
(3m) [4,5]. A total of nine measuring points set on the top plate, the bottom plate and the two sides
of model, (The distance between the measuring points is 0.5m. From left to right, the number of the
measurement points on both sides of the model are respectively No.1 to No.6.,the bottom plate
measuring point is from top to bottom for 7 to 12), row spacing of U-shaped Steel is 2m. The
three-dimensional numerical computation model is shown in figure 2. The local geological data is
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the reference of parameters of the calculation model, and its values are shown in Table 1.

The boundary conditions of model are respectively: bottom surface is full constraint, flank is
horizontal constraint, and the top surface is free. Considering the surrounding building load
(200-meter- high building, overhead bridges and traffic load), the initial stress of the model
boundary as follow: the maximum horizontal stress is 20 MPa, the minimum horizontal stress is 18
MPa, the vertical stress is 17 MPa.

Fig.2 3-D calculation model

Table1 Computing model parameters

Material
name

Elastic
modulus

/E(GPa)

Poisson
ratio

/

Density

/  (kg/m3)

cohesive
strength

/C(kPa)

Internal
friction angle

/￠(°)

Yield
strength

/(MPa)

Gravel-b
oulder

bed
80 0.25 2300 50 30 42

Roof
layer

100 0.2 2440 55 40 60

Excavati
on layer

3.5 0.28 1700 29 25 20

Bottom
layer

90 0.22 2200 52 35 57

Concrete
energy

absorbin
g layer

68 0.35 400 — — 25

Duct
piece

210 0.31 7850 — — 350

seismic surface wave
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Study on the propagation law of the vibration stress wave in soil

Figure 3 shows the calculation results of vertical velocity at different time. From the results we can
know that the metro is strong affected by the vibration load. When t=0.5s, the influence of vibration
load on metro has enhanced. The vibration load has an upward pushing influence to the floor and
both sides of the metro, it also has an downward influence to the metro roof. When t=1s, the
vibration influence continue to increase, the influence of vibration load on the metro roof is
approximated to the shape of sheep horns, the whole metro have an upward tendency.

(a) 0.5s (b) 1.0s

Fig. 3 The results of vertical velocity at different time

Analysis of the concrete segment support action under the vibration load

Figure 4 shows the relationship between vertical stress and time, as well as the vertical stress curves
of the monitoring points. From the data analysis we can know that the vertical stress of monitoring
points 7, 8 and 9 are basically negative. The vertical stress of monitoring point 8 fluctuates between
positive and negative, and the positive value is about 100MPa. The curve of monitoring point 7 has
the largest fluctuation, it vertical stress is negative which the average value is about 200MPa. The
vertical stress of monitoring point 10, 11 and 12 also greatly fluctuate between positive and negative.
The vertical stress of measuring points indicated that the U steel protection has improved the passive
support strength, but under the condition of vibration load, it is easy to produce stress concentration
[6-8]. Under the effect of vibration load, the rigid support as an energy storage body will produce
serious stress concentration. Once the damage, it will have a great influence on the deformation of
the metro.
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Fig. 4 Vertical stress curves with time
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Figure 5 and Figure 6 show the calculation results of vertical velocity and vertical displacement at
different times. The results of vertical speed show that the rigid support metro is obviously
influenced by vibration load. when t=0.5s, the action of vibration load on metro has enhanced. It has
downward action to the metro roof plate, and upward action to the metro bottom plate. Vibration
load on the metro both sides has a local concentrate phenomenon, and its distribution is similar to
the "bat wing". When t=1s, the effect of vibration load on the metro top roof continue to increase,
the distribution of vibration load is similar to the "helmet". Vibration load on both sides of the metro
has enhanced, the "bat wing" area is obviously increased. The result of vertical displacement shows
that the rock and soil around the metro obviously affected by vibration load, the metro top plate has
downward trend, and the metro two sides are squeezed toward inside. The result of metro level
profile shows that there are lots of severe displacement deformation area on the metro top and
bottom plate, which have a significance influence to the metro deformation failure.

(a) 0.5s (b) 1.0s

Fig.5 vertical velocity results at different times (perpendicular to the metro profile)

(a) 0.1s (b) 0.5s

Fig. 6 vertical displacement results at different time (parallel to the metro profile)

Stability analysis of underground concrete absorption energy layer

Figure 7 shows the relationship between vertical stress and time, as well as the vertical stress curves
of the monitoring points. From the data analysis we can know that the vertical stress of monitoring
points 7, 8 and 9 are basically negative. The vertical stress of monitoring point 8,9 fluctuates

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

264



between positive and negative, and the positive value is about 100MPa. The monitoring point 7 data
is negative, its curve fluctuation is the largest and the average value is more than 200MPa.
Compared with the monitoring point 7, the value of the monitoring points 8 and 9 greatly reduced,
which shows that the concrete energy absorbing layer can effectively reduce the strength of the
seismic source wave. The monitoring point 10 data fluctuation is small, monitoring points 11 and 12
data fluctuation is greater, which shows that the seismic wave near the metro bottom plate has
weakened [9-11]. Compared with the u-steel support metro, the concrete energy absorbing layer has
a larger deformation space, which shows that the deformation of the R-F-R protection metro has
obviously reduced, and the metro stability also enhanced[12,13].
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Fig.7 The relationship between vertical stress and time

Figure 8 and figure 9 show the calculation results of vertical speed and vertical displacement at
different times. The result of vertical speed shows that the effect of vibration load on the metro has
weakened after the concrete energy absorbing layer set up. when t=0.5s, the effect of vibration load
on metro has enhanced, the effect of vibration load on the roof is downward, on the bottom plate is
upward. When t=0.5s, the vibration load on both sides of the subway is similar to the "bat wing".
The distribution area is larger, but the concentrate phenomenon is not obvious. when t=1s, the effect
of vibration load continues to increase. The vibration load has wave action to the metro, but the
concentrate phenomenon is not obvious, the distribution of vibration load on the metro roof plate is
similar to the "helmet", on the metro both sides is similar to the "bat wing". The vertical
displacement results shows that the rock and soil around the metro obviously affected by vibration
load, the metro top plate has downward trend, and the metro two sides are squeezed toward inside.
However, this change has little influence on the metro deformation, this is due to the coordinated
deformation of concrete absorbing layer can reduce the surrounding rock deformation. The metro
vertical stress and horizontal displacement have obviously reduced, this is due to the concrete energy
absorbing layer good coordination deformation performance enable metro can reduce the vibration
and vibration intensity, and maintain itself stability [14,15]. Compared with the data of rigid support
metro, the vertical force curve volatility decreases and the vertical force of measuring point 8 and 9
also reduced, but the horizontal displacement almost the same. In addition, because the concrete
energy absorbing layer has large deformation, so the overall deformation of metro have significantly
reduced and there is no obvious deformation concentrated area in the surrounding rock vicinity. This
is indicated that the rigid flexible coupling support can fully coordinate deformation, which can
reduce the vibration load, improve the impact resistance of deep underground projects, but also
conducive to maintaining the stability of the metro.
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(a) 0.5s (b) 1.0s

Fig.8 Vertical speed results of vertical roadway section

(a) 0.1s (b) 0.5s

Fig.9 Vertical displacement results of parallel roadway section

Conclusions

Based on the continuum mechanics for discrete element calculation method, the shock resistance
stability under the action of seismic wave of rigid support and rigid-flexible coupling support deep
buried chamber was analyzed. The strengthening and damping action of different protective bodies
on the chamber are studied. And the main conclusions are obtained.

Under the condition of vibration load, rigid support as a strong energy storage body can improve the
strength of the passive support, but the damage of shock instability becomes easier, and these will
lead to the metro extrusion deformation even the overall closure failure;

Concrete energy absorbing layer can effectively the attenuated seismic wave, in the propagation
process or near the metro bottom. Under the action of coordinated deformation, the surrounding rock
soil deformation tends to be mild and reduced, the stability of the metro enhanced.

Under the action of strong vibration load, the safety of deep buried chamber can be greatly improved
by increasing the strength of rigid support and setting up the flexible deformation buffer layer.
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Abstract
Under the action of strong vibration load, the safety threat of deep buried chamber greatly increased,
this bring serious challenges to the excavation of deep underground engineering. Therefore, it is
urgent to carry out the research on the reinforcement and vibration reduction of deep buried chamber.
Based on the continuum mechanics of discrete element method, the vibration reduction and
reinforcement of the rigid support and rigid flexible coupling support of deep buried chamber were
studied. The calculation results show that the traffic vibration stress wave have a wave effect on the
whole metro area, when it act on the metro top, it's distribution will approximate to "horns"; Under
the vibration load conditions, the concrete segment as a strong energy storage body can improve the
passive support strength, but can also lead to the cracks which is caused by the metro extrusion
deformation. After set the concrete energy absorbing layer, the seismic wave which is in the vicinity
of the metro bottom and the propagation process have been effectively attenuation, the deformation
of the soil around metro also reduced. In addition, increasing the strength of concrete segment can
greatly improve metro operation safety.

Key words: Strong vibration transportation load, Soil along the metro lines, Concrete
energy-absorbing layer, Shock absorption, Numerical studies

Introduction

Along with the increasing of ground traffic shock load, the influence of the strong vibration traffic
load on the soil along the metro line became a technical problem to be solved badly [1-3]. A lot of
practice proves that under the complicated geological conditions, the large surrounding rock
deformation combined with the influence of ground traffic load let the metro control become more
difficulty and even let the metro surrounding rock deformation or broken. Therefore, the further
analysis of the influence of strong vibration traffic load on the soil along the metro lines, and the
shock absorption stability of metro will provide a new method for the metro operation safety, also
have important practical significance.

Domestic and foreign researchers have carried out a lot of research on the ground deformation,
which is caused by Underground engineering excavation and traffic load. Qian Qihu have studied
the challenges faced by underground projects construction safety and it's corresponding measures.
Chen li have investigated the mechanism of deformation body of fill subgrade and the treatment
engineering measures. Dahl F et al. studied the classifications of properties influencing the drill
ability of rocks based on the test method. However, previous studies generally consider the
structural stability of layer based on single factor. In fact, the deformation and damaging process is
closely related to the coupling effects of high building, overhead bridges and traffic load, which are
still in the infant stage.
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Under the strong earthquake conditions, this paper use the GPU acceleration technology and discrete
element method of continuous media mechanics to study the soil along the metro line and it's shock
absorption stability, in order to play a guiding role in metro long-term safety operation.

Discontinuous deformation theory

The block in the calculation of discontinuous deformation is formed by one or more finite element
units, continuous structure is used in the block, and discontinuous structure is used on the block
boundary.

Governing equation

The governing equation of the discontinuous deformation calculation theory is the motion equation,
the block body is subjected to internal force and external force. Internal force include the force
which is caused by the deformation of the block and the damping force, external force include the
out boundary force and the force between springs. In mechanics, because of the block body is
regarded as a continuous, isotropic linear elastic body, so its mechanical properties are described by
the basic differential equations of three-dimensional elastodynamics theory, That is:

Equilibrium equation: , , 0ij j i i n if u u     

Geometric equation: , ,
1 ( )
2ij i j j iu u  

Physical equation: ijkkijij G 2

Boundary condition: ii uu  (on the displacement boundary of u ), ijij Tn  (On the force
boundary of  )

In the formula,  ij, ui, fi and Ti respectively represent stress, displacement, volume force and area
force;  and  respectively represent the rock block region and its boundary, =u,  and G are
lame constant,  and  respectively represent mass density and damping coefficient, ij is Kronecker
delta symbol. Based on the elastic variational principle, the governing equation of the calculation is
the motion equation of block body:

          ( ) ( ) ( ) ( )t t t t   M u C u K u Q (1)
In the formula,  ( )u t ,  ( )u t ,  ( )u t respectively represent acceleration array, speed array,

displacement array of all the nodes of block body.  M ,  C ,  K ,  Q respectively represent mass
matrix, damping matrix, stiffness matrix and nodal load array.

The calculation of each time step for solving the governing equations is divided into two parts. The
first step is to loop each deformable block body, and complete the corresponding continuous
deformation calculation. The Second step is to calculate the force of contact surface. Firstly, from
the stiffness matrix and the nodal displacement obtain the elastic force, then, from damping matrix
and nodal velocity obtain damping force, finally, combining the direct integral method and external
force to solve motion equation. Specific equations are:

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

269



Elastic force:

























































nnn

n

n

f

f
f

u

u
u

KKK

KKK
KKK

......
...

............
...
...

2

1

2

1

,n2,n1,n

,22,21,2

,12111 ，，

(2)

Damping force:
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Combining the direct integral method and external force to solve motion equation:
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As shown in the formula (4), through the resultant force to obtain the acceleration, velocity and
displacement of block body nodes. out

if include the forces of boundary surface and the forces of
contact surface, boundary conditions provide boundary force.

Model boundary

Figure 1 show the normal and tangential spring of the interface. j
nF and j

sF are normal and
tangential forces of springs, j

nK and j
sK are normal and tangential stiffness of springs, j

nd
and j

sd are normal and tangential displacements of springs.

Figure. 1 The normal and tangential spring of the interface

Three dimensional calculation model and parameter selection

The study object is an excavation section of metro engineering, its numerical calculation model size
is 24m × 17m × 17m. Circular cross section is adopted to calculate, and its size is ￠ 3m×15m.
Elastic plastic model as the calculation model, and the calculation model is divided into four layers，
from top to bottom: gravel-boulder bed (5m), roof layer (3m), excavation layer (6m), bottom layer
(3m) [4,5]. A total of nine measuring points set on the top plate, the bottom plate and the two sides
of model, (The distance between the measuring points is 0.5m. From left to right, the number of the
measurement points on both sides of the model are respectively No.1 to No.6.,the bottom plate
measuring point is from top to bottom for 7 to 12), row spacing of U-shaped Steel is 2m. The
three-dimensional numerical computation model is shown in figure 2. The local geological data is
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the reference of parameters of the calculation model, and its values are shown in Table 1.

The boundary conditions of model are respectively: bottom surface is full constraint, flank is
horizontal constraint, and the top surface is free. Considering the surrounding building load
(200-meter- high building, overhead bridges and traffic load), the initial stress of the model
boundary as follow: the maximum horizontal stress is 20 MPa, the minimum horizontal stress is 18
MPa, the vertical stress is 17 MPa.

Fig.2 3-D calculation model

Table1 Computing model parameters

Material
name

Elastic
modulus

/E(GPa)

Poisson
ratio

/

Density

/  (kg/m3)

cohesive
strength

/C(kPa)

Internal
friction angle

/￠(°)

Yield
strength

/(MPa)

Gravel-b
oulder

bed
80 0.25 2300 50 30 42

Roof
layer

100 0.2 2440 55 40 60

Excavati
on layer

3.5 0.28 1700 29 25 20

Bottom
layer

90 0.22 2200 52 35 57

Concrete
energy

absorbin
g layer

68 0.35 400 — — 25

Duct
piece

210 0.31 7850 — — 350

seismic surface wave
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Study on the propagation law of the vibration stress wave in soil

Figure 3 shows the calculation results of vertical velocity at different time. From the results we can
know that the metro is strong affected by the vibration load. When t=0.5s, the influence of vibration
load on metro has enhanced. The vibration load has an upward pushing influence to the floor and
both sides of the metro, it also has an downward influence to the metro roof. When t=1s, the
vibration influence continue to increase, the influence of vibration load on the metro roof is
approximated to the shape of sheep horns, the whole metro have an upward tendency.

(a) 0.5s (b) 1.0s

Fig. 3 The results of vertical velocity at different time

Analysis of the concrete segment support action under the vibration load

Figure 4 shows the relationship between vertical stress and time, as well as the vertical stress curves
of the monitoring points. From the data analysis we can know that the vertical stress of monitoring
points 7, 8 and 9 are basically negative. The vertical stress of monitoring point 8 fluctuates between
positive and negative, and the positive value is about 100MPa. The curve of monitoring point 7 has
the largest fluctuation, it vertical stress is negative which the average value is about 200MPa. The
vertical stress of monitoring point 10, 11 and 12 also greatly fluctuate between positive and negative.
The vertical stress of measuring points indicated that the U steel protection has improved the passive
support strength, but under the condition of vibration load, it is easy to produce stress concentration
[6-8]. Under the effect of vibration load, the rigid support as an energy storage body will produce
serious stress concentration. Once the damage, it will have a great influence on the deformation of
the metro.
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Fig. 4 Vertical stress curves with time
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Figure 5 and Figure 6 show the calculation results of vertical velocity and vertical displacement at
different times. The results of vertical speed show that the rigid support metro is obviously
influenced by vibration load. when t=0.5s, the action of vibration load on metro has enhanced. It has
downward action to the metro roof plate, and upward action to the metro bottom plate. Vibration
load on the metro both sides has a local concentrate phenomenon, and its distribution is similar to
the "bat wing". When t=1s, the effect of vibration load on the metro top roof continue to increase,
the distribution of vibration load is similar to the "helmet". Vibration load on both sides of the metro
has enhanced, the "bat wing" area is obviously increased. The result of vertical displacement shows
that the rock and soil around the metro obviously affected by vibration load, the metro top plate has
downward trend, and the metro two sides are squeezed toward inside. The result of metro level
profile shows that there are lots of severe displacement deformation area on the metro top and
bottom plate, which have a significance influence to the metro deformation failure.

(a) 0.5s (b) 1.0s

Fig.5 vertical velocity results at different times (perpendicular to the metro profile)

(a) 0.1s (b) 0.5s

Fig. 6 vertical displacement results at different time (parallel to the metro profile)

Stability analysis of underground concrete absorption energy layer

Figure 7 shows the relationship between vertical stress and time, as well as the vertical stress curves
of the monitoring points. From the data analysis we can know that the vertical stress of monitoring
points 7, 8 and 9 are basically negative. The vertical stress of monitoring point 8,9 fluctuates
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between positive and negative, and the positive value is about 100MPa. The monitoring point 7 data
is negative, its curve fluctuation is the largest and the average value is more than 200MPa.
Compared with the monitoring point 7, the value of the monitoring points 8 and 9 greatly reduced,
which shows that the concrete energy absorbing layer can effectively reduce the strength of the
seismic source wave. The monitoring point 10 data fluctuation is small, monitoring points 11 and 12
data fluctuation is greater, which shows that the seismic wave near the metro bottom plate has
weakened [9-11]. Compared with the u-steel support metro, the concrete energy absorbing layer has
a larger deformation space, which shows that the deformation of the R-F-R protection metro has
obviously reduced, and the metro stability also enhanced[12,13].

0.0 0.2 0.4 0.6 0.8 1.0
-4.50E+008
-4.00E+008
-3.50E+008
-3.00E+008
-2.50E+008
-2.00E+008
-1.50E+008
-1.00E+008
-5.00E+007
0.00E+000
5.00E+007
1.00E+008
1.50E+008
2.00E+008
2.50E+008

 

 

V
er

tic
al

 st
re

ss
 /P

a

Time /s

 7#
 8#
 9#
 10#
 11#
 12#

Fig.7 The relationship between vertical stress and time

Figure 8 and figure 9 show the calculation results of vertical speed and vertical displacement at
different times. The result of vertical speed shows that the effect of vibration load on the metro has
weakened after the concrete energy absorbing layer set up. when t=0.5s, the effect of vibration load
on metro has enhanced, the effect of vibration load on the roof is downward, on the bottom plate is
upward. When t=0.5s, the vibration load on both sides of the subway is similar to the "bat wing".
The distribution area is larger, but the concentrate phenomenon is not obvious. when t=1s, the effect
of vibration load continues to increase. The vibration load has wave action to the metro, but the
concentrate phenomenon is not obvious, the distribution of vibration load on the metro roof plate is
similar to the "helmet", on the metro both sides is similar to the "bat wing". The vertical
displacement results shows that the rock and soil around the metro obviously affected by vibration
load, the metro top plate has downward trend, and the metro two sides are squeezed toward inside.
However, this change has little influence on the metro deformation, this is due to the coordinated
deformation of concrete absorbing layer can reduce the surrounding rock deformation. The metro
vertical stress and horizontal displacement have obviously reduced, this is due to the concrete energy
absorbing layer good coordination deformation performance enable metro can reduce the vibration
and vibration intensity, and maintain itself stability [14,15]. Compared with the data of rigid support
metro, the vertical force curve volatility decreases and the vertical force of measuring point 8 and 9
also reduced, but the horizontal displacement almost the same. In addition, because the concrete
energy absorbing layer has large deformation, so the overall deformation of metro have significantly
reduced and there is no obvious deformation concentrated area in the surrounding rock vicinity. This
is indicated that the rigid flexible coupling support can fully coordinate deformation, which can
reduce the vibration load, improve the impact resistance of deep underground projects, but also
conducive to maintaining the stability of the metro.
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(a) 0.5s (b) 1.0s

Fig.8 Vertical speed results of vertical roadway section

(a) 0.1s (b) 0.5s

Fig.9 Vertical displacement results of parallel roadway section

Conclusions

Based on the continuum mechanics for discrete element calculation method, the shock resistance
stability under the action of seismic wave of rigid support and rigid-flexible coupling support deep
buried chamber was analyzed. The strengthening and damping action of different protective bodies
on the chamber are studied. And the main conclusions are obtained.

Under the condition of vibration load, rigid support as a strong energy storage body can improve the
strength of the passive support, but the damage of shock instability becomes easier, and these will
lead to the metro extrusion deformation even the overall closure failure;

Concrete energy absorbing layer can effectively the attenuated seismic wave, in the propagation
process or near the metro bottom. Under the action of coordinated deformation, the surrounding rock
soil deformation tends to be mild and reduced, the stability of the metro enhanced.

Under the action of strong vibration load, the safety of deep buried chamber can be greatly improved
by increasing the strength of rigid support and setting up the flexible deformation buffer layer.
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Abstract

Bridge structure damage identification is an important step in bridge structure health monitoring sys-
tem, but all kinds of damage identification method at present are all complicated and have poor appli-
cability. Therefore, this paper will propose a simple and applicable method of damage identification
based on displacement. This has important significance to realize the real-time and exact warning and
forecasting the bridge structural health situation. The damage identification indexes are the change
percentages of the lower chord panel points maximum deflections and the beam end maximum dis-
placement. The identification model are established respectively using C-Support Vector Classifica-
tion (C-SVC) and Probabilistic Neural Network (PNN) to identify the damage location, and the two
models results are analyzed. The numerical example results show that: (1) The damage identification
method based on the bridge deflection is feasible. (2) PNN model and SVC model all have good
anti-noise capacity and generalization(3) SVC model is more suitable to be used in site.

Index Terms: displacement, damage location identification, SVM, PNN, railway double-track simply
supported steel truss bridge

Introduction

Large-scale civil engineering structures (such as: long-span bridge, high-rise buildings, ocean plat-
form, large span space structure and dam) are very important to the social economy development.
But in their working life, because of the environment factors, human factors and natural hazard,
successive damages accumulate in the large-scale civil engineering structures, these damages can
cause potential safety hazard, and then impact the structure normal use. For real-time mastering the
structures health condition, there are many large-scale structures established health monitoring sys-
tem, such as: Tsing Ma Bridge, Sutong Bridge, Wuhu Yangtze River Bridge, etc.. Structural damage
identification is the critical step in the structure health condition assessment, and is one of the re-
search hotspot in academic world and engineering world. The bridge structure damage identification
methods include two mainly methods: model-based damage identification method and no-model-
based damage identification method[1]. Model-based damage identification method include: pattern
matching method[2], damage index method[3], adjustment model method[4]. No-model-based dam-
age identification method include: frequency domain identification method[5], time domain identifi-
cation method[6], time-frequency analysis method[7]. These methods are initially successfully used
in the damage identification of mechanical, and also have a large number of applications in the field
of civil engineering in recent ten years[1]. This paper proposes a novel damage location identification
method[8-9], which is combined the model-based damage identification method and no-model-based
damage identification method. A number example for a 64 m railway double-track simply supported
steel truss bridge is provided to verify the feasibility of the method. And the intelligence algorithms
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are respectively using C-Support Vector Classification (C-SVC) and Probabilistic Neural Network
(PNN) to establish the damage location identification model.

Displacement-based Damage Identification Method

A. Damage identification index

There are two possibilities during the structure damaged. One is the structure mass changed, the
other is the structure stiffness decreased[3]. In view of Mechanics of Materials[10] and General code
for design on railway bridges and culverts [11], the structure displacement can reflect the structure
stiffness. And, in Finite Element Method, the structure node displacements are calculated by equation
(1).

{∆} = [K]−1{P} (1)

Where,

{∆}—structure node displacement vector,

[K]—structure stiffness coefficient matrix,

{P}—node load vector.

In equation (1), if the node load vector{P} is constant, the structure node displacement vector{∆} will
be as the change of the structure stiffness coefficient matrix [K]. That is to say, the nodes displacement
can reflect the structure stiffness.

When a train is travelling on a railway bridge, the train and the bridge compose a complicated train-
bridge time-varying system. The bridge structure nodes displacement will change along with the
change of the trains location. In view of the bridge structure nodes being very many, this paper con-
structs the damage identification index based on the bridge certain nodes maximum displacement, that
is, the damage identification index is the change percentages of the bridge certain nodes maximum
displacement,

∆xi =
ximax − xi

xi
× 100% (2)

Where,

xi—in certain load case,the maximum displacement of node i, when the structure stiffness isnt dam-
aged,

ximax—in the same load case, the maximum displacement of node i, when the structure stiffness is
damaged,

∆xi—in the same load case, the change percentages of the maximum displacement of node i.

B. Intelligent Algorithm

(A) Artificial Neural Networks

Artificial Neural Networks (ANNs) is a kind of mathematic model by simulating biology neural net-
works to process information. Artificial neuron is the ANNs information processing unit and the
ANNs design fundamental. A large number of artificial neurons are organized by a certain topolog-
ical structure to constitute a colony parallel mode processing computation structure, which is called
ANNs. According to the topological structure, ANNs is divided into the forward neural network and
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feedback neural network. Probabilistic Neural Networks (PNN), which is used in this paper, is a
forward neural network. PNN is usually applied to research pattern classification problems.

(B) Support Vector Machine

Support Vector Machine (SVM) is a powerful method to solve the tradition problems, such as Curse
of dimensionality and Over learning etc. This paper use Matlab and LIBSVM, which is developed by
Taiwan University PhD Lin Chih-Jen and his team members, to train the damage location identifica-
tion model. The C- Support Vector Classification Machine (C-SVC)[12] algorithm flow chart, which
is used in this paper, is shown in Fig.1.

In this paper, the kernel function is Gauss radial direction kernel function,

K(x, x′) = exp(−‖x − x′‖2/σ2) (3)

C. Damage Location Identification

Damage identification includes 2 steps: damage location identification and damage degree identifica-
tion. For the paper length limited, this paper only studies the damage location identification.

Fig. 2 shows the damage location identification flow chart.

Figure 1. C-SVC flow chart

In this flow chart, there are two ways to add noise.

One way is that a certain data vector added noise according to Equation (4). This way can expand the
data set. If the original data have n sets data, and j ∈ [1,m] in Equation (4), the expanded data will
have n ×m data sets. The purpose is to increase the damage identification accuracy, anti-noise ability
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Figure 2. damage location identification flow chart

and generalization ability.
{x} jtest = {x}calculate × (1 + εR j) (4)

Where,

{x} jtest—the j th simulate test data vector after a certain calculation data vector is expanded,

{x}calculate—a certain calculation data vector,

R j—the j th datum of the normal distribution random data, which the mean value is 0 and the mean
square deviation is 1,

ε—noise level.

The other way is that a certain element in a certain data vector is added noise according to Equation
(5) [13].

{x}ktest = {x}kcalculate × (1 + εRk) (5)

Where,

xktest—the k th independent variables simulate test data,

xkcalculate—the k th independent variables calculation data,

Rk— the k th datum of the normal distribution random data, which the mean value is 0 and the mean
square deviation is 1,

ε—the noise level.
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64 m Simply Supported Steel Truss Bridge Numerical Example

A. Finite element model

This bridge is a 64 m simply supported steel truss bridge. The finite element model is established
using space bar element, there are 32 nodes and 116 bar elements (Fig. 3). The x direction, y direction
and z direction linear displacement are restrained on the node 1 and the node 10 to simulate fixed
hinged support, and the y direction and z direction linear displacement are restrained on the node 9
and the node 18 to simulate activity hinged support. The coordinate system is shown in Fig.3.

The main truss node numbers, the upper chord unit number and the lower chord unit number are
shown in Fig.4.

Figure 3. 64 m simply supported steeltruss bridge finite element model

Figure 4. The main truss node numbers, the upper chord unit number and the lower chord unit
numbert

B. Data preparation

The train load is considered as moving dead load. The load cases include one locomotive up-run on the
bridge, one locomotive down-run on the bridge, one locomotive simultaneously from the bridge two
ends run on the bridge, a train with one locomotive up-run on the bridge, a train with one locomotive
down-run on the bridge and two trains with one locomotive simultaneously from the bridge two ends
run on the bridge. Where, the locomotive is Dongfeng 4 locomotive, the axle load is 23 t, the vehicle
is C62the axle load is 20.15 tthe wheel bases are respectively shown in Fig.5 and Fig.6[14].

Under the train loads, the upper chord and the lower chord internal forces are larger, easily damaged.
Consequently, in this paper, The extensional rigidity EA of the element 1©, 3©, 5© ,, 7© , 9© ,11© ,13© ,15© ,17©
,19© ,21© ,23© ,25© and 27© respectively discount 5%, 10%, 15%, 20%, 30%, 50% to simulate damage. When
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Figure 5. Dongfeng 4 locomotive axle load and wheel base (unit: m)

Figure 6. C62 vehicle axle load and wheel base (unit: m)

the 6 load cases are respectively on the bridge, the lower chord panel points maximum deflections and
the beam end maximum displacement are calculated using the finite element model, and 504 sets data
are obtained. Then according to Equation (2), the damage location identification indexes are obtained.

C. Data expand

Firstly, the 504 sets data are added noise according to Equation (4), where ε = 1%, j =1,2,...,5. Then,
2520 sets data are obtained.

Secondly, the 2520 sets data are added noise according to Equation (5), where ε = 1%, k =1,2,...,16.

D. Normalization processing

For increasing the classification and regression accuracy rate, and reducing the error, the indexes and
the damage degrees are normalization processed. The normalization algorithm is

f : xl → yl =
xl − xmin

xmax − xmin
(6)

Where,

x and y ∈ Rn, xmin = min(x), xmax = max(x).

The normalization results is that the original data are normalized in [0, 1], that is yl ∈ [0, 1], l =

1, 2, ..., n[15].

The 2520 sets data are normalized according to Equation (6). Then the training data are obtained.

E. Testing data

In order to test the model generalization and anti-noise capacity, the testing data is obtained by the
following method. Firstly, the finite element model calculation data is selected, when the element 1©
, 3© , 5© , 7© , 9©,11© ,13© ,15© , 17© ,19© , 21© ,23© ,25© ,27© are respectively damage 25% and 40% (these damage
degree arent included in the training set). The load cases are a train with one locomotive up-run on
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the bridge, a train with one locomotive down-run on the bridge and two trains with one locomotive
simultaneously from the bridge two ends run on the bridge. Then 84 sets data are obtained. Secondly,
the damage identification indexes are obtained according to Equation (2). Thirdly, the 84 sets data are
added noise according to Equation (5), where =0.1%, 0.5%, 1%, 5%, 10%, 20%, 30%, 50%, 80%,
and k =1,2,..., 16. Last, the 84 sets data are normalized according to Equation (6). Then the testing
data are obtained.

F. Damage Location Identification

(A) PNN identification model

Damage location identification model is established by MATLAB neural network toolbox function,
which is newpnn(P,T,SPREAD). Where P is the input vector, T is the goal vector, SPREAD is expan-
sion rate of the radial basis function, in this paper SPREAD=0.2.

Firstly, 2520 sets training data are used to establish and train the PNN model. Secondly, 1500 sets
data are randomly selected to check the PNN model result. Lastly, the 84 sets testing data are inputted
in the PNN model to check the models anti-noise ability and the generalization ability.

(B) SVC identification model

The 2520 sets training data are randomly divided into two groups, one is to train the SVC identification
model, the other is to test the model. Using k–fold cross-validation method (Deng N.Y. et al., 2009),
the penalty parameter C and the kernel function parameter σ are selected,C = 32 and σ = 2. Then, the
570 sets original data is considered as the training data to establish the damage location identification
model. Then, based the 2520 sets training data, the damage location identification model is established
using LIBSVM software package. Lastly, the 84 sets testing data are inputted in the SVC model to
check the models anti-noise ability and the generalization ability.

(C) Damage location identification result

Table 1 shows the results of the PNN model and the SVC model, when input the testing data added
various noise levels.

Fig.7 and Fig.8 respectively show the damage location identification result of the PNN model and the
SVC model, when the noise level is 30%.

Table 1. The comparison results of the PNN model and the SVC model

Noise level
The number of mis- identification Accuracy rate (%) Elapsed time (s)
P NN SVC PNN SVC PNN SVC

1% 0 0 100 100 3.85 0.35
5% 0 0 100 100 3.835 0.37
10% 0 0 100 100 3.85 0.37
15% 0 0 100 100 3.90 0.37
20% 0 0 100 100 3.91 0.36
30% 7 0 91.6667 97.619 3.72 0.36
50% 9 0 89.2857 89.2857 3.76 0.37
80% 26 0 69.0476 70.2381 3.95 0.37

From Table 1, when the noise level is less than 20%, the PNN model and the SVC model identification
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Figure 7. The damage location identification result of the PNN model, when the noise level is
30%

Figure 8. The damage location identification result of the SVC model, when the noise level is
30%

accuracy rates are all 100%. When the noise level is 30%, the PNN model has 7 mis-locations(Fig.7),
the identification accuracy rate is 91.6667%. And, When the noise level is 30%, the SVC model has
2 mis-locations (Fig.8), the identification accuracy rate is 97.619%. And when the noise level is 50%,
the identification accuracy rates decrease to 71.4%. When the noise level is 50% and 80%, these
two model identification accuracy are almost equal. Meanwhile, for all noise level, the PNN model
identification elapsed times are all in 3.7s ∼ 4.0s, and the SVC model identification elapsed times are
all in0.35s ∼ 0.38s, only is 10% of the PNN model. This indicates that the SVC method more can
satisfy the requirement of real time, fast and accurate identification damage location, and has strong
anti-noise ability and good generalization ability.

Conclusions

(1) It is feasible that the 64 m steel truss bridge lower chord panel nodes maximum deflections and
the beam end maximum horizontal displacement act as the damage identification indexes.

(2) The PNN method and the SVC method all have strong anti-noise ability and good generalization
ability.

(3) In the training and identification process, C-SVC algorithm is faster than PNN algorithm, more

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

284



suitable applied in damage location identification, and more can satisfy the job site requirements
which require it can real-time fast and accurately identify the damage.
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Abstract 

In the mining process of underground coal, the bed separation of overlying strata is inevitable. The 
developing process of the bed separation has an important influence on mining subsidence. It is 
very significant to study the developing regular patterns of the bed separation for understanding and 
perfecting the mining subsidence theory further. In this paper, Realistic Failure Process Analysis 
(RFPA) is used to research the distributing patterns of mining induced bed separation of overlying 
strata. The strata are sedimentary coal strata. And the similar material simulation experiments are 
used to test the results. The study shows that the growing height of bed separation is increasing as 
the advance of working face. At the beginning of coal mining, the height of bed separation increases 
slowly. As the distance of advance increases, the growing rate of separation height becomes faster 
gradually. After the working face advances a certain length, the growing rate of separation height 
decreases and closes to zero. After arrive a limit height, the growing height of bed separation will 
not increase after arriving a limit height. At last, the bed separation will distribute in a range of 
trapezoid with a 60 degree bottom angle above the goaf.  

Keywords: Rock Fracture, Computation Method,Coal Mining,Bed Separation,Developing Regular 

Pattern. 

Introduction 

As deeply researched the theory of mining subsidence, people have realized that there is a bed 
separation phenomenon in the mining induced damage process of overlying strata. Many scholars 
have discussed the existence, forming cause, growing process, distributing patterns of the mining 
induced bed separation in the overlying strata with different method. They have also researched all 
kinds of factors influencing the development of bed separation. Germany scholar, H.Kratzsch, 
introduced the bed separation phenomenon in his book of “Mining Damage and Protection”

[1]
. In 

1984, based on the pressure arch theory, American scholar S.S Peng explained the unload state of 
direct roof of coal seam and the bed separation phenomenon

[2]
.
 
In 1986, based on many similar 

material simulation experiments, Chinese scholar, Zhao Deshen, researched the distribution regular 
patterns of bed separation and put forward the ‘Arch Beam Balance Theory’ of mining induced bed 
separation in the overlying strata. In this theory, the mechanics structure of bed separation in the 
overlying strata is defined in macroscopic view

[3]
. In 1990, Russian scholar, В.Л.Самарин 

[4]
, 

invested the cause of bed separating, place of bed separation and related factors of influencing bed 
separating in the fracture zone, etc. In 2011, Chinese scholar, Dai Huayang, researched the 
distribution discipline of rock fractures after coal mining with numerical simulation and probability 
integral method. And the distribution of bed separation in the overlying strata in the process of 
mining is determined

 [5]
. 

In summary, for the question of mining induced bed separation, scholars have got a lot of research 
results. But, as a nonlinear damage phenomenon, the growing of bed separation in the overlying 
strata has a certain space complexity 

[6]
. From begin to finish, the bed separation is changing with 

time. Because the rock layer properties and places are different, the change rates are different in the 
whole growing process of bed separating. To the questions of different growing rate and spatial 
variations in the mining process, more work will be done in the future. 
So, in this paper, Realistic Failure Process Analysis (RFPA) is used to discover the mechanics 
mechanism of mining induced bed separating and different growing rate in the overlying strata 
which are sedimentary coal strata and to research the time and spatial distribution patterns of bed 
separations. Furthermore, the relationship between the distribution patterns and mining subsidence 
is studied. The research results about mining induced bed separation will be applied perfectly to 
control the mining subsidence. 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

286



2 

 

 Introduction of Realistic Failure Process Analysis (RFPA) 

In 1995, based on the algorithm idea of basic theory of finite element and new material damage 
process, professor Tang Chun’an put forward the new numerical simulation method ‘RFPA’ 
(Realistic Failure Process Analysis). He fully considers the nonlinear, non-uniformity and 
anisotropy characters in the rupture process of rock or concrete. This theory which is based on the 
finite element and statistics damage theories is used to analyze the rock rupture process with elastic 
damage theory and amended Coulomb failure criterion. 
The basic principle of RFPA is to discrete the material into a large number primitives their 
mechanics properties are supposed to obey some statistical distribution. Then the stress and strain 
state of the material can be got with responding solve methods. Through analyzing the phrases of 
these primitives and with related failure criterions and damage principles, the material rupture 
process can be clear 

[7]
. 

The functions of RFPA are following: (1) To simulate the rock rupture process. Especially to study 
the influence of the local damage induced stress re-distribution to further deformation and damage 
process. (2) To simulate the acoustic emission in the process of rock rupture in order to invest the 
omens of the rock failure and the relationship between the frequency of acoustic emission and the 
magnitude. (3)Consider the non-uniformity distribution of material mechanics parameters (strengths, 
elastic models), the nonlinear deformation of rock can be tested basically through all kinds of 
statistical functions in the software, such as Weibull distribution and normal distribution. (4)Micro 
faults and macro fault such as joints and fractures can be simulated. (5)Damage process induced by 
loading and failure process induced by weight can be simulated. (6)To simulate the tunnel digging 
process, mining subsidence and coal seam roof falling, etc.

 [8]
 

Simulation Design of mining induced bed separation with RFPA 

The simulation background is the sedimentary coal strata. The time-space distribution laws of bed 

separation in the mining process are tested in this part. 

Mining Geological Conditions 

The mechanics parameters of rock in the strata and the geological conditions used in the numerical 

simulation are in the Table 1. And considering the difference of mechanics parameters of different 

layers and the change of mechanics parameters of rock in the falling zone, weak planes are set 

between two different planes. The parameters of these planes are in the Table 2. 

Table 1. Rock Mechanics Parameters of the Model 

 Layer 
Elastic 

Modulus 
/MPa 

Compressive 

strength 
/MPa 

Bulk 

Density 
/(KN/m

3
) 

Angle of internal 

friction 

/(°) 

Poisson’s 

ratio 
Thickness 

/m 

Sandstone 6000 60 26.5 30 0.25 30 

Fine Sandstone 4000 55 25.5 35 0.30 42 

Sand-shale 1500 30 25.0 37 0.30 8 

coal 1000 20 14.0 38 0.35 4 

Floor sandstone 10000 100 28.0 30 0.25 16 

 

Table 2. Mechanics Parameters of Weak Planes 

Elastic Modulus 
/MPa 

Compressive Strength 
 /MPa 

Bulk Density 
/(KN/m

3
) 

Poisson’s ratio  

500 10 20.0 0.25 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

287



3 

 

Numerical Mode 

The mechanics parameters of rock in the strata and the geological conditions used in the numerical 
simulation are in the Table 1. And considering the difference of mechanics parameters of different 
layers and the change of mechanics parameters of rock in the 
falling zone, weak planes are set between two different planes. 
The parameters of these planes are in the Table 2. 
A two-dimensional model of RFPA is made. Its length is 190m, 
height 100m. There are 200 horizontal split lines and 100 
vertical split lines to make 20000 units. According to the 
geological conditions of prototype strata, the depth of coal seam 
is 80m and the thickness of coal seam is 4m. The load is strata 
weight. Five steps are set to simulate the mining process. Every 
step of digging is 10m. The mining width is 50m. It is 70m from 
the cup open to the left side of model. Figure 1 shows the 
numerical model.                                                                                       Fig. 1 Numerical model 

Results analysis of RFPA  

Five steps are simulated in the model, every step is 10m. From figure 2 to figure 6 are the 

simulating results of bed separating process in the overlying strata.   

        

Fig.2 Develop state (10m)                   Fig.3 Bed Separation State (20m)          Figure 4.  Bed Separation State(30m) 

       

Fig.5 Bed Separation State (40m)             Fig.6 Bed Separation State (50m) 

 
Analyzing figures from 2 to 6 shows that the plate girder 
structure of seam roof bends under the vertical load applied by 
overlying strata and weight when work face advanced 10m. 
When the face moves 20m, bed separation will appear in 
overlying strata as the range increase of naked roof and 
increasing bend of layers. The most growing height is 8.03m in 
this digging step. When the work face moves 30m, the most 
growing height of bed separation is 12.7m. When moving 40m, 
the height is 21.9m. When moving 50m, the height is 26.6m. The 
distribution zone of bed separation is a trapezoid with the bottom 
angles are 63 degrees (left) and 61 degrees (right) after mining 
stop, as figure 7 shows. The corresponding relationships               Fig.7 Distribution of bed separation  

                                                                                                                                   numerical simulation 
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between work face movement and the most growing height 

of bed separation are in table 3. 

Table 3.  The corresponding relationships 

Fig.8 Relationship curve between work f

ace movements and bed separation heights 
 

                                                                                                                        

According to the table 3, the relationship curve between work face movements and the most 

growing height of bed separation is shown in figure 8. 

The equation of relationship curve between work face movements and bed separation heights is: 

 

H=−0.0015D
3
+0.1581D

2
−4.5785D+48.4          (1) 

In the formula, H represents the bed separation height, D represents the distance of the work face 

movement. 

According to the analysis, the growing height of bed separation increases as the work face moves. 

At the beginning of coal mining, the height of bed separation increases slowly. As the distance of 

moving increases, the growing rate of separation height becomes faster gradually. After the 

working face advances a certain length, the growing rate of separation height decreases and closes 

to zero. After arrive a limit height, the growing height of bed separation will not increase after 

arriving a limit height. In the coal mining process, the growing rates of bed separation height are 

different in different periods. 

In summary, the main conclusions obtained by numerical simulation of bed separation in overlying 

strata with RFPA are following. The bed separation constantly grows forward and upward as the 

work face moves. At last, the bed separation distributes in a trapezoid zone with the bottom angles 

about 60 degrees above the goaf. The height of bed separation grows slowly at early stage and 

grows faster at later stage until the limit height. At the end, the height doesn’t grow. At different 

stages, the increase rates are different. The limit height of be separation is sixty percent of the work 

face moving distance.  

Verification on similar material experiment based on the results of numerical calculation for bed 

separation in mining overburden 

Simulation conditions of the model and experimental purposes  

In order to verify the numerical simulation results of bed separation in mining overburden based on 

the calculation method of rock failure process (RFPA for short), the similar material simulation 

experiment is adopted. Parameters of the model material are same between numerical simulation 

experiment and similar material simulation experiment. Coal seam dip angle is 0°. The depth of 

coal seam is 80m under the ground. Mining width is 50m. Mining thickness is 4m. The coal bulk 

density is 1.4×10
-3

kg/cm
3
 and the uniaxial compressive strength of coal is 20Mpa. The average bulk 

density of overlying strata is 2.5×10-3kg/cm
3
. The uniaxial compressive strength of overlying strata 

is 40Mpa. 

Work face movement 

/(m) 
20 30 40 50 

The most growing height 

of bed separation   

/(m) 

8.03 12.7 21.9 26.6 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

289



5 

 

Selection of similar constants of simulation experiment  

The ratio between the physical quantities corresponding to the experimental model (m for short) and 

the prototype (P for short) is called the similarity constant (c for short). The similarity constants in 

the simulation experiment must be determined reasonably. So the deformation and failure of the 

whole simulation mining process is more close to the actual situation. Similar constants in this 

experiment can be shown as followed. 

Geometric similarity constant can be calculated by Eq. (1). 

/ 1:100l m pa l l 
                                              (1) 

Time similar constant can be calculated by Eq. (2). 

/ 1:10t m p la t t a  
                                       (2) 

Speed similar constant can be calculated by Eq. (3). 

/ 1:10u m p la u u a  
                                    (3) 

Acceleration of gravity similar constant can be calculated by Eq. (4). 

/ 1:1g m pa g g 
                                               (4) 

Displacement similar constant can be calculated by Eq. (5). 

1:100s la a 
                                                 (5) 

Bulk density similar constant can be calculated by Eq. (6). 

/ 3:5 r m pa r r
                                               (6) 

Strength elastic modulus bond force similar constant can be calculated by Eq. (7). 

3:500R E C l ra a a a a    
                             (7) 

Internal friction angle similar constant can be calculated by Eq. (8). 
3 6/ 0.6 10f m p g r la f f a a a      

                      (8) 

Selection and mix ratio of similar materials  

Model is mixed with different types and properties of materials in order to meet the mechanical 

properties of coal seam overburden. Similar materials usually consist of cementing material and 

filler. Different mechanical properties of overburden strata will be obtained by adjusting the ratio of 

the different materials 

In this experiment, similar materials with quartz sand, barite and mica are used as filler. Lime and 

gypsum are used as cementing materials. Borax is used as retarder. Bulk density of similar materials 

is shown as Table 4. 

 

Table4.  Bulk density of similar materials 

Material name quartz sand barite Mica Gypsum Lime 

Bulk density（g/cm
3） 1.4 4.0 0.5 0.8 0.8 

 

The bond force of the model can be controlled by adjusting the ratio of lime and gypsum. Internal 

friction angle of the model can be controlled by changing the structure of quartz sand. The material 

mix ratio is shown as Tab.5 according to similar constants and overburden property.  
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Table5. The material mix ratio 

Material name binder-aggregate ratio 
aggregate ratio Compounds ratio 

quartz sand: mica: barite Gypsum- lime ratio 

Sandstone 1:4 2:1:1 1:1 

coal 1:6 6:1:1 3:7 

 

Model dimension and model making 

Coal is mined with the roof all Collapsed. The width of mining is 0.5m. The Thickness of mining is 

0.04m. The dimension of the model is shown as Figure 9. 

    

Fig.9 The dimension of similar material model        Fig.10 Model for similar simulation experiment 

The amount of materials of every layer is calculated according to Table 5 and then the model is 

made stratified. Mica as joint plane is drop between the two layers. So the model made by this 

method has a good integrity and the strength of the material is easy to be maintained. The model is 

made on the model desk. First channel Steel is placed in both sides of model. Then the materials are 

weighed according to material mix ratio and are stirred evenly by water. The materials are layered 

hierarchical. The thickness of strata is 0.02m and the thickness of coal layer is 0.01m. It need for 3 

up to 5 days to remove template and start test after the materials are compacted uniform. The model 

is shown as Figure 10. 

Analysis of similar material experiment results  

Coal is mined with the roof all collapsed in this experiment. The mining process is divided into five 

steps according to numerical similar experiment. The length of every excavation is 10m. The width 

of mining is 50m. The morphology of bending, fracture, overburden caving and bed separation in 

overburden strata are shown from Figure 11 to Figure 15 corresponding to every excavation step. 

The following figures respectively show the development status of bed separation when the mining 

face advanced 10m,20m,30m,40m,50m. 

     
Fig.11 the development status(10m)   Fig.12 the development status(20m)  Fig.13 the development status(30m) 
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 Fig.14 the development status(40m)    Fig.15 the development status(50m) 

The movement and fracture of overburden strata are not occurred because of stress balance 

according to from Figure11 to Figure15. Goaf is formed after coal is mined in layers before coal 

excavation. The roof above goaf forms beam structure because it loses the support when the mining 

face advanced 10m. The small bed separated fissures are produced because bending is not 

synchronized between adjacent strata. Then the roof is collapsed rapidly. At this moment the first 

excavation step is completed. The strata under the initial bed separation are further collapsed and 

caving zone is developed upward when the mining face advanced 20m. The bed separation space 

near the coal seam roof experienced a process from generation to quickly disappear. The existence 

time is very short for the bottom bed separation. 

Mining area increased gradually with mining face advanced. The scope of overlying strata bending 

is also enlarged. Strata are broken after bed separation formation. Caving zone and fractured zone 

are formed in the lower strata. A large number of bed separations are developed in fractured zone. 

Bend zone is formed from fractured zone up to the ground. Strata of bending zone are continuous 

and stable. Mining is over when work face advanced 50m. Most bed separations undergo the 

process of crack initiation, development and closure and the height of bed separation reaches the 

maximum. Bed separation are distributed in the area of "eight" shape which is roughly trapezoidal 

symmetry. The fracture angle of strata at open-off cut of coal is 63 degrees. The fracture angle of 

strata at stopping line is 62 degrees. The height of bed separation is nonlinear growth with the 

increase of mining working face advance distance according to the experimental data. The 

maximum height of bed separation is 0.6 times of the advancing distance of mining face. The above 

experimental results are same to the numerical simulation results by RFPA for mining overburden 

separated strata. 

Conclusions 

In this paper, the bed separation in mining overburden is simulated based on RFPA. The 

development of bed separation in mining overburden during mining is studied. The conclusions are 

showed as followed. 

Firstly, tensile failure and shear failure occur in weak formation under the joint action of transversal 

shear and gravity stress during the process of mining. Interlayer dislocation and vertical separation 

are generated in strata. The separation space is formed. 

Secondly, the bed separation is developed forward with the mining face advanced. The growth rate 

of the bed separation height during different stages is different. Fracture initiation time of bed 

separation is different. So the growth state of different bed separation is different at the same time. 

Thirdly, the distribution laws of bed separation in mining overburden are from below and from back 

to front with the continuous advance of the mining face. It has a certain timelines for the growth 

process of bed separation.  

Finally, the bed separations are distributed within the scope of trapezoid under the specific 

conditions. The angle of trapezoid base is 62°. The bed separations are located just above the goaf. 

The growth rate of the bed separation is from fast to slow and gradually approach to zero. 
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Characteristics of different speed for different bed separation are shown in different stages. The 

maximum height of the bed separation is 0.6 times of the distance of mining face advance. 

 

* The project is supported by the Cooperative Innovation Center of Engineering Construction and 

Safety in Shandong Blue Economic Zone and Nation Natural Science Foundation of China (No. 

51374135, 51179080), Qingdao science and technology plan projects (SDSITC-0108310), and 

China Scholarship Council. 
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ABSTRACT

In the present work a coupled Euler-Lagrange approach is used to model the dynamics of a particulate phase and its
interaction with hot gas injection into particle bed reactors. The proposed numerical approach is based on the Discrete
Element Method (DEM) to model the granular phase. The in-house DEM solver has been extended to account for heat
and mass transfer within the gas phase by coupling it with the governing Navier-Stokes equations in the Eulerian Com-
putational Fluid Dynamics (CFD) gas model. This coupling has been done by using the CFD OpenFoam library. As a
result the numerical simulation framework called the Extended Discrete Element Method (XDEM) has being developed.
The present case uses the XDEM as a numerical tool to study a generic small scale packed bed reactor where hot gas is
injected laterally into a packed bed of coke particles. The interaction between solids and different fluid phases in packed
bed reactors represents a challenging phenomenon for numerical simulation. In order to represent more accurately such
processes the XDEM code has being adapted and several features like particle gasification, chemical reaction and diverse
particle shapes have been implemented. The XDEM Euler-Lagrange approach showed the ability to track the positions
of the coke particles in the simulation domain allowing an in-depth study of the particle-gas interaction. Since hot air at
1200 K was injected, the effects of gasification, reactions inside the particles, and shrinking were considered. Comparison
between measured and predicted data was made for char coal particles.

Keywords: Extended Discrete Element Method, Euler-Lagrange, Hot Blast, Packed Bed, Gas-Particle interaction, Gasi-
fication.

Introduction

Injection of preheated air at high speed or blast injection is being used extensively in many industrial applications such as
packed bed reactors. When air is injected laterally into a particle bed it causes the formation of granular circulation region
within the bed. This process increases the interaction between the solid and gas phases resulting in a more efficient heat and
mass transfer within the reactor. Blast injection is widely use in different petrochemical and metallurgical processes such
as catalyst, gasification, and combustion. One of the main applications of blast injection is found in the Blast Furnace
(BF) reactors. Blast furnace reactors are widely used in the ironmaking industry and are one of the largest operational
reactors. Typical dimensions of BF area about 40 m high and 15 m wide for a production over 10 000 t/d of pig iron [1].
The nature of the blast furnace operation includes several types of flow, a packed bed of solids descending, liquid dripping
and gas with powder ascending through the packed bed [2]. In a BF liquid iron is produce from ferrous oxides and carbon
reductants. Ore is normally used as a ferrous oxide and coke as a carbon reductant. Ore and coke are charged in layers
from the top of the furnace. At the bottom part of the furnace, hot air is injected at high velocity through a tuyere. The
fast stream of blast gas entering into the packed bed forces the coke particles to displace back and upwards forming a
circulation region around the injected gas. This circulation zone forms a cavity called raceway. A schematic drawing
of the blast furnace and the raceway are shown in Fig. 1. In the raceway the carbon from the coke or other auxiliary
fuels for instance the pulverized coal (PC) reacts with the oxygen to provide heat and to form the main reductant gas,
CO. The reductant gas rises through the void space towards the top of the furnace. Chemical reactions take place as the
solid material moves downward and interacts with the reductant gas producing liquid iron and carbon dioxide. The final
products in form of melted iron and slag are tapped from the bottom of the blast furnace and the flue gas is removed from
the top.

Since the stability of the BF operation is related to the motion of coke particles in and around the raceway, many studies
have been conducted focusing on the gas flow and the formation of the cavity [4, 5]. However, modeling the raceway

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

294



Figure 1: (a) General scheme of a blast furnace [2]; (b) the raceway [3].

is a challenging task due to the high velocities of the blast gas and its interaction with the particles, existence of high
temperatures, chemical reactions, and shrinkage of particles [1, 6]. Currently, two models are used to investigate the in-
furnace phenomena: continuum model and Discrete Element Method (DEM). In the first approach the geometry/shape of
the raceway is fixed and the bed of coke is consider to be a porous media. In such approach the Navier-Stokes equations
accounting for porosity are solved over the entire domain [7, 8]. This method is restricted to the dynamics of the gas flow
therefore, the formation of the raceway cannot be investigated. Consequently, is not possible to determine the boundaries of
the raceway. In the second approach, the Discrete Element Method (DEM), the solid phase is considered as a discrete part
while the flow (liquid and/or gas) in the void space between the particles is treated as a continuum phase. This approach
also referred to as the Combined Continuum and Discrete Model (CCDM) [9] can be able to predict the distribution of
the particulate phase under the influence of lateral gas injection.

In the present work the developed simulation framework Extended Discrete Element Method (XDEM) is used to model
the motion of the particulate phase and its interaction within the gas. For that purpose, an over-simplified geometry of a
generic packed bed reactor is used to evaluate the XDEM. The geometry includes lateral gas injection, as in the case of
BF reactors. However, at this stage, the intention of this work is to study the Euler-Lagrange approach of the XDEM to
model such type of solid-flow configurations and not the in-furnace phenomena. In a next step, simulations with more
realistic geometries and operational conditions have to be conducted to address the in-furnace phenomena.

Numerical Framework: the eXtended Discrete Element Method (XDEM)

The proposed numerical approach is based on the Discrete Element Method (DEM) to model the dynamics of granu-
lar matter and the Eulerian Computational Fluid Dynamics (CFD) model for the fluid phase. A coupling between both
modeling approaches allows to track the individual motion of the particles and the dynamics of the fluid phase. For that
purposes, the in-house DEM solver has been coupled with the open source library OpenFoam. The coupling between
both solvers resulted in the development of the numerical simulation framework called the eXtended Discrete Element
Method (XDEM) [10]. As a result the XDEM solver accounts for heat and mass transfer within the solid and fluid phases.
Within the XDEM solver, the CFD gas phase is solved using OpenFoam. The coupling algorithm between the in-house
DEM solver and OpenFoam allows to exchange information between the discrete and gas phases at each time step. In this
way, the current position of individual particles can be tracked. In addition, particles are allowed to exchange heat and
mass transfer with its environment. This allows to determine, for each particle, its temperature, porosity, reaction degree,
shrinking, and species distribution in conjunction with the surrounding gas phase.

A schematic representation of the XDEM modular structure is showed in Fig. 2. The XDEM is composed by two modules:
dynamics and conversion modules. The Lagrangian concept of the XDEM-Dynamics module is used to predict the motion
of solid particles. The movement of particles is characterized by the motion of a rigid body through six degrees of freedom
for translation along the three directions in space and rotation about the centre-of-mass. Thus, the entire motion of each
particle is describe by these degrees of freedom. This method is widely accepted and effective to address engineering
problems in granular and discontinuous materials, especially in granular flows, rock mechanics, and powder mechanics
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[11, 12, 13, 14]. Chemical conversion at each discrete particle is computed by the XDEM-Conversion module. A discrete
particle may consist of different phases like solid, liquid, gas or inert material. Since particles can be porous, gas diffusion
within the pore volume is accounted for. A particle is allowed to exchange heat with its environment depending on the
specified boundary conditions for its surrounding gas. The distribution of temperature is accounted for by system of one
dimensional and transient conservation equations for energy [15, 16]. For the particle energy balance, local thermal equi-
librium between gas phase and the porous solid is assumed. Thermal energy is transferred from the fluid to the particles
and/or from particles to fluid as a heat source. The XDEM-Conversion calculates for each CFD cell the corresponding heat
source value depending on the particles properties within the specific cell. The modular structure of the XDEM allows to
use the dynamics and conversion modules in a de-coupled mode for better adaptability to the modeling requirements [17].
Figure 2 shows the modular structure of the XDEM solver.

For the present case-study all modules of the XDEM including the coupling with the CFD tool are used. The gas phase is
modeled in an Eulerian approach solving the Navier-Stokes equations for compressible fluid in porous media implemented
in OpenFoam. The position, orientation, and heat interaction between particles (conduction, radiation) as well as between
particles and their environment (conduction, convection) is resolved with the above mentioned XDEM modules.

Figure 2: Interaction modules in the XDEM.

The complete set of equations and detailed description of the XDEM numerical framework can be found in [18, 10, 16].
For purpose of clarity a brief description of the main equations is given next. Heat interaction between particles as well as
heat and mass transfer between particles and their environment is solved with the XDEM-Conversion module. Thus, the
conservation equations of mass, momentum, energy, and species are solved for a porous particle:

∂(εp ρ f )
∂t

+ ∇ ·
(
εp ρ f v f

)
= ṁs, f (1)

−
∂(εp p)
∂x

=
µ f εp

K
v f (2)

∂(ρcpT )
∂t

=
1
rn

∂

∂r

(
rnλeff

∂T
∂r

)
+

l∑
k=1

ω̇kHk (3)
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∂(εp ρ f ,i)
∂t

+ ∇ ·
(
εp ρ f ,i v f

)
=

1
rn

∂

∂r

(
rnεpDi

∂ ρ f ,i

∂r

)
+ ṁs, f ,i (4)

The term on the right hand side in the mass conservation equation, Eq. (1), accounts for the mass transfer between the
fluid within the pore of the particle or the solid phase with gas as a result of the chemical reactions, εp denotes the particle
porosity, v f the advective velocity, and ρ f the density of the gas phase. Equation (2) is the momentum equation based on
Darcy’s law for the transport of gaseous species within the pore space of the particle; here K represent the permeability, p
the pressure, and µ the dynamic viscosity. Since the thermal mass in the solid and fluid phase are significantly greater than
the thermal mass in the gas phase (ρcp), the heat transported through the bulk motion or diffusion of the gaseous species
within the pore space can be neglected. Thus, the energy balance equation, Eq.(3), is based on the homogeneous model
for a porous medium as described by Faghri [19] where λe f f is the effective thermal conductivity evaluated as [20]

λeff = εpλ f +

k∑
i=1

ηi λi,solid + λrad (5)

which takes into account heat transfer by conduction in the gas, solid, and radiation in the pore. The later is evaluated as

λrad =
ε

1 − ε
σ 4.0T 3 (6)

where T and σ stand for the temperature and the Boltzmann constant, respectively. The source term ω̇ represents the
production or consumption of heat due to chemical reactions where Hk is the enthalpy of reaction k. The formulation of
Eq. (3) allows to represent different geometries based on a radial coordinate r: infinite plate (n = 0), infinite cylinder
(n = 1), and sphere (n = 2). Equation (4) is the conservation equation of species which accounts for convection in
conjunction with diffusive transport to describe the distribution of gaseous species i in the porous particle. The effective
diffusion coefficient Di,eff of species i is derive from the influence of tortuosity τ and the molecular diffusion coefficient
Di [21, 22]:

Di,eff = Di
εp

τ
(7)

Depending on the rate-limiting process, the depletion of the solid material results in either a decreasing particle density
or a reduction of the particle size [23, 24]. The distribution of the porosity and the specific inner surface S are determined
by the following equations:

∂ε

∂t
=

M
ρδ
ω̇ (8)

∂S
∂t

=
1 − ε0

C0
ω̇ (9)

where M is the molecular weight of the particle, δ is the characteristic pore length and C0 and ω̇ are the concentration and
reaction of the solid material, respectively. The subindex 0 indicates the initial values of the appropriate variable.

Since geometries are consider to be either infinite plate, infinite cylinder or sphere, a symmetric boundary condition is
applied at the center of the particle for the effective thermal conductivity

−λeff

∂T
∂r

∣∣∣∣∣
r=0

= 0 (10)

and for the heat and mass transfer at the surface of the particle

−λeff

∂T
∂r

∣∣∣∣∣
r=R

= α(TR − T∞) + q̇rad + q̇cond (11)

−Di,eff

∂ρi

∂r

∣∣∣∣∣
r=R

= βi(ρi,R − ρi,∞) (12)

where T∞ is the gas temperature, ρi,∞ the ambient density, Di, αi and βi are the diffusion, heat, and mass transfer coef-
ficients of species i, respectively. The heat fluxes q̇′′ in Eq. (12) account for potential radiative heat exchange with the
surrounding and/or conductive heat transport through physical contact with other bodies. Thermodynamic equilibrium
within the intra-particle fluid is assumed and the thermal equation of state is used to close the above set of equations
p = ρRT and h = cpT , both used in their formulation for multi-species flow.
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The XDEM-Dynamics module is used to predict the motion of solid particles based on Newton’s Second Law for conser-
vation of linear and angular momentum

mi
d2 ~ri

dt2 =

N∑
i=1

~Fi j

(
~r j,~v j, ~φ j, ~ω j

)
+ ~Fextern (13)

Ii
d2 ~φi

dt2 =

N∑
i=1

~Mi j

(
~r j,~v j, ~φ j, ~ω j

)
+ ~Mextern (14)

where ~Fi j

(
~r j,~v j, ~φ j, ~ω j

)
and ~Mi j

(
~r j,~v j, ~φ j, ~ω j

)
are the forces and torques acting on a particle i of mass m and Ii is the tensor

moment of inertia. Equations (13) and (14) show that forces and torques exerted on particle i depend on the position ~r j,
velocity ~v j, orientation ~φ j, and angular velocity ~ω j of its neighbor particles j. External forces may be include by moving
grate bars, fluid forces and contact forces between particles in contact with a bounding wall. Within the XDEM-Dynamics
module, forces within particles are present only during mechanical contact. The repulsive force between particles in
contact are calculated based on the rigidity of the particles. The interaction between particle-particle and particle-wall is
calculated by the contact model linear spring-dashpot and the fluid drag force by the Di Felice’s correlation [25].

In the present formulation the deformation of two particles in contact is approximated by its overlapping [11]. The result-
ing force ~Fi j due to contact is calculated by its normal and tangential components

~Fi j = ~Fn,i j + ~Ft,i j (15)

where the normal n and tangential t components additionally depend on displacements and velocities normal and tangen-
tial to the point of impact between the particles.

The XDEM conversion and dynamics modules are coupled to an implemented CFD solver in OpenFoam for compress-
ible porous media. The last is based on the PIMPLE (PISO-SIMPLE) solution for time-resolved and pseudo-transient
simulations allowing equation under-relaxation for better convergence of the equations at each time-step [26]. The CFD
equations are the set of the Navier-Stokes equations comprising the mass, momentum, and energy equations for multi-
species flow adapted for a porous media [19, 27]

∂(ε f ρ f )
∂t

+ ∇ · (ε f ρ f v f ) = ṁs, f (16)

∂(ε f ρ
K
f v f )

∂t
+ ∇ · (ε f ρ f v f v f ) = ∇ · (ε f τ f ) −

µ f

K
ε2

f v f −C ρ f ε
3
f |v f | v f (17)

∂(ε f ρ f h f )
∂t

+ (ε f ρ f v f h f ) =
∂p f

∂t
+ ε f · v f · ∇p f +

M∑
i=1

S p

VREV
α∆Ti (18)

∂(ε f ρ f ,i)
∂t

+ ∇ · (ε f ρ f ,i · v f ) =

M∑
i=1

m′′′s, f ,i (19)

The porous media formulation is based on an averaging process over a Representative Elementary Volume (REV) ap-
proach [28, 29]. The momentum equation, Eq. (17), is expressed in the formulation for a gas flow within a porous media
[19, 27] where K represents the permeability of the packed bed and C the dimensionless drag coefficient. For spherical
particles of diameter Dp, K and C can be obtained from [19, 17]

K =
D2

Pε
3
f

150(1 − ε f )2 (20)

C =
1.75(1 − ε f )

DPε
3
f

(21)
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The intensity of heat exchange between the solid and fluid phases in the energy equation (Eq. (18)) is subjected to the
thermal boundary conditions at the interface where S p is the heat source term responsible for transferring the thermal
energy from the fluid to the particles and/or from the particles to the flow

S p hp, f (∆Tp) = q′′′s f VREV (22)

The last term of the right hand side in Eq. (18) represent the coupling between DPM and CFD for heat transfer simulations.

Simulation Domain and Boundary Conditions

A cylindrical shape can be used to represent the geometry of a generic reactor. In the present case, the generic geometry
is further simplified by considering one quarter of it filled with particles. The two investigated geometries are shown
in Figs. 3 and 4. The computational domain 1 shown in Fig. 3 is used to study chemical conversion by employing the
XDEM-Conversion module. The dimensions of this domain are 300 mm in height with a radius of 225 mm. The domain
is discretized with a structured grid which contains 3176 cells with an average size of 20 mm × 22 mm × 22 mm. The
second geometry is presented in Fig.4. This geometry is used to study the motion of the particles around the gas injection
as well as the heat-up process due to the hot gas. The dimensions of this domains are 800 mm in height with a radius of
400 mm. The domain contains 9144 cells with an average size of 25 mm × 25 mm × 23 mm. Both computational domains
are bounded by two side-walls, an outer wall which shapes the cylindrical form of the reactor, an inlet, an outlet (top
wall) and a bottom wall. The inlet (showed in solid color) is located at center of the outer wall. In geometry 1 (Fig. 3) is
located one cell above the bottom wall whereas in geometry 2 (Fig. 4) is placed at the third cell above the bottom wall.
The packed bed is represented by an ensemble of particles with an inhomogeneous void space between them due to their
packing. Each sphere has a diameter of 20 mm and is considered to be a coke particle. The coke particles are at rest and
randomly settled at the bottom of the cylinder. This was done in a preliminary simulation by placing the particles at the
center of the domain and let them fall until they reached their random and steady position. The computational domain in
Fig. 3 contains 300 coke particles where as the domain in Fig. 4 contains 3000 particles. Coke properties are shown in
Table 1. Hot air at 1200 K in a standard mass fraction composition, YO2 = 0.21 and YN2 = 0.79, is injected through the
inlet at a velocity of u = 20 m s−1. For simplicity the inflow profile is considered to be uniform. For the side-walls a cyclic
boundary condition is used. At the outlet (top wall), the conservative variables are simply extrapolated from the inside
domain. An initial temperature of 600 K is set for the gas and the particles. Temperature is extrapolated from the inside
domain to the walls. The standard k − ε model is used with an initial turbulence values set to 3 %.

Figure 3: Geometry 1 with 300 particles, different views of the computational domain: (a) isometric,
(b) top, and (c) lateral.
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Figure 4: Geometry 2 with 3000 particles, different views of the computational domain: (a) isometric,
(b) top, and (c) lateral.

Table 1: Thermodynamic and mechanical properties of coke.

Density [kg/m3] 1050 Young modulus [Pa] 22 × 109

Porosity [-] 0.2 Poisson ratio [Nm−1] 0.3
Tortuosity [-] 1.0 Friction coefficient [-] 1

Results and Discussion

The XDEM has been validated for spherical particles of diverse materials by comparing predicted and experimental results
[16]. For instance, Fig. 5 shows the experimental and predicted data for gasification of spherical char particles of 10 mm
and 15 mm diameter exposed to a heating temperature of 773 K. The measurements were obtained from experiments
conducted by Schäffer and Wyrsch [30]. The comparison between the measured and predicted reduction in the particle
mass fraction shows a good agreement. The particle mass fraction and radius decreases linearly indicating a shrinking
behavior. The high char reactivity limits the reaction regime and the transfer of oxygen through the boundary layer
represents the rate-limiting step [16]. Therefore, the obtained agreement shows that heat and mass transfer are evaluated
with sufficient accuracy.

For the present test-case, the gasification of coke particles inside the reactor is approximated by the following reaction

C +
1
2

O2 ↔ CO (23)

As observed from Fig. 5 gasification occurs if the particle is exposed to a heating temperature for a considerable amount
of time. In terms of simulation this represents a large computational time. In order to account for gasification effects and
to test the XDEM capability while simulating multiple particles, the simulation domain shown in Fig. 3 is used. Since
large exposure of time is required to observed the heating up and gasification processes, an static simulation using only the
XDEM-Conversion module and the CFD coupling is computed first. Accordingly, the governing equations for the flow
and particles are solved taking into account conduction between particles and the surrounding flow field. Deactivating
the XDEM-Dynamics module allows to increase the time step and achieve a faster solution accounting for heat and
mass transfer within the particles and gas, while keeping the particles static. Figure 6 shows the predicted heat-up of the
packed bed via the temperature distribution at surface of the particles and in the flow. The increase in temperature can
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Figure 5: Comparison between measurements and predictions for gasification of char particles of
10 mm and 15 mm diameter exposed to a heating temperature of 773 K [16].

be observed through different instants in time. At the initial time, t = 0 s, the temperature of the domain is given by the
ambient conditions T = 600 K. As air is injected through the inlet, the hot stream at T = 1200 K heats up the particles and
the ambient air. The heat propagation can be appreciated through the different instants in time t = 120 s, t = 400 s, and
t = 800 s. The particles located in front of the inlet are the first to receive the blast of hot air and to rise its temperature.
The hot air moving through the void space of the packed bed continue heating up the particles. As observed from Fig.
6, the heat propagates from the inlet towards the side-walls and to the center of the reactor. At the last time, t = 800 s,
temperatures over 1000 K are reached, principally at the particles located around the inlet. The CO concentration in the
flow and the shrinking of the particles are the result of gasification, heat and mass transfer between the solid and gas
phases. The carbon and oxygen react to form CO according to Eq. (23) just after the necessary temperature to activate
the reaction has been reached. CO is then transported through the void space of the packed bed and to the flow above the
particles. The effects of gasification are visible by the decrease in the diameter of the particles and the production of CO
at t = 800 s, Figs. 7 and 8. A mass fraction reduction of approximately 20 % is observed at the particles that are directly
located at the inlet and have been exposed to a longer heating period, t = 800 s.

Figure 6: Temperature distribution at the particles surface and the flow field at different times.
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Figure 7: Particle mass fraction and flow temperature distribution in the reactor.

Figure 8: Particle mass fraction and CO concentration.

The XDEM-Dynamics module is used to account for the motion of the coke particles. A combination of the conversion
and dynamics modules coupled with the CFD gas phase allows the XDEM to predict the motion and chemical conversion
of each particle. The computational domain shown in Fig. 4 is used to simulate the motion of the coke particles inside the
reactor by using the XDEM-Dynamics. Since the particles are also exposed to hot air, chemical conversion is solved with
the conversion module. As observed from the previous case, gasification of coke particles require large exposure time to
a heating source. This results in highly computational costs. In order to avoid such large computing time, the following
test-case runs for a simulation time of 10 s. This time is enough to analyze the motion of the particles and the the heat-up
process. Based on the previous case it is assumed that if the run time were increased, gasification process would take
place. Figure 9 shows the temperature distribution in the flow and at the surface of the particles. Streamlines colored by
the flow temperature are displayed to better visualize the flow going through the particles and the reactor. From Fig. 9 it
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can observed how the injected flow at T = 1200 K progressively heats-up the particles. Right after the injection, t = 0.2 s,
the hot jet penetrates through the packed bed pushing forward the particles. Due to the packing of the particles and the
location of the inlet, the jet immediately impacts on the solid bodies and it divides in two main streams. One stream
continues in direction to the center of the reactor and the other continues in radial direction around the outer-walls. The
particles located in front and around the inlet are pushed back and upwards by the stream traveling to the center.

The inject hot gas moves through the void space of the packed bed transferring its thermal and kinetic energy to particles.
As it can be observed from Fig. 9 the streamlines represent the increase of the temperature in the flow field from the
initial time t = 0 s up to t = 10 s. Most of the thermal energy contained in the injected gas is absorbed by the particles.
As the time increases the heat-up in the particles is more visible. As expected, the particles that are exposed directly to
the hot gas are the first to heat-up and reach the highest temperatures. Figure 9 also shows the temperature at the surface
of the particles. From the ambient condition, T = 600 K, it takes around 10 seconds to heat-up few particles to a more
than 1000 K. Since the particles are moving and changing location not all of them close to the inlet show the same the
temperature. However, the particles with larger temperatures are located around the inlet.

Figure 9: Temperature distribution in the flow field and at the particles surface at different times.
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The air injected into the packed bed generates a circulation region with the particles moving around of it. This can be
appreciated in Fig. 10 where a close-up around the inlet is shown. At the initial time, t = 0 s, the particles are static
inside the reactor. When the air is injected at u = 20 m s the particles located right at the inlet are pushed inwards. As the
air continue penetrating into the packed bed, the particles are further displaced towards the center leaving a small cavity
occupied only by the incoming air. Due to the displacement of these particles and the jet penetrating deeper into the packed
bed and displacing more entities. The particles above this layer fall into the cavity to fulfill the free space. Since air is
supplied continuously, the particles falling into the cavity and then been pushed inwards is repeated. Since the air speed is
not large enough to penetrate deeper and push the particles further towards the center, these particles are rotating around
the incoming air as shown in Fig. 11. The effect of the injected air into the particles extends up to approximately one
third of the radius of the cylindrical reactor, 130 mm. It seems that the momentum of the jet is not enough to significantly
displace the particles located beyond this distance. However, the thermal energy of the jet is enough to heat-up those
particles. The rotational movement of the particles located near the inlet is responsible for the non uniform temperature
distribution observed in Fig. 9. In particular, the particles with higher temperatures are located above and below the inlet
due to this vertical rotational movement. The formation of the cavity and the recirculation region around the jet is a
common pattern to be expected in such typed of gas-particle beds [31, 32].

Figure 10: Velocity distribution and displacement of the particles around the inlet.

Figure 11: Velocity vector indicating the trajectory of the particles. 2D-cut at the cross-section in front
of the inlet.
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Conclusions

In the present case-study the developed numerical framework eXtended Discrete Element Method (XDEM) has been used
to simulate the injection of gas into a packed bed of particles. The XDEM conversion and dynamics modules coupled to
an implemented CFD solver in OpenFoam have been used to account for the motion and chemical conversion of particles
subject to lateral gas injection. In a first step, the XDEM-Conversion module was validated for a single coke particle
exposed to a heating source. The available experimental data was compared with the predicted values for the reduction of
mass fraction and the particle diameter. Since good agreement between the measured and predicted values was obtained,
the XDEM-Conversion was applied to a multiple coke particles to predict the heat-up and gasification process. The results
shown how the particles shrink and loss their mass as the heating time increases. Due to the internal reaction part of the
mass of the coke particles was transformed into CO and transported into the flow. The XDEM conversion and dynamics
modules together with the CFD solver were used to predict the motion of the particles exposed to the lateral gas injection.
In this case, the expected formation of a cavity and circulating region around the gas was observed. The transfer of thermal
energy from the hot gas to the particles was observed by the increase in the temperature of the particles. The circulating
region was also confirmed by the temperature distribution within the packed bed. The XDEM showed the ability to
predict the motion and chemical conversion of particles in a packed bed subject to lateral gas injection. However, for
better representation of the case in a real industrial application, such as a blast furnace, it is necessary to account for more
realistic geometries and boundary conditions.
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France
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ABSTRACT

Rolling bearings are one of the most important and frequently components encountered in domestic and in-

dustrial rotating machines. Statistical studies show that these bearings are considered as critical mechanical

parts which represent between 40% and 50% of malfunction in rotating machineries. We performed an electrical

monitoring of a bearing and numerical aspects using smooth contact dynamic are studied. An original elastic

2D modelling by discrete elements (DEM) reproduces the dynamic and the mechanical behavior of a bearing

[1]. An electromechanical coupling is introduced to provide monitoring solutions [2]. This study proposes an

original method of simulating the bearings to analyze dynamic stress in rings and to detect malfunctions (defects

or unusual load) in the impedance of a ball bearing over time. The bearing is seen as a polydisperse granular

chain where rolling elements and cage components interact with a Hertzian contact model. Moreover, rings

(and housing) are also taken into account using a cohesive model [3]. Indeed, while many studies have been

conducted on bearing simulation using FEM and multibody approaches, this new discrete model gives relevant

information on physical phenomena in the contact interface. Roller-race contacts are analyzed in detail with an

electromechanical coupling. One of our objectives is to investigate the sensitivity of the electrical measurement

due to the variation of mechanical loading.

Keywords: bearing, electromechanical coupling, DEM, electrical transfer, contact model, roughness

Introduction

Rolling elements bearings are among the most important components in rotating machinery. In order to ensure

the industrial systems availability and the safety of goods and persons, the monitoring and diagnosis of bearing

defects have to be considered with prime importance and the challenges in terms of productivity are non-

negligible. Recently, maintenance has led to extensive research with the development of new methods. Usually,

vibrations and sounds of the machine are followed over time with a sensor and coupled analysis of time domain

and frequency domain give information about the bearing state [4, 5]. Thermal and current motor analysis may

be implemented to confirm the presence of abnormalities. A detected defect means that the damage is already

sufficiently pronounced to be corrected and the bearing has to be changed. Finally, a defect is often due to

mounting problem which implies unbalanced load, excessive load, misalignment... In this paper, a mechanical

comparison between rigid housing and elastic housing is discussed. The rigid assumption becomes unrealistic

when the machine design is optimized to minimize congestion and to reduce costs in raw material. Knowledge

of the state of load bearing is particularly important but in practice, it is difficult to determine the loading

bearing accurately. A new tool based on electrical measurements is presented in order to monitor the loads before

problems occurs. Moreover, this electrical measurement has proven itself for a low speed application where other

measurements are difficult to implement. A test bench has allowed to find some sensitivities relative to a charge

status in the electrical measurement[6]. Although, the presence of an electric current through the ball bearing

is ordinary harmful but the current densities required to perform a relevant experimental measurement are

sufficiently low to cause damage [7, 8]. While most numerical studies on the bearing are carried out with finite
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elements (FEM) [9, 10] and multibody approaches [11, 12], an original numerical approach using discrete element

method is described in this paper and dynamic electromechanical simulations are studied. These developments

are a straight continuation of previous work initiated in [13, 14] with notable advances in rings modelling.

DEM Mechanical modelling

A ball bearing is made of rolling elements constrained by two rings. A cage ensures a constant space between

each rolling element. This component is seen as a granular chain. To distinguish themselves from multibody

and FEM approaches, some important mechanical considerations are modelled in this paper and a dynamical

resolution is proposed. The cage component is made of discrete elements moving freely along the pitch radius

(Rpich =
Rinnerrace +Routerrace

2 ) and the rings and the housing are elastic. The rings can be deformed under mechanical

load if the housing is sufficiently flexible. In this original description, a bearing is represented by a collection

of polydispersed (cylindrical or spherical) rigid particles. Contact interactions with particles are given with a

contact model for the interface description and with a cohesive model for the continuum media (figure 1). A

Figure 1. General mechanical modelling

commonly used radial ball bearing type 6208 is selected for modelling and its dimensions are given in table 2 :

Rrolling Rcage Rrace inner Rrace outer inner ring thickness outer ring thickness

0.0063 m 0.0042 m 0.024 m 0.0366 m 0.003 m 0.003 m

Figure 2. Dimensions of a radial ball bearing 6208

Contact description

By using the smooth contact DEM, developed by Cundall and Strack [15, 16], the contact forces in a bearing

are described with a contact model depending on elastic force displacement law, Coulomb’s friction and viscous

damping. The principle of the calculation is based on dynamic considerations and the contact occurs only when

particles penetrate which means that a contact between a rolling element and a ring or a contact between a

rolling element and a cage component is proved. The equivalent model of the contact is given in figure 1 using

analogies with damped springs mass systems (Kn, Kt, Cn and Ct) and the dry friction coefficient µ, set to

µ = 0.1 are introduced. The lubricant effect is not taken into account and a rough interface is modelled [17].

The force ~Fi between particles at the interface includes the inter-particle interaction forces and the external

forces.
~Fi =

∑
j 6=i

~Fij + ~Fext,i (1)
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Where ~Fij is the force exerted by particle j to particle i. ~Fext,i are the external forces on particle i (gravity,

loading, ...). The contact force ~Fij is deduced from analogies with damp-spring. From figure (1), this model

includes a normal component and a tangential component. ~Fij is then decomposed as follow :

~Fij = Fn~n+ Ft~t (2)

Fn is the contact force in the normal direction and Ft is the contact force in the tangential direction. By

considering the analogies with a damped spring mass system, where Kn,Cn and Kt, Ct represent the stiffness

and the viscous damping coefficient, in the normal direction ~n and in the tangential direction ~t. The overlap

between particles ~u = un~n+ ut~t gives the contact force :{
Fn = Kn × un + Cn × ~̇u.~n
Ft = Kt × ut + Ct × ~̇u.~t

(3)

where ~̇u is the relative velocity of the contact point between particles. The tangential overlap ut can be approx-

imated by the expression : ut = ~̇u.~t∆t, where ∆t is the time step. Ft is a candidate force because the slider µ,

due to dry friction is considered. Coulomb’s friction law is written in equation 4 and determines whether the

contact is slipping or sliding :

Ft = −min(Ft, µFn)× sgn(~̇u.~t) (4)

The expressions of normal and tangential stiffness are given from the elastic solid mechanics analysis of Hertz-

Mindlin theory [18, 19] : 
Kn = 4E

aiaj
ai + aj

Kt = Kn
1−ν

1−
1

2
ν

. (5)

Kn and Kt are related to mechanical properties the Young’s modulus E, the Poisson’s ratio ν and the dimensions

of particles in contact (ai, aj). The harmonic behaviour of linear model with constant parameters is well known

and adapted in a first approximation for a description of a roller bearing. A general load-deflection relationship

without damping is written as Fn = KnU
N
n , where N and Kn depend on the bearing type (N = 10/9 ∼ 1 for

a roller-raceway contact, N = 3/2 for a ball-raceway contact, ...). The role of interactions at the contact plays

an important role in the distribution of efforts. Harris [20] offers similar stiffness models derived from Hertz’s

theory. A critical viscous damping ratio Cn,t is introduced by equation 6, where m∗ is the reduced mass :

Cn,t = 2
√
Kn,tm∗ (6)

Other viscous damping coefficients can be introduced if lubricant effects are considered [21, 22]. A simple bearing

is made of 2Z + 1 discrete elements where Z are dedicated to rolling elements, Z others are dedicated to cage

components and the last one represents the inner race/ring or shaft.

Cohesive description

Rings and the housing may be deformed under mechanical loadings. In order to simulate a 2D continuous

material with DEM, the rings are discretized by a dense polydisperse granular assembly. The generation is

controlled with Lubachevsky-Stillinger’s algorithm [23] so as to satisfy the following properties :

• Isotropic contact orientation

• Local homogeneous properties (coordination number, local porosity, ...)

• Compacity close to 86-87 % (Random close packing [24])

In order to reflect the mechanical behaviour of continuous medium, contacts must be persistent and a cohesive

contact law is considered (figure 1). In the proposed DEM formulation, the interaction between two particles in

contact is modelled with a beam of length Lµ, Young’s modulus Eµ, cross-section Aµ and quadratic moment

Iµ (figure 1) [25]. Therefore, the cohesive contacts are maintained by a vector of three-component generalized

forces acting as internal forces. The normal component acts as an attractive or repulsive force, the tangential

component allows to resist to the tangential relative displacement and the moment component counteracts the
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bending motion.

From figure 1, Aµ is rectangular with depth l = 1cm and h, the height of the cross section defined by :

h = rµ
ai + aj

2
(7)

where rµ ∈]0, 1] is a dimensionless radius, ai and aj are respectively the radius of particles i and j. The cohesive

forces and moments between two particles i and j are given as follow:{
miüi = F exti +

∑
j F

i→j

Iiθ̈i = Mext
i +

∑
jM

i→j (8)

where mi is the elementary matrix and Ii is the quadratic moment of intertia of the particle i. F i→j and M i→j

are respectively the force and the moment of interaction of particle j on i. F ext et Mext are respectively the

external force and moment of acting on particle i.

The local cohesion forces between particles i and j are deduced from the following linear system :

F i→jn

F i→jt

M int
i→j

 =


EµAµ
Lµ

0 0 0

0
12EµIµ
L3
µ

6EµIµ
L2
µ

6EµIµ
L2
µ

0
6EµIµ
L2
µ

4EµIµ
Lµ

2EµIµ
Lµ



uin − ujn
uit − u

j
t

θi
θj


where θi and θj are respectively the rotations of particles i and j. ui,jn and ui,jt are respectively the normal and

tangential displacements. The numerical resolution is based on an explicit time integration with a formulation

based on a Verlet scheme. In the ball bearing context, the rings are made of steel and the identification of

model parameters Eµ and rµ is correlated with macroscopic Young’s modulus EM = 210GPa and Poisson’s

ratio νM = 0.3. A procedure based on a uniaxial quasi-static tensile test [26] suggests to choose Eµ = 505GPa

and rµ = 0.5. The rings and the housing are composed of millimeter polydisperse particles.

Electromechanical modelling

The electrical transfer in a bearing in operation is a complex mechanism depending on intrinsic mechanical,

electrical properties of materials in contact and on properties of the interface (roughness, lubricant film, oxyda-

tion, temperature, ...). Electrical response depends also on mechanical load and on rotation speed. For moderate

rotation speeds ω and heavy loads Fr, the lubricant thickness in the interface may be neglected [6] and a simple

electrical model, based on analogies with resistors is considered [2, 13, 14]. We assumed that the temperature is

constant and the oxyde layer on the surface of particles is neglected but the effect of roughness is considered. An

electrical macroscopic resistance is associated to each rolling element in contact with both rings using expression

9 :
1

Rkij
=
γSiSj
2Vb

(1− cosθ) (9)

where γ is the electrical conductivity of steel (γ = 5.8× 107S.m−1), Vb is the volume of the rolling element, θ is

the angle formed by the points i and j (θ = π for radial bearings). The coupling between the mechanical and

electrical computation is carried out by Hertz’s theory where Si and Sj denote contact areas. The elements of

the cage are insulating (made of polyamide) therefore only the rolling elements are involved in current transfer.

Considering a cohesive model implies rough races depending on the discretization. The contact between a rolling

element and a race is supported by small cohesive particles. This description of rough contact using spherical caps

can be found in the Greenwood’s work [27, 28]. Unlike previous works where a perfect contact was considered

leading to overly conductive simulations [14], the contact area responsible of the electrical transfer is the sum

of spots using Hertz’s theory, as suggested by figure 3(b). The surface of rolling elements is supposed perfect

but in practice the arithmetical rugosity of a rolling element (Rab = 10−8 m) is about ten time smaller than

the arithmetical rugosity of races (Rarace = 10−7 m). The roughness is numerically overestimated for reasons

of time computing.

For a rolling element k, at the angular position ψk, the radial local load Qkψ is distributed over several ”micro-

contacts” or spots on the inner race (or outer race), as shown in figure 3(b). The contact area responsible of
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(a)
(b)

Figure 3. (a) Load projection and electrical circuit (b) interface description

the electrical transfer is written as follow :

S =

mc∑
i=1

si =

mc∑
i=1

π

(
3× qiψR∗

4E∗

)2/3

(10)

where mc is a number of ”micro-contact” within a contact between a rolling element and a ring, depending

on the discretization. qiψ denotes the radial load transmitted by the ”micro-contact” i. R∗ and E∗ respectively

characterize the relative radius of curvature and the reduce modulus.

Simulation results

The electromechanical results are obtained for a fixed rotation speed ω = 500 rad/s and the time step is

∆t = 10−8 s. The considered bearing has no clearance which means that only 50 % of rolling elements are

implicated in the electrical determination. The rolling components in the load zone form a parallel electrical

resistor circuit, as shown in figure 3(a).

Mechanical analysis

Consider a bearing with rigid rings or deformable rings involves particular mechanical behaviours that affect the

bearing fatigue lifetime and the electrical determination. The rigid description is made of 26100 + 19 discrete

elements and the elastic description is made of 36100 + 19 discrete elements (figure 4(a)).
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Figure 4. (a) DEM models (b) Static radial load distribution for Fr = 6 kN

A radial load ~Fr = -6 ~j kN is applied on the inner ring according to the vertical direction. From figure 4(b),

at the static equilibrium (ω = 0), the local load distribution Qψ is represented according to angular position

ψ, in rigid and elastic cases. Each point (� or H) gives the position and the radial local load supported by a
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rolling element and points (♦ or �) give typical trends. The radial load distribution with rigid rings describes

a sinusoid function which matches with the classical rigid theory [20] :

Qψ = Qmax

(
1− 1

2ε
(1− cosψ)

)N
(11)

where Qmax ∼ −2728 N denotes the maximum radial local load at ψ = 0◦ and for a roller bearing Qmax may also

be determined using radial integral Jr(ε) with expression Qmax =
Jr(ε = 0.5)× Fr

Z
=

4.08×−6000

9
= −2720

N. The dimensionless load parameter ε describes the state of load. When no clearance or preload is considered,

ε = 0.5 means over half of rolling elements is involved in the radial distribution. N is relative to the stiffness

model (N = 3/2 for ball bearing and N ∼ 1 for roller bearing. The radial load distribution with elastic rings

shows a symmetrical function about the vertical axis where Qmax ∼ −2250N is found at angle ψ ± 80◦, caused

by the roundness of the rings. There is no theoretical expression associated with this elastic distribution.

The following simulations are obtained by considering a non-zero rotational speed ω = 500rad/s. The static

equilibrium described in figure 4(b) is replaced by complex dynamic regime where deformation modes of the

rings and rough interfaces disturb the load distribution over time as suggested by figures 5.
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Figure 5. Radial load distribution for several instants at Fr = 6 kN and ω = 500

rad/s (a) for rigid rings (b) for elastic rings

The rigid results over time show that the sinusoidal profile conserves the same shape and Qmax is time varying

due to micro-contact variations. A similar analysis could be done for elastic results. These remarks demonstrate

that even if a constant load Fr and a constant rotation speed ω are applied to the system, the mechanical

response in the bearing is time varying. The main difference between rigid and elastic analysis, in dynamic or

static attempts to show that areas prone to damage are dependent on the rigidity of the montage. As proof, the

dynamical study of mechanical stress fields in the rings at same time (figure 6) shows that in the rigid case, the

area or contact interface near the south pole (ψ = 0) is more prone to damages. In the elastic case, this area is

pushed towards the embedding conditions close to ψ ± 90◦.

Electrical analysis

The electrical sensitivity over time is simulated for several radial load Fr at 50 kHz. The overall electrical

resistance is given in figure 7(a) for rigid rings and in figure 7(b) for elastic rings.

In both cases, when the radial load Fr increases, the electrical resistance decreases with a non linear dependency

according to Hertz’s theory [14]. Typical values of the electrical resistance computed which may be assimilated

to the mean resistances give the order of Ω. In rigid considerations, the resistance shows substantial variations

in amplitude depending on load at high frequencies due to micro-contact variation (figure 7(a)). In flexible

considerations, the micro-contact variation still exists but due to the elasticity of the system, the resistance is

less noisy and a typical low frequency appears close to 300 Hz (figure 7(b)). This low frequency is assumed to
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(a) (b)

Figure 6. Von Mises stress in a bearing at Fr = −6 kN and ω = 500 rad/s (a)with

rigid rings (b) with elastic rings

(a) (b)

Figure 7. Electrical resistance versus time with different radial loads Fr at ω = 500

rad/s (a) for rigid rings (b) for elastic rings

be related to the system deformation modes. For an identical radial load, the flexible mounting systematically

gives a lower resistance than the rigid case.

Conclusion

An original description of the dynamic behaviour of bearings with DEM is described and interesting electrome-

chanical results are discussed. This type of modelling provides access to new quantities for understanding the

mechanisms of damage (figure 6). Load distribution of the bearing is determined with a contact law based on

analogies with damped springs and deformations of rings using a cohesive model are considered. In a static case

with rigid rings, the contact model Kn verifies Harris’s theory [20] and taking account of the rigidity of the

rolling bearing implies significant effects. An electrical measurement is proposed to diagnose the state of load

in operation. The electrical sensitivity of this measurement allows us to distinguish several radial loads. Subse-

quently, abnormal loads, misalignments and defects generated with decohesion will be imposed on ball bearings

and their electrical signatures will be analysed. For now, the electrical model considers a rough contact but we

could improve this model by taking into account the effect of lubricant with the theory of elastohydrodynamic

lubrication [29]. In this case, the lubricant acts as a capacitor and an electrical model based on impedance

spectroscopy has to be developed. In a future work, simulation results will be compared with experimental

measurements for moderate speeds. Other simulations on a elementary rolling contact will introduce realistic

roughness.
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29:235–257, 1979.

[16] P. A. Cundall. Formulation of three-dimensional distinct element mode part 1. a scheme to detect and

represent contacts in a system composed of many polyhedral blocks. J. Rock Mech., Min. Sci. and

Geomech, 25:107–116, 1988.

[17] R. Stribeck. Ball bearings for various loads. Trans. ASME, 29:420–463, 1907.

[18] H. Hertz. ”uber die beruhrung fester elastischer korper” on the contact of elastic solids. reprinted in

Miscellaneous Papers, Macmillan, pages 146–162, 1896.

[19] R. D. Mindlin and H. Deresiewicz. Elastic spheres in contact under varying oblique force. ASME journal

of applied mechanics, 20:327–344, 1953.

[20] T. A. Harris and M. N. Kotzalas. Rolling Bearing Analysis : Essential concepts of Bearing Technology.

2006.

[21] D. Downson and G. R. Higginson. Elasto-hydrodynamic lubrication. Pergamon Press, 2nd ed, 1977.

[22] B. J. Hamrock and W. J. Anderson. Analysis of an arched outer race ball bearing considering centrifugal

forces. ASME Journal of Tribology, 95 (3):265–276, 1973.

[23] B. D. Lubachevsky and F. H. Stillinger. Geometric properties of random disk packings. Journal of

Statistical Physics, 60 (5):561–583, 1990.

[24] G. D. Scott and D. M. Kilgour. The density of random packing of spheres. Appl. Phys., 2:863–866, 1969.

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

314
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Abstract 

The objective of this paper is to study the numerical behavior (accuracy and numerical instability) 
of two high-order order single step direct integration algorithm for nonlinear dynamic. These 
algorithms are formulated in terms of two Hermitian finite difference operators of fifth-order local 
truncation error. In addition, these algorithms are unconditionally stable with no numerical damping 
for linear dynamic problems. The attention is devoted to the classical second-order Duffing and Van 
der Pol equations, as well the non-linear elastic pendulum, including the first-order Lorenz and 
Lotka-Volterra equations. Numerical applications compare the results including with those obtained 
by the second-order Newmark method    

Keywords: Numerical instability, nonlinear dynamic, Hermitian finite difference algorithms  

Introduction 

The objective of this paper is to study the numerical behavior of two high-order order single step 
direct integration algorithm for nonlinear dynamic. The first one has been developed by the author 
[1] and the second is the classical cubic Hermitian Algorithm developed by Argyris and Mlejek [2]. 
These algorithms are formulated in terms of two Hermitian finite difference operators [3] of fifth-
order local truncation error. In addition, these algorithms are unconditionally stable with no 
numerical damping for linear dynamic problems. As the analytical treatment of the numerical 
instability of the resultant nonlinear difference equation (i.e. the numerical version of the 
differential equation) is quite complex, just numerical investigation is performed. 

As the high-order algorithms takes into account the repeated differentiation of the governing 
equation, additional nonlinear terms are required to solve nonlinear structural dynamic problems. 
Thus, it is interesting to consider, for example, the classic iterative procedures presented by Argyris 
and Mlejek [2]. Although the presence of these additional nonlinear terms increases the number of 
operations in the iterative operations and introduces some numerical noise in comparison to the 
Padè-P22 algorithm family [4], the reduction obtained in the matrix factorization and higher orders 
of the relative radii errors are interesting attributes of the proposed algorithm. Numerical 
applications compare the results including with those obtained by Newmark method. The results 
show that the accuracy of both third-order algorithms is quite similar for refined mesh, but the 
numerical instability (that occurs for coarse mesh) is not similar.    

Hermitian Operators 

The step-by-step integration algorithm to be considered in this paper takes into account the 

following Hermitian operators [1] [3]: 

 
2 2 3 3

i i 1 i i 1 i i 1 i i 1

2 2 3 3
1 i 1 i 1 1 i 1 i 1 1 i 1 i 1 1 i 1 i 1

Ay By C ty D ty E t y F t y G t y H t y 0

A y B y C y D y E t y F t y G t y H t y 0

   

   

             

           
                 (1) 

 

where t  is the time step, i and i+1 indicate the step, y  is the function to be integrated, y , y  and 

y  are derivatives of the function with respect to time; A , B … 1G , 1H  are combination non-

dimension parameters that define the order of accuracy (local truncation error) [3]. Table 1 presents 

the combination parameters for the algorithms herein considered. 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

316



 

Duffing equation 

The Duffing equation and its first time derivative can be expressed as 

 
Table 1. Combination Parameters 

 A B C D E F G H 

Laier [1] 12  -12 6 6 1 -1 0 0 

Argyris [3] 1 -1 1 0 21/60 9/60 3/60 -2/60 

Newmark 0 0 1 -1 1/2 1/2 0 0 

 
1A  1B  1C  1D  1E  1F  1G  1H  

Laier [1] 0 0 12 -12 6 6 1 -1 

Argyris [3] 0 0 1 -1 6/12 6/12 1/12 -1/12 

Newmark 1 -1 1 0 1/4 1/4 0 0 

 

 

 

3

2

y y y y pcos t

y y y 3 y y p sin t

     

       
                                                       (2) 

 

where  ,  ,  , p and   are parameters of the equation. The second and third derivatives present 

in equation (2) can be explicitly written by 

 

 

    

3

3 2

y y y y pcos t

y dy y y pcos t y 3 y y p sin t

     

            
                           (3) 

 

Now, taking into account equation (3) and Hermitian operators (1) the following nonlinear 

recurrence first-order difference equation can be written: 

 

 
 

 
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     

              

            
    (4) 

 

And so, the corresponding Newton iterative formula can be expressed as: 
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      
                          (5) 

  

were subscript i 1y   and i 1y   indicate the partial derivative with respect to these discrete variables 

and the subscript j and j+1 indicate the iteration step . Table 1 compares the first displacement peak 

results for three practical time-steps and the instable time step t limit for 0.4  , 1.0  , 0.5  , 

p=0.5 and 0.5 . 
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Table 1. First peak displacement and instability limit 

t  LAIER[1] ARGYRES[3] NEWMARK 

0.2s 0.5050 0.5050 0.5041 

0.1s 0.5220 0.5220 0.5217 

0.05s 0.5303 0.5303 0.5302 

Instability stable 0.6622s stable 

 

The results show that these two third-order algorithms present the same accuracy, but the cubic 

algorithm presents conditional numerical stability. 

Van der Pol equation 

The Van der Pol equation and its first time derivative are given by 

 

 

 

2 2 2
0 0

2 2 2 2
0 0

y y y y y 0

y y y y 2 yy y 0

   

     
                                                         (6) 

 

where  , 0y  and 0  are parameters of the equation. Table 2 compares the first displacement peak 

results for three practical time-steps and the instable time step t limit for 1.5  , 0y 1 and 

0 1  . 

 
Table 2. First peak displacement and instability limit 

t  LAIER[1] ARGYRES[3] NEWMARK 

0.2s -0.3193 -0.3193 -0.3127 

0.1s -0.3193 -0.3193 -0.3177 

0.05s -0.3199 -0.3193 -0.3189 

Instability 3.773s 11.83s stable 

 

The results show that also these two third-order algorithms present the same accuracy, but just 

Newmark method presents unconditional numerical stability. 

Nonlinear pendulum 

Figure 1 depicts the nonlinear pendulum that has been extensively analyzed by Argyris and Mlejek 

[2]. The equation of motion and its first derivative are written as: 

 

  

     

0.5
2 2

0

0.5 1.5
2 2 2 2 2

0 0

my cy 2ky 2N 2ak a y y f (t)

my cy 2ky 2N 2ak a y y 2 2N 2ak a y y y f (t)



 

     

        

           (7) 

 

where m is the mass of the pendulum, c is the damping, k is the stiffness, 0N  is the pre-tension 

force of the string and f (t) is the excitation force. Table 3 compares the first displacement peak 

results for three practical time-steps and the instable time step t limit for m 500Kg , 0N 500N , 

a 1m , 7k 10 N / m  and    f t 50 1 cos(23.73t)  . 
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Table 3. First peak displacement and instability limit 

t  LAIER[1] ARGYRES[3] NEWMARK 

0.022648s 0.024645 0.024645 0.024624 

0.0052958s 0.024656 0.024656 0.024656 

0.0022648s 0.24656 0.024656 0.024656 

Instability stable 2.2648s stable 

 

 

 

a

a

c
m

y

f (t)

 
Figure 1.  Nonlinear pendulum 

 

The results shown in Table 3 indicate that the considered two third-order algorithms present the 

same accuracy, but the Newmark method and the algorithm developed by the author [1] present 

unconditional numerical stability. 

Lotka-Volterra equation 

The predator-prey Lotka-Volterra equation and its second and third time derivatives are given by 

 
x kx axy

y ly bxy

x kx axy axy

y ly bxy bxy

x kx axy 2axy axy

y ly bxy 2bxy bxy

 

  

  

   

   

    

                                                                          (8) 

 

where k, a, l and b are positive constant. As the Lotka-Volterra is of first-order just the first 

Hermitian operator given by equation (1) is involved. Table 4 compares the first displacement peak 

results for three practical time-steps and the instable time step t limit for k=a=l=b=1. 

 
Table 4. First minimum peak for x function and instability limit 

t  LAIER[1] ARGYRES[3] NEWMARK 

0.01s 0.560288 10
-6 

0.560287 10
-6

 0.549775 10
-6

 

0.001s 0.560280 10
-6

 0.560280 10
-6

  0.560174 10
-6

 

0.0001s 0.560280 10
-6

 0.560280 10
-6

 0.560279 10
-6

 

Instability 0.157s 0.0952s 0.119s 
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The results shown in Table 4 indicate that the two third-order algorithms present again the same 

accuracy, but these three algorithms are not unconditional stable. 

Lorenz equation 

The atmospheric convection Lorenz model is governed by the equation 

 

 x x y

y rx y xz

z xy bz

  

  

 

                                                                  (9) 

 

where  , r and b are constant. The second and third derivatives of equation (9) are given by 

 

 

 

x x y

y rx y xz xz

z xy xy bz

x x y

y rx y xz 2xz xz

z xy 2xy xy bz

  

   

  

  

    

   

                                              (10) 

 

As the Lorenz is of first-order just the first Hermitian operator given by equation (1) is involved 

Table 5 compares the first displacement peak results for three practical time-steps and the instable 

time step t limit for 10.0  , r 28.0  and b 8 / 3 . 

 

Table 5. First minimum peak for x function and instability limit 

t  LAIER[1] ARGYRES[3] NEWMARK 

0.01s 0.203652 10
2 

0.198015 10
2
 0.135838 10

2
 

0.001s 0.200112 10
2
 0.198099 10

2
  0.200108 10

2
 

0.0001s 0.199781.10
2
 0.198100 10

2
 0.199781 10

2
 

Instability stable 0.00510s 0.0976s 

 

The results presented in Table 5 show that the two third-order algorithms present quite similar 

accuracy, but in this case just the algorithm developed by the author is unconditionally stable. 

 

Conclusions 

The numerical applications show that the third-order algorithm developed by the author [1] and the 

cubic Hermitian developed by Argyris and Mlejek present as expected quite similar accuracy for 

refined mesh and little discrepancy for coarse mesh. The Newmark method also presents similar 

accuracy for refined mesh, but the discrepancy of the accuracy increase for coarse mesh. The time 

integration algorithm developed by the author is conditionally stable for Van der Pol and Lotka-

Volterra equations. On the other hand, the Newmark method is conditionally stable for Lotka-

Volterra and Lorenz equation. Finally, one has to note that the cubic Hermitian is conditionally 

stable for these five equations.     
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Abstract 

A straightforward implementation of multi-block lattice Boltzmann method (MB-LBM) on a 
graphical processing unit (GPU) is presented to accelerate simulations of complex fluid flows. The 
characteristics of MB-LBM algorithm are analyzed in detail. The algorithm is tested in terms of 
accuracy and computational time with the benchmark cases of lid driven cavity flow and the flow 
past a circular cylinder, and satisfactory results are obtained. The results show the performance on 
GPU is consistently better than that on CPU, and the greater the amount of data, the larger the 
acceleration ratio. Moreover, the arrangement of computational domain has significant effects on 
the performance of GPU. These results demonstrate the great potential of GPU on MB-LBM, 
especially for the calculation with large amounts of data. 

Keywords: Multi-block, Lattice Boltzmann method, Graphical processing unit, Ratio of 
acceleration. 

Introduction 

During recent decades, the lattice Boltzmann method (LBM) has developed into an alternative 
method for simulating complex fluid flow [1]. LBM is based on the statistical physics and 
originally came from the Boltzmann equation. A direct connection between the lattice Boltzmann 
equation and Navier-Stokes equations has been established under the nearly incompressible 
condition [2]. The fact that LBM evolves rather locally makes it more suitable for parallel 
computing compared to the conventional computation method. 
 
Graphical processing unit (GPU) is designed to process large graphics data sets for rendering tasks, 
so it has exceeded the computation speed of PC-based central processing unit (CPU) by more than 
one order of magnitude while being available for a comparable price. Another advantage for GPU 
application is that Compute Unified Device Architecture (CUDA) provided by NVIDIA, a standard 
C language extension for parallel application development on a GPU, reduces the development 
threshold of GPU programming greatly. Due to the inherent parallelism of LBM, a significant 
speedup of GPU-based computation on LBM has been reported in different areas. Fan et al. [3] 
implemented the LBM simulations on a cluster of GPUs with message passing interface (MPI). 
Tolke and Krafczyk [4] implemented a three-dimensional LBM and achieved near teraflop 
computing on a single workstation. Zhou et al. [5] provided an efficient GPU implementation of 
flows with curved boundaries, leading to nearly an 18-fold speed increase. Tubbs et al. [6] 
implemented LBM for solving the shallow water equations and the advection dispersion equation 
on GPU-based architectures, and the results indicate the promise of the GPU-accelerated LBM for 
modeling mass transport phenomena in shallow water flows. GPU has tremendous potential to 
accelerate LBM computation owing to the parallel nature of LBM.  
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The traditional LBM is often employed on uniform grids, which makes the evolution explicit and 
the algorithm simple, but at the same time could increase the computational effort dramatically on 
the road to high resolution. To solve this problem, a multi-block lattice Boltzmann method 
(MB-LBM) is designed and applied over the flow area where relatively high resolution is needed. 
As a useful tool of grid refinements in LBM, the multi-block technique has been investigated in 
recent years. In 1998, Filippova et al. [7] introduced a local second order refinement scheme and 
provided the theoretical foundation for multi-block techniques. In 2000, Lin and Lai [8] designed a 
composite block-structured scheme by placing the fine grid blocks on needed area for the mesh 
refinement. In 2002, Yu et al. [9] proposed a multi-block scheme, where the fine block is partially 
overlapped at the interfacial lattices, increasing the model efficiency greatly. The model has been 
successfully applied to various areas. Yu and Girimaji [10] extended this model to 3D turbulence 
simulations. Y. Peng et al. [11] applied it in the immersed boundary lattice Boltzmann method with 
multi-relaxation-time collision scheme. Liu et al. [12] validated the multi-block lattice Boltzmann 
model coupled with the large eddy simulation model in transient shallow water flows simulation. 
Farhat et al. [13][14] extended the single phase MB-LBM to the multiphase Gunstensen model, in 
which the grid was free to migrate with the suspended phase, and validated a 3D migrating 
multi-block model. Following from this, the present study aims to develop an efficient and 
straightforward algorithm for the GPU implementation of MB-LBM, and test it in terms of accuracy 
and computational time. 

Multi-block lattice Boltzmann method 

In the present study, the BGK lattice Boltzmann method is used with a two-dimensional 
nine-velocity (D2Q9) discrete velocity model [2], as shown in Fig. 1. The lattice Boltzmann method 
formulates as the following evolution equation: 

 1( , ) ( , ) ( , ) ( , )eqf t t t f t f t f tα α α α αδ δ
τ
 + + = − − x e x x x  (1) 

 

0
1

2

3

4

56

7 8  
Figure 1. Lattice pattern: D2Q9 

 

where fα  is the particle distribution functions representing the probability of particles at position 

x  and discrete velocity αe  at time t ; tδ  is the time step; τ  is the single-relaxation-time, 
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depending on the kinematic viscosity ν , 3 0.5τ ν= + ; eα  is the α th discrete velocity, the 

discrete velocity model is 

 
0 1 0 1 0 1 1 1 1
0 0 1 0 1 1 1 1 1

− − − 
=  − − − 

e  (2) 

eqfα , the approximate of the Maxwell-Boltzmann equilibrium distribution function at low numbers, 

is expressed as follow: 

 
2 2

2 4 2

( )1
2 2

eq
i

s s s

uf w
c c c
α α

α ρ
 ⋅ ⋅

= + + − 
 

e u e u  (3) 

where wα  is the weighting coefficient, valued by 0 4 / 9w = , 1 2 3 4 1/ 9w w w w= = = =  and 

5 6 7 8 1/ 36w w w w= = = = ; the sound speed is 1/ 3sc = ; ρ  and u  are the macroscopic density 

and velocity, which can be calculated from the distribution function respectively by: 

 
8 8

0 0

eqf fα α
α α

ρ
= =

= =∑ ∑  (4-1) 

 
8 8

0 0

eqf fα α α α
α α

ρ
= =

= =∑ ∑u e e  (4-2) 

 
This paper uses the multi-block method proposed by Yu et al. [9], which satisfies the continuity of 
mass, momentum and stresses across the interface. To illustrate the basic idea, a two-block system 
consisting of a coarse block and a fine block is shown in Fig. 2. 
 

M N

A B

 
Figure 2. Interfaces structure between two blocks 

 
The ratio of the lattice space between coarse blocks and fine blocks m is defined as: 

 /c f c fm x x m mδ δ= =  (5) 
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where the subscript c refers to the coarse block while f refers to the fine block, cxδ  and fxδ  are 

the lattice space, 1cm =  and /f c fm x xδ δ=  are the lattice space parameters. To maintain a 

consistent viscosity across blocks, the relaxation time fτ  on the fine block and cτ  on the coarse 

block have to satisfy the following equation: 

 =0.5 ( 0.5)f f cmτ τ+ −  (6) 

 
The transfer of the post-collision distribution functions between different blocks happens after the 
collision step. Since each interface grid consists of overlapping two sets of coarse and fine nodes, 

the information of coarse boundary nodes can be obtained after fm  steps of evolution on the fine 

grid, where the post-collision distribution cfα  for the coarse block is written as: 

 , ,1 ( )
1

c eq f f eq fc
f

f

f f m f fα α α α
τ
τ

−
= + −

−
   (7) 

Similarly, when transferring the data from the coarse block to the fine block, one follows: 

 , ,1
( )

( 1)
ff eq c c eq c

f c

f f f f
mα α α α

τ
τ
−

= + −
−

   (8) 

As shown in Fig. 2, the line MN is the fine block boundary, while the line AB is the coarse block 
boundary. The information on the nodes noted by solid symbol can be obtained through spatial 
interpolation based on the information at the open nodes on the line MN.  
 
To eliminate the possibility of spatial asymmetry caused by interpolations, a symmetric cubic spline 
fitting is used to calculate the unknown nodes on the fine blocks [9], which is done by 

 
3 3

1 1

1 1

( ) ( ) ( ) ( ) ( )i i i i i i i i

i i

f x a x x b x x c x x d x x
x x x

− −

− +

= − + − + − + −
≤ ≤


 (9) 

where according to the continuity of the nodal condition of f  and f ′  (the first order derivation 

of f ), and suitable end condition, the coefficients ( , , , )i i i ia b c d  in Eq. (9) are computed as 

follows: 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

325



 

1

1 1

6

6

6

6

i
i

i

i
i

i

i i i
i

i

i i i
i

i

Ma
h

Mb
h

f M hc
h

f M hd
h

−

− −

=

=

= −

= −





 (10) 

where iM  is the second order derivatives of if , following the equation 

 1 1 1 10.5 2 0.5 3(2 )i i i i i iM M M f f f− + − ++ + = − −  (11) 

The natural spline end condition is stipulated with 0 0nM M= = .  

 
A three-point Lagrangian scheme is used in the temporal interpolation of the post-collision 
distribution function on the interface grid at the specific time: 

 
1 1

1 1
( ) ( )f f k

i i k
k k k kk k

t tf t f t
t t

′

′=− =− ′′≠

 − = ∑ ∏
 − 

   (12) 

So the function for the nth evolution of the fine block is expressed as 

 1 0 1( ) 0.5 1 ( ) 1 1 ( ) 0.5 1 ( )f f f f
i i i i

f f f f f f

n n n n n nf t f t f t f t
m m m m m m−

      
= − − − + + +            

      
     (13) 

where the present time is 0
f

nt t
m

= + . 

 
The flow chart of the computational sequence for the MB-LBM in the two-block system is shown in 
Fig. 3.  
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Set initial values in all blocks

Stream in coarse blocks

Calculate macroscopic variables and 
collision in coarse blocks

Spatial interpolation for boundary points in fine 
blocks, and store them for temporal interpolation

Stream in fine blocks

Calculate macroscopic variables and 
collision in coarse blocks

Temporal interpolation to obtain values on 
boundaries of fine blocks

Transfer boundary information in fine blocks to coarse blocks;
Transfer the spatial interpolation values to fine blocks boundaries

cudaMemcpy to host, and output

end

i>=N

Stream in fine blocks

Calculate macroscopic variables and 
collision in coarse blocks

No

 
Figure 3. The flow chart of the computational sequence for MB-LBM 

 
In this paper the momentum-exchange method [15] is used to calculate the force exerted onto the 
obstacle considering its simplicity. In order to differentiate the nodes in the computational domain, 
node type is employed to donate the fluid node, boundary node of computational domain, boundary 

node of blocks and solid node. If particles in the solid node ( , )b i jx  of the fine block, will move to 

a fluid node along the direction αe  in the next step, values ( , , )i j α  should be stored in an array. 

The force can be calculated by 

 [ ]
 ( , , )

1 ( ) ( )b b
All i j

f f t
m α α α α α

α

δ− +∑F = e x e x e  (14) 

GPU implementation 

A graphical processing unit (GPU) is specifically designed to process large graphics data sets for 
rendering tasks. As GPU has a number of processing cores, so besides graphic rendering tasks, it 
also is used to implement other parallel computing tasks. In this work, the simulation is carried out 
on a CPU platform of Intel Xeon(R) W3550, 3.07GHz) with RAM of 24.0 GB and a NVIDIA 
GPUs device (Geforce 980ti), programming using CUDA (Compute Unified Device Architecture). 
 
In the CUDA programing architecture, CPU is considered to be the host, while GPU is considered 
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to be the device. The code is split up into a CPU and GPU part, the latter is called kernel, compiled 
by NVIDIA C-Compiler (NVCC). When a kernel function is launched with required parameters, the 
number of blocks and the number of threads in each block (256 in this paper), it is executed by 
these threads on a device. In one block, each thread is indexed by a thread identification. Threads 
from different blocks cannot communicate, while threads from the same block are independent, but 
can communicate via shared memory and have synchronize execution. A kernel is executed in a grid 
of thread blocks indexed by a block identification. The grid terminates when all threads of a kernel 
complete their execution, and the execution continues on the host until another kernel is launched.  
 
The memory access of the kernel has a great influence on the implementation performance. The 
registers are trace buffer on GPU, and can be accessed with nearly no time delay, but is rather small, 
so excessive local variables used in kernel should be avoided. The global memory is a device 
memory and is the largest memory device in GPU, but not as fast as the registers. In this work, each 
node requires nearly 200 bytes of memory for double precision computation, so most of the data 
will be stored in the global memory. Besides, there is a share memory for each multiprocessor, 
allowing communication between threads, and can be accessed as fast as the registers. The constant 
memory, which can also be fast accessed, is used to store the constants that are read only and are 
accessed frequently. 
 
The LBM code is highly parallelizable since it can be separated into two main steps, streaming and 
collision [2]. In the collision step, the distribution functions of a certain node will not exchange with 
its neighbor, and the post-collision function is given by 

 1( , ) ( , ) ( , ) ( , )eqf t f t f t f tα α α ατ
 = − − 

 x x x x  (15) 

The streaming step is related to the distribution functions of the surrounding nodes according to Eq. 
(1) and Eq. (15). Considering the fact that misaligned read is faster than misaligned write[16], the 
streaming is carried out with the following equation 

 ( , ) ( , )f t t f t tα α αδ δ+ = −x x e  (16) 

To increases the efficiency of data communication, the collision and the streaming step are 
combined into one kernel to avoid repeated access of global memory for distribution functions.  
 
For systems containing multi-level blocks, according to the flow chart in Fig. 3, the computation 
can be expressed with a recursive function shown in Fig. 4. 
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void evolution(int level)
{

for (int i=0; i<m[level]; i++)
{

if (level == LEVEL)
return;

if (!(level == 0 || i == 0))
{

//temporal interpolation
}
//stream, calculate macroscopic variables and collision
//information exchange between the present level blocks
if (level != LEVEL-1)
{

//spatial interpolation to prepare for blocks, level+1
}
evolution(level+1);
if (level != 0 && i == m[level]-1) 
{

//Transfer boundary information in blocks level+1 to level;
//Transfer the spatial interpolation values to level+1

}
}

}  
Figure 4. Program of the recursive function for MB-LBM 

 
Since there are always the same data types of variables needed to be record in each node, a struct 
body, including pointers to node type, position, density, velocity, distribution functions and 
post-collision distribution functions, is created to store variable information. With these pointers, 
memory in host and device is allocated dynamics for the variables.  
 

In the stage of the spatial interpolation, it is needed to obtain iM  in Eq. (10) and Eq. (11). In serial 

processing, the tridiagonal matrix in Eq. (11) is solved with the Thomas algorithm, which is almost 
unfeasible in parallel algorithm. The cuSPARSE library presented by NVIDIA contains a set of 
basic linear algebra subroutines used for handling sparse matrices in parallel mode. The function 
cusparseDgtsv() is employed in this paper. It can be used by cusparseDgtsv(cusparseHandle_t 
handle, int m, int n, const double *dl, double *d, double *du, double *B, int ldb), where handle is 
the handle to the cuSPARSE library context; m is the size of the linear system (must be larger than 

or equal to three); n is the columns of matrix B, which means iM  for different variables can be 

solve in a single call; array dl, d, du contain the lower, the main, the upper diagonal of the 
tridiagonal linear system, respectively; B is the right-hand-side array, ldb is the leading dimension 
of B. The solution will be written in array B before the function completes. 
 
It is obvious that the spatial interpolation in parallel is much more complex than the temporal 
interpolation, so it is suggested that the largest ratio of the lattice space between adjacent levels 
should be placed on the finest level. And in this work, the arrangement of levels is expressed in 
form of m1-…-mi-…-mn in coarse-fine order, where m1 is always 1, mi is the ratio of the lattice 
space of level i to that of level i-1. So as mentioned, the arrangement of levels 1-2-3 is better than 
1-3-2. 
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In this work, all the procedures but output are completed on the GPU directly to eliminate the 
unnecessary copy between host and device. At the same time due to the fact that the atom function 
atomicAdd() in the CUDA toolkit provided by NVIDIA can only be used for Integer and Long, the 
parallel reduction is used to calculate the force in Eq. (14) after loading the position and direction. 

Presentation of test cases and discussion 

Lid driven cavity flow 

The lid driven cavity flow has been extensively used as a benchmark problem to test the accuracy of 
a numerical method. The computations are carried out using the multi-block computational domains, 
whose schematic diagrams are shown in Fig. 5. 
 
In all the arrangements, the finest blocks are placed on the areas of singularity points or changing 
sharply. As shown in Fig. 5, the finest blocks is located in the two upper corner regions. In Fig. 5(a), 
there are two levels of blocks and four separate blocks in the calculation. Block 1 and block 2 
belong to the first level; block 3 and block 4 belong to the second level; the diagram in Fig. 5(b) 
contains three levels and seven blocks, while block 1 belong to the first level, block 2 and block 3 
belong to the second level, and block 4 to block 7 belong to the third level. 
 
The simulation region is 128-128. The initial condition for density is unity and that for velocity is 
zero. The upper wall velocity is U = 0.1. All the boundaries uses the moving boundary half-way 
bounce-back scheme.  
 

  
(a) (b) 

Figure 5. Arrangements of blocks for the lid driven cavity flow 
 
To assess the results, the solutions of Ref. [17] and Ref. [18] are used for comparison. The 
dimensionless locations of the centers of the primary vortex, the lower left vortex and the lower 
right vortex of present work and of previous literatures are listed in Table 1. As shown in Table 1, 
all the results show a good agreement with previous researches. And for Re = 2000, different 
arrangements of blocks appear identical results. 
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(a) Re = 100 (1-2) (b) Re = 1000 (1-4) 

  
(c) Re = 2000 (1-2-2) (d) Re = 2000 (1-2-4) 

 
(e) Re = 2000 (1-4-2) 

Figure 6. Streamlines for the lid driven flow 
 

Table 1 Comparison of the vortex centers with previous literatures [17][18] 

Re Arrangement Primary vortex Lower left vortex Lower right vortex 
100     

Present 1-2 (Fig. 5(a)) (0.6142, 0.7402) (0.0354, 0.0394) (0.9370, 0.0669) 
Ref. [17]  (0.6172, 0.7344) (0.0313, 0.0391) (0.9453, 0.0625) 
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1000     
Present 1-4 (Fig. 5(a)) (0.5276, 0.5669) (0.0866, 0.0787) (0.8504, 0.1181) 

Ref. [17]  (0.5313, 0.5625) (0.0859, 0.0781) (0.8594, 0.1094) 
 

2000     
Present 1-2-2 (Fig. 5(b)) (0.5238, 0.5555) (0.0873, 0.1032) (0.8413, 0.0992) 

 1-2-4 (Fig. 5(b)) (0.5238, 0.5555) (0.0873, 0.1032) (0.8413, 0.0992) 
 1-4-2 (Fig. 5(b)) (0.5238, 0.5555) (0.0873, 0.1032) (0.8413, 0.0992) 

Ref. [18]  (0.5250, 0.5500) (0.0875, 0.1063) (0.8375, 0.0938) 
 

Flow past a circular cylinder 

A flow past a circular cylinder is simulated to implement the parallel algorithm in simulation 
domain that has more levels and blocks. 
 
The arrangement of the computational domain is shown in Fig. 7. There are four levels of blocks in 
the simulation. Block 1 to block 4 belong to the first level; block 5 and block 6 belong to level two; 
block 7 to block 9 belong to level 3; block 10 belong to level 4, the finest level. The ratio of the 
lattice space between adjacent levels is 1-2-2-2. 
 
In this calculation, the cylinder diameter D is set to 6. The length of the simulation region is 320, 
and the width is 128. The center of the cylinder is at (64, 64), which makes it located in the finest 
block, as shown in Fig. 7. The slip boundary scheme is implemented on the top and bottom 
boundaries. The standard bounce back scheme is used on the cylinder surface. The velocity and the 
pressure scheme of Zou and He are applied on the inlet and the outlet boundaries, respectively, 
where the far field velocity is U0=0.1 and the initial density is unity. The relaxation time for the first 
level grid is computed by Re=100, based on the far field velocity and the diameter of the cylinder. 
 
Drag coefficient, lift coefficient and Strouhal number are the benchmark dimensionless numbers for 
the flow past a circular cylinder. The drag and the lift coefficients are calculated using the following 

formulae, 2

2 D
D

FC
U Dρ

=  and 2

2 L
L

FC
U Dρ

= , and the Strouhal number is defined as aDSt
U

= , where 

LF  the lift force, DF  the drag force, D  the cylinder diameter, a  the frequency of 

vortex-shedding, obtained by processing LF  with Fast Fourier Transform. 
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Figure 7. Arrangement of blocks for the flow past a circular cylinder 

 

 
Figure 8. Velocity contour for the flow past a circular cylinder 

 

10 8

 
Figure 9. Vorticity contour for the flow past a circular cylinder 

 
Table 3 Comparison of results at Re = 100 with previous literatures [19][20][21] 
Author CD CL St 

Silva [19] 1.39 - 0.16 
Zhou [20] 1.428 0.315 0.172 
Xu [21] 1.423 0.34 0.171 

This work 1.381 0.304 0.168 
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The velocity contour for the flow past a circular cylinder is shown in Fig. 8. The instantaneous 
vorticity contours of vortex shedding are plotted in Fig. 9. It can be seen clearly that the vorticity is 
rather smooth across the block interface. This shows that the implementation of multi-block scheme 
functions well for unsteady flow. Table 3 shows our numerical results compare well with the 
previous results, despite little differences. 

Assess the performance of MB-LBM code on GPU 

The parameters of performance of MB-LBM on CPU and on GPU is shown in Table 2, including 
the time spending for evolution of 104 steps (in second), the number of lattice updates per step in an 
arrangement (LUPS), million lattice updates per second (MLUPS), and the acceleration ratio of 
GPU to CPU. In general, LUPS represents the amount of data, and a large MLUPS means a high 
data processing speed. 

 
Table 2 Performance of CPU and GPU for 104 steps 

Case Arrangement LUPS CPU GPU Acceleration 
ratio Time MLUPS Time MLUPS 

1 1-2 (Fig. 5(a)) 31267 205.66 1.52 64.52 4.85 3.19 
2 1-4 (Fig. 5(a)) 145691 1083.28 1.34 86.63 16.82 12.50 
3 1-2-2 (Fig. 5(b)) 300688 1894.23 1.59 245.59 12.24 7.71 
4 1-2-4 (Fig. 5(b)) 2090912 19543.09 1.07 498.00 42.00 39.24 
5 1-4-2 (Fig. 5(b)) 2326104 21736.04 1.07 659.12 35.29 33.00 
6 1-2-2-2 (Fig. 7) 790392 5835.10 1.35 578.71 13.66 10.08 

 
It can be seen from Table 2 that the ratio of acceleration is not a constant, and performance on GPU 
is always better than that of CPU. To be specifically, as the amount of data increases, roughly the 
speedup is more obvious. Besides, the arrangement of computational domain has great impact on 
the performance of GPU. In case 2 and case 3, the resolution of upper corners is the same, but on 
GPU the performance of case 2 is much better while with a smaller LUPS, so it is not recommended 
to employ more levels for the same resolution. In addition, according to the performance of case 4 
and case 5, considering the time consumed by spatial interpolation in MB-LBM, it is verified that 
the largest ratio of the lattice space between adjacent levels should be placed on the finest level.  

Conclusion 

In this paper, a straightforward multi-block LBM parallel algorithm based on a single GPU has been 
presented. The characteristics of MB-LBM algorithm are analyzed in detail. The benchmark cases 
of the lid driven cavity flow and the flow past a circular cylinder are investigated as the test cases 
for the GPU-based implementation, and satisfactory results are obtained. Performance on GPU is 
always better than that of CPU, and the greater the amount of data, the larger the acceleration ratio. 
And arrangement of computational domain has significant effects on the performance. The largest 
acceleration ratio 39.24 are achieved by now, however that still leaves room for a large rise in 
computation with large amounts of data. 
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Abstract 
Modeling and prediction of criteria pollutants over the urban areas is essential for the 
formulation and improvisation of urban air quality management strategies. Various statistical 
techniques have been employed worldwide for accurate prediction of the air pollutants. This 
study focuses on the analysis and prediction of the criteria pollutants over a tropical urban 
area (Durgapur, 23̊ 30′ 34.58″ N and 87̊ 21′ 03.42″ E) performed by using statistical models 
viz. multiple linear regression (MLR) and principal component regression (PCR). Multiple 
linear regression analyses have been performed using the original variables and principal 
components (PCs) as the inputs. On the basis of the performance indicators, MLR model is 
found to perform better than the PCR in most cases. The R2 values obtained by MLR are 
0.962, 0.945, 0.898, 0.937, 0.603, 0.874, 0.871, 0.837, 0.858, 0.868, 0.842 and 0.825 for 
PM10, PM2.5, sulphur dioxide, nitrogen dioxide, carbon monoxide, ammonia, ozone, benzene, 
benz(a)pyrene, arsenic, lead and nickel respectively which are greater than the respective R2 
values obtained by PCR model. Results of the two models reveal that use of PCA could not 
enhance the MLR performance. The predictive equations proposed by the statistical models 
suggest that the meteorological parameters (temperature, relative humidity, wind speed and 
cloud cover) have significant influence on the concentration of the criteria pollutants. 
 
Key words: PCR, MLR, Performance Indicators, criteria pollutants 
 
 
1. Introduction 
Escalating air pollution and deteriorating air quality status of urban areas is a matter of 
concern worldwide. In this era of rapid urbanization and industrialization, air pollutants 
containing toxic substances like particulate matters, heavy metals, polycyclic hydrocarbons 
(PAH), volatile organic compound (VOC) and other  gaseous substances (like SO2, NO2, CO, 
NH3, tropospheric O3 etc.) have an increasing impact on urban air quality. Actually, air 
pollution risk is a function of the hazard of the pollutant and exposure to the pollutant. Carbon 
monoxide, lead, nitrogen dioxide, ozone, particulate matter, and sulfur dioxide have identified 
as criteria pollutants by Clean Air Act (CAA) of 1970. Central Pollution Control Board 
(CPCB) has identified 12 health based parameters [namely particulate matters (PM10 & 
PM2.5), benzene, benzo(a)pyrene, nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon 
monoxide (CO), ammonia (NH3),ozone (O3), lead (Pb), nickel (Ni) and arsenic (As)] for 
assessing the air quality status across the country in 2009 under the provision of Air 
(Prevention & Control of Pollution) Act, 1981. 
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The complexities and difficulties in continuous measurement of air pollutant concentrations 
have led to the development of modeling techniques which enable the researchers to predict 
the pollutant concentration with acceptable accuracy [1]. Accurate knowledge of pollutant 
sources, emission inventories and proper description of the physico - chemical processes are 
essential for minimizing biasness and errors of the outputs of the deterministic models. These 
are quick and easy empirical techniques for predicting the ambient air pollutant concentration 
as a function of several input parameters. In air quality modeling, one of the most common 
models available for predicting outdoor and indoor air pollutant concentrations are statistical 
regression methods [2]. Statistical models are suitable for the description of the complex site-
specific relationship between air pollutants and explanatory variables, and they often make 
predictions with a higher accuracy than mechanistic models [3]. Multiple linear regression 
(MLR) is a widely used multivariate statistical technique for expressing the dependence of a 
response variable on several independent (predictor) variables. Awang et al. [4] compared the 
multivariate methods (MLR and PCR) for predicting the surface O3 concentration during 
daytime, nighttime and critical conversion time in Shah Alam, Malaysia. The concentration 
PM10, PM2.5, CO and CO2 concentrations and meteorological variables (wind speed, air 
temperature, and relative humidity) were employed by Elbayoumi et al. [5] for predicting the 
annual and seasonal indoor concentration of PM10 and PM2.5 at Gaza Strip (Palestine) using 
multivariate statistical methods. Luvsan et al. [6] used multiple linear regression models for 
exploring the association of concentration of SO2 with temperature, relative humidity and 
wind speed in Mongolia. Sayegh et al.[7] employed several approaches including linear, non-
linear, and machine learning methods are evaluated for the prediction of urban PM10 
concentrations in the City   of Makkah, Saudi Arabia. 

In the present work, we predict the concentration of various criteria pollutants by using 
multiple linear regression (MLR) and principal component regression (PCR) models, the 
performance of both the statistical models is evaluated in terms of the performance indicators. 
Deterministic models require a large number of input data which are difficult to provide 
whereas statistical models are relatively simple and sufficiently reliable tools for predicting 
the concentration of different air pollutants. Moreover, application of multivariate statistical 
methods for the prediction of the air pollutants is a new piece of work over this eastern part of 
India. 
 
2. Method 

2.1 Description of the study area 
Durgapur (chosen urban area) is situated in the Burdwan district of West Bengal, India. It is 
located on the bank of River Damodar. This area is covered with Red and Yellow Ultisols soil 
and the topography of this area is undulating, with an average elevation of 65 m MSL. This 
area experiences a transitional climate between the tropical wet and dry climate and the more 
humid subtropical climate. 
 
2.2 Data used 
The data of concentration of all the criteria pollutants such as ammonia, arsenic, benzene, 
benzo(α)pyrene, carbon monoxide, lead, nickel, nitrogen dioxide, ozone, sulphur dioxide, 
PM10 and PM2.5 at Bidhannagar, India (23̊ 30′ 34.58″ N and 87̊ 21′ 03.42″ E) were collected 
for the duration of June, 2013 to May, 2015 from the archived data set of WBPCB 
(Bidhannagar unit of Durgapur). These parameters are monitored twice a week at this location 
by WBPCB [www.wbpcb.gov.in]. The data of meteorological parameters [Temperature (T), 
relative humidity (RH), wind speed (WS) and cloud cover (CC) are collected from the NOAA 
Air Resources Laboratory (ARL) website. (http://ready.arl.noaa.gov/READYamet.php). 
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The air pollutants and the meteorological parameters data were divided into two sets: model 
development set and the model validation set. The model development set comprises of the 24 
average values of criteria air pollutants and meteorological parameters recorded from June, 
2013 to December, 2014 while the data set of January, 2015 to May, 2015 is used for data 
validation. The accuracy and errors in the MLR and PCR models were evaluated in terms of 
performance indicators (PIs) 

2.3 Statistical analysis 

Data analysis was carried using the statistical software XLSTAT 2015. Step wise multiple 
regression (MLR) and Principle Component Regression (PCR) analyses have been used for 
finding the predictive equations of the criteria pollutants. 
 
2.3.1 Principal component analysis (PCA) 
Among multivariate techniques, Principal Components Analysis (PCA) is designed to classify 
variables based on their correlations with each other. The  goal  of  PCA  and  other  factor  
analysis procedures,  is  to  consolidate  a  large  number  of  observed  variables  into  a  
smaller  number  of  factors (components) that can be more readily interpreted as these 
underlying processes. It is often used as an exploratory tool to identify the major sources of air 
pollutant emissions [8] [9]. For physical interpretation of the components, loadings of 
variables on the component are estimated. Loading represents the degree and direction of 
relationship of the variables with a factor. An analysis of the PC loadings on the chosen 
variables allows the identification of the PCs as pollution sources affecting the data. The 
number of factors (PCs) is selected such that the cumulative percentage variance explained by 
all the chosen factors is more than 70%. As the normalized variables each carry one unit of 
variance, so the factors with eigen value more than 1 are chosen for the study. The factors 
with eigen values less than one are discarded as they are assumed to contain less information 
[10]. To undertake PCA, the XLSTAT 2015 statistical software was used, specifying the 
principal components method with varimax rotation  [11].  The rotation of the component axis 
is performed so that components are clearly defined by high loadings for some variables and 
low loadings for others, facilitating the interpretation in terms of original variables. 

The principal components of the predictor variables are obtained using a data reduction 
technique by means of finding linear combinations of the original variables. In general, PCs 
are expressed by the following equation 

PCi = A1i Vi + A2iV2+……..+ AniVn ………………...…………….. (1) 

where, 

PCi is principal component i and 

Ani is the loading (correlation coefficient) of the original variable Vn. 

As the scores of high loading components with an eigen value greater than or equal to 1 
account for most of the variations in the data set, it is ideal to use them as independent or 
predictor variables in regression analysis. Thus, principal component regression (PCR) 
establishes relationship between dependent variables and the selected PCs of the independent 
variables [12]. 

2.3.2 Multiple Linear Regression (MLR) 

Multiple linear regression attempts to model the relationship between two or more 
explanatory variables (independent variables) and a response variable (dependent variable) by 
fitting a linear equation to observed data. This multivariate statistical technique finds wide 
application in the field of atmospheric science, especially air pollution studies. The MLR 
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technique has the capability of exploring the contribution of selected variables to chosen air 
pollutant concentration. The general equation of MLR is expressed as [12] 

y = b0 +  + ξ ….……….…………….…...….…………(2) 

Where,   
bi is the regression coefficient,  
xi is the independent variable, and  
ξ is the stochastic error associated with the regressions. 

 
2.3.3 Principal Component Regression (PCR) 

Principal Component Regression (PCR) is a combination of Principal Component Analysis 
(PCA) and Multiple Linear Regression (MLR). The PCs obtained in PCA are used as the 
inputs in MLR. The selected variables with high loadings from PCA ensure the inclusion of 
the majority of the original variances in the statistical model and they are ideal for use as 
independent variables in MLR [12]. The use of PCs as the independent variables of MLR 
reduces the problem of multicolinearity. 

2.3.4 Performance Indicators (PIs) 

The performance of MLR and PCR models are assessed on the basis of the performance 
indicators (PIs). Good prediction models should have minimal errors (closer to 0 for NAE and 
RMSE) and high accuracy (closer to 1 for IA, PA, and R2). The following PIs are used in this 
study - 

• Normalized Absolute error (NAE) - It measures the average difference between 
predicted and observed values in all cases divided by observed values [5] and is expressed as: 

NAE=   ………………….……………………(3) 

where n is the sample size, Pi is the predicted concentration of the criteria pollutant and  Oi is 
the observed value of the pollutant concentration. 

• Root Mean Square Error (RMSE) - It measures the success of numerical prediction. 

RMSE is calculated by the equation [13] [14] 

RMSE=  …………………………..….. (4) 

where n is the number of sample, Oi is the observed  concentrations of the pollutants  and Pi is 
the predicted concentration of the pollutants. 

• Prediction accuracy (PA) - The prediction accuracy is computed using by the 
following equation [15]: 

PA=   ……………………………………. (5) 

where n is the number of sample, Oi is the observed  concentrations of the pollutants  and Pi is 
the predicted concentration of the pollutants. 

• Index of agreement (IA) - a measure of accuracy, was calculated using Equation (6) 
[16]. 

IA= ……...……………………… (6) 
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where n is the number of sample, Oi is the observed  concentrations of the pollutants  and Pi is 
the predicted concentration of the pollutants 

• Coefficient of determination (R2) - The coefficient of determination explains how 
much the variability in the predicted data can explain by the fact that they are related to the 
observed values. R2 is expressed by the following equation [15] : 

R2= …………..…...……...................... (7) 

where n is the number of sample, Oi is the observed concentrations of the pollutants and Pi is 
the predicted concentration of the pollutants,  is the average of predicted value ,  is the 
average of observed values, Spred is a standard deviation of the predicted pollutant 
concentration, Sobs is a standard deviation of the observed pollutant concentration. 

 

3. Result and discussion 

3.1 MLR model development 
MLR modeling (stepwise method) has been performed for finding the predictive equations of 
the criteria pollutants with the regression assumptions approximately satisfied. During this 
statistical analysis, the distribution of residuals was approximately with zero mean and 
constant variance. Variance Inflation Factor (VIF) was mostly below 10 except on very few 
occasions when the VIF value exceeded 10. Therefore, the MLR predictor variables have 
negligible collinearity problem. 
 
3.2 PCR model development 
PCA was applied for variable reduction and for providing most relevant variable for 
understanding the pollutant variation. Varimax rotation was applied in PCA for maximizing 
the loading of a predictor variable on one component. The adequacy of input data for the PCA 
was assessed using the Kaiser–Meyer–Olkin (KMO) test. The results obtained from 
application of KMO test on the input data set were more than 0.5 which indicated that the 
input data set were sufficient for PCA. 
Before extraction using PCA, 16 linear components (twelve criteria pollutants, temperature, 
humidity, cloud cover and wind speed) were used. After performing PCA, three linear factors 
were considered as principal components (PCs) on the basis of their eigen values. In PCA, the 
eigen value provides the amount of variation explained by each PC. As the normalized 
variables each carry one unit of variance, the factors with eigen value more than 1 were 
chosen for the study. The factors with eigen values less than one are discarded as they provide 
less information [10]. Occasionally, eigen values smaller than unity are considered as they are 
very close to one [17].The variability of PCs obtained after varimax rotation are summarized 
in Table 1.The obtained PCs are used as the independent variables (explanatory variables) and 
the original criteria pollutant as the dependent variables in stepwise multiple linear regression 
analysis in PCR model. The use of PCs as input in MLR is intended to reduce the complexity 
and multicollinearity problems of the models.  
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Table 1. Total variance for different criteria pollutants after varimax rotation 

Sl.No. Parameter Components Eigen value Variability (%) Cumulative % 
1 PM10 PC1 8.880 35.416 35.416 

  
PC2 1.938 15.687 51.103 

  
PC3 1.064 23.157 74.260 

2 PM2.5 PC1 8.962 34.053 34.053 

  
PC2 1.933 15.327 49.379 

  
PC3 1.094 25.556 74.935 

3 Sulphur dioxide PC1 8.960 29.705 29.705 

  
PC2 1.959 14.692 44.397 

  
PC3 1.091 30.666 75.063 

4 Nitrogen dioxide PC1 8.922 32.114 32.114 

  
PC2 1.903 15.527 47.641 

  
PC3 1.087 26.808 74.449 

5 Carbon monoxide PC1 9.596 33.732 33.732 

  
PC2 1.550 31.157 64.889 

  
PC3 1.031 11.214 76.104 

6 Ammonia PC1 9.054 32.690 32.690 

  
PC2 1.897 15.845 48.535 

  
PC3 1.067 26.579 75.114 

7 Ozone PC1 9.115 30.682 30.682 

  
PC2 1.848 15.140 45.822 

  
PC3 1.110 29.638 75.460 

8 Benzene PC1 9.128 40.932 40.932 

  
PC2 1.960 22.655 63.588 

  
PC3 0.941 11.591 75.178 

9 Benz(a)Pyrene PC1 9.162 39.499 39.499 

  
PC2 1.951 23.602 63.101 

  
PC3 0.999 12.597 75.699 

10 Arsenic PC1 8.962 33.076 33.076 

  
PC2 1.952 15.137 48.213 

  
PC3 1.090 26.814 75.027 

11 Lead PC1 9.434 31.759 31.759 

  
PC2 1.620 12.760 44.520 

  
PC3 1.103 31.461 75.980 

12 Nickel PC1 9.018 33.232 33.232 

  
PC2 1.959 15.636 48.868 

    PC3 1.097 26.593 75.461 
 

 

3.3 Comparison of MLR and PCR models  

MLR and PCR models provide an estimate of 24 hour average concentration of all the criteria 
pollutants (Table 2). 
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Table 2. Summary of models of all the criteria pollutants using Multiple Linear 
Regression (MLR) and Principal Component Regression (PCR) 

 

Sl.No. Parameter Method R2 Model 

1 PM10 MLR 0.962 PM10 = 0.135+4.138*As + 17.633*BAP + 1.788*Ni + 1.156*PM2.5 

  
PCR 0.918 PM10 = 102.688 + 23.684*PC1 + 17.671PC2 + 35.397*PC3 

2 PM2.5 MLR 0.945 
PM2.5 = 6.22 - 4.01*BAP -0.13*O3 + 0.529*PM10 + 1.745*SO2 - 

2.455*WS 

  
PCR 0.852 PM2.5 = 59.280 + 11.535*PC1 + 12.138*PC2 + 18.645*PC3 

3 
Sulphur dioxide 

(SO2) MLR 0.898 
SO2  = 1.184 + 0.093*NH3 - 0.283*As +3.553*Pb + 0.108*NO2 - 

0.042*O3+ 0.018*PM2.5 

  
PCR 0.779 SO2 = 8.22 + 1.01*PC1 + 0.746*PC2 + 1.231*PC3 

4 
Nitrogen dioxide 

(NO2) MLR 0.937 NO2 = 28.993 - 20.994*CO + 0.298*O3 + 3.837*SO2 - 0.723*RH 

  
PCR 0.888 NO2 = 53.871 + 9.939*PC1 +1.281*PC2 +  11.993*PC3 

5 
Carbon 

monoxide (CO) MLR 0.603 CO = 0.743 + 0.498*Pb - 0.005*Ni - 0.004*T 

  
PCR 0.439 CO = 0.665 + 0.017*PC2 + 0.046*PC3 

6 Ammonia (NH3) MLR 0.874 
NH3 = 3.957 + 1.039*As - 2.153*C6H6 + 7.971*CO - 17.578*Pb + 

0.410*Ni +0.142*O3 + 1.085*SO2 

  
PCR 0.799 NH3 = 25.773 + 2.498*PC1 + 4.244*PC3 

7 Ozone (O3) MLR 0.871 O3 = 14.02 + 1.255*NH3 + 4.316*As + 0.659*NO2 -4.083*SO2 - 0.066*CC 

  
PCR 0.77 O3 = 53.433 + 7.695*PC1 - 1.579*PC2 + 12.798*PC3 

8 Benzene (C6H6) MLR 0.837 C6H6 = 1.093 + 0.536*BAP - 0.447*CO + 0.002*PM10 

  
PCR 0.698 C6H6 = 1.352 + 0.229*PC1 + 0.21*PC2 

9 
Benzo(a)pyrene 

(BAP) MLR 0.858 BAP = -0.643 + 0.067*As + 0.755*C6H6 + 0.003*PM10 - 0.038*SO2 

  
PCR 0.71 BAP = 0.579 + 0.265*PC1 +0.318*PC2 

10 Arsenic (As) MLR 0.868 
As = -0.306 + 0.05*NH3 + 0.538*BAP - 2.130*CO + 3.853*Pb - 0.086*Ni 

+ 0.026*O3 + 0.006*PM10 + 0.106*WS 

  
PCR 0.796 As = 2.000 + 0.674*PC1 +0.114*PC2 + 0.695*PC3 

11 Lead (Pb) MLR 0.842 
Pb = -0.457 - 0.009*NH3 + 0.05*As - 0.054*BAP + 0.646*CO +0.015*Ni 

+ 0.001*PM10 + 0.01*SO2 +0.007*RH - 0.01*WS 

  
PCR 0.59 Pb = 0.163 + 0.076*PC2 + 0.056*PC3 

12 Nickel (Ni) MLR 0.825 
Ni = 2.925 + 0.205*NH3 - 0.949*As - 9.310*CO + 14.681*Pb + 0.049*O3 

+ 0.037*PM10 

  
PCR 0.749 Ni = 8.814 + 1.769*PC1 + 1.158*PC2 + 2.197*PC3 

* Temperature (T), relative humidity (RH), wind speed (WS) and cloud cover (CC) 

The MLR models were found to perform better than the corresponding PCR models as the R2 

values of the MLR models are higher than those of PCR models (Table 2). The predictive 
equations suggested by the statistical models suggest that meteorological factors (temperature, 
relative humidity, cloud cover and wind speed) play an important role in the prediction of 
concentration of the criteria pollutants. For example, cloud cover is negatively associated with 
ozone concentration in the predictive equation proposed by the MLR model which is in 
agreement with the mechanism of photochemical formation of tropospheric ozone. In general, 
high wind speed flushes out the air pollutants near the earth’s surface thereby leading to lower 
concentration of ground level air pollutants. Such a result is reflected in the predictive 
equations of the MLR model. The PCR has more degrees of freedom and offers variable 
combinations for the principal components in choosing multiple components but the use of 
PCs as the inputs in the MLR could not improve the performance of the model. Actually, the 
PCA is an unsupervised dimension reduction methodology which does not consider the 
correlation among the dependent and independent variables. This might be a reason for the 
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failure of the PCR model. Elbayoumi et al. [5] also concluded that the use of PCR could not 
improve the accuracy in predicting indoor PM10 and PM2.5 in the Gaza Strip (Palestine) over 
MLR. Awang et al. [4] also reported the optimal performance of MLR model for daytime 
ground level ozone in terms of normalized absolute error, index of agreement, prediction 
accuracy, and coefficient of determination (R2). The R2 for the correlation between the 
observed and the predicted concentration of the criteria pollutants for MLR and PCR models 
are shown in Figures 1 to 4. The performances of the two models are further compared on the 
basis of the performance indicators namely normalized absolute error (NAE), root mean 
square error (RMSE), prediction accuracy (PA), index of agreement (IA) and coefficient of 
determination (R2) (Table 3). Good prediction models should have minimal errors (closer to 0 for 
NAE and RMSE) and high accuracy (closer to 1 for IA, PA, and R2). On the basis of this 
principle, MLR models for prediction of air pollutants are found to give better performance 
than the corresponding PCR model. 
 
 
 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 1. Scatter plots of observed and predicted values of (a) PM10 by MLR method, (b) 
PM10 by PCR method, (c) PM2.5 by MLR method, (d) PM2.5 by PCR method 
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Figure 2. Scatter plots of observed and predicted values of (a) Lead (Pb) by MLR 

method, (b) Lead (Pb) by PCR method, (c) Nickel (Ni) by MLR method, (d) Nickel (Ni) 
by PCR method, (e) Arsenic (As) by MLR method and (f) Arsenic (As) by PCR method 
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Figure 3. Scatter plots of observed and predicted values of (a) NO2 by MLR method, 

(b)NO2 by PCR method, (c) SO2 by MLR method, (d) SO2 by PCR method, (e) NH3 by 
MLR method , (f) NH3 by PCR method, (g) CO by MLR method, (h) CO by PCR 

method, (i) O3 by MLR method  and (j) O3 by PCR method 
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Figure 4. Scatter plots of observed and predicted values of (a) Benzene by MLR method, 
(b)Benzene by PCR method, (c) Benzo(a)pyrene by MLR method and (d) 

Benzo(a)pyrene by PCR method 
 

It appears from Table 3 that the error indicators (NAE and RMSE) are minimum and accuracy 
indicators (IA, PA and R2) are maximum in case of each criteria pollutant by using MLR 
model (except Benzene and Arsenic). This observation suggests that the physico-chemical 
characteristics and the interaction of Benzene and Arsenic with other substances in the 
atmosphere should be explored for understanding these outcomes of these statistical models. 
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Table 3. Summary of performance indicators (PIs) of the models 
 

 
 
4. Conclusion 

In this study, multiple linear regression analyses have been performed using the original 
variables and principal components (PCs) as the inputs. MLR can encounter the complexity of 
multicollinearity as the environmental variables are correlated to each other. MLR using the 
PCs as the inputs is known as principal component regression (PCR) and the use of this 
technique is expected to reduce the problem of multicollinearity. Both models provide an 
estimate of 24 hour average concentration of all the criteria pollutants. On the basis of the 
performance indicators, the MLR model was found to perform better than the PCR in most 
cases (except Benzene and Arsenic). Analysis of the physico - chemical properties and mode 
of interaction of Benzene and Arsenic with other substances present in the ambient 

Sl.No. Parameters Method NAE RMSE IA PA R2 

1 PM10 MLR 0.068 8.981 0.971 0.823 0.902 

  

PCR 0.097 12.126 0.934 0.728 0.859 

2 PM2.5 MLR 0.117 9.8 0.924 0.708 0.875 

  

PCR 0.254 19.718 0.725 0.451 0.763 

3 Sulphur dioxide MLR 0.054 0.613 0.941 0.938 0.764 

  

PCR 0.076 0.799 0.891 0.693 0.789 

4 Nitrogen dioxide MLR 0.068 4.634 0.915 0.765 0.748 

  

PCR 0.076 4.889 0.902 0.674 0.748 

5 Carbon monoxide MLR 0.076 0.057 0.635 0.181 0.423 

  

PCR 0.088 0.063 0.643 0.438 0.732 

6 Ammonia MLR 0.075 2.59 0.839 0.557 0.576 

  

PCR 0.130 3.752 0.678 0.34 0.504 

7 Ozone MLR 0.102 6.593 0.744 0.558 0.362 

  

PCR 0.202 11.842 0.488 0.779 0.176 

8 Benzene MLR 0.115 0.219 0.645 0.400 0.32 

  

PCR 0.034 0.157 0.762 0.373 0.453 

9 Benz(a)Pyrene MLR       1.326 0.361 0.529 0.702 0.278 

  

PCR 1.899 0.469 0.428 0.955 0.283 

10 Arsenic MLR 0.205 0.511 0.605 0.433 0.141 

  

PCR 0.170 0.415 0.784 0.685 0.488 

11 Lead MLR 0.379 0.062 0.52 0.124 0.251 

  

PCR 0.484 0.074 0.448 0.100 0.196 

12 Nickel MLR 0.138 1.863 0.670 0.375 0.312 

    PCR 0.178 2.092 0.690 0.721 0.344 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

347



environment may further clarify the characteristics of these two criteria pollutants. 
Meteorological parameters, particularly temperature, relative humidity and cloud cover are 
found to influence the concentration of the air pollutants over that region. The use of 
characteristics of boundary layer processes and traffic may further improve the accuracy of 
prediction of the criteria pollutants over urban areas. 
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Abstract 
In this paper an extended Timoshenko beam element is developed for the investigation of size effect 
via finite element analysis. The surface effect derived from initial surface stress and surface 
elasticity is considered as external pressure in terms of the generalized Young-Laplace equation and 
the virtual displacement principle. We find the size effect highly relies on the geometrical model 
considered in numerical simulation. For a cantilever nanowire the stocky beam suddenly becomes 
strengthened provided the diameter is less than a critical size, while it is weakened for slender case. 
These abnormal changes of stiffness can be supported by static bending tests. This method will 
bring useful insight into the size effect and is of importance to some engineering applications like 
nanofabrication and nano sensors. 
Keywords: Size effects, Surface effects, Timoshenko beam, FEM 

Introduction 

Size effects broadly refer to the abnormal changes of mechanical properties as the structure size 
approaches to tens of nanometer.[1,2] Over the last couple of decades, increasing attentions have 
been drawn to these behaviors because nanostructures have emerged as one of the most attractive 
topics and size effect at nanoscale has great potential to design lightweight material and sensors.[3] 
Previous studies have indicated size effects are attributed to the large ratio of surface area to the 
material volume, in which case the interactions of superficial atoms become extremely active. 
However the inherent mechanism is still a challenging problem.  
In general, investigations of size effects on mechanical properties can be divided into two major 
groups, namely experimental validation and theoretical analysis based on simple beam theories. 
There have been many literatures report that surge of effecitveYoung’s moduli is observed 
experimentally as the characteristic size approaching to nanometers.[4,5] Classical continuum 
theory cannot formulate this size dependent characteristic since it lacks of mechanism to account for 
the size effects on the mechanical properties of material.[6] Many efforts have been dedicated to 
build analytical framework to including size effect due to the difficult in manufacturing and 
controlling of materials at a length scale of several tens or hundreds nanometers.[7-10] Method like 
classical molecular dynamics simulation[11], nonlocal theory of elasticity[12] are effective in 
predicting size-dependence of mechanical properties at nano scale. However, the computational 
cost is intensive and paradoxes arise.[13-16] 
Recently by incorporating surface elasticity[17] and generalized Young-Laplace equation,[18] the 
analytical solutions that predict the size-dependence of effective Young’s modulus of nanomaterials 
show a good agreement with experimental data.[8,9] A recursive algorithm that breaks the 
constraint on model complexity for analytical solution successfully captured size effects of 
continuum nanoscale solid with complex 3D topology and obtained result that matches with 
experimental data.[7] But computation cost and convergence issue still remain. Given the fact that a 
great portion of nanomaterials that ubiquitously existing in nature is consist of beam like 
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ligaments,[14] it is very attractive to establish an extended beam element which can formulate the 
size dependence of the mechanical properties and overcomes those aforementioned drawbacks. 
To incarnate the size effects in the simulation model, an extended Timoshenko beam element is 
developed so that surface elasticity theory and generalized Young-Laplace equation are well 
integrated into finite element analysis. Shape-dependent pressure is introduced in the model to serve 
as the external loading under which the nanostructure is deformed. Theoretical prediction is verified 
by two numerical tests which show the softened and strengthened beams below critical dimensional 
size.  

Surface elasticity theory and generalized Young-Laplace equation 

Surface elasticity theory [19] states that the surface stress σs
αβ, a symmetric 2×2 tensor in the 

tangent plane, is: 
 ( )

0 ( 2,3)
s

s
s

G αβ
αβ αβ

αβ

ε
s τ δ α β

ε

∂
= + , =1,

∂
  (1) 

here εs
αβ denotes the surface strain tensor, G(εs

αβ) is the surface energy and δαβ is the Kronecker 
delta. The initial surface stress is represented by τ0. With assumption that the surface is 
homogeneous, isotropic, and linearly elastic, the overall surface stress tensor can be further 
simplified to: 
 

0
s s

sEαβ αβs τ ε= +   (2) 
where Es is the surface stiffness. 
From generalized Young-Laplace equation [18], a stress jump normal to the interface which 
depends on the curvature καβ and surface tension ταβ occurs on the curved material surface as: 
 

ij i jn n αβ αβσ τ κ∆ =   (3) 
here ni and nj is the unit normal vectors of the material surface. 
Equations (1), (2) and (3) formulated the surface effects as a curvature-dependent distributed load 
along the normal direction of beam surface, as show in Fig. 1. 

 
 
FIG. 1. A schematic of size-effect-induced pressure (red arrows) on the beam surface. 

Timoshenko beam with surface effect 

The formulation of the element stiffness matrix for extended Timoshenko beam element comprises 
contributions from axial compression, torsional and bending. Axial and torsional effects are 
considered in the conventional manner. 
The bending contribution is formulated under Timoshenko beam theory. Element stiffness is 
derived from a 2D circular cross-section beam model with only bending considered for simplicity, 
extending to 3D is straightforward. 
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the axial u(x, y) and transverse v(x, y) displacements in the x-y plane is used to describe the motion 
of an arbitrary material point on the beam. Here motion in z direction is not considered. The 
assumption of Timoshenko beam theory can be represented as: 

 

( )( , y) ( )

( , ) ( )

'z

s

v xu x y
x

v x y v x
v v
x

V
GA

γ

θ γ γ

γ

∂
= − +

∂
=

∂
= + = +
∂

=

  (4) 

here θz is the rotation angle and γ is angle of shearing. 
The strain can be determined by differentiating the displacement of (5) as: 
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The stress component given by Hooke’s law is, 
 11 11

13

E
G

σ ε
σ γ

=
=

  (6) 

here E is the elastic modulus, G is the shear modulus. The bending moment M over the cross section 
is the integral, 
 

11
A

M y dAσ= −∫   (7) 

According to the principle of virtual displacements, the virtual external work of real external forces 
moving through collocated virtual displacements equals the internal virtual work of real stresses in 
equilibrium with real forces with the virtual strains compatible with the virtual displacements 
integrated over the volume of the solid[20] and can be mathematically expressed as: 
 I E

T B ST s iT i

iv v S

W W

dV U f dV U f dV U F

dd

s dε ddd 

=

⋅ = + +∑∫ ∫ ∫
  (8) 

where δWI is the total internal virtual work and δWE is the total external virtual work. σ is the actual 
stress, δε is the virtual strains. fb, fs and Fi are the actual external body force, surface traction and 
concentrated force and δUT, δUST and δUiF are the corresponding virtual displacement. 
The overall internal virtual work of Timoshenko beam including surface effect can be express as: 
 I IC ISW W Wδ δ δ= +   (9) 
where δWI denote the overall internal virtual work and it is consist of the contribution from the 
conventional bending and shearing effects and the contribution of surface effects from initial 
surface tension and surface stiffness, denoted as δWIC and δWIS correspondingly. The Timoshenko 
beam theory assumes that the internal energy of beam member is due to bending and shearing 
which can be expressed as: 
 2 2

0 0
( ) ( )

L Lz
IC z

vW EI dx AG dx
x x
θd κ θ∂ ∂

= + +
∂ ∂∫ ∫   (10) 

here I denotes the moment of inertia of the cross section. EI is the flexure rigidity, κ denotes the 
shear area coefficient and κ = 10/9 for solid circular sections, A is the cross section area. 
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FIG. 2. Circular cross section of beam with surface effects considered. 
For a representative infinitesimal surface element on the surface of the cross section display as red 
arc in Fig. 2, according to Eq. (6) the longitudinal strain, which is perpendicular to the cross 
sectional plane, is, 
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Base on Eq. (2), the surface stress along beam axis can be expressed as: 
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This surface stress along beam axis introduces an extra moment on the infinitesimal surface element 
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By integration along the edge of the cross section the overall moment of the surface effect at this 
cross section is, 
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The contribution of the surface effects to the internal work is then determined as: 
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The overall internal virtual work is obtained as: 
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The external virtual work δWE is also composed of the conventional and the surface effect part. The 
conventional part is the work done by the external load as: 

 
0

L

EC cW q vdxd = ∫   (17) 

where qc is the transverse force per unit length that acts on the beam. 
From generalized Young-Laplace equation the surface tension alone beam longitudinal direction 
causes a force normal to the surface, as shown in Fig. 2 as red arrow, which can be expressed as: 
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  (18) 

Only the force component acting in the flexure plane contributes to the external virtual work and 
can be obtained by decomposition as, 
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By integrating ps_flexure around the edge of the cross section total surface effects induced transverse 
load at this cross section can be obtained as: 
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the surface effects part for the external work is, 
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The total external virtual work is then determined as: 
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The virtual displacement principle of Timoshenko beam with surface effect including is then 
obtained as: 
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Compared with that of ordinary beam element,[21] after some rearrangement of Eq. (24),the 
controlling equation that correspond to the beam element with surface effect considered becomes,  
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By introducing the displacement interpolation matrix and strain displacement matrix, stiffness 
matrix of the extended Timoshenko beam element with surface effects can be obtained. The 
detailed finite element implementation is out of the scope of this paper. 

Case study 

Here we compare the deflection of cantilever obtain from proposed extended Timoshenko element 
with the analytical solution with and without surface effect. For cantilever beam with unit diameter, 
Es=3.63 N/m and τ0=1.22 N/m, the deflections predicted by analytical solution which do not have 
surface effect and the proposed new beam element for slenderness ratio equals 5 and 16 are plotted 
in Fig. 3. 
 
It can be seen from Fig. 3(a) that the deflection obtained by proposed element, as shown with red 
solid line, have size effect since with the size approaching to nm scale the deflection decreases 
which indicate a strengthen effect. As the size extending to macro scale the deflection converges to 
that of conventional result. The analytical solutions obtained by both Timoshenko and Euler-
Bernoulli beam, on the other hand, cannot capture this size effect as the deflection is constant with 
the change of scale. The difference between the green and blue line here is due to the difference 
between beam theories for stocky beam for which the Timoshenko beam theory is more physically 
realistic. Fig. 3(b) is the same simulation for slender beam with L/D = 16, it can been seen that the 
deflection at macro scale converges to the same value which is consistent with the theory that for 
beam with L/D > 16 the shear effect is negligible and both Timoshenko and Euler-Bernoulli beam 
theory obtain the same result. Meanwhile the deflection prediction by proposed element increases 
with decreasing of scale which indicates a softening effect occurs. 
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FIG. 3. Deflection prediction of proposed element and the analytical solution obtain using 
Timoshenko and Euler-Bernoulli beam for L/D = 5 and 16. 

Conclusions 

Based on the principle of virtual displacements, we derive the weak form for Timoshenko beam 
element with surface effects considered. Two characteristic parameters, the surface stiffness and 
initial surface tension, are introduced to be responsible for the size effect. Numerical simulation 
results successfully captured the size effect, strengthening and softening effects as the size decrease 
to nano meter is also observed which is consistent with theoretical prediction and experimental 
observation. 
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Abstract 

A coupling improved Moving Particle Semi-Implicit (MPS) method and the finite element 
method (FEM) is developed and applied to the problem of interaction between elastic 
structures and the violent sloshing flow in rolling tanks. The MPS method and the FEM, used 
to calculate the fluid field and structural deformation respectively, are introduced firstly. Then, 
the coupling strategy is also presented. To validate accuracy of the proposed algorithm for 
deformation of an elastic structure, two benchmarks are investigated and present results show 
good agreement with published data. Finally, cases about the sloshing with thin elastic baffles 
mounted in the partially filled rolling tanks are numerically studied. Both profiles of free 
surface and deflections of the baffles are in good agreement with experimental data. 
 

Keywords: Particle method; Moving Particle Semi-Implicit (MPS); finite element method 
(FEM); Fluid structure interaction (FSI); Sloshing; Roll motion 

Introduction 

Fluid structure interaction (FSI) problems are commonly existent in ship and ocean 
engineering, such as sloshing in liquid containers while vessels sailing on very rough sea. Due 
to the impact loads induced by the periodic motion of inner liquid, the bulkheads or baffles 
mounted inside the tank may be deformed or even damaged. Hence, the investigation about 
interaction between the violent sloshing flow and the structures is useful for the assessment of 
safety of liquid containers. 
 
For a typical FSI problem, the whole computational domain contains the fluid domain and the 
structural domain. Accurate prediction of the fluid computational domain is one of the key 
aspects for FSI problems. Generally speaking, numerical algorithms for the fluid domain 
simulation can be divided into two categories, the grid based methods and the meshless 
methods [1]. The grid based methods, such as the finite difference method (FDM), finite 
volume method (FVM), and finite element method (FEM), are much popular in the simulation 
of fluid domain. However, the main challenges of these approaches include inefficient process 
of grids generation for complex shape of structure, complex technology of dynamic mesh for 
moving boundary or structural deformation, simulation of free surface with large deformation 
or breaking, etc [2]. On the contrary, the meshless methods are in good performance to settle 
these challenges. One representative Lagrangian particle method for free surface flows is the 
MPS method which is originally proposed by Koshizuka and Oka [3] for incompressible flow. 
Since lots of improvements were proposed to suppress the numerical unphysical pressure 
oscillation [4]-[10], the MPS method can be employed to deal with kinds of hydrodynamic 
problems. Such as dam-breaking flow [11], water-entry flow [12]-[14], wave-float interaction 
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problem [2][15][16], sloshing in liquid tank [1][17], impinging jet flow [18], etc. In this paper, 
the MPS method is employed for the computation of fluid domain in FSI problem. 
 
For the calculation of structural domain, deformation of structure is commonly computed 
based on the modal superposition analysis or the FEM method. Though the modal 
superposition analysis is easy to formulate and programming [19], it’s incapable of solving 
large and nonlinear deformation of structure. Relatively, FEM method is widely employed to 
deal with structural deformation [20]-[25] and adopted in many commercial software, such as 
ABAQUES, ANSYS, MSC.NASTRAN, etc. In present research, both linear and nonlinear 
deformations of baffles inside in the rolling tank will be investigated based on the FEM 
method. 
 
In the FSI simulations, the coupling strategies between fluid solver and structural solver can 
be classified into two groups: the strong coupling approach and the weak coupling approach. 
In the strong coupling approach, a single system equation involving all variables related to 
both the fluid and structure dynamics is solved simultaneously [26]. However, the equation is 
much difficulty to form without any modification for complex engineering problems [27] and 
much expensive to be solved [28]. On the contrary, the fluid and structure fields are self-
governed by different equations and solved separately in the weak coupling approach. 
Interfacial information communicates explicitly between the fluid and structure solution. This 
approach allows the use of separated fluid and structure codes or established software for each 
computational domain [23], and it is suitable to deal with engineering problems with large 
deformation. Hence, the weak coupling approach is utilized in the present paper. 
 
The main object of this study is to develop a MPS-FEM coupled method which can be applied 
in nonlinear FSI problems, such as the interaction between sloshing flow in a rolling tank and 
elastic structure. The paper is organized as follows. Firstly, the MPS method is briefly 
reviewed. Next, the FEM method and the coupling strategy are described. Accuracy of the 
structure solver is validated by two benchmarks of dynamic oscillating beams. Then, the 
MPS-FEM coupled solver is applied to the problem of liquid sloshing in a tank interacting 
with baffles which will deform nonlinearly. Accuracy of the proposed method are verified by 
comparison against experimental data and simulation data from Idelsohn et al [21]. 
 

Numerical methods 

In present study, the fluid domain is calculated by our in-house particle solver MLParticle-
SJTU based on improved MPS method. Details about the improvements and validation of the 
solver can be find in the published literatures [1][11][17][18]. In this section, a brief review 
about the structure solver and the MPS-FEM coupling strategy is described as fellow. 
 
Structure solver based on FEM 
Based on Hamilton’s principle, deformation of structure should satisfy 
 

 
2

1

0, [ ]d
t

s pt
H H T t        (1) 

 
where T is the kinetic energy, s  is the strain energy, p  is the potential energy of external 

force and damping force.  
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According to previous literatures [29], the structural dynamic equations, which governing the 
motion of structural elements, can be derived from Eq. (1) and expressed as  
 
 t  M C K ( ) y y y F   (2) 

 1 2 M KC     (3) 

 
where M, C, K are the mass matrix, the Rayleigh damping matrix, the stiffness matrix of the 
structure, respectively. F is the external force vector acting on structure, and varies with 
computational time. y is the displacement vector of structure. 1  and 2  are coefficients 

which are related with natural frequencies and damping ratios of structure.  
 
To solve the structural dynamic equation, another two group functions should be 
supplemented to set up a closed-form equation system. Here, Taylor’s expansions of velocity 
and displacement developed by Newmark [30] are employed:  
 
 (1 ) , 0 1y y y y             t t t t t tt t   (4) 

 2 21 2
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2
y y y y y
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
          t t t t t t tt t t  (5) 

 
where β and γ are important parameters of the Newmark method, and selected as β=0.25, 
γ=0.5 for all simulations in present paper. From Eq. (2-5), the displacement at t=t+∆t can be 
solved by the following formula [31]: 
 
 y FK t t t t    (6-a) 

 0 1K K M Ca a    (6-b) 
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where K  and F  are so-called effective stiffness matrix and effective force vector, 
respectively. Finally, the accelerations and velocities corresponding to the next time step are 
updated as follows. 
 
 0 2 3( )y y y y yt t t t t t ta a a        (7) 

 6 7y y y yt t t t t ta a        (8) 

 
To validate the accuracy of present structural solver, two test cases are carried out. In the first 
case, response of the undamped cantilever beam under a ramp-infinite duration load is studied. 
The sketches of beam geometry and load history are shown as Fig. 1 and Fig. 2. The Young’s 
modulus, density, moment of inertia, and cross area of the structure are 30×106 psi, 4.567×10-

3 lb s2/in4, 100 in4 and 21.9 in2, respectively.  Time history about the displacement at the tip of 
the undamped cantilever is shown as Fig. 3. According to the comparison between present 
result and Behdinan’s data [34], good agreement can be achieved. 
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Figure 1. Beam geometry 
 

Figure 2. Load history of test 1 Figure 3. Time response of the tip (test 1) 
 
In the FEM method, response of structure is obviously related to viscous damp coefficients.  
Hence, the second test case about the damped cantilever beam under a ramp-ramp duration 
load is studied. The sketches of beam geometry is same as that in test case 1 and shown as Fig. 
1. The load history is shown as Fig. 4. The Young’s modulus, density, moment of inertia, and 
cross area of the structure are all same as the first test case. However, the effect of damp is 
considered and the Rayleigh’s coefficients are set 1 0.0  , 2 0.003  . Time history about 

the displacement at the tip of the damped cantilever is shown as Fig. 5. Present result and 
Behdinan’s data are in good agreement. So, present structural solver is suitable to solve 
deformation of structure. 
 

 

Figure 4. Load history of test 2 Figure 5. Time response of the tip (test 2) 
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MPS-FEM coupling strategy 
In present study, the weak coupling between MPS and the FEM method is implemented. 
Flowchart of solution procedure is shown as Fig. 6. Sizes of time step for structure analysis 
and fluid analysis are ∆ts and ∆tf, respectively. Here, ∆ts is k multiples of ∆tf, where k is an 
integer. The procedure of interaction can be summarized as below. 
(1) The fluid field would be calculate k times based on MPS method. Pressure of fluid wall 

boundary particle is calculated as follows: 
 

 1
1

1 k

n n i
i

p p
k 



    (9) 

 
where n ip   is pressure of the fluid particle on wall boundary at the instant ft i t  , 1np   is 

averaged pressures of fluid particle within st . 

(2) Determine the values of structural nodal position ty , velocity ty and acceleration ty  based 

on the results of previous time step. 
(3) Calculate external force vector

st tF  of structural boundary particles based on pressure of 

fluid wall boundary particles 1np  . 

(4) Calculate the new values of structural nodal displacements and velocities based on the 
Newmark method described in the previous section. 

(5) Update velocity and position of both structural boundary particles and fluid particles. 
 

 

Figure 6. Flowchart of MPS-FEM coupling procedure 
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Numerical Simulations 

In present study, the MPS-FEM coupled method is used to simulate the interaction between 
sloshing flow and elastic structure in a 2D rolling tank. The experimental data published by 
Idelsohn et al. [21] and the numerical result published by Paik [32][33] are used for 
comparison study and validation of the capability of present numerical method. 
 
Numerical setup 
According to the experiments carried out by Idelsohn [21], three cases are numerically 
investigated in this paper. Elastic baffles are mounted at the bottom or top of the two-
dimensional tank and related sketches about the geometry setup are shown as Fig. 7. The tank, 
with a length of 609 mm and a height of 344.5mm, is free to roll around the point O which is 
the center of bottom of the container. The tank is forced to roll harmoniously with the 
governing equation of motion defined as 
 
 0( ) sin( )t t    (10) 

 
where ( )t  is the rotation angle of the tank, 0  is the excitation amplitude,   is the angular 

frequency. 
 

 
(a) Case1: Elastic beam interacting with 

shallow water flow 

 
(b) Case2: Elastic beam interacting with 

deep water flow 

 
(c) Case3: Hanging elastic beam interacting with shallow water flow 

Figure 7. Sketches of the rolling tank with elastic beams 
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Table 1.  Fluid parameters of numerical cases  

Parameters Case 1 Case 2 Case 3 
Fluid density (kg/m3) 917  917  998 
Kinematic viscosity (m2/s) 5×10-5 5×10-5 1×10-6 
Gravitational acceleration (s/m2) 9.81 9.81 9.81 
Fluid  depth (mm) 57.4 114.8 57.4 
Rolling frequency (Hz) 0.61 0.83 0.61 
Rolling amplitude (degree) 4 4 2 
Particle spacing (mm) 2 2 2 
Time step size (s) 2×10-4 2×10-4 2×10-4 

 
Table 2.  Structure parameters of numerical cases  

Parameters Case 1 Case 2 Case 3 
Structure density (kg/m3) 1100  1100 1900 
Young's modulus (Pa) 6×106 6×106 4×106 
Length (mm) 57.4 114.8 287.1 
Clamped position Bottom Bottom Top 
Number of elements 29 58 145 
Damping coefficients α1 0 0 0 
Damping coefficients α2 0.05 0.025 0.025 
Time step size (s) 2×10-3 2×10-3 2×10-3 

 
Elastic beam interacting with shallow water flow 
In present case, the tank, rolling with the amplitude of 4 degrees and frequency of 0.61 Hz, is 
partially filled with fluid of 57.4 mm depth. Density and Kinematic viscosity are 917 kg/m3 

and 5×10-5 m2/s, respectively. A short baffle is mounted at the rolling center point O. Length 
and width of the baffle are 57.4 mm and 4 mm. Density and the Young’s modulus of the 
baffle are 1100 kg/m3 and 6×106 Pa, respectively. The models of both fluid and structure are 
dispersed by particles with spacing of 2 mm. The baffle is simplified as a beam and dispersed 
by 29 elements. The coefficients of 1 0.0   and 2 0.05   are used to compose the structural 

Rayleigh damping matrix C which is an important part of the dynamic equations. The size of 
time steps is 0.0002 s for the calculation of fluid domain while that is 0.002 s for the structural 
domain.  
 
Snapshots about deformation of baffle and elevation of free surface are shown in Fig. 8. 
Numerical data is compared with experiment at four instants, t=0.95, 1.35, 1.62, and 1.88 s. 
Profiles of the deformed baffle and free surface are coincident with that of experiment. 
However, a bubble cavity, which doesn’t exist in the experiment, forms near the top of baffle 
while the fluid flows over the structure in present simulation. As mentioned in Paik et al. [33], 
the possible reason about the babble cavity is the three dimensional nature that the channel is 
open and air is able to escape for the real flow. Generally, the agreement between the 
numerical results and the experimental ones are acceptable. 
 
Time histories of the horizontal displacement at the top tip of baffle are shown as Fig. 9. 
Present numerical result based on MPS-FEM method is compared with experimental data of 
Idelsohn [21] and simulation results from both Idelsohn and Paik [33]. The trend of numerical 
curve evolves harmonically and with a period similar to experiment. Though the amplitude of 
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present numerical curve is larger than experiment, it’s similar to the simulation results 
published by Paik et al. [33].  
 

Experiment (Idelsohn, 2008) Present 
Figure 8. Deformation of baffle and elevation of free surface for Case 1: t=0.95, 1.35, 

1.62, and 1.88 s. 
 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

362



 
 

Figure 9. Comparison of the horizontal 
displacement at the tip of baffle (Case 1)

Figure 10. Comparison of the horizontal 
displacement at the tip of baffle (Case 2) 

 
Elastic beam interacting with deep water flow 
In present case, most parameters of simulation are same as that of Case 1. The tank rotates 
with an amplitude same as that of case 1 but a higher frequency of 0.83 Hz.  Level of fluid 
filled in the tank is twice the depth of case 1. A longer baffle with the length of 114.8 mm is 
also mounted at the rolling center. The baffle is dispersed by 58 beam elements. The 
coefficients of 1 0.0   and 2 0.025   are used in this case. Detailed parameters of the 

simulation are shown in table 1 and table 2. 
 
Fig. 10 shows the comparison of time histories of the horizontal displacement at the top tip of 
baffle. Forms of the curves are similar to those in previous case but with larger amplitudes 
due to a much deeper fluid filled in the tank. According to the figure, both amplitude and 
period are in good agreement with experimental data.  
 
Snapshots about deformation of the baffle and elevation of free surface are shown in Fig. 11. 
Numerical data is compared with experiment at eight instants, t=1.69, 1.96, 2.09, 2.23, 2.36, 
2.56, 2.69, 2.83 s. The baffle deforms obviously and keep submerged after the instant t=1.69 
s. Though the interaction between fluid and the elastic baffle is very strong, both numerical 
shapes of baffle and free surface are in good agreement with experiment.  
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Experiment (Idelsohn, 2008) Present 
Figure 11. Deformation of baffle and elevation of free surface for Case 2: t=1.69, 

1.96, 2.09, 2.23, 2.36, 2.56, 2.69, 2.83 seconds  
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Experiment (Idelsohn, 2008) Present 

Figure 11. Continued 
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Hanging elastic beam interacting with shallow water flow 
This case is much different from Cases 1 and 2. Unlike the arrangements of baffles in 
previous two cases, the longest baffle is hanging at the top of tank and the end tip reaches to 
the surface of fluid. So, the deformation of baffle is only caused by the impact force of free 
surface waves. In this case, the tank is forced to roll with the amplitude of 2 degrees and the 
frequency of 0.61 Hz. Level of fluid is same as that in case 1. Density and Kinematic 
viscosity are 998 kg/m3 and 1×10-6 m2/s, respectively. The baffle is dispersed by 145 beam 
elements. Density and the Young’s modulus of the baffle are 1900 kg/m3 and 4×106 Pa, 
respectively. The coefficients of 1 0.0   and 2 0.025   are used in this case. Detailed 

parameters of the simulation are shown in table 1 and table 2. 
 
Fig. 12 shows the comparison of time histories of the horizontal displacement at the middle 
and end tip of baffle. According to both experimental and numerical data, deformation of the 
baffle is highly nonlinear. High frequency oscillation is observed after t=2 s for both middle 
and tip of the baffle. Though it’s much more challenging to obtain the accurate solution, the 
agreement between present result and experiment is acceptable.  
 
Snapshots about deformation of baffle and elevation of free surface are shown in Fig. 13. 
Numerical data is compared with experiment at nine instants, t=1.95, 2.42, 2.69, 2.82, 3.02, 
3.29, 3.69, 3.89, 4.09 s. Both numerical shapes of baffle and free surface are quite similar to 
experiment results during the whole process of wave propagation. However, spray around the 
tip of baffle, caused by the impact between baffle and wave crest, exists at the instances 3.02 
and 3.89 s. This phenomenon is not obviously observed from the experimental figures. 
Possible reasons for the discrepancy between present results and the experiment could be the 
three dimensional characters. Besides, the effect of rough boundary of the elastic baffle in 
experiment shouldn’t be neglected. 
 

(a) Displacement at the middle of baffle (b) Displacement at the tip of baffle 
Figure 12. Comparison of the horizontal displacement (Case 3) 
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Experiment (Idelsohn, 2008) Present 
Figure 13. pressure contours (middle) and velocity vectors (right) for Case 3: t=1.95, 

2.42, 2.69, 2.82, 3.02, 3.29, 3.69, 3.89, 4.09 seconds (Continued) 
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Figure 13. Continued 
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Conclusions 

The aim of this paper is to develop a MPS-FEM coupled method for fluid structure interaction 
problems and validate the capability of this method. Mathematical equations for the MPS and 
FEM method, together with the coupling strategy, are described firstly. According to two 
dynamic tests, the proposed structural solver is accurate enough for structural deformation 
problems. Then, the FSI problems of sloshing with elastic baffles are numerically studied by 
the MPS-FEM coupled method. Deformations of the baffles, include the linear and nonlinear 
responses, are quite coincident between present numerical results and experiment. Present 
numerical results show that the proposed MPS-FEM coupled method is capable of simulating 
problems about structural deformation interaction with violent free surface flow. 
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ABSTRACT

In the present work a novel non-body conforming mesh method, termed as the moving immersed
boundary method, is proposed for the strongly coupled fluid-structure interaction. The immersed
boundary method enables solids of complex shape to move arbitrarily in an incompressible viscous
fluid, without fitting the solid boundary motion with dynamic meshes. A boundary force is usually
employed to impose the no-slip boundary condition at the solid surface. In the novel method, an
additional equation is derived to compute the boundary force implicitly. The coefficient matrix is for-
mulated to be symmetric and positive-definite, so that the conjugate gradient method can solve the
resulting system very efficiently. The current immersed boundary solver is integrated into the fluid
projection method as another operator splitting. Finally an efficient fixed point iteration scheme is
constructed for the strongly coupled fluid-structure interaction.

Keywords: Immersed boundary method, Fluid-structure interaction, Strongly coupled algorithm,
Projection method, Fractional step method.

Introduction

The fluid-structure interaction (FSI) is of great importance in many scientific and engineering fields.
The difficulties of its numerical simulation lie in the facts that the interaction interface is often compli-
cated, time-dependent and the two physical domains are strongly coupled. The FSI problem has been
extensively studied in the past with body-conforming mesh methods, such as the arbitrary Lagrangian-
Eulerian (ALE) method, where the mesh is deformed or renewed in order to fit the novel interface
(e.g. [1]). This procedure however is usually time-consuming and it is very difficult to maintain the
mesh quality when solids undergo large displacements.

The immersed boundary method (IBM) emerged in 1970s by the work of Peskin [8] as an effective
tool to circumvent the dynamic mesh issues. A boundary force is introduced to the fluid momentum
equation to account for the solid effects, hence the fluid equations are solved on a fixed Eulerian
grid. The original method is developed for the simulation of blood flow over an elastic beating heart.
Its direct extension to rigid boundary poses a lot of difficulties, since the stiffness value approaches
infinity. The time step is also kept very small in order to maintain the stability. This method has been
successfully extended to moving rigid bodies by the work of Uhlmann [9] by using the direct forcing
concept of [3]. No artificial constants and additional time constraint are introduced for the rigid body
formulation. However, fully explicit schemes were adopted for the force evaluation and the interface
coupling in [9]. Consequently, the no-slip boundary condition is never satisfied and the calculation
will not be stable when the solid density is smaller or even close to the fluid density (ρs/ρ f . 1.05 for
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circular disks as reported in [9]).

Therefore, implicit schemes should be considered for obtaining accurate and stable results. In this
work we extend the implicit immersed boundary method of [2] to two-way fluid-structure interactions
in the next section. We will demonstrate the stability and the accuracy of present scheme in the
numerical examples.

Numerical method

Governing equations

In the present study, we consider the rigid body motion in an incompressible fluid. The fluid-structure
interaction problem is illustrated in Figure 1, where the fluid and the rigid body occupy the domain
Ω f and Ωs respectively. The interaction takes place at the their common boundary ∂Ωi = Ω f ∩ Ωs.
The whole system is subjected to the gravitational acceleration g.

Ωf

∂Ωf

Ωs

r

∂Ωi

g

vs

ωs

O
x

y
xs

xc

Figure 1: Sketch of the fluid-structure interaction problem.

The fluid motion is governed by the Navier-Stokes equations

∂v f

∂t
+ ∇ · (v f ⊗ v f ) = ∇ · σ f + g (1a)

∇ · v f = 0 (1b)

where v f is the fluid velocity vector and the fluid stress tensor σ f is given by

σ f = −
p
ρ f

I + ν(∇v f + (∇v f )T) (1c)

where p is the fluid pressure, ρ f the fluid density, ν the fluid kinematic viscosity. Appropriate initial
and boundary conditions are assumed to the fluid Navier-Stokes equations to ensure that the problem
is well posed.

The rigid body motion is governed by the Newton-Euler equations

ms
dvs

dt
= ρ f

∫
∂Ωi

σ f · nds + ms(1 −
ρ f

ρs
)g (2a)

Is
dωs

dt
= ρ f

∫
∂Ωi

r ×
(
σ f · n

)
ds (2b)

where ms, ρs, Is represent the solid mass, the solid density and the moment of inertia respectively. vs,
ωs designate the translational velocity and the angular velocity of the solid. r = xs − xc is the position
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vector of the surface point with respect to the solid mass center, where xs is the solid position vector at
the surface and xc is the solid gravity center vector (see Figure 1). n represents the outward-pointing
normal vector to the surface ∂Ωi. The position of the rigid body can be obtained by the integration of
the following kinematic equations

dxc

dt
= vs (3a)

dθc

dt
= ωs (3b)

where θc designates the rotation angle around the solid mass center.

On the fluid-structure interface ∂Ωi the following no-slip boundary condition

v f = vs + ωs × r (4)

needs to be satisfied in order to take the fluid-structure interaction into account.

The immersed boundary method approximates the above fluid-structure interaction problem by re-
placing the solid domain with the surrounding fluid. To account for the presence of the immersed
solid, a boundary force f is introduced and added into the fluid momentum equation. Therefore the
fluid is simply simulated in a fixed domain Ω = Ω f (t) ∪ Ωs(t) irrespective to the movement of the
immersed solid. Following Glowinski et al. [4], we write the entire fluid-structure interaction problem
in the immersed boundary formulation as

∂v f

∂t
+ ∇ · (v f ⊗ v f ) = −

1
ρ f
∇p + ν∇2v f + f in Ω (5a)

∇ · v f = 0 in Ω (5b)

v f = vs + ωs × r on ∂Ωi (5c)

ms
dvs

dt
= −ρ f

∫
Ωs

fdV + ms(1 −
ρ f

ρs
)g (5d)

Is
dωs

dt
= −ρ f

∫
Ωs

r × fdV (5e)

dxc

dt
= vs (5f)

dθc

dt
= ωs (5g)

where the effect of gravity in the fluid momentum equation is from now on incorporated into the
pressure.

Moving immersed boundary method for strongly coupled FSI

We first discretize the governing equations as

v f
n+1 − v f

n

∆t
+

3
2
N(v f

n) −
1
2
N(v f

n−1) = −
1
ρ f
Gpn+1 +

ν

2
L(v f

n+1 + v f
n) + SFn+1 (6a)

Dv f
n+1 = 0 (6b)

T v f
n+1 = vs

n+1 + ωs
n+1 × rn+1 (6c)

ms
vs

n+1 − vs
n

∆t
= −ρ f Fn+1 + ms(1 −

ρ f

ρs
)g (6d)
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Is
ωs

n+1 − ωs
n

∆t
= −ρ f r × Fn+1 (6e)

xc
n+1 − xc

n

∆t
= vs

n+1 (6f)

θc
n+1 − θc

n

∆t
= ωs

n+1 (6g)

where L,N ,D, G are the discrete Laplacian, convective, divergence, gradient operators respectively.
Since the fluid mesh in general does not coincident with the solid mesh, T and S are the interpolation
and spreading operators to exchange the flow quantities on both meshes, which can be constructed
from the discrete delta functions as in [8]. F designates the boundary force defined on the solid surface
and thus we have f = SF. n + 1 represents the time level to be solved. Here the convection is treated
explicitly with a second order Adams-Bashforth scheme but the diffusion is handled implicitly with
a second order Crank-Nicolson scheme. Hence the overall scheme is stable under the standard CFL
condition.

To solve above coupled fluid-structure system, we perform the following fractional step scheme:

(1) Prediction step for v̂ f
n+1

v̂ f
n+1 − v f

n

∆t
+

3
2
N(v f

n) −
1
2
N(v f

n−1) = −
1
ρ f
Gpn +

ν

2
L(v̂ f

n+1 + v f
n) (7)

(2) Immersed boundary forcing step for the interface coupling

ṽ f
n+1 − v̂ f

n+1

∆t
= SFn+1 (8a)

T ṽ f
n+1 = vs

n+1 + ωs
n+1 × rn+1 (8b)

Applying (8b) to (8a), we obtain

MFn+1 =
vs

n+1 + ωs
n+1 × rn+1 − T v̂ f

n+1

∆t
(9a)

ṽ f
n+1 = v̂ f

n+1 + ∆tSFn+1 (9b)

whereM is termed as the moving force matrix (M = TS) in [2], which is found to be symmetric and
positive-definite.

For the interface coupling, the solid velocity and position are solved with this moving force equation
through a fixed point iteration, namely iterating (6d)-(6e)-(6f)-(6g)-(9a) until convergence. At each
subiteration, the moving force equation is solved with the conjugate gradient method.

(3) Projection step for obtaining a divergence free velocity v f
n+1

v f
n+1 − ṽ f

n+1

∆t
= −Gφn+1 (10a)

Dv f
n+1 = 0 (10b)

where φ is the pseudo pressure. Applying the divergence operator to (10a) along with the divergence
free condition (10a) gives

Lφn+1 =
1
∆t
Dṽ f

n+1 (11a)
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v f
n+1 = ṽ f

n+1 − ∆tGφn+1 (11b)

The final pressure is advanced by

pn+1 = pn + φn+1 −
ν

2
Dv̂ f

n+1 (12)

where the last term is the splitting error resulted from velocity prediction and now is absorbed into
the pressure. This type of projection method yields a consistent pressure boundary condition and thus
free of numerical boundary layer, termed as the rotational incremental pressure correction projection
method in [5].

The novel strongly coupled scheme is computational inexpensive, since the time-consuming pressure
Poisson equation is not evolved in the interface coupling and the moving force equation is very easy
to solve. We will demonstrate the novel scheme in the following numerical examples.

Results

Freely falling and rising cylinder in an infinite quiescent fluid

We first consider a circular cylinder freely falling and rising in an infinite quiescent fluid. This phe-
nomenon happens frequently in nature and a large amount of work can be found in the literature. Here
we compare our numerical results with the data of [6][7]. Namkoong et al. [7] performed the simu-
lation using a body-fitted ALE formulation while Lacis et al. [6] employed the immersed boundary
projection method.

Figure 2: Vorticity fields for a freely falling cylinder in an open domain: (Left) tVt/D = 10 and (right)
tVt/D = 90. The contour level is set from -6 (blue) to 6 (red) with an increment of 0.4.

Two density ratios are considered in this study, i.e. ρs/ρ f = 1.01 for the falling case and ρs/ρ f = 0.99
for the rising simulation. A large computational domain is taken as [−5D, 5D] × [−70D, 70D] with
free-slip boundary conditions applied at all exterior boundaries, where D = 0.5 cm is the cylinder
diameter. A uniform mesh is employed to cover the computational domain, and the mesh resolution
is kept to 0.04D in order to compare with Lacis et al. [6]. Initially the cylinder is located at ±65D,
depending on the situation (65D for the falling case, −65D for the rising case). The Reynolds number
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Re = VtD/ν f is 156, where Vt is the terminal velocity. Note that the Reynolds number depends on the
Galileo number G = (|ρs/ρ f − 1|gD3)1/2/ν f (here G = 138) and the density ratio ρs/ρ f .

0 20 40 60 80 100 120
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

tVt/D

u
c
/
V
t

Figure 3: Time histories of the vertical and horizontal velocity for the freely rising cylinder ρs/ρ f =

0.99.

Table 1: The drag, lift coefficients and the Strouhal number for the
freely falling and rising circular cylinder in an open domain.

CD max|CL| S t

ρs/ρ f = 1.01 Present 1.35 0.10 0.189
Lacis et al. [6] 1.29 0.14 0.17185
Namkoong et al. [7] 1.23 0.15 0.1684

ρs/ρ f = 0.99 Present 1.35 0.10 0.189
Lacis et al. [6] 1.29 0.14 0.17188
Namkoong et al. [7] - - 0.1687

The vorticity fields are presented in Figure 2 for the falling cylinder case. Initially symmetric vortex
pair forms behind the cylinder in the beginning of falling. After that the numerical error accumulates
and breaks the symmetry. At around tVt/D = 40, the flow becomes unsteady and periodic vortex
shedding occurs. The time histories of the velocity components of the cylinder are plotted in Figure 3.
Table 1 shows the Strouhal number S t = f D/Vt ( f is the shedding frequency) and the coefficients of
drag and lift. Present results are compared to those of [6][7]. Good agreements have been obtained.

Elliptical particle sedimentation in a confined channel

Next we consider the sedimentation of an elliptical particle in a narrow channel, to demonstrate the
ability of current FSI algorithm for handling non-circular object. This example was studied previously
by Xia et al. [10] for the boundary effects on the sedimentation mode. In their work, a multi-block
lattice Boltzmann method is used and compared to the traditional ALE formulation.

To compare with Xia et al. [10], the computational domain is selected to be [0, L] × [0, 7L] with
L = 0.4 cm. The aspect ratio of the ellipse is α = a/b = 2, where a and b are the major and minor
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Figure 4: Vorticity fields at different times: (from left to right) t = 0.1 s, 0.3 s, 0.5 s, 1.0 s, 1.5 s, 2.0 s.
The contour levels are set from -15 (blue) to 15 (red).

axes respectively. The blockage ratio is defined as β = L/a = 4. The density ratio is ρs/ρ f = 1.1.
The kinematic viscosity of fluid is set to ν = 0.01 cm2/s. The particle starts falling in a quiescent fluid
from the centroid at (0.5L, 6L) with an initial angle of π/4 to break the symmetry.
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Figure 5: Particle trajectory and orientation of the elliptical particle. ”—”, present results; ”◦”, results
of [10].
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No-slip boundary conditions are applied at four boundaries. A uniform mesh is employed with a gird
resolution of 0.0027 cm. The time step is chosen such that the CFL condition is satisfied. Figure 4
shows the vorticity fields at different times at t = 0.1 s, 0.3 s, 0.5 s, 1.0 s, 1.5 s, 2.0 s. The trajectory and
orientations are compared to the results of [10] in Figure 5. Good agreements have been obtained.

Conclusions

In this work an efficient strongly coupled fluid-structure interaction scheme was proposed in the con-
text of the moving immersed boundary method. To accurately impose the no-slip boundary condition
at the immersed interface, a moving force equation was derived and solved with the conjugate gra-
dient method. The global scheme follows a fractional step manner while the interface coupling was
accomplished between the solid motion equations with the moving force equation in the immersed
boundary forcing step. Stable results were obtained even when the solid density is smaller than the
fluid density. Numerical results have demonstrated the accuracy of the proposed method.
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Abstract 

Polygonal meshes remain the primary representation for visualization of 3D data in a wide range of 

industries including manufacturing, architecture, geographic information systems, medical imaging, 

robotics, entertainment, and military applications. Because of its widespread use, it is desirable to 

compress polygonal meshes stored in file servers and exchanged over computer networks to reduce 

storage and transmission time requirements. 3D files encoded by OBJ format are commonly used to 

share models due to its clear simple design. Normally each OBJ file contains a large amount of data 

(e.g. vertices and triangulated faces) describing the mesh surface. In this research we introduce a 

novelalgorithm to compress vertices and triangle faces called Geometry Minimization Algorithm 

(GM-Algorithm). First, each vertex consists of (x, y, z) coordinates that are encoded into a single 

value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences 

between two adjacent vertex locations, and then coded by theGM-Algorithm followed byarithmetic 

coding. We tested the method on large data sets achieving highcompression ratios over90% while 

keeping the same number of vertices and triangle faces as the original mesh. The decompression 

step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure 

of the 3D mesh. A comparative analysis of compression ratios is provided with a number of 

commonly used 3D file formats such as MATLAB, VRML, OpenCTM and STL showing the 

advantages and effectiveness of our approach. 
 

Keywords: 3D Object Compression and Reconstruction, Data Compression, GM-Algorithm, 

Parallel-FMS Algorithm  

1. Introduction 

Polygonal meshes are the primary representation used in the manufacturing, architectural, and 

entertainment industries for the visualization of 3D data, and they are central to Internet and 

broadcast multimedia standards such as MPEG-4 [1,2,4] and VRML [3]. In these standards, a 

polygonal mesh is defined by the position of its vertices (geometry); by the association between 

each face and its sustaining vertices (connectivity); and optional colour, normal and texture 

coordinates (properties). Deering [5] introduced the first geometry compression scheme to compress 

the bit stream sent by a CPU to a graphics adapter, generalizing the popular triangle strips and fans. 

Motivated by Deering’s work, but optimized for transmission over the internet instead, Taubin and 

Rossignac introduced the Topological Surgery (TS) method[6], the first connectivity preserving 

single-resolution manifold triangular mesh compression scheme. TS was later extended to handle 

arbitrary manifold polygonal meshes with attached properties, and proposed as a compressed file 

format to encode VRML files [9]. With a more efficient encoding, Topological Surgery is now part 

of the MPEG-4 standard.  

 

Several closely related methods were subsequently developed by Touma and Gotsman[12], 

Gumhold and Strasser [7], Li and Kuo[8] and Rossignac[10]. The methods proposed by 
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Gumholdand Strasser, and by Rossignac only capable of encoding connectivity. The method 

proposed by Touma and Gotsman, predicts geometry and properties better, and the method 

proposed by Li and Kuo improves on the entropy encoding of prediction errors. More recently, 

Bajaj et al. [11] proposed yet another method to encode single-resolution triangular meshes. It is 

based on a decomposition of the mesh into rings of triangles originally used by Taubin and 

Rossignac in their compression algorithm, but with a different and more complex encoding. All of 

these schemes require O(n) total bits of data to represent a single-resolution mesh in compressed 

form. 

 

While single resolution schemes can be used to reduce transmission bandwidth, it is frequently 

desirable to send the mesh in progressive fashion. A progressive scheme sends a compressed 

version of the lowest resolution level of a level-of-detail (LOD) hierarchy, followed by a sequence 

of additional refinement operations. In this manner, successively finer levels of detail may be 

displayed while even more detailed levels are still arriving. To prevent visual artefacts, sometimes 

referred to as popping, it is also desirable to be able to transition smoothly from one level of the 

LOD hierarchy to the next by interpolating the positions of corresponding vertices in consecutive 

levels of detail as a function of time [11]. 

 

The Progressive Mesh (PM) scheme introduced by Hoppe [13] was the first method to address the 

progressive transmission of multi-resolution manifold triangular mesh data. PM is an adaptive 

refinement scheme where new faces are inserted in between existing faces. Every triangular mesh 

can be represented as a base mesh followed by a sequence of vertex split refinements. Each vertex 

split is specified for the current level of detail by identifying two edges and a shared vertex. The 

mesh is refined by cutting it through the pair of edges, splitting the common vertex into two vertices 

and creating a quadrilateral hole, which is filled with two triangles sharing the edge connecting the 

two new vertices. The PM scheme is not an efficient compression scheme. Since the refinement 

operations perform very small and localized changes, the scheme requires O(V log2(V)) bits to 

double the size of a mesh with V vertices. Later on Hoppe proposed a more efficient 

implementation based on changing the order of transmission of the edge split operations [14]. 

 

In progressive representations discussed above,multi-resolution polygonal models are represented in 

compressed form. However, as compression schemes, these are not as efficient as the single-

resolution schemes described earlier. Taubinet al.[15] recently introduced a method to compress 

any multi-resolution mesh produced by a vertex clustering algorithm with compression ratios 

comparable to the best single resolution schemes. In this scheme, the connectivity of the LOD 

hierarchy is transmitted from high resolution to low resolution, followed by the geometry and 

properties from low resolution to high resolution. The main contribution of this scheme is a method 

to compress the clustering mappings which relate consecutive levels of detail, from high to low 

resolution. The method achieves high compression ratios but is not progressive. 

 

The MPEG-4 3D Mesh Coding scheme is based on the Topological Surgery and Progressive Forest 

Split schemes. But it incorporates improvements to connectivity encoding for progressive 

transmission proposed by Bossen[16], non-manifold encoding proposed byGuéziecet al. [17], error 

resiliency proposed by Jang et al. [18], parallelogram prediction proposed by Touma and 

Gotsman[15], and error encoding proposed by Li and Kuo[8]. It allows the encoding of any 

polygonal mesh (including non-manifolds) with no loss of connectivity information and no 

repetition of geometry and property data associated to singular vertices as a progressive single-

resolution bit stream, and any manifold polygonal mesh in hierarchical multi-resolution mode. 

Extensive experimentation performed during the course of the MPEG-4 process has shown that the 

resulting methods are state-of the-art. 
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Siddeq and Rodrigues proposed a new way to compress vertices by using a Geometry Minimization 

Algorithm (paper submitted to a journal and under review – for more information please contact the 

authors). In this paper we introducea new concept for geometry and mesh connectivity 

compression.The proposed method encodes both the point cloud data representing the integer 

vertices (geometry) and the triangulated faces (connectivity). Thereafter, the encoded output is 

subjected to arithmetic coding. We demonstrate the approach by performing a comparative analysis 

with a number of 3D data file formats focusing on compression ratios.  

 

This remainder of this paper is organized as follows: Section 2 introduces geometry coding and 

describes the proposedGeometry Minimization (GM-Algorithm) applied to the vertices. Section 3 

describes mesh connectivity lossless coding bythe GM-Algorithm, while section 4 describes 

theParallel Fast Matching Search algorithm (PFMS), used to reconstruct vertices and triangulated 

faces. Section 5 describes experimental results with a comparative analysis followed by conclusions 

in Section 6. 

2. Geometry Compression 

Geometry compression combines quantization and statistical coding. Quantization truncates the 

vertex coordinates to a desired accuracy and maps them into integers that can be represented with a 

limited number of bits. The quantization parameter, , is a scale parameter that normally moves the 

decimal place of each vertex to the right. A tight (min-max) axis aligned bounding box around each 

object is computed. The minima and maxima of the (x, y, z) coordinates, which define the box, 

together with the parameter  are encoded and transmitted with the compressed representation of 

each object. In this way, the 3D structure can be reconstructed in the same units and scale as the 

original. 

 

The quantization by  transforms each (x, y, z) coordinates into integers ranging from 0 to 2B–1, 

where B is the maximum number of bits needed to represent the quantized coordinates. Normally, 

12bit integers are sufficient to ensure geometric fidelity for most applications and most models. 

Thus, suchlossy quantization step reduces the storage cost of geometry from 96-bits to less than 36-

bits. The quantization of vertices (x, y, z) is defined as: 
 

𝑉𝑥,𝑦,𝑧 = 𝑓𝑙𝑜𝑜𝑟(𝑉𝑥,𝑦,𝑧 𝛼)                                                                                             (1) 

Where2 ≤ 𝛼 ≤ 10,000 .In addition to reducing the storage cost of geometry, we reduced the 

number of bits for each vertex to less than 16-bit by calculating the differences between two 

adjacent coordinates for increased redundancy data and thus, more susceptible to compression. The 

differential process defined in Eq. (2) belowis applied toaxes X, Y and Z independently [19].  
 

𝐷(𝑖) = 𝐷(𝑖) − 𝐷(𝑖 + 1)                                                                              (2) 

Where i=1, 2, 3... m-1 and m is the size of the list of vertices. 
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Figure 1.TheGM-Algorithm applied to each block of vertices 

 

Once the differential process isapplied to the vertices, thelist of vertices is divided into blocks, and 

the GM-Algorithm is applied to each block of vertices (i.e. the vertex matrix from 3D object file is 

divided into k non-overlapping blocks) as illustrated in Figure 1. The main reason for placing 

vertices into separate blocks is to speed up the compression and decompression steps. Each kblock 

isreduced to an encoded data array. The GM-Algorithm is defined as taking three key values and 

multiplying theseby three geometry coordinates (x, y, z) from a block of vertices which are then 

summed overto asingle integer value. A 3-value compression key KC is generated from vertex data 

as follows: 
 

 

𝑀 = max(𝑉𝑋, 𝑉𝑌, 𝑉𝑍) +
max(𝑉𝑋,𝑉𝑌,𝑉𝑍)

2
% Define M as a function of maximum 

𝐾𝐶1 = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)  % First weight1 defined by random between 0 and 1 

𝐾𝐶2 = (𝐾𝐶1 + 𝑀) + 𝐹  % F is an integer factor F=1,2,3,… 

𝐾𝐶3 = (𝑀 ∗ 𝐾𝐶1 +  𝑀 ∗ 𝐾𝐶2) ∗ 𝐹 

 

Where𝐹 is a positive factor multiplier, each vertex is then encoded as: 
 

𝑉(𝑖) = 𝑉𝑥(𝑖)𝐾𝐶1 + 𝑉𝑦(𝑖)𝐾𝐶2 + 𝑉𝑧(𝑖)𝐾𝐶3                        (3) 

 

Figure 2(a) illustrates the GM-Algorithm by applying Equation (3) to a sample of vertices. After 

this operation, the likelihood for each block of vertices is selected from which a Ku (unique Key) is 

generated to be used in the decompression stage as illustrated in Figure 2(b) with a numerical 

example. 

 

 

3D object file 
Vertices 

 

 

Block(1) 

Block(2) 

Block(p) 

 Encoded Data - Block(1) 

 Encoded Data - Block(2) 

 Encoded Data - Block(p) 

KU Block(1) 

KU Block(2) 

KU Block(p) 

… 

… 

GM-Algorithm 

Convert each [X Y Z] to 
single data 

 

X1 Y1 Z1 

X2 Y2 Z2 

… 

XkYkZk 

 Xk+1Yk+1 Zk+1 

Xk+2Yk+2 Zk+2 

… 
Xk+kYk+kZk+k 

X2k+1 Y2k+1 Z2k+1 
X2k+2Y2k+2 Z2k+2 

… 

XnYn Zn 

X1 Y1 Z1 
X2 Y2 Z2 

X3 Y3 Z3 

X4 Y4 Z4 
… 

 

XnYn Zn 

After Differential 
Process 

 

 
3D object data 

V  X1 Y1 Z1 

V  X2 Y2 Z2 

V  X3 Y3 Z3 

V  X4 Y4 Z4 

 

V  … 

 

V  XnYn Zn 

Shift  
X, Y and Z, 

 
 

Divide list of vertices to 
small block size:  

k x 3 
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(a) Floating point vertices  

 

 

 

 

(b) Unique Key 

Figure2: (a): Sample of vertices compressed by GM-Algorithm, (b) The set ofKUvaluesgenerated 

from a block of vertices 

 

3. Connectivity Compression  

Several algorithms have been developed to address the problem of compactly encoding the 

connectivity of polygonal meshes, both as the theoretical problem of short encodings of embedded 

graphs and as a practical problem of compressing the incidence table of the triangle mesh in a 3D 

model. 

 

Triangulated meshes represent geometric connectivity. In a 3D OBJ file, each triangle is followed 

by reference numbers representing the index of the vertices in the 3D file. These reference numbers 

arearranged in ascending order in most 3DOBJ files. We refer to these as regular triangles. One of 

regular triangles’ advantages is that they can be losslesscompressed ina few bits by applying a 

differential process (e.g. the differential processed finedby Equation(2) applied to all reference 

numbers). The resulting 1D-array is divided into sub-arrays, and each sub-array encoded 

independently by the GM-Algorithm followed by arithmetic coding as illustrated in Figure 

3.TheGM-Algorithm works in thesame way as applied to the vertices: three key values are 

generated and multiplied by three adjacent values which are then summed to a singlevalue by 

Equation (3). 
 

 

 

 

 

 

KU 

 

Vertices: after differential process 

                    X       Y        Z  

1 1 3 

1 2-  2-  

2 3 3 

. . . 

 1  1 2 

 

 

 

 

GM-Algorithm 

 

 

1, 3,-2, 2, 3, . . . 

Encoded Data 

KC 

Sample of vertices (before coding) 

-101.284 48.426 45.478 

 -100.916 48.399 45.468 

-100.636 48.414 45.426 

-100.396 48.449 45.341 

-100.150 48.480 45.215 

-99.900 48.510 45.053 

-99.6262 48.529 44.863 

-99.355 48.548 44.653 

 

Quantized vertices 

-1013 484 455 

-1009 484 455 

-1006 484 454 

-1004 484 453 

-1002 485 452 

-999 485 451 

-996 485 449 

-994 485 447 

 

Differential Eq. applied              GM-Algorithm applied 

-4 0 0  

 

 

 

 

 

 

 

-0.4 

-3 0 1 42.9 

-2 0 1 43 

-2 -1 1 35.9 

-3 0 1 42.9 

-3 0 2 86.1 

-2 0 2 86.2 

-994 485 447 -994 485 447 

 

Subtract each column by Eq(2); then apply the GM-Algorithm, maximum value 
M=|4|, F=1:- Kc1=0.1, Kc2=7.1, Kc3=43.2 
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(a) Triangle Face are scannedrow-by-row  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(b), 1D-array divided into sub-arrays, each sub-array encoded independently  

Figure 3. (a) and (b): Lossless Triangle Mesh Compression by GM-Algorithm and Arithmetic 

Coding 

4. Data Decompression: Parallel Fast-Matching-Search Algorithm (Parallel-FMS) 

The decompression algorithm represents theinverseofcompression usingtheParallel-Fast-Matching-

Search Algorithm (Parallel-FMS) to reconstruct vertices and meshconnectivity. First, theParallel-

FMS isapplied to encoded block of vertices to reconstruct the originalvertices as a point cloud. 

Second, the Parallel-FMS isapplied to each encoded sub-array resulting in the reconstructed triangle 

mesh sub-array.Thereafter, all the sub-arrays arecombined together to recover theincidence table of 

triangulated facesof the 3D model.Figure 4 shows the layout of the decompression algorithm. 

The Parallel-FMS provides the means for fast recovery of both vertices and triangulated meshes, 

which has been compressed by three different keys (𝐾𝐶) for each three entries. The header of the 

compressed file contains information about the compressed data namely 𝐾𝐶  and 𝐾𝑈  followed by 

streams of compressed encoded data. The Parallel-FMS algorithm picks up in turn each block of 

encoded data to reconstruct the vertices and the triangle sub-array. The Parallel-FMS uses a binary 

search algorithm and is illustrated through the following steps A and B: 

A) Initially, KU is copied three times to sepatared arrays to estimates coordinates (X,Y,Z), that 

is X1=Y1=Z1, X2=Y2=Z2, X3=Y3=Z3 the searching algorithm computes all possible 

combinations of X with KU(1), Y with KU(2) and Z with KU(3) that yield a result R-Array 

illustrated in Figure 5(a).As a means of an example consider that KU(1)=[X1 X2 X3] , 

Triangle faces in 3D 

object file 

Scan all vertices locations 

to convert matrix to 1D-
array 

f 1 2 3 

f 4 5 6 

f 7 8 9 

f 10 5 11 

 … etc 

 

 

 

 

1   23 

456 

789 

10511 

… etc 

 

 

 

 

Face = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11,…etc] 

 
 

Face= [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, -6,..etc]. 

 

 

 

 

Face divided into sub-arrays for coding 

 

 Sub-Array= [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, -6, -2, -3, -1, -1, -3, -8, -11, -5, -1, -1, -1, -1, ..etc]. 

 

 
 

 

 

 

 
  Encoded data by GM-Algorithm 
 

 

 

 

-50.4, -50.4, -50.4, -223.8, -55.7, -367, -79.8, -50.4…etc 

KU : -1, 5, -6, -2, -3, -8, -11, -5, ... etc 

… 

GM-Algorithm 

Each three data compressed to single integer data 

KC :0.1, 7.1, 43.2 

Arithmetic Coding  

(Stream of compressed bits are generated)  
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KU(2)=[Y1 Y2 Y3] and KU(3)=[Z1 Z2 Z3]. Then, Equation (3) is executed 27 times to build 

the R-Array, as described in Figure 5(a). The match indicates that the unique combination of 

X, Y and Z are represented in theoriginal vertex block.  

B) A Binary Search algorithm [21] is used to recover an item in an array. In this research we 

designed a parallel binary search algorithm consisting of k-Binray Search algorithms 

working in parallel to reconstruct k block of vertices in the list of vertices, as shown in 

Figure 5(b). In each step k-Binary Search Algorithms comparek-Encoded Data (i.e. each 

binary search algorithm takes a single compressed data item) with the middle of the element 

of the R-Array, If the values match, then a matching element has been found and its R-

Array's relevant (X,Y,Z) returned. Otherwise, if the search is less than the middle element of 

the R-Array, then the algorithms repeats its action on the sub-array to the left of the middle 

element or, if the value is greater, on the sub-array to the right. All k-Binary Search 

algorithms are synchronised such that the correct R-Array is returned. To illustrate our 

decompression algorithm, the compressed samples in Figure 2(a) (by our GM-Algorithm) 

can be used by our decompression algorithm to reconstruct X, Y and  Z values as shown in 

Figure 5(c).   

 

In order to Decode Triangle Faces and Vertices, reverse the differential process of Equation (2) by 

addition such that the encoded values in the triangle faces and vertices return to their original 

values. This process takes the last value at position m, and adds it to the previous value, and then the 

total adds to the next previous value and so on. The following equation defines the addition decoder 

[20]. 

 

 )()1()1( iAiAiA                                                                                (4) 

where i= m, (m-1), (m-2), (m-3),…,2 

 

 

 

 

 

 

 

 

 

 

(a) Vertices (X,Y and Z) reconstructed 

 

 

 

 Encoded Data - Block(1) 

 Encoded Data - Block(2) 

 Encoded Data - Block(p) 

KUBlock(1) 

KUBlock(2) 

KU Block(p) 

… … 

Parallel Fast Matching 

Search Algorithm 

(Parallel-FMS) 

After inverse Differential Process 

Block(1) 

Block(2) 

Block(p) 

X1 Y1 Z1 

X2 Y2 Z2 

… 

XkYkZk 

 Xk+1Yk+1 Zk+1 

Xk+2Yk+2 Zk+2 

… 

Xk+kYk+kZk+k 

X2k+1Y2k+1 Z2k+1 

X2k+2Y2k+2 Z2k+2 

… 

XnYn Zn 

List of vertices 

reconstructed 

… 
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(b) Triangle mesh reconstructed 

Figure 4. (a) and (b): Parallel-FMS Algorithm applied on encoded vertices and encoded 

triangle mesh 

 

 

 

 

 

 

 

 

 

 

 

(a) Compute all the probabilities for compute all possible k-Encoded Data for reconstructk-block of data 

 

  

 

 

 

 

 

 

R-Array  

Apply Eq.(3) on all possibilities (X,Y and Z) 

to generate R-Array linked with the relevant 
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X3 
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Xm 
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Y3 
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Z3 
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 Encoded Data - sub-array (1) 
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(b) All Binary Search algorithms work in Parallel to find group of decompressed data approximately at thesame time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) All Binary Search Algorithm run in Parallel to recover the sampleof vertices, approximately at same time. 

 

Figure 5.Parallel-FMS algorithm to reconstruct the reduced array (a) Compute all the 

probabilities for all possible k-Encoded Data (R-Array) by using KC combinations with KU. 

(b) All Binary Search Algorithm run in Parallel to recover the decompressed 3D data 

approximately at the same time. (c) Sample of data recovered. 

 

5. Experimental Results 

The algorithms were implemented in MATLAB R2013a and Visual C++ 2008 running on an AMD 

Quad-Core microprocessor. We applied the compression and decompression algorithms to 3D data 

object generatedby 3dsmax, CAD/CAM, 3D camera or other devices/software. Table 1 shows our 

compression algorithm applied to each 3D OBJ file, and Figure 6 shows the visual properties of the 

decompressed 3D object data for 3D images respectively. Additionally, 3D RMSE are used to 

compare 3D original file sizeswith the recovered files.TheRoot Mean Square Error (RMSE) is used 

to refer to 3D mesh quality mathematically [22, 23] and can be calculated very easily by computing 

the differences between thegeometry of the decompressed and the original 3D OBJ files. 

 

 

-4   0  -3   1   -2   -1   2   -4   0   -3..... 2   -4 ....  2 
-4 0 -3 1 -2 -1 2 

-4 0 -3 1 -2 -1 2 

-4 0 -3 1 -2 -1 2 

Ku1 
 

Ku2 
 

Ku3 

-201.6    -173.2    -158.4   -130         -115.2  ...          -0.4    ...           100.8 

Apply Eq.(3) on all possibilities (X,Y and Z) 

to generate R-Array linked with the relevant 

-4  -4  -4  -4  -4   -4  -4    0    0    0..... 0   -3.....  2 

-4  -4  -4  -4  -4   -4  -4   -4  -4   -4.....-4  -4 ..... 2 

-201.6   -28.8   -158.4   14.4   -115.2   -72   57.6   -173.2   -0.4    -130 

Sort R-Array ascending order  

R-Array generated 
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35.9 
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Binary Search Algorithm Function 3 
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Table 1. Our compression approach results 

3D 

object 

Name 

Original 

file size 

Quantization 

value 

Compressed 

file size 

No. of 

Vertices 

(Compressed 

Size) 

 

No. of 

Triangle 

faces 

(Compressed 

size) 

3D 

RMSE 

(X Y 

Z) 

 

Compression 

ratio 

Face1 13.3MB 10 213 KB 
105819 

(187 KB) 

206376 

(26 KB) 
0.288 98% 

Face2 96MB 10 3.7 MB 
621693 

(1.8MB)
 

1216249 

(1.9MB) 
0.289 96% 

Angel 
23.5 

MB 
20 1.75MB 

307144 

(1.055MB)
 

614288 

(715 KB) 
0.288 93% 

Robot 1.5 MB 400 88.9KB 
23597 

(56.3KB) 

45814 

(32.6KB) 
0.289 94% 

Cup 57KB 2 3.5 KB 
594 

(2.13 KB) 

572 

(1.36KB) 

0.263 

 
91% 

Knot 178 KB 2 
7.94KB 

 

1440 

(7.4 KB) 

2880 

(553 Bytes) 
0.027 96% 
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(a) (Top left) original 3D FACE1 object, (Top Right) reconstructed 3D mesh FACE1 without texture, compressed size: 213 

KB, (middle) original 3D mesh zoomed by Autodesk application,(bottom) reconstructed 3D mesh zoomed by Meshlab 

application. 
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(b) (Top left) original 3D FACE2 object, (Top Right) reconstructed 3D mesh FACE2 without texture, compressed size: 3.7 

MB, (middle), original 3D mesh zoomed by Autodesk application, (bottom) reconstructed 3D mesh zoomed by Meshlab 

application.  
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(c) (Top left) original 3D Angel object, (Right left) reconstructed 3D mesh Angel at compressed size: 1.75 MB, (middle) 

original 3D zoomed by Autodesk application, (bottom) reconstructed 3D mesh zoomed by Meshlab application.  

 

 

 

(d) (Top) original 3D Robot object, (bottom) reconstructed 3D mesh Robot, at compressed size: 88.9KB 
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(e) (Top) original and reconstructed 3D mesh cup, at compressed size: 3.5 KB, (bottom)original and reconstructed 3D mesh 

Knot, at compressed size: 7.94 KB 

Figure 6: (a – e) shows decompressed 3D objects by the proposed algorithms 

 

 

Tables 2 and 3 showa comparisonofthe proposed method with the 3D file formats: VRML, 

OpenCTM and STL. In this research we also used a new simple fileformat referred here as 

MATLAB format. This format savesthegeometry, texture and triangle faces as lossless data, in 

separated matrices and all the matrices are collected into a single file. We investigate this format 

obtaining compression ratios over 50% for most of 3D OBJ files. In comparison, our approach uses 

aunique format to compress 3D files over 98% in the best case; this is mostly dependent on the 

triangle face details. 
 

 

 

 

Table 2. Our approach compared with other encoding 3D data format according to compressed size 

3D object 

Name 

Original  

file size 
Proposed 

Algorithm 

MATLAB 

format 

VRML 

format 

OpenCTM STL 

Angel 23.5 MB 1.75MB 5.31 MB 23.2 MB 1.92 MB 29.2 MB 

Face1 13.3 MB 213 KB 4.04 MB 9.19 MB 808 KB 9.84 MB 

Face2 96MB 3.7MB 23.3 MB 47.7MB 3.7MB 57.9MB 

Robot 1.5 MB 88.9 KB 449 KB 1.7 MB 151 KB 2.18 MB 

Cup 57 KB 3.5 KB 12 KB 25.2 KB 3.24 KB 28 KB 

Knot 178 KB 7.94 KB 23.6KB 95.4KB 14.2KB 140 KB 
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Total  

Compressed Size 
 5.75 MB 33.12 MB 81.9 MB 6.57 MB 99.28 MB 

Mean  

Compression 

Ratio 

 95.7 % 75.3 % 39.4% 95.1 % 26.2 % 

 

Table 3. Our approach compared with other encoding 3D data format according to 3D RMSE 

3D object Proposed Method MATLAB VRML OpenCTM STL 

Angel 0.288 0 0.0002 44.86 46.32 

Face1 0.289 0 0.00021 64.79 42.05 

Face2 0.288 0 0.000109 82.23 43.44 

Robot 0.289 0 0 0.0587 0.137 

Cup 0.263 0 0.00000075 37.7 39.2 

Knot 0.027 0 0.000105 47.65 12.62 

 

6. Conclusion 

This research has presented and demonstrated a new method for 3D data compression and 

compared the quality of compression through 3D reconstruction, 3D RMSE and the perceived 

quality of the 3D visualisation. The method is based on minimization of geometric values to a 

stream of new integer data by theGM-Algorithm.Meshconnectivity is partitioned into groups of 

data,whereeach group iscompressed by theGM-Algorithm followed byarithmetic coding. We note 

that some of the existing 3D file formats do not efficiently encode geometry and connectivity,as a 

simple format developed in MATLAB showedhighercompression ratios than STL and VRML. The 

results show that our approach yields high quality encoding of 3D geometryand connectivity with 

high compression ratios compared toa number of standard 3D data formats. The slight disadvantage 

is a larger number of steps for decompression, leading to increased execution time at decoding 

stage,making the method slower than 3D standard compression methods. Further research includes 

investigation of methods to speed up decoding, possibly by sorting theR-Arrayentries by 

frequency.Also, a comparative analysis with a larger number of 3D file formats and compression 

technique is forthcoming. 
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Abstract 

 
With the great progress in supercomputers and the numerical methods, the application of 
computational fluid dynamics are advancing rapidly in the field of ship hydrodynamics. And 
the dynamic overset grid method makes it possible for computing complex ship motions, e.g. 
ship self-propulsion with moving propellers and rudders. In the present work, CFD-based 
method coupling with dynamic overset grid technique is applied to investigate the 
hydrodynamic performance of the fully appended ONR Tumblehome ship model during self-
propulsion condition. Open water performance of propeller and towing condition of bare hull 
are computed before the self-propulsion simulation. The ship model is fitted with twin 
rotating propellers and twin static rudders, achieving self-propulsion model point at Fr=0.2 
and Fr=0.3, respectively. All the computations are carried out by our in-house CFD solver 
naoe-FOAM-SJTU, which is developed on the open source platform OpenFOAM and mainly 
composed of a dynamic overset grid module and a full 6DOF motion module with a 
hierarchy of bodies. The CFD code naoe-FOAM-SJTU solves the Navier-Stokes equations 
for unsteady turbulent flows with VOF method capturing free surface around the complex 
geometry models. During the self-propulsion simulation, a feedback controller is used to 
update the rate of revolutions of the propeller to achieve the target speed. Detailed 
information of the flow field during the self-propulsion condition is presented and analyzed. 
In addition, predicted results, i.e. ship motions and force coefficients, are also presented and 
compared with the available experimental data. Good agreements are achieved which 
indicates that the present approach is applicable for the self-propulsion simulation. 
 

Keywords: Overset grid, naoe-FOAM-SJTU solver, self-propulsion, ONR Tumblehome ship 

Introduction 

Self-propulsion is a key standard to examine a ship’s powering performance and is closely 
bound up with energy consumption. With the coming out of energy efficiency design index 
(EEDI) proposed by IMO, more attention is devoted to the research of ship self-propulsion 
character. Thus how to evaluate the self-propulsion characteristics at the design stage is of 
great importance and the studies in this area have been extensively progressed. However, 
great challenges show up with the complexity of the flow field and interaction between hull, 
moving rudders and rotating propellers. When dealing with the fully appended ship, the 
vortical structures separated from the hull and appendages can be even more complicated. 
Among the available approaches to perform CFD simulation of self-propulsion, direct self-
propulsion simulation with discretized module of fully appended hull, rotating propeller and 
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moving rudder is the one least reliant on geometries. Furthermore, self-propulsion requires 
capabilities of 6DOF module of a hierarchy of bodies in a free surface environment. All the 
above aspects increase the difficulties in direct simulating the self-propulsion problems. 
 
Up to now, the main approach for predicting self-propulsion still strongly relies on the 
experimental results, in which model scale experiments in a conventional towing tank 
account for the main part. It can give high accurate results for the experiments but conversely 
at high cost. Nowadays, the use of CFD based method for self-propulsion prediction is 
becoming more and more popular as numerical algorithms improve and computers gain in 
power. Increasing demand of high accuracy for ship self-propulsion prediction has made it 
essential to develop full numerical simulation model for ship hull, propeller and rudder. In 
addition, the dynamic overset grid method, including a hierarchy of bodies that enable 
computation of ship motions with moving components, makes it possible to directly compute 
self-propulsion with rotating propellers and moving rudders. So far, overset grid method has 
been applied to the computations of ship hydrodynamics, especially for the direct simulation 
of hull-propeller-rudder interaction. Carrica et al. (2010)[1] use a speed controller and a 
discretized propeller with dynamic overset grids to directly perform the self-propulsion 
computations. Three ship hulls are evaluated, i.e. the single-propeller KVLCC1 tanker 
appended with a rudder, the twin propeller fully appended surface combatant model DTMB 
5613, and the KCS container ship without a rudder, and good agreements with experimental 
data show that direct computation of self-propelled ships is feasible. Castro et al. (2011)[2] 
investigate the full-scale computations for self-propelled KRISO container ship KCS using 
discretized propeller model, and give the conclusion that the propeller operates more 
efficiently in full scale and is subject to smaller load fluctuations. Shen et al. (2015)[3] 
implement dynamic overset grid module to OpenFOAM and apply to the KCS self-
propulsion and zigzag maneuvering simulation. Direct simulated results show good 
agreements with the experimental data, which show that the fully discretized model with 
overset grid method is applicable for the computations of ship hull, propeller and rudder 
interaction. 
 
The present paper shows our recent progress in the numerical prediction of self-propulsion 
for fully appended ONR Tumblehome using overset grid method. Discretized model for 
rotating propellers and moving rudders are used in the simulation. Emphasis is put on the 
hydrodynamic performance for self-propulsion in different Froude numbers, i.e. 

0.20, 0.30r rF F  . The main framework of this paper goes as following. The first part is 

the numerical algorithm and solver, where naoe-FOAM-SJTU solver and overset grid method 
are presented. The second part is the geometry model and grid distribution. Then comes the 
simulation part, where towing condition, open water calculation and self-propulsion will be 
presented systematically. In this part, extensively comparisons are performed against the 
experimental data including ship motions and hydrodynamic coefficients. Following this part 
is the grid uncertainty study for towing condition at 0.30rF  . Finally, a conclusion of this 

paper is drawn. 

Numerical algorithm and solver 

naoe-FOAM-SJTU solver 

The in-house CFD code naoe-FOAM-SJTU applied in this study solves the Navier-Stokes 
equations for unsteady turbulent flows and using VOF method to capture free surface around 
the complex geometry models. The main framework and features of naoe-FOAM-SJTU 
solver are only briefly described here; detailed information can be referred to Shen et al. 
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(2014, 2015)[3,4], Cao et al. (2014)[5], and Wang et al. (2015a, 2015b)[6,7]. The solver is based 
on the open source platform OpenFOAM and consists of self-developed modules, i.e. a 
velocity inlet wave-making module, a full 6DOF module with a hierarchy of bodies and a 
mooring system module. The solver has the capability of handling varies problems in naval 
architecture and ocean engineering, i.e. large motion response prediction for ship and 
platforms in ocean waves; ship resistance, seakeeping prediction; direct simulations of self-
propulsion and free maneuvering with moving rudders and rotating propellers. 
 
The unsteady RANS equations and VOF transport equation are discretized by the finite 
volume method (FVM). The merged PISO-SIMPLE (PIMPLE) algorithm is applied to solve 
the coupled equations for velocity and pressure field. The Semi-Implicit Method for Pressure-
Linked Equations (SIMPLE) algorithm allows to couple the Navier-Stokes equations with an 
iterative procedure. And the Pressure Implicit Splitting Operator (PISO) algorithm enables 
the PIMPLE algorithm to do the pressure-velocity correction. Detailed description for the 
SIMPLE and PISO algorithm can be found in Ferziger and Peric (1999)[8] and Issa (1986)[9]. 
Near wall treatment wall functions are applied to the moving wall boundary, which can 
reduce computational grid with coarse layer near the ship ( y  can be more than 30). In 
addition, several built-in numerical schemes in OpenFOAM are used in solving the partial 
differential equations (PDE). The convection terms are discretized by a second-order TVD 
limited linear scheme, and the diffusion terms are approximated by a second-order central 
difference scheme. Van Leer scheme (Van Leer, 1979)[10] is applied for VOF equation 
discretization and Euler scheme is used for temporal discretization. 

Overset Grid Method  

The overset grid method is of great importance for direct simulating the full coupled hull, 
propeller and rudder system. Here a brief introduction for the utilization of overset grid 
module in naoe-FOAM-SJTU solver is presented. Overset grid is a grid system that made up 
of blocks of overlapping structured or unstructured grids. By using dynamic overset grid 
technique, the overlapping grids can move independently without any constraints. To this aim, 
the cells in the computational domain are classified into several types, i.e. fringe, hole, donor 
etc. The information of cell types is stored in the domain connectivity information (DCI) file. 
In our present solver, Suggar++ (Noack et al., 2009)[11] is utilized to generate the domain 
connectivity information (DCI) for the overset grid interpolation. To combine OpenFOAM 
with Suggar++, a communication, which is responsible for DCI exchange between 
OpenFOAM and Suggar++, has been implemented using the Message passing interface (MPI) 
library (Shen et al., 2015)[3]. Other features consist of a full 6DOF motion module with a 
hierarchy moving components and several modifications for sparse matrix solvers and 
MULES solver to excluded non-active cells. The flowchart of the parallel calculation 
between OpenFOAM processor and Suggar++ processor is shown in Figure 1. 
 
By using overset grid method, the full 6DOF motion solver allows the ship and its 
appendages as well as the moving components to move simultaneously. Two coordinate 
systems are used to solve the 6DOF equations. One is the inertial system (earth-fixed system) 
and the other is non-inertial system (ship-fixed system). The inertial system can be fixed to 
earth or move at a constant speed with respect to the ship (here we only apply the horizontal 
motion for the moving of inertial system). The non-inertial system is fixed to the ship and can 
translate or rotate according to the ship motions. More information of the 6DOF motion 
solver with overset grid module implementation can be followed Shen et al. (2015)[3]. In our 
present study, the computational domain is decomposed into several overlapping grids, where 
each moving component has its own grid to deal with complex motion problems. 
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Figure 1 Flowchart of the calculation procedure 

Geometry, grid and test conditions 

Geometry model and computational domain 

The present numerical simulations are carried out for the ONR Tumblehome model 5613, 
which is a preliminary design of a modern surface combatant fully appended with skeg and 
bilge keels. The ship model also involves rudders, shafts and propellers with propeller shaft 
brackets. The geometry model of ONR Tumblehome without propellers and shaft brackets is 
shown in Figure 2, and its principle parameters are listed in Table 1. The ship model is used 
as one of the benchmark cases in Tokyo 2015 CFD workshop in ship hydrodynamics. 
Experiments were widely performed in IIHR wave basin for this ship model and the available 
experimental data can be used to validate our present computational results. 

 
Figure 2 Geometry model of ONR Tumblehome (from Tokyo 2015 CFD Workshop) 

 
Table 1 Principle dimensions of fully appended ship 

Main particulars Model scale Full scale 

Length of waterline ( )WLL m  3.147 154.0 
Maximum beam of waterline ( )WLB m  0.384 18.78 
Depth ( )D m   0.266 14.50 
Draft ( )T m   0.112 5.494 
Displacement ( )kg  72.6 8.507e6 
Wetted surface area (fully appended) 2

0 ( )S m 1.5 NA 
Block coefficient (CB) / ( )WL WLL B T   0.535 0.535 
LCB . ( )aft of FP m   1.625 NA 
Vertical center of gravity (from keel) ( )KG m   0.156 NA 
Metacentric height ( )GM m   0.0422 NA 

Moment of inertia 
/xx WLK B   0.444 0.444 
/ , /yy WL zz WLK L K L 0.246 0.25 

Propeller diameter ( )PD m   0.1066 NA 
Propeller shaft angle (downward pos.)  （） 5 NA 
Propeller rotation direction (from stern)  inward inward 
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Using dynamic overset grid technique, here we have four parts of the computational grids, i.e. 
grid around ship hull, propeller grid, rudder grid and background grid. Background grid is the 
root element during the hole-cutting procedure, and the hull grid is at parent motion level 
with children grid of twin propellers and rudders. The four grid blocks have overlapping 
areas, which can move independently without restrictions and build connections among them 
by interpolation at appropriate cells or points. The computational domain arrangement in 
global and local view is shown in Figure 3. For the self-propulsion computation, the 
background domain extends to -1.5Lpp < x <5.0Lpp , -1.5Lpp < y < 1.5Lpp , -1.0Lpp < z < 
0.5Lpp , and the hull domain has a much smaller region with a range of -0.15Lpp < x < 1.2Lpp , 
-0.13Lpp < y < 0.13Lpp , -0.2Lpp < z < 0.2Lpp .  
 
 
 

 

a) Global view b) Local view 
Figure 3 Computational domain for self-propulsion computation 

 
 

Grid distribution 

Fully unstructured grids used in this paper are generated by snappyHexMesh with the 
background grid generated by blockMesh, both are pre-processing utility provided by 
OpenFOAM. The total grid number for the self-propulsion simulation is 6.81M and the 
detailed grid information in each part is shown in Table 2. Considering the grid quality in 
overlapping areas, several refinement regions are applied to offer enough donor cells for 
interpolation. Grids in gaps should be handled specifically, i.e., the grid dimensions of 
different grid blocks in overlapping areas should be similar. Good grid quality at overlapping 
areas can resolve better flow information and reduce the computational cost. The global and 
local grid distribution around ship hull is shown in Figure 4. 
 

Table 2 Grid distribution in each part 
Grid Total Port Starboard Level 
Background 1.34M NA NA Highest 
Hull 2.61M NA NA Parent 
Propeller 2.28M 1.14M 1.14M Children 
Rudder 0.58M 0.29M 0.29M Children 
Total 6.81M NA NA NA 
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a) Global view b) Local view 
Figure 4 Grid distribution around ship hull 

Test conditions 

The present work is for self-propulsion computation of ONR Tumblehome model. According 
to the experimental setup, the fully appended ship is set to advance at model point in calm 
water with rotating propellers and rudders. In the present simulation, two approaching speeds, 
i.e. =1.110 /U m s  and 1.667 /U m s , corresponding to Froude number of 0.20rF   and 

0.30rF  , are taken into account to further investigate the self-propulsion performance of the 

fully appended ONR Tumblehome model. Note that both simulations are performed with the 
same overlapping grids, since wall functions can allow the y  in the range of 30-200. 

Simulation results and analysis 

When dealing with self-propulsion problems, the initial condition for the computation is 
interpolated from the final solution of the towing condition with the utility mapFields 
supported by OpenFOAM. This pre-processing step can save large amount of computational 
time by starting with a developed flow field and boundary layer. The initial ship speed was 
set to the target cruise speed and the rate of resolutions of propeller is static at the beginning. 
A feedback proportional-integral (PI) controller is applied to adjust the rotational rate of the 
propeller to achieve the target ship speed. Detailed information for the PI controller can be 
referred to Shen et al. (2015)[3]. The proportional and integral constants were set to 800 with 
the consideration of large PI constants can accelerate the convergence of the propeller 
revolution rate and reduce the total computation time. 

Towing condition 

The simulation of towing condition is followed by the experimental setup, and the advancing 
speeds are =1.110 /U m s  and 1.667 /U m s , corresponding to 0.20rF   and 0.30rF  . The 

computations are carried out without appendages and moving components. Overset grid 
approach is also applied in this simulation, and the computational domain is separated into 
the hull grid and background grid. The total grid number is 1.87M, with 0.82M for hull grid 
and 1.05M for background grid. Boundary conditions are identical with zero velocity and 
zero gradient of pressure imposed on inlet and far-field boundaries, while the boundary 
condition of interface between two grids is set to overlap for flow information interpolation.  
 
During the computation, the ship model is advancing at the desired speed while the remaining 
5 freedoms of degree are constrained. Through this way, the calculated flow field can be used 
as an initial state for the self-propulsion simulation. As a consequence, this step can save 
large amount of computational time by starting the calculation with a developed flow field 
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and boundary layer. Cook (2011)[12] investigate the appendages effect on the total resistance 
for ONR Tumblehome model at different Froude numbers, and the comparison between the 
present numerical results and the experimental data as well as CFD results by IIHR are listed 
in Table 3. An obvious phenomenon can be observed from the table that the total resistance 
of bare hull without bilge keels is much smaller than the fully appended model. The present 
results for the bare hull resistance show good agreement with the EFD data performed at 
INSEAN and the CFD results from IIHR. Figure 5 shows the convergence curves of the three 
components of ship resistance, i.e. , ,t v pF F and F  at 0.30rF   in 50s. Satisfactory agreements 

for the towing condition are achieved and high accuracy result can give a better initial state of 
the self-propulsion simulation. In addition, to further validate our numerical results, grid 
uncertainty analysis is performed for the towing condition, which will be described in the 
grid uncertainty analysis part. 
 

Table 3 Total resistance comparison with bare hull simulation 

rF  IIHR EFD 
fully appended 

INSEAN EFD 
bare hull 
w/o BK 

IIHR CFD 
bare hull 
w/o BK 

naoe-FOAM-SJTU
bare hull 
w/o BK 

0.20 4.54 N -18.6% -15.7% -17.9% 

0.30 11.30 N -19.0% -20.8% -18.3% 

 

 
Figure 5 Time histories of the ship resistance at Fr=0.3 

 

Open water calculations 

Open water calculations for the propeller is carried out before the self-propulsion 
simulation. In the present study, open water curves are obtained by the single-run procedure 
described in Xing et al. (2008)[13]. As for the single-run procedure, the propeller is towing at a 
small acceleration to fulfil a wide range of advancing velocities in one turn. Based on overset 
grid, the computational domain is separated into two parts, i.e. background grid and propeller 
grid (Figure 6a). When doing the calculation, the propeller grid rotates with the rotating 
propeller while the background grid moves forward with the propeller advancing velocity. 
The total number of the computational grids is 1.13M with 0.51M for propeller grid and 
0.62M for background grid. The grid distribution around propeller disk is shown in Figure 6b. 
Calculated open water curves are compared to the experimental results performed by IIHR 
(available at Tokyo 2015 CFD Workshop). The comparison between the numerical results 
and experimental data can be used to validate the current dynamic overset grid method 
coupled with single-run approach in simulating rotating propellers. 
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a) Computational domain b) Grid distribution around propeller 
Figure 6 Computational domain and grid distribution for open water calculation 

 
During the procedure, the rate of resolutions of propeller is set to fixed value n=8.97 r/s 
according to the test model point for self-propulsion at 0.20rF  . Note that open water 

curves can be obtained by different rotating speed of propeller using single-run approach, and 
here we use the model point at 0.20rF   with the consideration of larger time step can be 

applied at low speed of propeller. Large range of advancing speed is performed to achieve the 
desired advance coefficient J . Thrust coefficients TK , torque coefficient QK  and efficiency 

0  for each advance coefficient are obtained from the calculated thrust and torque. The 

propulsive coefficients mentioned above are defined as: 
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where T and Q are the propeller thrust and torque, PD  is the diameter of propeller, n is the 

RPS and AV  is the advancing speed. The propeller accelerates from 0 /AV m s  to 

1.721 /AV m s  in 10 seconds with advance coefficient various from =0J  to =1.8J . The 

predicted results of the open water curves are shown in Figure 7 and overall agreement is 
achieved according to the comparison with the experiment. However, the numerical results 
for torque coefficient QK  and thrust coefficient TK  are not so good at both the beginning and 

the end. Figure 8 shows the vortical structures using isosurface of Q=200 and colored by the 
axial velocity at three advancing coefficients, i.e. 0.9 1.0 1.1J J and J  ， . Tip vortices of 
the propeller are resolved clearly, and a decreasing with the strength of vortices is 
experienced with the increasing of advance coefficient. This phenomenon is mainly due to 
the angle of attack decreases when the advance coefficient becomes larger. 
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Figure 7 Open water results by experiment (left triangle) and CFD (right triangle) 

 
The hub vortices of the propeller experienced the same trend with the strength decreasing. 
With rather coarse mesh and the RANS turbulence model, the evolution of vortical structures 
is relatively stable. In spite of the limitation of RANS model, the calculated coefficients TK , 

QK  and 0  show overall agreement with the experimental data by the present dynamic 

overset grid method coupled with single-run approach. 
 
 

 
a) =0.9J    b) =1.0J c) =1.1J   
Figure 8 Isosurfaces of Q=200 at different advance coefficients colored by axial velocity  
 
 

Self-propulsion simulation 

As mentioned in test conditions, two approaching speeds, i.e. =1.110 /U m s , 1.667 /U m s , 
are performed for the self-propulsion simulation. The former situation is one of the 
benchmark cases (case 3.9) in Tokyo 2015 Workshop on CFD in ship hydrodynamics. And 
the experiment data for the latter one is also available in Elshiekh (2014)[14]. According to the 
experimental setup, the fully appended ship is set to approaching at model point in calm 
water. The twin rotating propellers, updating RPS by a feedback PI controller, provide the 
thrust for the ship to move forward. Overset grid arrangement and mesh distribution is 
described in Figure 3-4, and the size of each part grid is shown in Table 2. 
 
The initial state of the simulation is obtained by interpolating data from the final flow field of 
towing condition to accelerate the convergence of the calculation. The interpolation is 
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conducted by the mapFields utility, which is a pre-processing tool supported by OpenFOAM. 
During the self-propulsion simulation, the twin propellers start from static state and speed up 
the rotational velocity to provide enough thrust. The proportional and integral coefficients P 
and I are set to 800 and the detailed process of the PI controller can be referred to Shen et al. 
(2015)[3]. 
 
The time histories of the rate of resolutions (RPS) of propellers and ship model advancing 
speed for both conditions are shown in Figure 9. 
 

a) RPS b) Ship speed 
Figure 9 Time histories of RPS and ship speed  

 
 
Both time histories of the RPS start from zero and increase quickly and the curves of the RPS 
converge to the desired the value in about 5 seconds at model scale. According to Figure 9b, 
the ship speed first decreases due to less thrust provided by the rotational propellers and with 
the increasing RPS of propellers, the available thrust can prompt the ship speed comes back 
to the target value. In addition, the time histories of ship speed describe the characters at the 
beginning of different conditions, where the increasing rate of speed as well as the speed loss 
for 0.30rF   are larger than that of 0.20rF  . This is mainly due to the fact that larger target 

speed requires larger thrust, thus more speed loss at beginning with static propeller and larger 
increasing rate with higher RPS of propeller. Figure 9 also presents the test results for the rate 
of resolutions of propeller (RPS) and target ship speed. Numerical results of both RPS and 
ship speed can finally achieve a stable desiring state. 
 
Table 4 lists the numerical results of ship motions and self-propulsion coefficients. All the 
predicted force coefficients are in non-dimensional format using the provided wetted surface 
area at rest 0S , fluid density   and ship advancing speed U . The force coefficients are 

defined as follows: 
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Table 4 Numerical results for ship motions and self-propulsion coefficients 

Parameters 0.20rF   0.30rF   

CFD EFD* Error CFD EFD* Error 

u  (m/s) 1.109 1.125 -1.4% 1.664 1.667 -0.2% 

sinkage 210  (m) 2.41E-1 2.26E-1 6.5% 5.78E-1   

trim (deg)   4.64E-2 3.86E-2 20.3% 7.81E-2   
310TC    5.291   5.465   
310VC    1.539   3.310   
310PC    3.752   2.155   

( )n RPS   8.819 8.97 -1.7% 13.389 13.684 -2.16% 

TK   0.242   0.246   

QK   0.616   0.673   

*the sinkage and trim of experimental data at 0.20rF   is available at Tokyo 2015 CFD 

Workshop and is not available for 0.30rF  ，so only numerical results are presented. 

 
Note that the computation is carried out to predict the self-propulsion model point and the 
propulsion coefficients are obtained by the predicted results, none of the coefficients except n 
can be compared with the measured data. So only parts of the results are compared with the 
experiment. Table 4 gives a general comparison for ship motions and force coefficients. It 
shows that the present CFD approach can precisely achieve the desired ship speed and the 
computational results of ship motions can also give a general performance compared with the 
experiments. The sinkage and trim are overpredicted in high Froude number, while the thrust 
coefficient TK and torque coefficient QK  are at the same level. In addition, according to the 

simulated force coefficients, the viscous coefficient VC  accounts for the main part of the total 

resistance at 0.30rF  , while the pressure coefficient PC  occupies a dominant place at 

0.20rF  . This further confirms that viscous effect plays an important role at high Froude 

numbers, especially when 0.30rF  . 

 
The rate of revolutions of the propeller n computed by our own solver naoe-FOAM-SJTU is 
8.819 and 13.389 for 0.20rF   and 0.30rF  , respectively. Both results are underestimated 

within 3% compared with the experimental data. The high accuracy of the predicted rate of 
resolutions of propeller confirms that the present dynamic overset grid approach is applicable 
to predict the model point for free running ship model. 
 
Figure 10 shows the wave patterns for self-propulsion at different conditions. The flow region 
and velocities are non-dimensioned by the ship model length WLL  and magnitude velocity U . 

Both the wave height and wave length at =0.30rF  is significantly larger. Pressure 

distribution around ship hull, twin propellers and rudders is shown in Figure 11. The 
distribution at different Froude number has a consistent relationship to the wave patterns. 
Larger bow wave results in larger pressure in the forehead of the ship hull. As for the 
pressure distribution around the twin propellers and rudders, pressure distribution experience 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

405



the same trend with the bow pressure. This is mainly due to the higher rotating speed at 
0.30rF  . 

 

a) 0.20rF     b) 0.30rF    

Figure 10 Wave patterns at different Froude number colored by nondimensional wave 
height / ppZ L   

 
a) 0.20rF    

 
b) 0.30rF    

Figure 11 Pressure distribution around ship hull, propellers and rudders 
 
Figure 12 presents the detailed flow information at wake region, i.e. propeller disk 
( / 0.909ppX L  ) and the rudder section ( / 0.965ppX L  ). From the figure we can see that 

the boundary layer around ship hull at high Froude number is thinner and the non-
dimensional axial velocity is approximately the same, which can further explain the thrust 
coefficients are at the same level in different conditions. Little discrepancy is found for the 
wake distribution at the rudder section due to different vortex strength, which will be 
described later. 
 
Figure 13 shows a profile view of vortical structures displayed as isosurface of Q=200 
colored by axial velocity. According to the stern view of the vortical structure, tip vortices of 
the propellers are clearly resolved even when passing through the rudders, but dissipate 
quickly within the coarser mesh downstream. In addition, the strength of tip vortices is 
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stronger in higher Froude number, which can be clearly seen in the figure. The hub vortex 
observed is stronger and has a much larger size so that it is still somewhat resolved by the 
coarser grid downstream of the refinement. Another obvious phenomenon can be seen from 
the figure is that the vortices after the rudder root, which is caused by the artificial gap 
between the rudder and rudder root, and it will not appear in the real test.  
 

a) 0.20rF     b) 0.30rF    

Figure 12 Wake distribution at different Froude number (upper for slice 
/ 0.909ppX L  /propeller disk; lower for slice / 0.965ppX L  /rudder) 

 
Figure 13 also shows the 3D view of vortical structure, where strong interaction between the 
propeller vortex and the rudder geometry is occurred. The strong hub vortex of the propeller 
is rarely affected by the following rudder, which is due to the fact that the axis of rudder has a 
distance away from the axis of propeller. An interesting effect occurs when the tip vortices 
of blades pass through the rudders, where the vortices are strongly affected by the rudder 
geometry both at the inward and outward side. In addition, little flow interaction is observed 
between the port side propeller and starboard side propeller (Figure 12, Figure 13). 
Furthermore, the strength of the hub vortex in higher Froude number is also stronger than the 
lower one at the same grid size. The strong flow interaction between the propellers and 
rudders can result in complex hydrodynamic performance of ship hull. 

Grid uncertainty analysis 

With the fact of the large amount of computing time required by the self-propulsion, grid 
uncertainty analysis is only conducted on the towing condition in the present work with 
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consideration of the simplicity of the overset grid arrangement in towing condition for bare 
hull calculation (only two part of grid is applied).  
 
 

a) 0.20rF     b) 0.30rF    

Figure 13 Profile and 3D view of vortical structures around twin propellers and rudders 
 
Grid convergence study in the present work follows the verification methodology described 
in Stern et al. (2006)[15]. The convergence solution ( GR ) of the different solutions ( iS , at least 

three) is defined as: 
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where , 1,2,3iS i  , correspond to solutions with fine, medium, and coarse grid, respectively. 

Three convergence conditions are possible: 
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For condition (i), generalized Richardson extrapolation (RE) is used to estimate grid 
uncertainty GU . For condition (ii), uncertainties are estimated simply by attempting to bound 

the error based on oscillation maximums US  and minimums LS , i.e. 1 2( )G U LU S S  . 

While for condition (iii), errors and uncertainties cannot be estimated. 
 
The grid convergence study is carried out for towing condition with bare hull at 0.30rF  . 

Three grids with a refinement ratio of 2  in each direction are carried out for the grid 
convergence study. Considering the grids used in the present calculation is fully unstructured, 
the systematic refinement in three directions is very difficult. In order to do the grid 
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convergence study, an alternative approach is applied as follows. The background grid 
required by the snappyHexMesh is refined by splitting cells. Three systematic background 
grids with specified refinement ratio are taken into account. The final generated grids are 
approximately refined (not exactly the same) according to the grid convergence study. The 
results of the grid uncertainty is listed in Table 5. 
 

Table 5 Grid uncertainty results for towing condition at 0.30rF    

Grid ID 
Grid Size 

(M) 
3(10 )PC   3(10 )VC   3(10 )TC   Error 

EFD     4.639  
Fine 1S  3.65 1.549 3.098 4.647 0.17% 

Medium 2S  1.87 1.503 3.076 4.579 -1.29% 

Coarse 3S  0.68 1.690 3.124 4.814 3.77% 

GR    -0.246 -0.458 -0.289  

GU (% 2S )   4.691 4.226 1.824  
Convergence 
type 

  Oscillatory Oscillatory Oscillatory  

 
The force coefficients, i.e. , ,P V TC C and C , are used to estimate the grid uncertainty of the 

towing condition. The results have good convergence as shown in Table 5. All coefficients 
show oscillatory convergence with GR  of -0.246, -0.458, and -0.289, respectively. The PC  

meets the maximum grid uncertainty with 4.691%GU   and the grid uncertainty of total 

resistance coefficient TC  is only 1.824%, which confirms that the grid density has limited 

effect on the resistance in the current range of grid size. 

Conclusions 

This paper presents the self-propulsion simulations of fully appended ONR Tumblehome. 
Numerical simulations at two different speeds, i.e. 0.20, 0.30r rF F  , are performed using 

in-house CFD solver naoe-FOAM-SJTU. During the simulation, the moving objects are 
handled by the dynamic overset grid method, and a feedback proportional-integral (PI) 
controller is employed to adjust the rotational rate of the propeller to achieve the desired ship 
speed.  
 
Towing condition for bare hull model at different Froude numbers are carried out to give an 
approximate initial state of the self-propulsion computation. Predicted total resistance are 
compared with the experimental results and satisfactory agreement for bare hull is achieved. 
Furthermore, grid uncertainty analysis is performed with the bare hull towing condition at 

0.30rF  . All the predicted force coefficients show oscillatory convergence and the grid 

uncertainty of TC  is 1.824%, indicating that the grid density has limited effect on the 

resistance in the current range of grid size. Open water calculations are also carried out 
beforehand using the single-run method and the numerical results show an overall agreement 
with the experiment performed at IIHR. 
 
The time histories of RPS and ship speed are converged to the target value in about 5s, and 
the increasing rate of speed as well as the speed loss for 0.30rF   is larger than that of 
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0.20rF  . In addition, according to the simulated force coefficients, the viscous coefficient 

VC  accounts for the main part of the total resistance at 0.30rF  , while the pressure 

coefficient PC  occupies a dominant place at 0.20rF  , which further confirms that viscous 

effect plays an important role with high Froude number, especially when 0.30rF  . Predicted 

model point at different Froude number of self-propulsion simulation are underestimated by 
1.7% and 2.16%, respectively. Detailed information of the flow field around twin propellers 
and rudders, i.e. wave patterns, wake distribution, pressure distribution, and vortical 
structures, at different Froude number are depicted and analyzed to explain the strong 
interaction among the ship hull, propellers and rudders.  
 
Future work will focus on self-propulsion simulation in waves. Difficulties will be the direct 
simulating of moving propellers with large ship motions. More work will be done to do the 
free maneuvering simulation depending on the computed self-propulsion results. 
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Abstract 
It is a definite trend and hot topics of hull form optimal design based on computational fluid 
dynamics(CFD). Hull form optimization is carried out in this paper which combines the 
Neumann-Michell (NM) theory with CFD technology (NM+CFD integrated method) to 
OPTShip-SJTU, an optimization tool. The Free Form Deformation (FFD) method adopted for 
automatically modifying the hull form are illustrated. In order to reduce the overall highly 
computational effort, not only the surrogate model is established based on the samples 
produced by OLHS method and is used to directly predict the total resistance in optimization 
process, but also a NM+CFD integrated method, the NM theory for evaluating wave 
resistance and CFD technology based on RANS for evaluating viscous resistance of double 
body, are discussed to evaluate the total resistance of ships. In addition, NSGA-II, a multi-
objective genetic algorithm, is implemented to produce pareto-optimal front. In the present 
paper the KRISO 3600TEU container ship model (KCS) is chosen as initial ship and optimal 
solutions with obvious total resistance coefficient reductions at specific speeds(at Fr=0.2, 0.26) 
are obtained. Eventually, one typical optimal hull is analyzed by a RANS-based CFD solver 
naoe-FOAM-SJTU. Numerical results confirm the availability and reliability of this multi-
objective optimization tool.  
Keywords: Hull form optimization, total resistance coefficient, FFD, OPTShip-SJTU, naoe-
FOAM-SJTU solver. 

Introduction 

Ship designers often design a new ship mostly by their own experience in accordance with the 
requirements proposed by shipping companies[1]. Generally, designers can attempt to 
transform several initial ships with similar usage, similar shapes and as well as with 
satisfaction of ship owners during the operation and then predict and check performances of 
the new ship over and over. The above design process is a single-threaded circle, which 
mainly depends on designers’ experience and intuition.  
With the development of computer technologies and computational fluid dynamics(CFD), 
ship optimization design has raised the interest of researchers and designers, which is a 
converse process absolutely different from the traditional ship design process mentioned 
above. It is a process where to achieve the best performances of a new ship directly drives 
ship design. During the last several decades, a rapidly increasing number of papers devoted to 
ship optimization design based on hydrodynamic performance have been yielded with the 
advantage of optimization techniques and high-performance computer(HPC), resulting in the 
huge development of ship design[1]-[8]. Among these papers, the initial ships often adapted 
are Wigley[9][10], an internationally common and mathematical ship type, and S60, both with 
simple hull forms and a great quantity of experimental data. However, the increasing 
complexity of a real-life optimization problem in ship industry has raised the challenges for 
designers[], because hull form optimization of a complex geometry typically involve a large 
number of variables, different disciplines and conflicting objectives, requiring hundreds or 
thousands of function evaluations to converge to an optimal design . 
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Thanks to the development of some excellent modern optimization algorithms[11]-[14] such 
as the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and particle swarm 
optimization (PSO), multi-objective optimization of ship hulls makes a significant 
breakthrough[17], and ongoing research is still much concerned about this topic[18][30].  
Actually, how to quickly and accurately evaluate objective functions or the hydrodynamic 
performance during the optimization process is an important segment. Both of the potential-
flow theory and the advanced RANS-based CFD method had been employed to predict the 
hydrodynamic performance during the hull optimization. If high-fidelity solvers based on 
CFD are used as analysis tools (e.g., RANS solvers), many conditional optimization methods 
become more and more expensive. However, the potential-flow theory can be used in 
evaluating the wave-making resistance in calm water because of the efficiency[31][32], and a 
RANS-based CFD method can be just used as predicting the viscous resistance with a double-
model. Furthermore, the total resistance can be expressed as the sum of the wave-making 
resistance and viscous resistance[19].  
In the present paper, KCS is chosen as the initial hull form to locally optimize its bow and its 
stern, respectively, based on the minimum total resistance coefficients at two specific speeds. 
First, the Design of Experiment is used to select a reasonable optimal design space. 
Specifically, optimized Latin hypercube sampling (OLHS) method is applied here which 
satisfies the requirements of orthogonality and uniformity to obtain different design variables, 
that is to say, different ship samples. Then, these ship samples are deformed by free form 
deformation(FFD). Next step is to evaluate their total resistances at two specific speeds, so 
called objective functions, where wave-making resistances are evaluated by NM theory and 
viscous resistances are evaluated by CFD-based naoe-FOAM-SJTU solver. So far, the 
surrogate model [23] is adopted to describe the complex relationship between the design 
variables and multi-objective funcitons, which largely decreases the optimization difficulty 
and computational cost. Last but not least, a vital multi-objective optimization process is 
completed by NSGA-II, a series of optimal ship hull obtained. The whole optimization frame 
can be seen as follows (Fig. 1) . 

 
Figure 1. The flow chart of the iterative optimization process 

Hull form deformation 
An effective and rational method for hull form deformation is indispensable and crucial in the 
optimization process of ship design. One Hull form should be quickly and reasonably 
transformed to another new one. And there should be as less as possible deformation 
parameters involved in the optimization design, otherwise it will increase the complexity of 
the problem and lead to vast computational cost in multiples. Here FFD method is chosen to 
modify hull form locally, based on the idea of enclosing the ship within a cube, and 
transforming the hull form within the cube as the cube is deformed. FFD method was first 
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described by Thomas W. Sederberg and Scott R. Parry in 1986[21][22],and was based on an 
earlier technique by Alan Barr[20]. It is widely used in the optimization of ships, because less 
design variables related are involved in the optimization, surfaces are flexibly transformed, it 
is easily realized by making a program and so on. It is strongly dominant among many 
deformation methods that the main dimension of the initial ship can be limited and any new 
shape obtained by FFD method can be more reasonable and practical. 
In this paper, FFD method is applied to locally modify the bulb bow and the stern of KCS, 
respectively.  

Total resistance evaluation 

The total resistance of ships can be solved  according to two  methods of division. One is 
according to the assumption of Froude, through his experiments, Froude realized that the ship 
resistance problem had to be broken into two different parts: residuary resistance (mainly 
wave making resistance) only related to Froude number (Fr)and frictional resistance only 
related to Reynolds number (Re). However, the influence of the two parts is ignored by using 
this method. Actually, especially for the fat full ship type, ΔCf will be negative.  
So in 1950s, Hughes proposed another method—three dimensional conversion, which was 
recommended as the standard conversion at ITTC in 1978. Through this conversion, total 
resistance( tR ) is broken into two new parts: wave-making resistance ( wR ) related to Froude 
number and the viscous resistance ( vR ) (the sum of the viscous pressure resistance and 
friction resistance)  related to Reynolds number.  
                                                        vwt RRR +=                                                     (1) 
In this paper, the above standard conversion is chosen to predict the total resistance, wave-
making resistance calculated by NM theory and viscous resistance calculated by simulating 
the flow field around the double ship model based on RANS, which is abbreviated as the 
NM+CFD integrated evaluation. Nobless et al. [23] present an efficient potential theory, 
Neumann-Michell (NM) theory, which provides more accurate prediction of wave-making 
resistance and wave profiles than the Hogner slender-ship approximation, with no appreciable 
increase in computational cost (seconds on a PC) for the classical Wigley parabolic hull. 
Besides, there are lots of research about comparison of experimental measurements of wave-
making resistance with numerical predictions obtained using a preliminary version of the NM 
theory for the Wigley hull, the Series 60 and DTMB 5415 model[24]-[26]. A RANS-based 
CFD solver naoe-FOAM-SJTU, which is developed under the framework of the open source 
code, OpenFOAM, and has been validated in computation of a ship with heave and pitch 
motion in head waves[18]. 
The validation study for the NM+CFD integrated method is carried out before the 
optimization. For KCS, the results calculated by naoe-FOAM-SJTU and the NM+CFD 
integrated method and experimental data are respectively shown in Table 1.  
 

Table 1.  Total resistance coefficients predicted by the NM+CFD integrated method, 
CFD and experimental data. 

Comparison               Speed Fr=0.2 Fr=0.26 

Ct 
NM+CFD 3.72E-03 3.82E-03 
CFD 3.58E-03 3.84E-03 
EXP 3.46E-03 3.75E-03 

Deviation NM+CFD-EXP -7.09% -1.74% 
CFD-EXP 3.47% 2.40% 
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As shown in Tab. 1, the results based on the NM+CFD integrated method are within the error 
allowed, (-7.09% at Fr =0.2 and -1.74% at Fr=0.26), which is a little bit worse than the results 
totally based on CFD. Even so, this integrated method is still worth to be adopted because of 
its lower computational time cost. It’s a huge advantage for hull form optimization design. 

The definition of multi-objective optimization 

Multi-objective optimization problem is a problem of multiple criteria decision making, that 
is concerned with mathematical optimization problems involving more than one objective 
function to be optimized simultaneously. Multi-objective optimization problem has been 
applied in many fields of science, including engineering, economics and logistics where 
optimal decisions need to be taken in the presence of trade-offs between two or more 
conflicting objectives. 
In mathematical terms, a multi-objective optimization problem can be formulated as 

Xxts
xfxfxf k

∈..
))(),...,(),(min( 21  

Where the integer 2≥k is the number of objectives and the set X is the feasible set of 
decision vectors. 
In the ship industry, there is still a problem about the trade-offs between each performance of 
a new ship during the ship design process. The following content will clearly describe a 
complete multi-objective optimization of ship design. 

The establishment of the optimization problem 

For an entire optimization problem to be solved, the following basic items must be specified  
in detail: (1)an initial hull form to be optimized and the region(s) to be modified;(2)the 
objective function to be minimized and the design variables to be used;(3)the constraints to be 
defined. All of these items will be described in terms of the ship optimization presented by 
this paper. 
 
Initial hull form 
 
The initial hull form is the KRISO 3600TEU container ship model (KCS), which was 
conceived to provide data for both explication of flow physics and CFD validation for a 
modern container ship with bulb bow and stern. There is a large experimental database for 
KCS due to an international collaborative study on experimental/numerical uncertainty 
assessment between NMRI, MOERI and SVA[29].  
The geometry of the initial model is presented in Fig.8 and the principal dimensions of KCS 
in table 2. 

 
Figure 2. The geometry of KCS  

 
Table 2. The principal dimensions of KCS 

 
Principal Dimensions full-scale ship ship model 

Length between perpendiculars Lpp/m 230 7.28 
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Length of waterlines Lwl/m 232.5 7.36 
Breadth moulded B/m 32.2 1.019 
Depth moulded  D/m 19 0.6013 
Draught  T/m 10.8 0.3418 

Block coefficient  Cb 0.651 0.651 
 

 
Multi-objective function and design variables 
 
The multi-objective functions to be minimized is the total resistance coefficient of KCS 
sailing in calm water at two speeds of Fr=0.2, Fr=0.26. This condition corresponds to using a 
reference length of 7.36m, that is the length of the ship’s model used in the experimental 
validation. 
                                                                  vwt CCC +=                                                             (2) 

                                                                
SU

RC w
w 25.0 ρ

=                                                           (3) 

                                                                
SU

RC v
v 25.0 ρ

=                                                            (4) 

The deformation region is only the foremost part of the ship (x=3.45~3.99m)and the stern of 
the ship (x=-3.44~-0.44), with the origin of coordinates at the midship in Fig. 4. As explained 
in the introduction, this is the typical redesign problem of some part of an existing complex 
system, a necessity which often arises in real industrial applications. At the stern of the ship, 
two control boxes are used in order to modify the origin shape of the stern to any practical 
new one. In Fig. 5, some certain movable control points and the other fixed control points are 
clearly grouped into two kinds of colors, red and green. 
 

 
Figure 3. The modification regions by FFD method 

  
Move along  x axis Move along  y axis Move along z axis 
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Figure 4. The modification regions by FFD method 

 
Additionally, some geometric constraints are imposed on the design variables, the 
displacement ( ∇ ), the wetted surface area (Swet) and the principal dimensions of the ship. 
Detail information regarding these constraints is reported in Tab. 4. 
 

Table 3. Definition of the optimization problem 
Type Definition Note 

Initial hull the KRISO 3600TEU container 
ship model (KCS) 

 

Objective functions 
1 0 2obj t w vf C C C at Fr= = + =, .  

2 0 26obj t w vf C C C at Fr= = + =, .  

Bare hull 

Aim is to search for hull forms 
with potential drag reduction at 
given speeds 

Design variables    

1xΔ (Variable1) [-0.0736, 0.0736] Displacement in x direction in the 
fore-part region 

1yΔ (Variable2) [-0.0368, 0.0368] Displacement in y direction in the 
fore-part region 

1zΔ (Variable3) [-0.04784, 0.04784] Displacement in z direction in the 
fore-part region 

2xΔ (Variable4) [-0.05152, 0.05152] Displacement in x direction in the 
aft-part region 

2yΔ (Variable5) [-0.0736, 0.08832] Displacement in y direction in the 
aft-part region 

Geometric constraints 

Main dimensions Lpp, D, B are fixed  

Displacement ( ∇ ) Maximum variation ±1%  

Wetted surface area (Swet) Maximum variation ±1%  

Experimental design  OLHS method Generate 100 sample points  

Approximation model Kriging model  

Optimizer NSGA-II  

Size of population 200  

Number of generations 300  
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Numerical results: the optimal design 

Based on the optimal Latin hypercube design method (OLHS), 100 sample points about five 
design variables 1xΔ (displacement of control points in x direction in the fore part), 

1yΔ (displacement of control points in y direction in the fore part), 1zΔ (displacement of control 
points in z direction in the fore part), 2xΔ (displacement of control points in x direction in the 
aft part), 2yΔ (displacement of control points in y direction in the aft part) are generated, then 
the corresponding values of multi-objective function, total resistance coefficients, are 
obtained using the NM+CFD integrated method.  
Additionally, the ANOVA test is used to reflect the effects of each design variable on the 
objective functions. Denote by V1~V5 the five design variables ( 1xΔ , 1yΔ , 1zΔ , 2xΔ , 2yΔ ) (see 
Fig. 6). The effects of design variables on different objective functions vary widely. V2( 1yΔ ) 
and V1( 1xΔ ) have main effects on 1

objf , while V2( 1yΔ ), V5( 2yΔ ) and V1( 1xΔ ) on 2
objf . But the 

total effect of the others is not neglected, and the computational cost considering all of five 
design variables is adequately affordable, thus, all of which are adopted in optimization. 

 

 
Figure 5. Results of ANOVA test 

 
The Pareto front is reported in the function space in Fig. 7, where each red point represents an 
optimal solution while one typical example is marked in red to be analyzed further. Fig. 6 
shows the Pareto optimal set from multi-objective optimization with NSGA-II algorithm. A 
reduction in resistance coefficients can be seen from Fig. 7. As an example of the Pareto 
optimal ships, one optimal configuration detected by the procedure is reported as the mark of 
the green point in Fig. 7. 
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Figure 6. Pareto optimal points and optimal cases in objective functions space 

Although the control modification regions are small, quite different configurations are readily 
yielded, all the Pareto optimal solutions, and different alternatives may be considered at this 
stage. KCS-opt represents the optimal hull form selected in this paper. As shown in Fig. 8 and 
Fig. 9, the bulb bow of the optimal hull form is evidently upturned than the initial one, and the 
stern lines are slightly changed, which corresponds directly with the ANOVA results 
presented before.  

 
Figure 7. Body plans between the initial hull form and the optimal hull form 

 

 
Figure 8. Buttock lines and 3D models between the initial hull form and the optimal hull 

form 

Initial Hull

KCS-opt 
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The following table 4 shows the comparison of the results between the optimal hull form and 
the initial one. The respective reduction of the two total resistances is clearly seen, 4.73% 
reducing at Fr=0.2 and 8.32% reducing at Fr=0.26. However, there is a strange phenomenon 
that the total resistance of the KCS-opt at Fr=0.26 is even lower than at Fr=0.2. Further to 
understand, bulbous bow is first designed only to produce the positive effects on the 
resistance performance at the design speed. If so, it appears that the resistance is higher at 
other speeds. 
Table 4. The prediction results for the initial and optimal hull forms based on NM+CFD 

integrated method 

Comparison                   Speed Fr=0.2 Fr=0.26 

Ct 
Initial Hull 3.72E-03 3.82E-03 
KCS-opt 3.55E-03 3.50E-03 

 Reduction 4.73% 8.32% 
 

Validation with naoe-FOAM-SJTU solver 

A high-fidelity numerical computation tool, naoe-FOAM-SJTU solver, is used to provide  
more accurate validation of the optimal hull form considering viscous effect, based on RANS 
method. Here, the total resistances between the initial hull form and KCS-opt mentioned 
above are only predicted at the design speed Fr=0.26. And the numerical results are presented 
in Tab. 5. KCS-opt displays a decrease of the total resistance coefficients of  3.39% at 
Fr=0.26. 
 

Table 5. Numerical results for the initial and optimal hull forms by naoe-FOAM-SJTU 
solver 

Design Speed Fr=0.26 

Ct 
Initial Hull 3.84E-03
KCS-opt 3.71E-03

 Reduction 3.39% 
 

 

 
 

Figure 9. Wave patterns of free surfaces between the initial hull form and the optimal 
hull form 
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The computed wave patterns are reported in Fig. 8 The wave field caused by KCS-opt  is with 
a smaller bow wave, a clear sign that the wave component of the ship’s resistance has been 
reduced. A typical changes in the foremost  wave pattern is enlarged, KCS-opt slightly 
reduces the amplitude of the bow wave. However, the wave pattern along the aft part of KCS-
opt is a little bit changed, which is corresponding to the ANOVA test. It is partly illustrated 
that the multi-objective optimization, using OPTShip-SJTU solver, is reliable. 

Conclusions 

1.  A numerical multi-objective optimization tool, OPTShip-SJTU, has been developed and 
tested in present work. the KRISO 3600TEU container ship model (KCS) is adopted as initial 
hull form, and the aim is to search for optimal hull forms with improved resistance 
performances at two given speeds (Fr = 0.20, 0.26).  
2.  During the procedure of optimization, the regions of bulb bow and stern are deformed with 
free-form deformation (FFD) method. FFD method is sufficiently flexible to generate a series 
of realistic alternative hull forms with a few number of design variables involved.  
3.  OPTShip-SJTU solver based on the integrated method of Neumann-Michell (NM) theory 
and Reynolds Average Navier Stokes (RANS) as the hydrodynamic performance evaluation 
module to predict the total resistance, turns out to be applicable for a real optimization 
problem.   
4.  The optimizer based on a multi-objective genetic algorithm, NSGA-II, and pareto-optimal 
front is obtained eventually. 
5. The validation of the optimization problem is also carried out by naoe-FOAM-SJTU, a 
solver based on OpenFOAM source code. It shows the multi-objective optimization is 
acceptable and useful. and the results of OPTShip-SJTU solver should be further validated 
and verified by experimental data. 
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Abstract  
 
With the rapid development of the ocean engineering and the renewable energy, more and 
more attention are paid to the floating wind turbine. In recent years, researchers do much work 
on the floating wind turbine while most of the researchers investigate the problem by 
experiment or 3D potential theory but not the CFD, which has its own advantages in some 
aspects. A numerical simulation of motion performance of the DeepCwind floating wind 
turbine is investigated in the present study. In this paper, motion responses of the platform 
with mooring system under regular wave conditions are investigated numerically by a viscous 
flow solver naoe-FOAM-SJTU based on the open source toolbox OpenFOAM.  
The motion performance of the platform under five different regular wave conditions are 
presented and compared with the data of the model test to validate the accuracy of the solver. 
 The motion curves are presented in both the time domain and the frequency domain to 
research the response characteristics of the platform. Subsequently, the investigation about the 
parameter sensitive is conducted, and the results indicate that the motion performance would 
be better with the decrease of the height of COG and the increase of the draft within a 
reasonable range. And the broken mooring line has a huge impact on the platform to which 
should be pay more attention for the safety of the platform. 
 
Keywords: semi-submersible platform, motion performance, parameter sensitive, naoe-
FOAM-SJTU solver.  
 
Introduction  
As to the energy crisis and the environmental issues like pollution and global warming, the 
exploration for renewable and clean energies becomes crucial. Some potential resources 
become more and more significant, just like the wind, wave, solar and tidal, that numerous 
researchers are devoted to them (Ma and Hu, 2014) [1]. The wind energy is the fastest 
growing renewable energy resource which can never be exhausted, so it’s attracting more and 
more attention worldwide (Tang and Song, 2015) [2].  
 
As the main part of the floating wind turbine, the motion performance of the floating platform 
is significant for the wind turbine, and the motion performance of the platform has obvious 
effects on the aerodynamic performance of the wind turbine as well as the electricity 
generating capacity (Zhao and Yang, 2016) [3]. One challenge of the floating wind turbines is 
the wave induced platform tilt motion, which will heavily increase the displacements and load 
on turbine structure due to high inertial and gravitational forces and will bring severe fatigue 
and ultimate loads at tower bottom and blades roots (Hu and He, 2015) [4].  
 
To research the motion performance and the wave loads of the floating platform, predecessors 
have done much work. A reasonable assumption is put forward by Hooft (2002) [5] that 
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Morison equation can be used to calculate the wave force of the platform, which is a semi 
empirical formula and wave force around the platform can be is divided into two parts, one is 
inertia force and the other one is drag force. This formula is widely used in the calculation of 
small scale component of the platform whose cross section is relatively simple (Lee and 
Incecik, 2005) [6]. Frank (2005) [7] find that the pulse source can be discretely distributed on 
the surface of the floating structure, so that people can calculate the wave force of the floating 
structure with arbitrary cross section shape, which is superior to the Morison equation, and 
this method is suitable for the compiling of the program. In the recent research about the 
hydrodynamic performance of the floating platform. Nowadays, most of the researchers 
investigate the motion response of the platform in the wave environment by the 3d potential 
theory. In this theory, platform is solved as a whole part not several sections, and the surface 
of the physical model of the platform below the waterline will be replaced by the mesh model 
so that the Green function can be got to calculate the velocity potential, and the distribution of 
the wave pressure can be calculated, as well as the motion response (Shi and Yang, 2010) [8]. 
At present, most popular hydrodynamic software such as AQWA, Seasam, Hydrostar and 
FAST are all based on the 3d potential theory to do the hydrodynamic calculation of the 
platform (Shi and Yang, 2011) [9]. 3D potential theory has several advantages that the 
calculated results are relatively accurate when compared with the results of the experiment, 
and it is very convenient which can get a satisfactory statistical results in a short period of 
time. However, the disadvantages of this method is extremely obvious. 3d potential theory is 
based on an assumption that the water is potential flow which is non-viscous, irrotational and 
incompressible. This is a simplification of the actual phenomenon which leads to obvious 
error from the results of the experiment. Actually, the viscidity of the water shouldn’t be 
ignored in the motion of the platform, for it has significant effect on the motion of response, 
especially when the period of the coming wave is close to the natural period of the platform. 
Also the potential theory can’t deal with a strongly nonlinear problem (Wang and Cao, 2015) 
[10]. On the contrary, Computational Fluid Dynamics (CFD) methods might be employed to 
obtain a better result via employing a more realistic model. The most prominent advantage of 
the CFD is that result of the simulation is more authentic and with the consideration of 
viscous flow, some more complex problems can be simulated such as green water, slamming, 
wave run up and other strongly nonlinear issues, which can’t be solved by the potential flow 
method (Liu and Wan, 2015) [11]. In this paper, a viscous flow solver (naoe-FOAM-SJTU) 
(Shen and Wan, 2013; Zhou and Wan, 2013; Cao and Wan, 2014; Zha and Wan, 2014; Zhao 
and Wan, 2015) [12] which is developed and based on the popular open source toolbox 
OpenFOAM for predicting dynamics of floating structures with mooring systems is presented. 
The solver is adopted to study motion responses of a floating semi-submersible platform with 
mooring system under regular wave conditions.  
 
The outline of this paper is as follows. Mathematical equations and numerical methods are 
first described concerning fluid flow, floating platform and mooring systems. Parameters of 
the platform and mooring system studied here together with computational domain are then 
presented. Then the validation work is done to compare the calculated results with the data of 
the model test which is conducted by the University of Maine DeepCwind program at 
Maritime Research Institute Netherlands’ offshore wind/wave basin, located in the 
Netherlands (Robertson, 2012) [13]. Also, the calculation result of the same issue simulated 
by the FAST which is a software who is based on the 3d potential flow theory is added to the 
comparison (Alexander, 2013) [14]. The floating wind turbine used in the tests was a 1/50th-
scale model of the NREL 5-MW horizontal-axis reference wind turbine with a 126 m rotor 
diameter. Subsequently, the research of parameter sensitive is done to investigate the effect of 
different height of the gravity center and draft on the motion performance of the platform. In 
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addition, the mooring line may be broken when the wave or wind is too large, so one of the 
mooring line is removed in this paper to study the motion response of the platform in a 
dangerous condition. Results and conclusions are made at the end.  
 
 
Methods 
The present solver naoe-FOAM-SJTU adopted for numerical simulation is based on a built-in 
solver in OpenFOAM named interDyFoam, which can be used to solve two-phase flow which 
is incompressible, isothermal and immiscible. To deal with common fluid-structure interaction 
problems in ship hydrodynamics and offshore engineering, several modules are further 
developed and integrated into the solver, such as a wave generation/damping module, a six-
degrees-of-freedom (6 DOF) module and a mooring system module. Laminar Reynolds model 
are carried out in all the calculations. Mathematical formulae related to the solver are 
described as follows in detail. 
 
1. Governing equations 
For transient, incompressible and viscous fluid, flow problems are governed by Navier-Stokes 
equations: 

 0U                                                                      (1) 

    ( ( ) ) ( )g dp
t 
   

           


U
U U U g x U f                       (2) 

Where U  and gU  represent velocity of flow field and grid nodes separately;  dp p   g x  

is dynamic pressure of flow field by subtracting the hydrostatic part from total pressure p ; 

, g  and  denote the gravity acceleration vector, density and dynamic viscosity of fluid 

respectively; f  is surface tension which only takes effect at the free surface and equals zero 

elsewhere. The Laminar model means that the Navier-Stokes equation will be solved directly 
and the turbulence model is not been considered in the calculation. 
 
2. Wave generation/damping 
For a floating platform, wave loading is a most important environment loads. So that, wave 
generation must be implemented numerically. The wave generation module of the naoe-
FOAM-SJTU can make various types of waves such as linear wave and Stokes 2nd order 
waves which will be adopted in the following paper. The linear wave (3) and Stokes 2nd order 
wave theory (4) are adopted in this paper and the equation used to describe free surface is: 

 cosA                                                                 (3) 

 1 2cos(  ) cos2(  )a kx t a kx t                                             (4) 

Where A and H=2A denote wave amplitude and wave height; 1a is the amplitude of the first 

order item and the 2a is the amplitude of the 2nd order item. 

Once the wave is generated, reflection has to be considered when wave propagates towards 
outlet boundary which will travels in an opposite direction that will interfere the incident 
wave. So that, the wave damping module is developed in this solver. Sponge layer takes effect 
by adding an additional artificial viscous term to the source term of the momentum equation. 
The new term is expressed as:  

 s s f U                                                                (5) 

Where s  is the artificial viscosity calculated by the following equation: 
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Where s  is a dimensionless quantity defining damping strength for the sponge layer. Other 
parameter can be easily understood by reading the following figure. 

 
Figure 1.  Overlooking of the calculation domain and sponge layer 

 
3. Mooring system 
To simulate the actual condition and the interaction problem of the mooring line and floating 
platform, the code of mooring line module is developed and added to the existing solver. The 
mooring line used in this paper is based on the PEM (piecewise extrapolating method) which 
is implemented to calculating the statics of mooring lines and it could take into account line 
elongation as well as the drag force induced by the fluid. With this method, mooring lines are 
divided into a number of segments, and a typical example of these is shown in Figure 2. 
Equations of static equilibrium are established in both horizontal and vertical directions: 

 1 1 1

1 1 1

cos sin
   

cos sin
xi xi i i i i

zi i i zi i i i

T T F ds D ds

T D ds T F ds w dl

 
 

  

  

  
    

                           (7) 

Where Tx, Tz and φ represent horizontal and vertical components of tension at a cross section 
of one segment and the angle between tension and Tx; dl and ds are length of the segment 
before and after elongation respectively; w is net submerged weight of lines per unit length; D 
and F denote normal and tangential components of drag force acting on the segment which are 
calculated by Morison’s equation. 

 
Figure 2.  Force analysis of a mooring line segment for PEM 
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Computational model 
 
A deep water semi-submersible platform of the DeepCwind with a catenary mooring system is 
presented in this paper, which is investigated both experimentally and numerically by 
Alexandwer (2012). Parameter of this platform and mooring system are respectively given in 
the section 1 and 2, as well as the computational domain. 
 
1. Platform parameter 
This floating platform for this model is semi-submersible which is downloaded from the 
website of National Renewable Energy Laboratory (NREL). It’s standard mode named OC4 
that researchers all over the world are investigating it. The platform is made up of three offset 
columns with larger diameter lower bases, one center support column for the turbine and a 
series of horizontal and diagonal cross bracing, and for the purpose of simplify the 
calculation, the diagonal cross bracing which is not very important in the seakeeping 
calculation is removed. The drawing of the DeepCwind semi-submersible platform are given 
in Figure 3 and the gross properties are presented in the Table 1. Furthermore, the Figure 4 
give out the coordinate system of the platform in this study. 

          
Figure 3.  Overlooking of the 3d model         Figure 4.  Coordinate system of the 

platform 
 

2. Mooring system configuration  
The mooring system of this semi-submersible platform is composed of 3 lines which interval 
between adjacent mooring lines is 120 degrees. And the fairleads of all lines are positioned at 
the surface of the base column. And the arrangement of the mooring system is shown in the 
Figure 5. And the parameter of the mooring system is presented in the Table 2. 
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Figure 5.  Configuration of the mooring system and platform 

Table 1. Gross parameters of the semi-submersible platform of DeepCwind 

Primary parameter Unit Value 

Depth of platform base below SWL (total draft) m 20 

Elevation of main column (tower base) above SWL m 10 

Elevation of offset columns above SWL m 12 

Spacing between offset columns m 50 

Length of upper columns m 16 

Length of case columns m 6 

Depth to top of base columns below SWL m 14 

Diameter of main column  m  6.5 

Diameter of offset (upper) columns  m 12 

Diameter of base columns m 24 

Diameter of pontoons and cross braces m 1.6 

Displacement m3 13986.8 

Center of mass location below SWL along platform center line  m 9.936 

 
Table 2. Primary parameters of the mooring system 

Primary parameter Unit Value 

Number of mooring lines  3 

Angle between adjacent lines ° 120 

Depth to anchors below SWL (water depth) m 200 
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Depth to fairleads below SWL m 14 

Radius to fairleads from platform centerline m 4.0868 

Radius to anchors from platform centerline m 837.6 

Equivalent mooring line mass in water kg/m 108.63 

Equivalent mooring line extensional stiffness N 7.536E+8 

 
3. Calculation domain  
The solver used in this paper is based on the OpenFOAM who provides users a very powerful 
and convenient utility named snappyHexMesh (OpenFOAM, 2013) [15] to create the 
computational mesh with high quality in relatively short time. The overview of the 
computational mesh is shown in the Figure 6 (a), and the local refinement of the mesh near 
the platform is given in the Figure 6 (b). The model is located in the center of the 
computational domain. The totally cell number is about 1.3 million. And the principal 
dimension of the calculation domain is shown in the Figure 7. 
 
 
 

 
             

(a) Overview of all the mesh                                       (b) Local view near the platform 
Figure 6.  Computational mesh of the platform 

 
Figure 7.  Overview of the calculation domain with principle dimension 
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Validation 
 
The follow research are all based on the solver naoe-FOAM-SJTU which is composed of a 
wave generation module, 6dof motion module, mooring system module and wave damping 
module. With these powerful module, several research can be done such as the problem of 
ship hydrodynamics and offshore engineering in various condition. But before doing the 
research about the platform of the DeepCwind, the validation work should be done to verify 
the correctness of the solver. So that, the validation work is done to compare the calculated 
results with the experimental data which is conducted by the Maritime Research Institute 
Netherlands’ offshore wind/wave basin. The response of the DeepCwind semi-submersible 
platform to regular waves in the absence of wind is investigated in the validation of this paper. 
Different regular waves are considered, the amplitudes and periods of which are given in the 
Table 3. All waves propagated in the positive surge direction. It should be noted that two 
distinct amplitudes were investigated for periods of 14.3 and 20.0 s for the purpose of 
assessing any nonlinearity in system response. The motion performance of the DeepCwind 
platform is characterized by response amplitude operators (RAOs) magnitudes, which 
normalize the amplitude of a periodic response of a field variable by the amplitude of the 
regular waves.  
 
Since the wind is not considered in this study, the weight, height of gravity and the moment of 
inertia of the whole wind turbine are converted and added to the parameters of the platform. 
Before the calculation of the motion, the work of wave generation should be done in the 
empty computational domain without the platform. The wave probe is set at the longitudinal 
min-section of the domain near the inlet. And the elevation of the wave whose wave height is 
5.15 m and the period is 12.1 s is shown in the Figure 8 (a). The time step used is fixed at 
0.05s and the overall time simulated is set as 300s. Figure 8 (b), (c) and (d) shows the surge, 
heave and pitch response of the platform within the wave whose height is 5.15 m and the 
period is 12.1 s. For the limitation of the length of the paper, the waveform figure of other 
waves and the motion response of the platform under other wave conditions are not given in 
the paper. 
 

Table 3. Calculated regular wave amplitudes and natural periods 

Amplitude (m) Period (s) 

3.57 14.3 

3.79 20 

5.15 12.1 

5.37 14.3 

5.56 20 
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(a) Wave elevation of the incident wave                    (b) Surge response of the platform 

 
(c) Heave response of the platform                            (d) Pitch response of the platform 

Figure 8.  Elevation of the incident wave and motion response of the platform 
 

Since the platform is calculated in the regular waves and according to the International 
Towing Tank Conference (ITTC) that motion data should be collected at least for 10 quasi-
steady cycles under regular wave conditions to ensure accuracy of results (ITTC, 2002) [16]. 
So that in this paper, the last ten period of the motion response are considered and calculated 
the average value. And then the RAO, the average amplitude of the motion response divided 
by the wave amplitude, can be counted.  
 
Before showing the validation result, it is a wonderful job to analyze the motion response 
results given in the Figure 8, whose incident wave height is 5.15 m. It’s evident that the height 
of the made wave highly agree with the requested wave and it’s very steady after 100s. 
Therefor the following analysis can be based on the 100-300 s of the calculation. The average 
surge amplitude is 1.73 m, and the average heave amplitude is 0.78 m. In addition, the average 
pitch amplitude is 0.83°. From the figure above, several conclusion can be drawn.  
 
Firstly, it’s evident that the surge motion of the platform is nonlinear, and under the action of 
the wave force, the platform drifts about 1 m along the direction of the wave during 300 s. 
Subsequently, the heave response is relatively steady that it’s almost a linear motion. Finally, a 
conclusion can be drawn that the pitch motion natural period of the platform is definitely 
larger than the period of incident wave which is 12.1 s, because it’s obvious that the amplitude 
of the pitch motion of the platform presents a periodic variation, one large and one small, 
which means that in the motion of the platform, the second wave acts on the platform before 
the first natural period of the pitch motion over, and then causes the phenomenon of nonlinear 
pitch motion, as well as the increased pitch motion center. After the following study, it is 
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found that the nonlinear phenomenon is gradually stabilized after 350 s, and the average pitch 
displacement is about 0.25° instead of 0°. 
 
The RAO magnitude for surge, heave and pitch are given in the Figure 9 for the five regular 
waves investigated, and the comparison is conducted between the experiment, naoe-FOAM-
SJTU and FAST. FAST is a professional software for calculation of performance of wind 
turbine, who is based on the 3d potential theory, and the calculation with FAST is conducted 
by Alexander (2013). 
 

 
(a) Surge RAO of the platform                            (b) Heave RAO of the platform 

 
(c) Pitch RAO of the platform  

Figure 9. Comparisons of RAOs from experimental test, FAST and naoe-FOAM-SJTU 
 

Almost all the comparisons in the Figure 9 between the test data and the solver that used in 
this paper are extraordinarily good, which is much better than the FAST in these comparisons.  
The large discrepancy is likely a result of the damping system that the quadratic damping 
model employed in the FAST, which over-predicts the damping in large amplitude heave 
scenarios at the expense of properly modeling the damping for small to moderate motions. 
The first conclusion can be drawn that the response of the platform to the low frequency wave 
is more intense that the RAOs of the wave condition whose period is 20 s are obviously larger 
than that of 12.1s and 14.3 s. At the same time, another conclusion can be concluded from the 
Figure 9 that there exists nonlinear phenomenon in the test and calculation that the RAOs of 
the platform are exactly different from each other with the dame wave period but distinct 
wave height which should be the same regardless of the viscosity.  
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As everybody knows, there is no viscosity and vortex in the 3d potential theory, so in the 
calculation with FAST, it is difficult to confirm a right damping coefficient. However, it is 
precisely the advantage of CFD, which is based on the Navier-Stokes equations so that the 
viscosity and vortex are take into consideration. As shown in the Figure 10, it present the 
vortex and the radiation or reflected wave generated in the procedure of motion of the 
platform under the 5.37 m wave height condition. Moreover, CFD can do some nonlinear 
problems, such as the wave run up and fracture in the process of calculation, which is more 
close to the actual situation. Therefore, the solver used in this paper is validated.  
 

 
Figure 10. Vortex and radiation wave generated by the motion response of the platform 

 
 
Results  
In order to evaluate the influence of the parameter sensitive on the motion response and other 
hydrodynamic parameters. And through the investigation, several laws can be drawn to get the 
best motion performance of the platform in the design procedure to ensure the stability of 
electricity generating of the wind turbine. Following three aspects are investigated: 1. The 
research about the effect of different height of gravity center of the platform on the motion 
performance of the platform. 2. The influence of different draft of the platform on the 
performance of the platform. 3. A dangerous condition of the platform is considered that one 
mooring line is removed to investigate the influence on the motion performance of the 
platform. 
 
1. Effect of height of gravity center 

 
The height of gravity center is a vital parameter for an offshore platform, and it directly affects 
the stability of the platform. At the same time, the gravity height will exactly affect the sea-
keeping performance of the platform by affecting both the motion period and the motion 
amplitude. Therefore, in this section, three distinct height of COG (center of gravity) is 
considered, which includes the original height -9.9 m, and the others. The sketch of the 
distribution of the different COG calculated in this study is shown in the Figure 11. 
 
The 5.15 m wave height and 12.1s wave period wave condition is selected in the investigation 
of effect of the COG. And in this section, the overtime of calculated condition are set as 200s, 
which is due to the large amount of computation and aimed to save time. And the comparison 
of -7m, -13m and the original height -9.9m are given in the Figure 12. 

Radiation 
wave 

Vortex
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Figure 11. Distribution of the calculated height of gravity center  

 

 
      (a) Surge motion of the platform                         (b) Heave motion of the platform     

 
 (c) Pitch motion of the platform 

 
Figure 12. Comparison of the effect of different height of COG on the platform 

 
A conclusion can be drawn that the motion performance of the platform is better with the 
decrease of the height of the COG within a reasonable range. The surge and pitch motions of 
different height of COG didn’t show a significant difference that the surge and heave 
amplitude of these three height of COG is almost the same. The difference of the pitch motion 
between the calculated conditions is quite obvious. The first conclusion can be gotten that the 
pitch performance becomes better with the decrease of the height of the COG. Subsequently, 
the pitch motion trends are consistent, which follows a similar increase or decrease law and 
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also the strong nonlinearity is very evident in this process. Moreover, the pitch motion 
performance is relatively steady than other conditions when the height is -7 m which is almost 
a linear motion.  
 

 
Figure 13. FFT of the pitch motion with different height of COG 

 
For the strong nonlinear pitch motion, the FFT (Fast Fourier Transform) about the motion 
amplitude is conducted, for the strong nonlinear phenomenon, to investigate the 
characteristics of the pitch motion performance of the platform on the frequency domain. The 
results are given in the Figure 13, and to do a further analysis, the specific value about the first 
order term and the second order term of the amplitude of the pitch motion is given in the Table 
4. 

       Table 4. Specific numerical analysis in frequency domain 

Height of COG (m) Orders Frequency (HZ) Amplitude value (deg) 

-7 
First order 0.083  0.782  

Second order 0.039  0.053  

-9.9 
First order 0.083  0.710  

Second order 0.040  0.116  

-13 
First order 0.083  0.654  

Second order 0.043  0.170  

 
By the Table 4, some obvious rules can be summed up that besides the first order motion, 
there also exists second order pitch motion which can be easily found in the Figure 13. The 
frequency of the first order motion is about 0.083 HZ which is the frequency of the incident 
wave. And the frequency of second order of different COG are distinct which is related to the 
natural period of the platform and the mooring system, for the period of the platform come up 
from theory say that it is affected by the height of the COG. The frequency of the second order 
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pitch motion decrease with the COG rise up. And it is also evident that the second order of the 
pitch motion of the height -7 m is quite small which means that it is nearly a linear motion in 
this condition. The amplitude of the first order plus that of the second order is almost the 
amplitude of the pitch motion amplitude of the platform, so that it is easy to find the law of 
the effect of the COG on the pitch motion of the platform by add the first order’s amplitude 
and the second order one. Then the law mentioned above can be confirmed that the motion 
performance will be better with the decrease of the height of the COG within a certain range. 
 
2. Effect of draft 

 
(a) Draft = 15 m                    (b) Draft = 20 m (original draft)                  (c) Draft = 25 m 

Figure 14. Different draft condition of the platform  
 

 
   (a) Surge motion of the platform                         (b) Heave motion of the platform     

 
(c) Pitch motion of the platform 

Figure 15. Effect of draft on the motion response of the platform  
 

Draft is also a significant parameter for a floating platform who not only affects the 
displacement of the hull but also affect the motion performance. And for a platform for the 
floating wind turbine, the draft would change if the mass or the force that act on the blade 

water line 

water line

water line
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changed, and the draft would be different in different condition. So it is meaningful to 
investigate the effect of draft on the motion performance of platform. In this section, three 
different drafts are conducted including 15 m, 25 m and the original one 20 m. The Sketch is 
given in the Figure 14 and the curves of response results are shown in the Figure 15. 
 
The average motion amplitude of each condition can be calculated easily when the motion are 
quasi-steady. The three kinds of average motion amplitude of the platform with 25 m draft are 
that surge amplitude 1.629 m, heave amplitude 0.558 m and the pitch amplitude 0.85°. The 
average motions amplitude of the platform with 20 m draft are given in the validation that 
surge 1.73 m, heave 0.78 m and pitch 0.83°. At last, the average motions amplitude of the 
platform with 15 m draft are that surge 1.925 m, heave 1.043 m and pitch 0.862°. So an 
evident law can be found from the comparison of the value that the motion performance of the 
platform is better with the increase of the draft within a reasonable range, which can be easily 
observed from the Figure 15. Also a strange point can be found after analysis that the pitch 
motion of the 25 m draft is larger than that of 20 m, which is inconsistent with the rules 
summed up before and a likely reason for this problem is that it is obvious that the pitch 
motion of the platform with 25 m draft has obvious oscillation which is not steady for the 
short calculation time, thus the average value is probably larger than the pitch motion 
amplitude in the steady condition. The Figure 16 show the motion of the platform with 
different draft in the same time 295s that platforms reach the motion amplitude. It is easily to 
find that the motion degree is larger with the draft decrease and it can be also found that the 
free surface has an obviously nonlinear up and down near the platform. 
 

 
Figure 16. Posture of the platforms with different draft in the 295 s 

 
3. One mooring line broken condition 
The mooring system play a vital role in both working and survive condition of the platform, 
which not only maintains the position of the platform in the horizontal direction but also 
provides restoring force and conductive to the performance of the platform. In this section, a 
dangerous condition is investigated that one mooring line, the #3 line, of the mooring system 
is removed to represent the broken one. The model diagram of the configuration of the 
mooring system is shown in the Figure 17, and the comparison between this condition and the 
normal condition is shown in the Figure 18.  
 
As can be seen in the Figure 18, the x-axis direction motion appeared a huge mutation when 
one mooring line is broken down and the platform moves in negative direction of the x-axis in 
which the most distance is about 15 m at 50 s and pulling back by the rest lines after that and 
finally steady at about 6 m against the x-axis. As shown in the Figure 19, which is comparison 
between the position of the platform at 50 s and the original position of the platform. 
Subsequently, in the z-axis direction, the platform float up 0.21 m after one mooring line is 
broken for the lack of pretension force. Finally, in the rotation direction, the platform also has 
an obvious change on the floating condition which skews about 0.39° overall. 
 
Besides the movement mentioned above, it is also necessary to analyze the surge, heave and 
pitch motion response of the platform. As shown in the Figure, the surge amplitude of the 
normal condition is 1.73 m and 1.78 m at the one line broken condition. And the platform in 

15 
20 25 
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these two condition presents the same heave and pitch amplitude that heave 0.78 m and pitch 
0.83° although the large difference between the displacements of these two kinds of situation.  
 
 

 
 

Figure 17. The diagram of complete mooring system and broken mooring system 
 
 

 
   (a) Surge motion of the platform                         (b) Heave motion of the platform     

 

 
(c) Pitch motion of the platform 
 

Figure 18. Response of working condition and one mooring line broken condition 
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Figure 19. Position of the platform at 50 s and 0 s 

 
In addition to the content above, the mooring forces of #1 and #2 are also be investigated. As 
shown in the Figure 20, the blue line represents the one line broken condition and the other 
one represent the normal condition. It is easy to find that the mooring force of the #1 becomes 
larger after the #3 broken and the mooring force of #2 smaller.  At the same time, the 
amplitude of the oscillation of the mooring force #1 becomes larger and the amplitude of #2 
smaller in this procedure. All above analyses indicate that the load acting on mooring line #1 
become larger and it plays a more significant role in the motion of the platform and the 
mooring system, and the #2 quite the contrary. So that it is the more dangerous one and more 
attention should be paid to the #1 when the #3 is broken. 

 

 
     (a) Mooring force of #1 line in two conditions            (b) Mooring force of #2 line in two conditions  

Figure 20. Mooring force of #1 and #2 mooring line in these two conditions 
 
Conclusion 
In this paper, a viscous flow solver naoe-FOAM-SJTU based on the open source toolbox 
OpenFOAM is developed and presented. By comparing numerically calculated results with 
the experimental test data and the results of the FAST, the ability of present solver to handle 
hydrodynamic problems of floating structures with mooring system with various wave 
condition is validated. The solver is then adopted to investigate the parameter sensitive of the 
platform including the height of gravity center and the draft. In this section, several 
conclusion are drawn that the motion performance would be better with the decrease of the 
height of COG within a suitable range. Subsequently, it is found that the performance is better 
with the increase of the draft within a reasonable range. Moreover, to investigate the motion 
performance of the platform in a dangerous condition, one of the mooring line is removed to 

Original positionPosition at 50 s

y 

z 
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simulate the condition that on mooring line is broken by the wave or flow force. Results 
indicates that the platform would move a certain distance along the direction against the x-
axis and float up because of the lack of pretention force of the mooring line and cause the 
unbalanced force, as well the rotational movement. The mooring force of the rest two lines are 
investigated as well, which indicate that one of the two lines would be very generous whose 
mooring force increase immediately after the third line is broken. So that, people should pay 
more attention to this dangerous one in this condition. Although the present work are all based 
on the regular wave, the regular one can analyze the characteristic of the platform better, and 
the irregular wave would be carried out in the future work. The work done in this paper can 
serve as foundation for the design and working of the DeepCwind wind turbine platform 
which can ensure a more steady motion performance as well as the stability of the electricity 
generation. And the solver used in this paper can do more complex issues like VIV and wind-
wave-current coupling issues in the future. 

Acknowledgements 

This work is supported by the National Natural Science Foundation of China (51379125, 
51490675, 11432009, 51579145, 11272120), Chang Jiang Scholars Program (T2014099), 
Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of 
Higher Learning (2013022), Innovative Special Project of Numerical Tank of Ministry of 
Industry and Information Technology of China (2016-23) and Lloyd’s Register Foundation for 
doctoral student, to which the authors are most grateful. 
 
References  
[1] MA, Y., Z. HU and L. XIAO, Wind-wave induced dynamic response analysis for motions and mooring loads 

of a spar-type offshore floating wind turbine. Journal of Hydrodynamics, Ser. B, 2015. 26(6): 865-874. 
[2] Tang, Y., K. Song and B. Wang, Experiment study of dynamics response for wind turbine system of floating 

foundation. China Ocean Engineering, 2015. 29(6): 835-846. 
[3] Zhao, Y., et al., Dynamic response analysis of a multi-column tension-leg-type floating wind turbine under 

combined wind and wave loading. Journal of Shanghai Jiaotong University (Science), 2016. 21(1): 103-111. 
[4] Yang, H.Y.H.E., Optimization Design of TMD for Vibration Suppression of Offshore Floating Wind 

Turbine. International Journal of Plant Engineering and Management, 2015. 1(20): 13-27. 
[5] Hooft. Coupled Effects of Risers/Supporting Guide Frames on Spar Responses [A]. Proc. 12th International 

Offshore and Polar Engineering Conf. [C], Kitakyushu, Japan, 2002: 231-236. 
[6] Lee Y W, Incecik A, Chan H S and Kim Z k. Design Evaluation in the Aspects of Hydrodynamics on a 

Prototype Semi-Submersible with Rectangular Cross-Section Members[A].Proceedings of the Fifteenth 
(2005) International Offshore and Polar Engineering Conference[C]. Seoul, Korea, ISOPE2005: 320-327. 

[7] Frank, Lee D.Y., Choi Y.H., etc. An Experimental Study on the Extreme Motion Responses of a SPAR 
Platform in the Heave Resonant Waves [A]. Proc. International Off-shore and Polar Engineering Conf. [C], 
Seoul, Korea, 2005: 225-232. 

[8] SHI Qi-qi, YANG Jian-min. Research on hydrodynamic characteristics of a semi-submersible platform and 
its mooring system. The Ocean Engineering, 2010. 28(4):1-8. 

[9] SHI Qi-qi, YANG Jian-min , XIAO Long-fei. Research on motion and hydrodynamic characteristics of a 
deepwater semi-submersible by numerical simulation and model test. The Ocean Engineering, 2011. 
29(4):29-42. 

[10] Wang, S., et al., Hydrodynamic performance of a novel semi-submersible platform with nonsymmetrical 
pontoons. Ocean Engineering, 2015. 110: 106-115. 

[11] Yuanchuan Liu, Y.P.D.W., Numerical Investigation on Interaction between a Semi-submersible Platform and 
Its Mooring System. Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and 
Arctic Engineering OMAE2015 May 31-June 5, 2015, St. John's, Newfoundland, Canada. 

[12] Shen, Z. R., Zhao, W. W., Wang, J. H. and Wan, D. C. 2014. “Manual of CFD solver for ship and ocean 
engineering flows: naoe-FOAM-SJTU.” Technical Report for Solver Manual, Shanghai Jiao Tong 
University. 

[13] A. Robertson, J. Jonkman, M. Masciola, H. Song, A. Goupee, A. Coulling, and C. Luan. Definition of the 
Semisubmersible Floating System for Phase II of OC4. 2012. Available from: http://www.nrel.gov/ 

[14] Coulling, A.J., et al., Validation of a FAST semi-submersible floating wind turbine numerical model with 
DeepCwind test data. Journal of Renewable and Sustainable Energy, 2013. 5(2): 023116. 

[15] OpenFOAM. Mesh generation with the snappyHexMesh utility. 2013. Available from: 
http://www.openfoam.org/ docs/user/snappyHexMesh.php#x26-1510005.4. 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

439



Numerical Study on Ship Motion Coupled with LNG tank Sloshing Using 

Dynamic Overset Grid Approach 
*Y. Zhuang, C.H. Yin and †D.C. Wan 

State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, 
Shanghai Jiao Tong University, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, 

Shanghai 200240, China 

* Presenting author: nana2_0@sjtu.edu.cn. 
†Corresponding author: dcwan@sjtu.edu.cn. 

 

Abstract 

In this paper, numerical simulations of ship motion coupled with LNG tank sloshing in waves 
are considered. The fully coupled problems are performed by our in-house RANS/DES solver, 
naoe-FOAM-SJTU, which is developed based on the open source tool libraries of 
OpenFOAM. The internal tank sloshing and external wave flow are solved simultaneously. 
The considered models are LNG FPSO and a modified KVLCC2 coupled with two LNG 
tanks respectively. Three degrees of freedom is released in the regular waves. The ship motion 
responses of LNG FPSO are carried out both in head and beam waves to compare with 
existing experimental data to validate this solver. Next, the modified KVLCC2 coupled with 
two LNG tanks and a propeller is simulated with a forward-speed in the head wave using 
dynamic overset method. Two filling ratios of tanks: 30% and 60% are considered, and results 
are compared with that without sloshing. 

Keywords: LNG sloshing, OpenFOAM, nonlinear coupled motion, dynamic overset 
grids, naoe-FOAM-SJTU solver 

Introduction 

The sailing performance of the ship equipped with liquid tanks is different from that without 
tanks. The sloshing flow in tanks which is excited by ship motion would affect ship 
performance in return. This coupling effect not only causes impact pressure which may 
damage the cargo, but also changes ship motion in waves. It is especially essential for FLNG 
or FPSO, for these kinds of vessels suffer from both external wave force and internal force 
when they transport liquid cargoes on the sea. Therefore, the maneuvering of ship equipped 
with liquid cargoes in waves is still a researchable issue. Since the coupling effect is nonlinear 
and viscosity in sloshing flow is ignorable, the numerical simulation has its advantages to 
treat this problem. Computational Fluid Dynamics (CFD) is an effective method to simulate 
the ship motion in waves coupled with LNG tank sloshing, and with the assistant of overset 
grid technology, the coupling effect of large-amplitude motion such as self-propulsion in 
waves with partially filled tanks can be solved effectively. 
 
Several researches about ship motion coupled with tank sloshing have been done. Nam, B.W. 
et al[1] carried out both numerical and experimental studies of LNG FPSO model. The 
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impulse-response-function (IRF) was used to simulate ship motion and finite-difference 
method was adopted to solve nonlinear tank sloshing. In recent decades, many studies used 
viscous flow theory in order to solve the nonlinearity of the tank sloshing. Li, Y. L. et al[2] 
applied both potential flow theory and viscous flow theory under OpenFOAM. Jiang, S. C. et 
al[3] also used OpenFOAM to simulate the coupling effect, and applied VOF to capture the 
interface, and the paper still considered ship response in IRF method. Shen, Z. R. et al[4] 
achieved fully coupled of ship motion and tank sloshing by the unsteady RANS solver, 
naoe-FOAM-SJTU. Considering the ship performance with sloshing tanks at forward speed in 
the sea, Kim, B. et al[5] studied the coupled seakeeping and sloshing tanks in frequency 
domain. A forward-speed seakeeping theory was implemented to investigate the coupling 
effects. Mitra, S. et al[6] investigated the coupling effect in six degrees of freedom, solving 
the sloshing tank in potential flow equation and finite element method. The hybrid marine 
control system was applied to simulate the maneuvering of the ship.  
 
In this paper, ship motion coupled with LNG tanks is simulated by CFD method. The internal 
sloshing tank and external sea waves are treated as an entire computational region, and both 
solved by RANS solver simultaneously. The Volume of fluid (VOF) method is applied to 
capture both outside wave surface and sloshing liquid. The computations are solved by our in 
house solver naoe-FOAM-SJTU with dynamic overset grid capability[7]. SUGGAR++ is 
used to obtain DCI[8], which connects the information of overset component grids. The solver 
contains 6DOF module, wave generation and damping module for various wave types. 
 
To validate the current CFD method, five different filling ratios of LNG FPSO with two tanks 
in waves are selected. The simulation is compared with existing experimental results to prove 
the ability of our solver. To observe the coupling effect on large-amplitude motion, a 
benchmark ship KVLCC2 equipped with two LNG tanks and propeller is also considered. 
The simulation conditions include three different filling ratios (0%, 30% and 60%) in head 
waves with forward-speed.  

Numerical Methods 

The incompressible Reynolds-Averaged Navier-Stocks equations are adopted in this paper to 
investigate the viscous flow. The governing equations are: 

 
 0∇ =U                          (1) 

( ( ) ) ( ) ( )g d eff eff sp f f
t

σ
ρ ρ ρ μ μ∂ + ∇ − = −∇ − ∇ + ∇ ∇ + ∇ ∇ + +
∂

U U U U g x U U      (2) 

 

Where U  is velocity field, gU is velocity of grid nodes; dp p ρ= − g x is dynamic pressure; 

( )eff tμ ρ ν ν= +  is effective dynamic viscosity, in which ν  and tν  are kinematic viscosity 

and eddy viscosity respectively. f σ  is the surface tension term in two phases model. The 
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solution of momentum and continuity equations is implemented by using the pressure-implicit 
spit operator (PISO) algorithm. A k-߱ SST model is selected for turbulence closure[9].  
 

The Volume of fluid (VOF) method with bounded compression techniques is applied to 
control numerical diffusion and capture the two-phase interface efficiently. The VOF 
transport equation is described below: 
 

)[( ] [ (1 ) ] 0g r
t
α α α α∂ + ∇ − + ∇ − =

∂
U U U   

1
= n

I i ii
φ ω φ

=               (3) 

 
Where ߙ is volume of fraction, indicating the relative proportion of fluid in each cell and its 
value is always between zero and one: 
 

0 air
1 water

0 1 interface

α
α

α

=
 =
 < <

                     (4)

                   
The overset grid technique is implemented into OpenFOAM to handle the large-amplitude 
motion of ship and complex hierarchical motion of appendages such as rotating propeller and 
moving rudder[10]. The overset grid method allows separate overlapping grids to move 
independently without restrictions. The hole cells located outside the domain or of no interest, 
such as inside a body, are excluded from computation. The cells around hole cells are marked 
as fringe or receptor cells, they receive the information from other component grids by 
interpolation. Donor cells provide information to the fringe cell from donor grid. The value 
for fringe cell is obtained by the summation of weight coefficients and the values of donor 
cells 
 

     
1

= n
I i ii

φ ω φ
=                             (5) 

 

Where iω  are the weight coefficients and iφ  is the value of donor cell; Iφ is the resulting 

value in the interpolated fringe cell; n is the number of donor cells and it is equal to eight if 
the structured grid is employed. And then the values of fringe cells need update with 
interpolated ones. The suitable approach for implicit scheme is to modify the matrix in the 
linear algebraic system after discretizing the equations 
 
A fully 6DOF module with hierarchy of bodies are implemented. This module allows ship to 
move independently in the computational domain and in the meanwhile, the propeller is 
rotating around the propeller axis. Two coordinate systems, earth-fixed and ship-fixed 
systems are adopted in this 6DOF module. The forces and moments on ship hull and propeller 
are computed in earth-fixed system and then they are projected to ship-fixed system. The ship 
motions for the next time step are predicted by the projected forces and moments in ship fixed 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

442



system. For the movements of hierarchal objects, the propeller grid rotates first about a fixed 
axis in the ship coordinate system, and then both ship and propeller grids translate and rotate 
in the earth-fixed system according to the predicted motions, as shown in Fig.1. In the 
meanwhile, SUGGAR++ library is called to compute the DCI based on the new grid positions. 
OpenFOAM processors receive the new data right after the movements of the overset grids 
and start the computation for the next time step. For the details of the implementations of 
overset capability and 6DOF module can be referred to [8]. 
 

 
Fig.1 Demonstration of propeller rotating in the ship system 

 
The incoming regular wave is generated by imposing the boundary conditions of α and U at 
the inlet. The linear Stokes wave in deep water is applied for the wave generation. 
 

 ( , ) cos[ ( ) ]cg ex t a k x x tξ ω= − −                        (6) 

0( , , , ) cos[ ( ) ]kz
cg eu x y z t U a e k x x tω ω= + − −                   (7) 

( , , , ) sin[ ( ) ]kz
cg ew x y z t a e k x x tω ω= − −                     (8) 

 

Where ξ  is the wave elevation; ܽ is the wave amplitude; ݇ is the wave number; 0U  is 

the ship velocity; ߱ is the natural frequency of wave; ߱௘ is the encounter frequency, given 

by 0= +e e kUω ω  in head waves; cgx is the longitudinal gravity center of the ship model, it is 

used to adjust the phase of the incident wave to make the wave crest reach the gravity center 
of ship at t = 0. 
 

Validation  

Geometry and Condition 

To validate the current method, a LNG FPSO model with two prismatic tanks is selected. The 
main particulars of LNG FPSO are shown in Table 1. To compare with experiments which 
have been done by Nam, B. W. et al[1], the LNG FPSO model is 1/100 scale of the full scale 
ship. The length, breadth and height of the fore tank and the aft tank are 49.68m, 46.92m, 
32.23m and 56.62m, 46.92m, 32.23m respectively. The distance from the bottom of tank to 
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the keel line is 3.3m. The geometry of experimental ship model and numerical ship model are 
illustrated in Fig 3. 
 
Five different filling conditions and two wave directions are included to verify the 
computations. The settings of numerical computation for head wave and beam wave are 
illustrated in Fig.2. To compare with experiment data, the filling ratios carried out as the same 
with those in experiments: 0%-0% (fore tank-aft tank), 20%-20%, 30%-30%, 57.5%-43.3% 
and 82.6%-23.5%. Those filling conditions are shown in Fig 4. The daft at each condition 
were kept the same, as well as longitudinal moment inertia. 
 

Table 1 Main particular of LNG FPSO 
 
Main particulars Full Scale Model 
Scale factor     — 1 1/100 
Length between perpendiculars LPP (m) 285 2.85 
Maximum beam of waterline BWL (m) 63 0.63 
Draft T (m) 13 0.13 
Displacement Δ (m3 ) 220017.6 220.0176 
Natural period of roll T∅ (s) 13 1.3 
Vertical Center of Gravity 
(from keel) 

KG (m) 16.5 0.165 

Radius of gyration Kxx 19.45 0.1945 
Kyy  71.25 0.7125 

 

  
(a) Beam wave                          (b) Head wave 

Fig.2 Setup of numerical computation 
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(a) Experimental ship model           (b) Numerical simulation model 

Fig. 3 geometry of LNG FPSO 

 
(a) 20%~20%                            (b) 30%~30% 

 
                (c) 57.5%~43.3%                       (d) 82.6%~23.5% 

Fig. 4   filling ratios of LNG FPSO equipped with LNG tanks 
 
Considering the large-amplitude motion of LNG FPSO, the length of regular wave is chosen 
as 2.865m, 1.005 times length of the ship. Same to the experiment, the wave height is fixed to 
0.025m, and encounter frequency is 4.6382. 

Mesh 

There are two computational domain in beam wave condition and head wave condition. The 
selected domain is described as -1.0Lpp<x<2.0Lpp, -1.5Lpp<y<1.5Lpp, -1.0Lpp<z<1.0Lpp in 
beam wave condition; and -2.0Lpp<x<4.0Lpp, -1.5Lpp<y<1.5Lpp, -1.0Lpp<z<1.0Lpp in head 
wave condition. The meshes are generated by snappyHexMesh, an auto mesh generation 
utility provided by OpenFOAM. The total cell numbers are around 2.1M, and the LNG tanks 
require additional 0.5M cells. The mesh details are shown in Fig. 5. Two small tunnels are 
used to connect the LNG tanks to the external region, which can keep the pressure inside the 
tanks same to the external region, and simplify the computations. 
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(a) bow                                (b) stern 

 
(c) ship hull with tanks 

Fig.5 Demonstrations of meshes 

Results 

The ship motion was restricted to three degree-of-freedom, heave, pitch and roll. Beam wave 
conditions are analyzed first. Time histories of heave and roll motion are shown in Fig.6. The 
normalized motion amplitude and natural frequency were considered to compare with 
experimental data. The normalized roll motion is given as: ܴଵ = ܣ2/ܤߠ , which θ  is 
maximum degree of roll motion, B is beam of ship and A is wave amplitude; The normalized 
heave motion is given as: ܪଵ =  which ξ is the maximum value of heave motion; and ,ܣ/ߦ
normalized natural frequency is given as: ܶ =  which ω is natural frequency of ,(ଵ/ଶ)(݃/ܮ)߱
water, L represents length of ship. Computations in this paper uses T=2.5 when the wave 
length is close to ship length.  
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  (a) Heave motion                       (b) Roll motion  

Fig6. Time history of heave and roll motion with different filling ratios in beam wave 
 

Table 2 Comparison of ship motion between CFD and experiments in beam wave 
 

No Filling ratio EFD(ࡾ૚) CFD(ࡾ૚) EFD(ࡴ૚) CFD(ࡴ૚) 
1 0%~0% 1.85 2.00(8%) 1.25 1.28(2.4%)
2 20%~20% 0.60 0.53(-12%) - 1.22 
3 30%~30% 1.25 1.12(-10%) - 1.21 
4 57.5%~43.3% 1.30 1.28(-1.5%) - 1.10 
5 82.6%~23.5% 1.20 1.10(-8.3%) - 1.04 
 
Table 2 shows the comparison of roll motion and heave motion between current computation 
and experiments in beam waves. Five different filling conditions were considered, and the 
results fairly agree with those in experiments. The head wave conditions were also selected to 
validate the method in head waves. Fig.7 illustrates the time history of heave and pitch 
motion. 
 

  
(a) Heave motion                       (b) Pitch motion  

Fig7. Time history of heave and pitch motion with different filling ratios in head wave 
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Table 3 shows the results comparison between current simulation and experimental results. 
The dimensionless parameters of ship motion are considered. The normalized pitch motion is 
given as: ଵܲ =  which L is ship length. Five filling conditions were considered and ,ܣ2/ܮߠ
compared to the existing experimental data, the simulation results fairly agree with the 
experimental results. 
 

Table 3 Comparison of ship motion between CFD and experiments in head wave 
 

No Filling ratio EFD(۾૚) CFD(۾૚) EFD(ࡴ૚) CFD(ࡴ૚) 
1 0%~0% 1.20 1.31(9.3%) 0.12 0.14(16%)
2 20%~20% 1.13 1.30(15%) - 0.14 
3 30%~30% 1.30 1.45(11%) 0.12 0.14(16%)
4 57.5%~43.3% - 1.60 - 0.138 
5 82.6%~23.5% - 1.63 - 0.14 
 
Fig.6 and Fig.7 indicates that the ship exhibits sinusoidal motion both in head and beam 
waves. The coupling effects are limited in head wave. In beam wave condition, the coupling 
effects of ship motion and tank sloshing are not obvious in heave motion, shown in Fig.6(a), 
but quite significant in roll motion, shown in Fig.6(b). The four partially filling conditions of 
sloshing tanks all reduce the roll amplitude of ship motion; on the contrary, although not 
obvious in head waves, the filling conditions increase the amplitude of ship motion. In beam 
wave, for low-filling condition, like 20%~20%, the decrease in amplitude of roll motion is 
evident and thus shows great coupling effect. For the water in tanks is shallow, the sloshing in 
tanks is more violent and influence ship motion more.  
 

     
t/T=0 

     
t/T=1/4 
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t/T=1/2 

     
t/T=3/4 

Fig.8 Four snapshots of LNG FPSO motion in beam regular waves. From left to right: 
global view, detail view of the aft tank sloshing and view of free surface in turn. 

82.6%~23.5% filled, wave propagates from left to right. 
 
Fig.8 illustrates four snapshots of ship motion coupled with 82.6%-23.5% filling ratio in one 
period (1.35s), wave propagates from left to right. The fore tank has insignificant coupling 
effects, so the aft tank is studied in details. The flow in aft tank shows different phase to that 
of ship motion. In the time t/T=0, ship stays in balance position, the sloshing liquid in aft tank 
starts to move from right to left. At t/T=1/4, the ship is in the region of wave trough, and 
begins to roll to the left (towards the wave direction); the peak of the tank liquid reaches the 
left bulkhead. At t/T=1/2, the ship returns to the balance position, the peak of the sloshing 
liquid moves to the right. At t/T=3/4, the wave crest reaches the ship and ship begins roll to 
the right, the peak of the in-tank flow arrives at the right bulkhead. 

Coupling Effects on KVLCC2 with a Propeller 

Geometry and Conditions 

To figure out the coupling effects on large-amplitude motion, KVLCC2, a benchmark ship in 
Gothenburg Workshop 2010 (G2010)[11] equipped with two LNG tanks and a propeller is 
considered. Fig.9 shows geometry of the ship and its LNG tanks and Table 4 illustrates the 
principle dimensions of KVLCC2. The modified KVLCC2 equipped with two identical LNG 
tanks, and the main particulars and settings of those tanks are shown in Fig. 10. The tanks are 
in model scale, and all the numbers are in mm.  
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         Fig.9 Geometry of KVLCC2 with two LNG tanks 

 

   

(a) Transverse section of a LNG tank           (b) Longitudinal section of two LNG tanks  

Fig. 10 Geometry of LNG tanks 
 

Table 4 Main dimensions of KVLCC2  
 
Main particulars Full Scale Model 
Length between perpendiculars Lpp (m) 320 3.200 
Maximum beam of waterline BWL (m) 58 0.580 
Depth D (m) 30 0.300 
Draft T (m) 20.8 0.208 
Displacement Δ (m3 ) 312622 0.313 
Wetted area  SW (m2 ) 27194 2.719 
Vertical Center of Gravity (from keel) KG (m) 18.6 0.186 
Moment of Inertia Kxx/B 0.4 0.400 

Kyy/Lpp, Kzz/Lpp 0.25 0.250 
 
To evaluate the coupling effects on self-propulsion, KVLCC2 with a certain velocity in head 
wave is calculated. The motions are allowed for roll, heave and pitch. Three different filling 
ratios are considered, 30%, 60% and no sloshing, respectively. The wave length is equal to 
3.2m, and wave height is 0.12m. The ship has a forward-speed of Fr=0.179. 

Mesh and Computational Domain 

The space coordinate range of computational domain is -1.0Lpp<x<4.0Lpp, -1.5Lpp<y<1.5Lpp, 
-1.0Lpp<z<1.0Lpp. The mesh is generated by automatic mesh generation tool snappyHexMesh.  
The overset grids consist of hull, background and propeller grids. The computational domain 
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contains around 3.9M grid cells, in which hull uses 2.65M grid cells and propeller possesses 
0.68M grid cells. Some regions have been refined to capture free surface, violent flow and 
vortex structure. Boundary conditions and layout of overset grid systems are displayed in Fig. 
11, and the surface mesh of hull, tanks and propeller are shown in Fig. 12. 
 

    
(a) Overall view                     (b) Stern view  

Fig. 11 Layout of overset grid system 
 

     
(a) Hull mesh           (b) Propeller mesh             (c) Tank mesh 

Fig. 12 Mesh generation 
 

Results 

The pitch and heave motion of ship with a forward-speed in head wave are shown in Fig.13. 
Two different filling conditions are considered and compared to that without sloshing. The 
coupling effects are observed in pitch and heave motion but they are not prominent. The 60% 
filled ship has more violent motion than ship with 30% filling ratio and without sloshing.  
   
Fig.14 illustrates four snapshots of ship motion and the dynamic pressure on bulkhead with 60% 
filling ratio in an encounter period. Propeller vortices behind ship stern are illustrated by 
iso-surfaces of Q=100. The iso-surfaces are colored by velocity magnitude. At t/T=0, ship 
stays at balanced position, the dynamic pressure on bulkhead stays the same in fore and aft 
tank. The value of dynamic pressure near in-tank liquid surface is larger than that near bottom   
bulkhead, which means liquid slosh more violent near surface. At t/T=1/4, the wave crest 
reaches and ship bow nearly buries into wave. The dynamic pressure on bulkhead decreases in 
fore tank and it increases in aft tank. At t/T=0 and 1/4, the velocity of propeller vortices is 
high, for the ship stern is near the surface, the load on the propeller blades is small 
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correspondingly. At t/T=1/2, ship returns back to balanced position, and the dynamic pressure 
on bulkhead stays the same in fore and aft tank. However, the dynamic pressure at this time is 
smaller than that at t/T=0 and tank liquid slosh more violent near bottom than that near 
in-tank water surface. At t/T=3/4, the trough of wave reaches and ship bow nearly comes out 
of the surface. The dynamic pressure on bulkhead decreases in aft tank while it increases in 
fore tank. The tank liquid is not affected by ship motion intensively, for the surface in tanks 
slosh slight. Moreover, the dynamic pressure on bulkhead in fore and aft tank shows phase 
difference in an encounter period. At t/T=1/2 and 3/4, the ship stern buries into water, thus the 
loads on the propeller blades increase, and the velocity of propeller vortices is lower than that 
at t/T=0 and 1/4. 
 

  
(a) Heave motion                        (b) Pitch motion  

Fig.13 Time history of heave and pitch motion at forward speed with different filling 
ratios in head wave. 

 

   
t/T=0 

   
t/T=1/4 
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t/T=1/2 

   
t/T=3/4 

Fig. 14 Snapshots of ship motion, Q iso-surfaces and dynamic pressure on bulkhead in 
one period 

 

Conclusion 

In this paper, the large-amplitude of ship motion fully coupled with internal sloshing tanks is 
studied. The numerical simulations are performed by the solver naoe-FOAM-SJTU, which is 
developed based on open source CFD package OpenFOAM and implemented with dynamic 
overset grid technique. The internal tank sloshing and external wave excitation are computed 
simultaneously by solving RANS equations. Two phase interface is captured by VOF method. 
To validate the current method, LNG FPSO is chosen to compare with existing measurements 
data. Five different filling conditions are considered both in the head and beam wave. The 
results show fairly agreement with those in experiments. At the meantime, the coupling 
effects are investigated. With the wave length equal to 1.005 times ship length, the sloshing 
has little effect on the heave and pitch motion both in the head and beam wave. However, the 
sloshing has remarkable effect on roll motion in the beam wave condition. The comparison 
between four different filling ratios with non-filling ratio indicates that all these four kinds of 
sloshing reduce the roll amplitude of ship motions, especially the low filling ratios, like 20% 
filled tanks. 
 
To make a further study of large-amplitude ship motion coupled with sloshing tanks with a 
forward-speed in head waves, a KVLCC2 model equipped with two LNG tanks and a 
propeller is chosen. In the condition of wave length equal to ship length, two filling ratios are 
considered to compare with non-filling ratio condition in head wave. With the forward speed, 
the coupling effect can be observed but it is not obvious. Unlike coupling effect on roll 
motion in the beam wave, the tank sloshing increase the amplitude motion both in heave and 
pitch motion, especially for the 60% filled tanks. 
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However, in this stage, only one wave condition is considered in the simulation, thus more 
wave conditions need to be computed in the future work to fully investigate the ship motion 
coupled with LNG tank sloshing. 
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1 ABSTRACT

We consider hyperbolic models of gas flows past unsteady or elastic-plastic solids. The numerical framework is based on
hierarchical cartesian grids, implicit representation of fluid-solid interfaces, stable and accurate discretization schemes. We
present examples relative to compressible flows in unsteady aerodynamics, high-speed elastoplastic impacts and rarefied
re-entry flows.

2 MODELS

2.1 Elasto-plastic materials

We consider two models. The first is relative to a compressible elastic-plastic continuum medium. This model was intro-
duced in the literature thanks to several authors [6, 10, 9, 3, 5]. We follow here the formulation presented in [7, 4] and
extend it to plasticity modelling. The equations of mass, momentum, deformation and energy conservation are given by

∂tρ + divx(ρu) = 0

∂t(ρu) + divx(ρu ⊗ u − σ) = 0

∂t(∇xY) + ∇x(u · ∇xY) = 0

∂t(ρe) + divx(ρeu − σT u) = 0

(1)

Here Y(x, t) are the backward characteristics that for a time t and a point x in the deformed configuration, give the
corresponding initial point.

We assume that the internal energy per unit mass ε = e − 1
2 |u|

2 is the sum of a term accounting for volume deformation
that depends on ρ and entropy s, and a term accounting for isochoric deformation depending on the modified left Cauchy-
Green tensor B given by B(x, t) = [∇xY]−1[∇xY]−T /J

2
3 (x, t), J(x, t) = det([∇xY])−1. A general constitutive law that models

gas, fluids and elastic solids is then given by

ε(ρ, s,∇xY) =
κ(s)ργ−1

γ − 1
+

p∞
ρ

+
χ

ρ0
(Tr(B) − 3) (2)

where the first term accounts for a perfect gas, the second for a stiffened gas (e.g. water) and the third for a neohookean
elastic solid. The Cauchy stress tensor is obtained from the above constitutive law. Here κ(s) = exp (s/cv) and cv, γ, p∞, χ
are positive constants that characterize a given material. Compressible Euler equations are included in this model.

Plasticity describes the deformation of a material undergoing non-reversible changes of shape in response to applied
forces. The deformation can be modeled by the composition of a plastic and an elastic deformation [8]. We introduce
the backward characteristics for elastic and plastic deformations denoted by Ye and Y p, respectively. Let us define the
deviatoric part of the stress tensor dev(σ) = σ− Tr(σ)

3 I. Experimentally plasticity occurs when the stress exceeds a critical
value. The yield function of von Misses fV M(σ) = |dev(σ)|2 − 2

3 (σy)2 defines a yield surface fV M(σ) = 0 where σy is the
plastic yield limit. We restrict ourselves to the case of perfect plasticity where σy is a constant.

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

455



A constitutive law for plasticity [9, 1] is defined by

∂t(∇xYe) + ∇x(u · ∇xYe) =
1
χτ

[∇xYe]dev(σ) (3)

where χ is the shear modulus and τ is the relaxation time of the plastic process. Beyond yield, plasticity appears as a
source term in the equation of deformations and can be seen as a penalization of the deviatoric part of σ.

2.2 Rarefied polyatomic flows

We consider a BGK model for polyatomic gases. Going from monoatomic to polyatomic gases implies that additional
energy degrees of freedom are considered. In the classical BGK model, only translational energy degrees of freedom
are taken into account. We now consider a more general case with d energy degrees of freedom including rotational and
vibrational energy degrees of freedom. The idea is to consider these additional energy degrees of freedom in the expression
of the maxwellian distribution function. Moreover, we consider a general case where the energy is not equally distributed
between the energy degrees of freedom. Let η ∈ Rd the vector of the energy degrees of freedom (η = ξ for the BGK
model), η ∈ Rd the macroscopic value on which the equilibrium function is centered (U in the case of the BGK model),
λ ∈ Rd the vector of the coefficient giving the distribution of the energy between the degrees of freedom (1/2T in the case
of the BGK model for the three translational energy degrees of freedom). The model reads:

∂ f
∂t

+ ξ · ∇x f =
1
τ

(
M f − f

)
(4)

M f (x, η, t) = ρ(x, t)
∏
k=1,d

(λk

π

)1/2
exp

(
− (λk(ηk − ηk)2

)
(5)

The evolution of λ is governed by the equation of energy conservation and by a relaxation of the equilibrium temperature
of the rotational degrees of freedom, Θ, towards the equilibrium temperature of the translational degrees of freedom
denoted Λ:

∂tΘ + U · ∇Θ =
1

Zrτ
(Λ − Θ) (6)

where Zr is a given parameter corresponding the rotation frequency of the gas molecules.

3 NUMERICAL ILLUSTRATIONS

3.1 Plastic impact

We have extended the scheme described in [7, 4] to model elasto-plastic flows. The scheme is based on a sharp-interface
locally non-conservative approximate Riemann solver that has been validated in 2D and 3D.

Here we show a 2D test case where an iron circular projectile is impacting onto an aluminium flat plate fixed to
the upper and lower boundaries of the computational domain. The initial horizontal velocity of the iron projectile is
1000m.s−1. The physical parameters for the different materials are found in the literature and the computational domain
is [−0.3, 0.7]m× [−0.4, 0.4]m. The computation is performed on a 2000× 1600 mesh with 144 processors. Homogeneous
Neumann conditions are imposed on the left and right borders and embedded on the top and bottom.

The results are presented in Fig. 2 depicting a Schlieren image and the value of the von Mises criteria |dev(σ)|2− 2
3 (σy)2 at a

time steps corresponding to an early impact stage and to an highly deformed plastic state. A longitudinal wave propagating
in the plate is followed by a shear wave that causes the plasticity of the material. We can observe that the plate, initially
straight, is strongly deformed and forms a long filament; the projectile, initially round, is considerably flattened. Shock
waves and contact discontinuities characterise the air flow.

3.2 Capsule re-entry

A capsule based on Apollo design is immersed in a rarefied gas flow at Mach 5. Free flow conditions are imposed on the
boundaries of the domain except at the inlet where the state is imposed. On the capsule we enforce a zero velocity (with
respect to the capsule) and a temperature equal to 1 in dimensionless variables. The capsule will then move according
to the torque due to the fluid force on the body until an equilibrium depending on the position of the center of mass is
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attained. The numerical scheme for a monoatomic gas is described in [2]. We extend that scheme to polyatomic gases.
The computation is performed on a 80x80x80 grid in space and a 21x21x21 grid in velocity with a Knudsen number of
10−2 with 128 processors. The simulation took about 2 days.

4 CONCLUSIONS

In the proposed presentation we will describe the hierarchical schemes used for these simulations. In particular, we will
detail how to recover consistency and accuracy at the unsteady interfaces that arbitrarily cross the grid. Additional results
in 3D aerodynamics will be presented.
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Figure 1. Iron round projectile on an aluminium shield in air. Schlieren image and von Mises
criterium at t = .03ms and t = 1.04ms
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Figure 2. Octree simulation of a re-entry capsule in a rarefied polyatomic gas.
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Abstract 
Considering sudden change in vehicle’s acceleration, an improved car-following model with 
a feedback control signal jerk was studied and presented in this paper. Stability analysis of 
the modified model was achieved according to the control theory method. Through 
theoretical analysis, the modified model may provide insights for developing management 
strategy to improve traffic jams. 
Keyword: car-following models, feedback control, traffic jerk 

1. Introduction 

Traffic jams have been studied by many traffic simulation models namely, the car following 
models, the hydrodynamic models, the cellular automation models and the gas kinetic models 
[1-15]. In 1999, Konishi et al. [16] put forward a chaotic car-following model by setting the 
time delay feedback control, and researched single-lane traffic operation without reverse 
phenomenon under an open boundary condition. In 2006, Zhao et al. [17] put forward a 
control method for the suppression of the traffic jam. They gave a control signal which 
included the effect of velocity difference between the preceding and the considered vehicle. 
In 2007, Han and Ge [18] presented a coupled map car-following model for traffic flows with 
the consideration of the application of intelligent transportation systems. The control signal 
uniform to the velocity difference between the i-th vehicle in front and the (i+1)-th vehicle, 
and the developed model can improve the stability of traffic flow. Other research was 
connected with the control signal has been carried out recently [19, 20, 21, 22]. 
 
In 1961, Newell [2] put forward a car-following model with a differential equation and give 
graphic description of the optimal velocity (OV) function. In 1995, Bando et al. [3] proposed 
optimal velocity model (OVM) for car-following model. In the OVM, the acceleration of the 
n-th vehicle at time is identified by the difference between the actual velocity and an optimal 
velocity, which depends on the headway to the car in the front. In 2001 Jiang et al. [23] 
presented full velocity different model for car-following theory (FVDM) by considering both 
negative and positive velocity difference, which can give a better description of starting 
process than OVM. In 2012, Yu et al. [24] proposed a full velocity difference and 
acceleration model (FVDAM).The following cars in FVDAM react more quickly than those 
in FVDM and the stability of FVDAM is more stable than that of FVDM. However, no 
studies have ever tried to consider control method with jerk for the FVDM. Based on 
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previous work, this paper investigates a new control scheme considering jerk. As we known, 
the vehicle’s velocity changes are its acceleration, which means how quickly the vehicle 
increases and loses speed. Furthermore, abrupt change in vehicle’s acceleration is called 
‘jerk’, and it will affect the stability of traffic flow, so FVDM with the traffic jerk is studied 
in this paper. 

 
In section 2, the FVDM is recovered and stability analysis is carried out. In section 3, the 
car-following model including a feedback control signal is put forward and the feedback 
control method is used to analyze the stability conditions. Conclusions are given in section 4. 

2. Car-following model and its stability analysis 

2.1. Full velocity different model 

The dynamic equations of FVDM [23] are given by: 
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where τ1=a  is the sensitivity of a driver, )()()( 1 txtxty nnn −= +  and 
)()()( 1 tvtvtv nnn −=∆ +  are the headway and the velocity difference between the n-th 

considering vehicle and the preceding one, and ）)(( tyV n
OP  is the optimal velocity function, 

which is written as follows: 
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where ch  is the safety headway distance. 

2.2. Stability analysis 
We assume that the leading vehicle runs constantly at speed 0v , so the steady state of the 
following vehicles are 

              ),(), ** yvyv =（ .                            (3) 

Then, consider an error system around steady state (1), that is, 
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The Laplace transformation for Eq. (4) leads to 
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where ))()(Vn tvLs nδ（= , ))(()(Yn tyLs nδ= , )L(⋅  denotes the Laplace transformation, s  

is a complex variable. Form Eq. (5), we have 
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Let Λ+++= asassp )()( 2 λ  and the transfer function can be obtained as 
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=
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)(

)( 2 λ
λ                       (7) 

Based on stability theory, the traffic jam will never occur in the traffic flow system as long as 

the characteristic function Λ+++= asassp )()( 2 λ  is stable and 1)( ≤sG . 

In order to make )(sp  stable, that 0>a  and 0>Λa  should be confirm. According to the 

Hurwitz stability criterion, the OV function is monotonic increase (i.e. 0>Λ ) and 0>a , 

we obtain that )(sp  is stable. 

Then, we consider 1)( ≤sG  which can be expressed as 
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The sufficient condition can be obtained as 

022 22224 ≥+Λ−+ λωωωω aaa , [ )+∞∈ ,0ω ，            (9) 

which can be rewritten as 

           
2

- a
Λ≥λ .                                     (10) 

If the condition 
2

- a
Λ≥λ  is satisfied, the traffic system will be stable. 

3. Control scheme 
The aim of this paper is to purpose a control scheme for suppression of congested traffic in 
the car-following model. A feedback control signal )(tun  is designated as follows: 

)
)1()(

()(
dt
tdv

dt
tdv

ktu nn
n

−
−=                         (11) 

where k  is the feedback gain, which can be adjusted. The control signal term is added to Eq. 
(1) as 
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The control signal )(tun  is traffic jerk.  
 
Similarly, we assumed that the leading vehicle runs with constant speed 0v , the steady state 
of the following vehicles are the same of Eq.(3). Then, consider an error system around 
steady state (12), that is 
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The Laplace transformation for Eq. (13) leads to 
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Let se s =− −1 , substituting it into Eq. (15), which leads to 
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Let 32* )()( ksssaasp −+++Λ= λ  and the transfer function can be obtained as 
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Thus, traffic jams will never occur in the traffic flow system if )(sp  is stable 

and 1)(* ≤
∞

SG . Similarly to the second part of the analysis, the sufficient condition is given 

as 
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Then, we can obtain the sufficient condition through the above analysis, that is 
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4. Summary 
In this paper, a new feedback control signal ‘jerk’ is added to FVDM. The stability condition 
of developed model is analyzed by using feedback control theory. Through theoretical 
analysis, the range of reaction parameter λ  for the model with and without feedback control 
signal obtained.  
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Abstract 

In this paper，a new bicrystal model, consists of primary and stray grains, is proposed to 
simulate the weakening effect of stray strains generated at geometric discontinuities of single 
crystal (SC) superalloy. A constitutive model considered crystallographic orientations is 
introduced, and then the bicrystal model under uniaxial loading is built and analyzed in 
commercial finite element software ABAQUS. The numerical simulation results indicate that 
yield strength and elastic modulus of stray grains, which can be determined by the 
crystallographic orientation, have a significant effect on the deformation of the bicrystal 
model. To evaluate the local stress rise at the sub-boundary of primary and stray grains, a 
critical stress based on the yield criterion of SC material is proposed. In the elastic stage, as 
the elastic modulus difference between primary and stray grains increases, the local stress rise 
would be more severe. In the elastic-plastic stage II, while the yield strength of primary grains 
is greater than that of stray grains, the lower the yield strength of stray grains is, the smaller 
load the bicrystal structure can sustain. Finally an evolution equation of critical stress is 
constructed with consideration of stray grains under uniaxial loading conditions. 

Keywords: Nickel-based single crystal (SC) superalloy, Stray grains, Local stress rise, 

Critical stress. 

1. Introduction 

Compared with polycrystalline materials, nickel-based single crystal (SC) superalloy has 
better mechanical properties at elevated temperature in the absence of weak traditional grain 
boundaries. During the manufacture of complex structures such as turbine blades, stray grains 
can be generated in the SC superalloy casting by directional solidification [1-5]. It has been 
found that thermal condition and mold geometry have a significant impact on the formation of 
stray grains [5-6]. The disordered temperature distribution at geometric discontinuities, e.g. 
blade shrouds, turbine blade platforms and turbine blade rabbets, can lead to distortions in the 
crystal lattice [7]. Usually, stray grains are observed in critical areas with complex stress state, 
and the mechanical and fatigue characteristics of SC materials can be greatly influenced by 
stray grains, so the effect of stray grains on SC complex structures should be considered. The 
basic material properties of SC containing stray grains have been experimentally studied [7, 
10-13]. However, there is still a lack of numerical modeling and theoretical analysis of the 
stray grains effect on SC Materials. In this paper, a SC partition model is built, and the effect 
of stray grains on the mechanical behaviors of SC materials is further investigated by the 
bicrystal model through finite element analysis. 

2. The SC model considered stray grains 

2.1. The SC partition model 

X-ray topography of SC material Rene N5 containing stray grains were performed by 

Napolitano et al. [6], and major grain defects were categorized as low-angle boundaries, high-

angle boundaries, and spurious grains, shown in Fig. 1(a). The crystal morphology of SC 

material AM3 containing stray grains was investigated by Zhao et al. [10]. The results showed 
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that stray grains can be divided into several groups by crystallographic orientation, and stray 

grains in each group were approximately along the same direction. Besides, high-angle 

boundaries were observed, shown in Fig. 1(b). The casting microstructure of SC material 

DD6 containing stray grains was studied by Shi et al. [14], and the stray grains along [111] 

were observed, shown in Fig. 1(c). On the basis of X-ray topography and predictions, the 

crystallographic orientation and locations of stray grains can be obtained, and then the stray 

grains can be divided into several partitions. Given a single partition of stray grains, for the 

case with grains orientated in almost the same direction, it can be still modeled as SC material, 

and for the case with spurious grains, isotropic model can be used instead. 

 

  

(a) Rene N5 (b) AM3 (c) DD6 

Figure 1. SC materials containing stray grains 

2.2. The bicrystal model 

The SC structures containing stray grains will be simplified in the following discussion. 

Given the crystallographic orientations of primary and stray grains, a bicrystal model 

containing one group of stray grains is proposed, as detailed in Fig. 2. In Fig.2, the left and 

right part of the bicrystal model represents the primary and stray grains, respectively. The 

bicrystal model is fixed at one end and applied with a concentrated load at other end 

horizontally.   is the angle between the interface of sub-boundary and the orientation of 

primary grains, and a wide range of    can be expected in the real SC structures. 

 

Figure 2. A bicrystal model 

3. Material Property Prediction for the bicrystal model 

The tensile tests of SC material DD3 along [001], [011] and [111] at 680°C were conducted 

by Ding [15], and basic material properties are summarized in Table 1. The elastic-plastic 

parameters of DD3 (ID is QX#.) along each direction, as shown in Table 2, is calculated from 

the constitutive model given in Appendix A. Since the angle   between crystallographic 

orientations of primary and stray grains, which is different from  , cannot clearly distinguish 

the stray grains in different crystallographic orientations, the actual orientation [hkl] is 

introduced. 
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Table 1. The tensile test results of DD3 (680°C) along [001], [011] and [111] 

Temperature (°C) G  (GPa)   
[001]E

 
(GPa) 

680 113 0.322 129.7 

[001]
 
(GPa) y[001]

 
(MPa) y[011]

 
(MPa) y[111]

 
(MPa) 

1.328 943 896 1085 

where y[001] , y[011]  and y[111]  are the yield strengths of DD3 along [001], [011] and [111], 

respectively. [001]  is the plastic modulus of DD3 along [001]. 

Table 2. Basic material properties of DD3 in selected directions (680°C) 

ID 
Orientation [hkl] 

 (°) ym  (MPa) E  (GPa)   (GPa) 
h k l 

QX1 0 0.105 1 6 935.50 131.83 1.308 

QX2 0 0.177 1 10 924.50 135.65 1.278 

QX3 0 0.268 1 15 909.50 143.08 1.237 

QX4 0.189 0.189 1 15 911.81 143.35 1.244 

QX5 0 0.577 1 30 888.31 180.34 1.183 

QX6 0 1 1 45 895.8 207.21 1.204 

QX7 0.707 0.707 1 45 1031.18 243.6 1.594 

QX8 1 1 1 54.74 1084.8 258.75 1.764 

where 
ym , E and  are the yield strength, elastic modulus and plastic modulus of DD3, 

respectively. 

4. Influence analysis based on the bicrystal model 

4.1. The FE model  

Based on the DD3 bicrystal model as illustrated in Fig. 2, the stress distribution at critical 

region will be discussed in this section to analyze the effect of stray grains on the mechanical 

properties of SC material. An 3D model is built in ABAQUS 6.13, and the dimension of the 

model is 60 10 4mm mm mm  , and 30   . The primary grains are along [001], and the 

stray grains are labeled as from QX1 to QX8 for different orientations, as detailed in Table 2. 

Both primary and stray grains are under axial tension, thus the constitutive relationship of 

DD3 along corresponding directions should be used. The non-linear large deflection algorithm 

is enabled through the finite element analysis to accurately capture the local plastic 

deformation. 

4.2. The critical stress in the bicrystal model 

According to the finite element analysis results, non-uniform stress distribution and the 

critical region (A or B) can be always observed under axial tensile load. The stress contours 

obtained from two typical configurations under two different loads are illustrated from Fig. 

3(a) to Fig. 3(d). 
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(a)  765MPaf  (containing QX5) (b) 765MPaf    (containing QX8) 

  

(c) 905MPaf    (containing QX5) (d) 1013MPaf   (containing QX8) 

Figure 3. Stress contour of the DD3 bicrystal model containing stray grains 

where f  is the applied load. 

 

To evaluate the local stress rise near the sub-boundary, a SC critical stress d  is proposed, 

which can be calculated by Eq. (B.1) from Appendix B. Fig. 4(a) presents the relationship 

between critical stress d  and applied load f  (nominal surface force) of the DD3 bicrystal 

model containing stray grains QX5; Fig. 4(b) shows the relationship between d  and f  of 

the DD3 bicrystal model containing different stray grains (partly). According to Fig. 4(a)-(b), 

the whole loading process of the model can be divided into three stages: 

(1) Elastic stage 

(2) Elastic-plastic stage I 

(3) Elastic-plastic stage II 

  

(a) containing QX5 (b) containing different stray grains  

Figure 4. Relationship between d
   and f   of the DD3 bicrystal model 

In the elastic stage, the variation of d  depends on the elastic modulus of primary grains 0E  

and the elastic modulus of stray grains mE . Local high stress is observed obviously near 

region A, as shown in Fig. 3(a)-(b). As the load increases, the material at region A will yield 

firstly. In the elastic-plastic stage I, the local stress rise location is still within region A. With 

the increase of load, the local stress rise tends to less distinct and more stray grains reach the 

initial yield stress. It could be found that, in the elastic-plastic stage II, the variation of d  is 

mainly determined by the yield strength of primary grains y0  and the yield strength of stray 

grains
 ym . While 

ym  is smaller than y0  (e.g. QX5), the critical region will be transferred 

from A to B, as shown in Fig. 3(c), and with the increase of load, more primary grains reach 
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the initial yield stress; while 
ym  is larger than 

y0  (e.g. QX8), Region A will always be the 

most critical location, as shown in Fig. 3(d). By the end of Elastic-plastic stage II, the 

maximum equivalent stress of the grains with lower yield strength will increase rapidly due to 

necking, while high stress location around sub-boundary is still a critical region in 

consideration of the fragility of sub-boundary. 

 

In the elastic stage, as the elastic modulus difference between primary and stray grains 

increases, the local stress concentration would be more severe. When the grain defect is either 

a low-angle boundary ( 15   ) or a high-angle boundary ( 15   ), the local stress rise will 

be unremarkable or significant, respectively. In the Elastic-plastic stage II, while 
ym  is 

smaller than 
y0 , the lower 

ym  is, the smaller load the bicrystal structure can sustain; while 

ym  is greater than 
y0 , the maximum load, which the bicrystal structure can sustain, is 

nearly the same. 

4.3. Evolution equation of the critical stress 

The critical stress observed near the sub-boundary of primary and stray strains has been 

discussed in previous section, and the evolution equation of the critical stress will be built 

with considerations of the effect of stray strains. 

4.3.1. Elastic stage 

There is a significant linear correlation between d  and f , as shown in Fig. 4(b). As the 

slope of the linear relationship 1k  depends on 0E  and mE , 6

1 m 04.57 10 ( ) 1k E E     can 

be calculated by regression analysis. Thus, the evolution equation of d  in the elastic stage 

can be given as, 

 
6

m 0[4.57 10 ( ) 1]d E E f      (1) 

 

Since y0 ymmin{ , }d   , the range of load can be obtained in Eq. (2). 

 

0 ym

6

m 0

min{ , }
0

4.57 10 ( ) 1

y
f

E E

 


 
  

 (2) 

 

4.3.2. Elastic-plastic stage I 

The range of load can be expressed as, 

 

y0 ym

y0 ym6

m 0

min{ , }
min{ , }

4.57 10 ( ) 1
f

E E

 
 


 

  
 (3) 

 

With increase of applied load, d  is nearly the same, as detailed in Fig. 4(b). Thus, the 

evolution equation of d  in this stage has the following form, 

 

ymd   (4) 
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4.3.3. Elastic-plastic stage II 

The range of load can be written as, 

 

y0 ymmin( , )f     (5) 

 

In the DD3 bicrystal model, the difference in the magnitudes of 0E  and mE  will result in a 

different critical region, and d  will change in a different way, too. Fig. 5(a)-(b) present the 

relationship between d  and f  of the DD3 bicrystal model containing different stray grains 

in the elastic-plastic stage II. 

  

（a）
ym y0

   （b）
ym y0

   

Figure 5. Relationship between d
  and f  of the DD3 bicrystal model containing 

different stray grains in the elastic-plastic stage II 

While 
ym y0  , the evolution equation of d  in this stage has the following form: 

 
1.49

ym y00.9( )d f      (6) 

 

While 
ym y0  , the evolution equation of d  in this stage has the following expression: 

 
1.23

y0 ym1.55( )d f      (7) 

 

Finally, the evolution equation of d  is summarized by Eq. (8). 

 

y0 ym6

0 m 6

0 m

y0 ym

ym y0 ym6

m 0

1.49

ym y0 y0 y

min{ , }
[4.57 10 ( ) 1] ,       0

4.57 10 ( ) 1

min{ , }
            ,                             min{ , }

4.57 10 ( ) 1

0.9( ) ,                min{ ,

d

E E f f
E E

f
E E

f f

 

 
  

   







    
  

 
  

   m ym y0

1.23

y0 ym y0 ym ym y0

} and 

1.55( ) ,               min{ , } and f f

 

     








 

    

 (8) 

 

When 
ym y0   and f  is nearby 

ym , the critical region will be transferred and d  will 
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increase dramatically, which is not included in Eq. (8).  

4.4. Influence analysis of the angle between sub-boundary and orientation of primary grains 

The effect of   on SC material containing stray grains is also analyzed by the model shown 

in Fig 2. The primary grains are along [001], and the stray grains are QX5.   equals to 20 , 

30  and 45 , respectively. Fig. 6 presents the relationship between d  and f  of the DD3 

bicrystal model with different  . The result shows that the local stress rise will be more 

distinct in elastic stage and the loading process will be longer, with decrease of  . However, 

  has little influence on mechanical behavior of SC material containing stray grains in the 

elastic-plastic stage II. 

 

Figure 6. Relationship between d
  and f  of the DD3 bicrystal model with different   

5. Discussions 

1. The proposed SC partition model can be used to simulate the SC materials containing 

several groups of stray grains. The local high stress can be found near the sub-boundary of 

primary and stray grains. The local stress distribution and critical stress will also be 

influenced by the geometry of SC structure. 

2. As the applied load increases, the local high stress region is always observed near the sub-

boundary. Given the fragility of sub-boundary, the effect of stray grains should be considered 

in the analysis of the mechanical behavior and fatigue characteristics of SC complex 

structures. 

6. Conclusions 

In this paper，a new bicrystal model, consists of primary and stray grains, is proposed to 

simulate the weakening effect of stray strains generated at geometric discontinuities of SC 

material. A constitutive model considered crystallographic orientations is introduced, and then 

the bicrystal model under uniaxial loading is built and analyzed. The numerical simulation 

results indicate that yield strength and elastic modulus of stray grains, which can be 

determined by the crystallographic orientation, have a significant effect on the deformation of 

the bicrystal model. To evaluate the local stress rise at the sub-boundary of primary and stray 

grains, a critical stress based on the yield criterion of single crystal material is proposed. In 

the elastic stage, as the elastic modulus difference between primary and stray grains increases, 

the local stress rise would be more severe. In the elastic-plastic stage II, while the yield 

strength of primary grains
 
is greater than that of stray grains, the lower the yield strength of 

stray grains is, the smaller load the bicrystal structure can sustain. Hence, the effect of stray 
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grains on the mechanical and fatigue characteristics of SC complex structures should not be 

neglected. Finally an evolution equation of critical stress is constructed with consideration of 

stray grains under uniaxial loading conditions.  

Appendix A. Constitutive model of SC superalloy 

T-G criterion [16] can be used to describe the yield behavior of SC superalloy: 

 
1

2 2 2
1 2 6[( ) ]Y P P P    (A.1) 

2 2 2 2 21
1 2 1 6 1( ) ; ; [( ) ( ) ]

6
ii jj ij kk jj kk ii ij

A
P S S P B S P C S S S S S         

 

Based on Drucker postulation and associated flow rule [17], T-G criterion can be used as 

plastic potential. The constitutive model of SC superalloy can be constructed by isotropic 

hardening model. As Y  , plastic potential has the following form: 

 
2

U   (A.2) 

 

Since isotropic hardening model is adopted, hardening parameter is given as, 

 

K p  (A.3) 

 

Hence, the elasto-plastic matrix can be finally derived as, 
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 (A.4) 

 

Appendix B. Critical stress of SC superalloy 

According to the yield criterion of SC superalloy presented in Appendix A, stress of the 

critical region can be constructed as, 

 
1

2 4
1 2 6[( ) ]P P P     (B.1) 
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ABSTRACT

A compressible and multiphase flows solver has been developedfor the study of one-dimensional shock and expansion
tube problems. This solver has a structure similar to those of the one-fluid Euler solvers, differing from them by the
presence of a void ratio transport-equation. The model and the system of equations to be simulated are presented. Results
are displayed for shock and expansion tube problems. Close agreement with reference solutions, obtained from explicit
finite volume approaches, is demonstrated for all of the examples. Different numerical methods are additionally displayed
to provide comparable and improved computational efficiency to the model and the system of equations. The overall
procedure is therefore very well suited for use in general two-phase fluid flow simulations.

Keywords: Two-phase flows, shock and expansion tube problems, homogeneous model, Riemann problem, finite volume,
inviscid simulation

Introduction

Theoretical and numerical modeling of two-phase fluid flow problems is of practical importance in many areas of industry
such as thermal power generation plants and other interesting phenomena occurring in environmental applications. Despite
their relevance in industrial and environmental applications, compressible two-phase flow investigations have remained
complex and challenging areas of applied mathematics and computational methods. The most widely used modeling
approach is based on averaged two-phase fluid flow model such as the one-fluid formulation. Within such averaged
model, there are different approaches according to the physical assumptions of interest made on the local mechanical and
thermodynamical equilibrium and to the slip condition between phases. This has resulted in the development of diverse
models and system of equations ranging from seven to three equations only. There also have been a number of significant
contributions in different areas and applications relevant to two-phase flows. These are very well acknowledged in the
scientific literature for which we refer the reader to [2, 5, 9, 19] for further details.
A critical aspect for two-phase simulations concerns the numerical methods of interest and their accuracy problems.
The hyperbolic nature of such flows and their characteristic analysis makes the simulation very stiffand challenging. In
addition to that, the volume fraction variation across acoustic waves causes difficulties for the Riemann problem resolution
particularly in the derivation of approximate Riemann solvers. This is due to the occurrence of the large discontinuities
of thermodynamic variables and equations of state involved at material interfaces. As a result, numerical instabilities
and spurious oscillations appear through the complete wave structure [1]. The reason for such unusual behavior lies in
the numerical dissipation of the methods which reproduce a thermodynamic path that is not correct. This also implies
computational failure for Godunov methods which is due to the large decrease of the pressure up to vacuum ghost.
In the present paper, modeling and computer simulations are performed on the basis of Navier-Stokes applications. A
four-equation model of the two-fluid model type is considered for the current purpose. The set of equations includes
three conservation laws for mixture quantities along with a void ratio transport-equation [6, 7]. This set of equations
is solved by means of explicit finite volume techniques based on Jameson, Rusanov, AUSM-type, VF Roe and HLLC
Riemann solvers methods. This is followed by computational simulations on one-dimensional inviscid problems to study
the behavior of the performed numerical methods. Computational results are then displayed for shock tube and rarefaction
problems, including problems of large depression. These test cases establish the ability, accuracy and efficiency of our
computational treatment.
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Models and Methods

The homogeneous mixture approach is used to model two-phase flows.In addition, the phases are assumed to be in thermal
and mechanical equilibrium, that is, both phases share the same temperatureT and the same pressureP. The evolution of
the two-phase flow can be described by the conservation laws that employ the representative flow properties as unknowns
just as in a single-phase problem.

A four-equation model

We consider a reduction form of the five-equation Kapila model [9] under thermal equilibrium between phases. We also
assume that the liquid phase is in a saturation state. The model consists of three conservation laws for mixture quantities
and an additional equation for the void ratio. The governing equations under consideration are then governed by the
following set of partial differential equations:

∂ρ

∂t
+
∂ρu
∂x

= 0 (1)

∂(ρu)
∂t

+
∂(ρu2 + P)
∂x

= 0 (2)

∂(ρE)
∂t

+
∂(ρuH)
∂x

= 0 (3)

∂α

∂t
+ u
∂α

∂x
=





ρlc2
l − ρvc2

v

ρlc2
l

1−α +
ρvc2

v

α





︸          ︷︷          ︸

=K

∂u
∂x

(4)

The individual variables areρ mixture density,u velocity, P pressure,α void fraction, E and H are total energy and
enthalpy of the two-phase flow. The source termK involves the speed of sound,ck, and densities,ρk, of pure phases,
k = l, v. The subscriptsv and l indicate the vapor and the liquid phase, respectively. The four equations model form a
system of conservation laws having a hyperbolic nature. The eigenvalues of the system are found to be:

λ1 = u− cwallis, λ2 = u = λ3, λ4 = u+ cwallis (5)

wherecwallis is the the propagation of acoustic waves without mass and heat transfer [17]. This speed of sound is expressed
as a weighted harmonic mean of speeds of sound of each phase:

1

ρc2
wallis

=
α

ρvc2
v
+

1− α

ρlc2
l

(6)

Equation of state

To close the system, an equation of state (EOS)is necessary to link the pressure and the temperature to the internal energy
and density. For the pure phases, we have employed the convex stiffened gas EOS. An expression for the pressure and the
temperature can be deduced from the thermal and mechanical equilibrium assumption (see [13], and references therein,
for details).

Numerical methods

In this short paper, the finite volume techniques are performed on the basis of the Riemann problem. In one-dimensional
space, the conservative part of the four-equation model can be represented in a matrix form as:

∂W
∂t
+
∂F(W)
∂x

= 0 (7)

∂α

∂t
+ u
∂α

∂x
= S(W) (8)

HereW is the vector of conserved variables,F andS are the convective flux and the source term that includes the void
ratio equation given in (4). These vectors are defined by
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W =





ρ

ρu
ρE





and F =





ρu
ρu2 + P
ρuH





Based on finite volume techniques, the computationalcells involve the discretization of the spatial domainx into regular
meshes of length∆x and the temporal domaint into intervals of duration∆t. A discrete form of equations (7) and (8) can
be written as:

∆x
Wn+1

i −Wn
i

∆t
+ Fn

i+1/2 − Fn
i−1/2 = Sn

i ∆x (9)

where the time step should fulfill the CFL condition in order toguarantee stability requirement andFn
i+1/2 is the numerical

flux through the cell interface. This numerical flux can be computed using the solution of the Riemann problem or any
other numerical method of interest where the resolution of the Riemann problem is fully numerical.
Various formulations of numerical flux have been proposed to solve multiphase compressible flows. See for instance [18]
or [14], and references therein, for such formulations and extensions. In the present study, we have tested and compared
five documented formulations, namely, the Jameson-Schmidt-Turkel scheme [8], an AUSM-type scheme [4], the Rusanov
scheme [12], the HLLC scheme [16] and a VF Roe non-conservative scheme [3].

Computational Results on One-Dimensional Two-Phase Flow Problems

In this section we exhibit the ability of the current four-equation model, convergence and computational performance of
the proposed numerical methods on two groups of two-phase flow problems. In the first group, we considered two shock
tube problems to validate the current numerical tool. A comparison with solutions provided with a seven-equation model
using the Discrete Equations Method (DEM) is proposed [15]. In DEM approach, the pure fluids are first integrated at
the microscopic level and then the discrete formulae are averaged. The obtained continuous model of multiphase flow is
equivalent to the Baer-Nunziato model. The infinite rate relaxation procedures are used to correctly treat the full system.
The second group tests the expansion tube, double rarefaction, problems which are very stiffcases for numerical methods.
Results of the expansion tube problems are validated with other models as we shall see later.

Water-gas mixture shock tube

This test case is proposed in [10], computed with five- and seven-equation models. A one meter shock tube involves a
discontinuity of the volume fraction. Forx < 0.7 the gas volume fraction is 0.2, while it is 0.8 otherwise. The fluids are
governed by the stiffened gas EOS and are initially at rest. The left chamber contains high pressure fluids (109 Pa) while
the right one contains low pressure fluids (105 Pa). The parameters of EOS are:





γ

P∞
ρ





Liq

=





4.4
6.108

1000





and





γ

P∞
ρ





Gas

=





1.4
0
1





Computations have been performed with a mesh of 1000 cells and with a time step of 10−7 s. Results are shown at time
0.2µs in Fig. 1 for all numerical methods. Profiles of void ratio and pressure. Near discontinuities, the Jameson scheme
produced small oscillations of the solution. For the void ratio profile, we observe a small discrepancy in the post-shock
area aroundx = 0.85 m. The solution obtained with the Rusanov and AUSM methods present a small variation, not
captured by other methods.

In comparison with the seven-equation model, the pressure curve is quite similar. Yet, we notice some differences between
the solutions in the volume fraction profile. In particular, the post-shock values of the void ratio are not the same and
the seven-equation model shows an oscillation near the contact discontinuity zone. This behaviour was also noted in
simulations presented in [10].

Epoxy-spinel mixture shock tube

In [11] a one meter tube contains two chambers separated atx = 0.6 m. A mixture of epoxy and spinel fills both chambers.
The initial volume fraction of epoxy is 0.5954 everywhere. The left chamber pressure is 2 1011 Pa, while the right chamber
is at atmospheric pressure. The fluids are initially at rest. The parameters of EOS are:
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Figure 1. Water-gas shock tube problem. Comparison of different numerical methods compar-
ison on a mesh of 1000 cellsat a time of t = 0.2ms. Void ratio and pressure profiles.





γ

P∞
ρ





Epoxy

=





2.43
5.3 109

1185





and





γ

P∞
ρ





S pinel

=





1.62
141 109

3622





Computations have been performed with a mesh of 1000 cells and with a time step of 10−7 s. Numerical solutions com-
puted with the 4-equation model at timet = 29µsare shown in Figure 2. The analytical solution of the equilibrium model
proposed in [11] is incorporated for the sake of comparison and validation. Differences between solutions are weak. For
the void ratio profiles, the plateau after the shock is less intense with the Rusanov scheme. As previously indicated, the
solution computed with the Jameson scheme presents small oscillations near discontinuities. For all methods, the pressure
profiles are in close agreement with the analytical solution. Discrepancies appear on the void ratio jump at shock front,
which is underestimated by all models, especially the seven-equation model.
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Figure 2. Epoxy-spinel shock tube problem. Different numerical methods comparison on a mesh
1000 cells at timet = 0.29µs. Void ratio and pressure profiles.

Water-gas mixture expansion tube,| u |= 2 m/s

An expansion tube problem is considered with an initial velocity discontinuity located at the middle of the tube. This test
consists in a one meter long tube filled with liquid water at atmospheric pressure and with densityρl =1150 kg/m3. A weak
volume fraction of vaporα =0.01 is initially added to the liquid. The initial discontinuity is set at 0.5 m, the left velocity
is -2 m/s and the right velocity is 2 m/s. The solution involves two expansion waves. As gas is present, the pressure cannot
become negative. To maintain positive pressure, the gas volume fraction increases due to the gas mechanical expansion
and creates a pocket [13].
In Figure 3, the solution obtained is presented at timet = 3.2 ms. The mesh contains 1000 cells. The time step is set
to 10−7 s. The pressure evolution marks large discrepancies. Solutions provided by the Jameson, Rusanov and AUSM
methods are in close agreement with the two-fluid solution computed in [20]. With the approximate Riemann solvers, the
rarefaction waves are badly predicted. A CPU time of 14h was necessary for the two-fluid simulation. With our 4-equation
model, using the Rusanov or Jameson scheme, the CPU time is less than five minutes.
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Figure 3. Water-gas expansion tube|u| = 2 m/s. Different numerical methods comparison on a
mesh of 1000cells at timet = 3.2µs. Void ratio and pressure profiles.

Water-gas mixture expansion tube,| u |= 100m/s

In [13], an expansion tube, double rarefaction, test is considered. A one meter tube filled with pure water is at atmospheric
pressure. The density for water is 1000 kg/m3. An initial velocity discontinuity is located atx= 0.5 m. The velocity of the
right part is set as 100 m/s, and the left part as -100 m/s. The EOS parameters are similar to those used for the previous
test case. A small volume fraction of gas (1 kg/m3) is initially present in the water. This case is stiffer than the previous
one because of the high value of the initial velocity. Computations are performed on a 1000-cell mesh with a time step set
to 10−7 s. The approximate Riemann solvers (HLLC and VF Roe) were not able to provide a solution. An anti-diffusive
term can be added to the HLLC dissipation to improve the scheme. It has been not tested in the present study.
Figure 4 presents results obtained with the 4-equation model at timet = 1.85 ms. The pressure evolution given by the
AUSM scheme is not correct. With a grid refinement, the solver leads to divergence. We observe also oscillations on the
velocity profiles near the initial discontinuity position. On the contrary, the solutions provided by both the Jameson and
Rusanov scheme are in very good agreement with solutions presented in [13].
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Figure 4. Water-gas expansion tube|u| = 100m/s, numerical methods comparison, mesh 1000
cells,t = 1.85µs. Void ratio and pressure profiles.

Concluding Remarks

This paper provides a comparison of various numerical methods for compressible two-phase flow four-equation model.
In its present form, these methods include the AUSM-family, approximate Riemann solvers (VF Roe, HLLC), a simple
Godunov approach (Rusanov) and a space-centered scheme with artificial dissipation (Jameson). We then extensively
investigated the proposed methods in the existing system of equations on the basis of shock and expansion tube problems.
The simulation results suggest the rarefaction waves near the vacuum apparition is more than hard situation for both the
approximate Riemann solvers and the AUSM scheme. More specifically, it is not possible to obtain a resolution using
these methods. Only the Jameson and Rusanov methods facilitated the simulation of large rarefaction cases.
The presented computational results give considerable confidence in our four-equation model and methods for use as
a robust and reliable approach in shock and expansion tube problems of two-phase flows. Room is still available for
further work on such problems. For instance, investigation of anti-diffusive terms in needed towards homogeneous and
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non-equilibrium two-phase flows.
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ABSTRACT

Being a typical structural element in infrastructure of transportation systems, the poles are one of the key parts of almost
any railway system, carrying the required electricity wires and further side-supplies. On the other hand, numerical sim-
ulations have become an inseparable part of any modern engineering task, such that they lead to a deeper insight into
the problem and its various perspectives. Pole structures, not being an exception, have attracted significant attention in
this regard, especially due to the increase in utilization of railway systems. Therefore, a deep study on diverse modeling
aspects of such structures is a necessity to obtain trustable simulation results.

The current study is a survey aimed at investigating the effects of two factors, namely the catenary cables and soil-structure
interaction (SSI), on the dynamic behavior of the pole structures which are used in a high-speed train line connecting the
cities of Leipzig and Erfurt in the eastern region of Germany. The study is conducted using 3D Finite Element models
(FEM). The final goal is to gain an understanding of how the two mentioned factors, from a modeling point of view, affect
the eigenfrequencies of the structure.

Initially, the modeling aspects and assumptions used in the study are clarified, and the methods which were used to model
the catenary cables and the SSI are briefly explained. Henceforth, the simulation results are presented and discussed.
Finally, a parameter study is performed in order to identify the most decisive parameters of the model when calculating the
eigenfrequencies, while simultaneously observing the behavior of the model when only one parameter changes. Last but
not least, the eigenfrequencies calculated using the acceleration data which are extracted from the sensors installed on an
in-service pole are presented, so that a comparison between the modeling results and those of the real-world model would
further assist in making a judgment about the prognosis capability and accuracy of the simulations. Such a comparison
especially proves to be useful in order to decide about the boundary conditions and the modeling assumptions concerning
the SSI and the cables. It is also worth noting that in the course of the parameter studies, the so called metamodeling
techniques are used after being shortly introduced, to accelerate the analyses.

Keywords: Soil-Structure Interaction, Pole, Catenary Cables, Dynamic Behavior, Sensitivity Analysis, Metamodeling.

Introduction

Poles, either the ones used for luminary posts or electricity cables along railway systems, are nearly identical structures that
despite their relative simpleness in shape and dimensions, are subject to various experimental and numerical investigations.
Among various reasons, one could name the possibility of consideration of stochastic properties since the experimental
data could stem from multiple structures which are commonly considered to be identical when numerically modeled;
however, the necessity of accurate simulation of such structures is undeniable due to their importance and vast utilization.
Being diverse in dimensions, usage, structural characteristics and building material, the poles investigated in this study
are a part of a high-speed railway system which connects the cities of Leipzig and Erfurt in the eastern region of Germany
to each other. Made of reinforced concrete, the investigated structures are prestressed spun-cast poles with a length of 10
meters and outer diameter of 40 and 25 centimeters at the bottom and the top respectively. Unlike statically-cast concrete
poles, the spun-cast concrete poles are cenrifugally spun with embedded high-strength, prestressed steel strands which
are totally enclosed within the concrete. This technique allows the poles to be extremely strong, while improving the
resistance against corrosion. Each pole has a floating pile underneath as the foundation, with a length of almost 6 meters.
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Being a critical issue in order to ensure the continues supply of energy, the stability of these pole-pile systems is provided
using the direct embedment method. This involves creating a cylindrical hole in the ground by a drill and inserting the
concrete pole into the open hole, whose gap is then to be filled using grouting materials. This is a common technique
especially in cases which are subject to high overturning moments but only moderate vertical loads. The pole studied in
this survey, caries only the catenary cables, but not the full electricity system yet.

Figure 1. The pole with the catenary cable

The goal is to initially investigate the effects of the catenary cables and SSI on the eigenmodes of the structure when
modeled using FEM. After a brief introduction to the modeling assumptions, techniques, and the method to model the
SSI, the simulation results are presented and discussed. Henceforth, a parameter study is performed in order to identify
the most decisive parameters when calculating the eigenfrequencies, while simultaneously observing the behavior of the
model when only one parameter changes. Finally, the eigenfrequencies calculated using the acceleration data which are
extracted from the sensors installed on an in-service pole are presented, so that a comparison between the modeling results
and those of the real-world model would further assist in making a judgment about the prognosis capability and accuracy
of the simulations. This will also lead to the conclusion, which boundary conditions in the model simulate the reality in a
better manner. The survey comes to an end after making the final conclusions, and indicating the open areas related to the
problem, which are to be further investigated.

Modeling Aspects

General

Despite the resemblance of the general behavior of the structure to that of a cantilevered beam, in the absence of closed-
form solutions, FEM was used to calculate the natural frequencies of the structure. The structure is modeled using the
FEM, having almost 55000 quadratic tetrahedral mesh elements. The prestressing effect was neglected due to the fact that
the prestressed load is considerably lower than the buckling load of the pole, a fact that makes this effect negligible when
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calculating the eigenfrequencies [1].

The soil behavior is assumed to stay in linear range since the main concern is the calculation of the eigenfrequencies,
although the linear springs modeling the soil are calculated considering the soil characteristics. The methodology which
also accounts for SSI is briefly explained. The concrete is also modeled using a linear elastic constitutive law, based on
the properties attributed to C80/95 concrete in Eurocode 2.

In the course of the study, a naming convention was used to differentiate the seven different models (six numerical and
one experimental) more clearly:

• Ref: The pole with clamped support, no catenary cables, no SSI

• Ca: The pole with clamped support, with catenary cables, no SSI

• S1: The pole with spring support counting for SSI (Constant soil profile), no catenary cables

• CaS1: The pole with spring support counting for SSI (Constant soil profile), with catenary cables

• S2: The pole with spring support counting for SSI (Parabolic soil profile), no catenary cables

• CaS2: The pole with spring support counting for SSI (Parabolic soil profile), with catenary cables

• Exp: The eigenmodes calculated using the acceleration data of the sensors installed on an in-service pole

Last but not least, throughout the entire paper, the X direction represents the direction in which the catenary cables are
extended, while Y is its perpendicular direction and Z is aligned with the length of the pole.

Catenary Cables

The catenary cables at service during this phase of the project, were the ones used for electricity grounding only (Figure
1). Having a cross sectional area of 242.5mm2, the cables are made of aluminum type 243 AL1 (DIN EN 50182). The
distance between each pair of poles is 65 meters which results in a sag of 1 meter in the middle based on field observations.

Modeled using linear elastic material, the cables were assumed to behave geometrically nonlinear, such that after the
deformation due to their self weight, they resembled a hyperbolic cosine function ( f (x) = a. cosh( x

a )); the function’s
shape is decided by a constant parameter, the so-called catenary constant (a), which is the ratio of the horizontal tension
to the weight of the cable in the middle and is to be calculated in an iterative procedure since it is initially unknown [2].
A circular cross section with the mentioned cross sectional area was used to model the cables; however, its bending and
torsion stiffness was supposed to be only 20% of that of a rigid cross section with the same material properties and cross
sectional area.

For modeling simplifications, the cables were substituted by a spring-mass system; however, the stiffness and mass of the
system were numerically calculated based on the entire cable system modeled separately. In order to calculate the stiffness
(K = ∆F

∆X ) of the spring which substituted the cable system, only two cables were modeled as explained before, and the
change of reaction force (∆F) was calculated when a known displacement (∆X) was applied at their intersection point. As
illustrated in Figure 2, different values of applied displacement led to different values of stiffness.

Although the stiffness with regard to the displacement of 0.1 meter was adopted for the rest of the calculations, the effect
of the chosen value will be discussed in the parameter studies. Finally, the entire cable system was modeled using the
linear spring and the mass of the cables acting in X and Z directions respectively.

Soil-Structure Interaction (SSI)

As long as the model concerns the calculation of the eigenmodes, the assumption of not violating the linear range stays
valid [3]. Hence, the substructure part in models which simulated the SSI was modeled using seven elastic springs, such
that the springs would also count for the interaction between the soil and the floating pile underneath the pole. Proposed by
Novak [4], the stiffness values of the springs (three translational, two rotational and two translational-rotational coupling
springs) depend on the soil’s shear modulus and density, as well as on the pile’s modulus of elasticity and radius. Further-
more, the slenderness and bottom condition (floating or end-bearing) of the pile are decisive only in the vertical direction,
which is not of great importance in this case due to the relatively low loading in the vertical direction, as was also proven
in the parameter studies to be presented. The method eventually leads to four spring stiffness values for horizontal degrees
of freedom (DOF), vertical and rotational DOFs as well as the coupling between the rotational and horizontal DOFs. In
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Figure 2. Stiffness of the spring substituting the cables

their work, Novak neglects the torsional behavior around the pile’s axis since he states that this motion is not only strongly
frequency dependent, but also consequential just for caisson foundations or groups of massive piles.

Moreover, one last critical assumption in the mentioned methodology concerns the soil profile. The soil’s shear modulus is
considered to be either constant or varying with depth according to a quadratic parabola. Parabolic variation of soil’s shear
modulus (models S2 and CaS2), versus a constant modulus in the entire soil profile (models S1 and CaS1), represents the
physically homogeneous soil stratum with its shear modulus increasing by depth, as the confining pressure enlarges. Each
assumption leads to a set of spring parameters which were studied in this work. Full details on this method and the exact
formulations could be found in [4].

The spring stiffness values calculated for this problem are shown in Table 1.

Table 1. Stiffness Values of the SSI Springs
(GN/m)

DOF Constant Soil Parabolic Soil

Vertical (V) 2.472 1.601
Horizontal (H) 1.049 0.382
Rotational (R) 1.548 1.241
H-R Coupling -0.906 -0.543

It is no surprise that the springs representing the soil with parabolic stiffness profile are softer compared with their constant
soil counterparts, due to the loss of stiffness in top layers of the soil.

Test Results: Model vs. Experiment

In order to separately understand the effects of the two factors, the cables and the SSI, on the dynamic behavior of the
pole, solely the results of the simulations are initially presented and discussed. Eventually, the experimental results are
presented as a measure to judge the precision of the models.

Figure 3 and Table 2 represent the mode shapes and their respective eigenfrequencies for the clamped model (Ref).
Moreover, the even modes (2, 4, 6 and 8) represent the modes in the X direction (along the cables), while the odd modes
represent those of the Y direction.

To identify the effects of the cables and the SSI, the five numerical models (Ca, S1, CaS1, S2, CaS2) are compared with
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Table 2. Eigenfrequencies of
the Clamped Pole (Ref)

Mode f (Hz)

1st bending (1 & 2) 3.4693
2nd bending (3 & 4) 17.113
3rd bending (5 & 6) 44.160
4th bending (7 & 8) 83.423

Figure 3. Mode Shapes of the Pole

the model ”Ref”. Figure 4 illustrates in percentage, how much modeling each phenomenon affects the values of the natural
frequencies in the model. The diagram clarifies the effect coming from the inclusion of only SSI (S1 and S2) or the cables
(Ca) in the model, while simultaneously showing the overall effect of modeling both phenomena (CaS1 and CaS2).

Based on the diagram in Figure 4, it is possible to state that adding the cable system to the clamped model of the pole
results in the reduction of the eigenfrequencies due to the increase in the mass of the system; however, there is a significant
increase (over 30%) in the natural frequency of mode 2 (1st bending in X direction) due to the stiffness of the cable system,
an effect which is not as influential in higher modes since the action point of the cable stiffness becomes close to the zero-
displacement point of the modes (Figure 3). Furthermore, the parabolic soil profile assumption (S2 and CaS2) leads to a
softer behavior than the constant soil profile assumption, and the intensity of this difference in behavior becomes more
detectable in higher modes, as the structure responds with its stiffer manner.

Analogous to Figure 4, Figure 5 demonstrates the percentage of the difference in eigenfrequencies of the four models
(Ref, Ca, CaS1 and CaS2) when compared to those of the experimental data. Having in mind that a positive value in this
diagram indicates a stiffer behavior of the model compared to the experimental data, it could be concluded that except the
mode 2 and the 4th bending modes, the Ref model (clamped at the bottom) is too stiff to ideally represent the real behavior
of the pole, necessitating the simulation of the substructure part and the cable system. Moreover, the cable system has
a more dominant effect, similar to Figure 4, compared with the SSI; however, one should not forget that the stiffness of
the spring which substituted the cable system plays a significant role here, a parameter which exhibits a large uncertainty
due to its nonlinear nature. Furthermore, Figure 5 is a decent basis to judge that the methodology used in this work
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Figure 4. Effect of Catenary Cables & SSI on the Eigenfrequencies

to model the SSI leads to a relatively softer behavior compared to the reality (experimental data), especially with the
parabolic assumption for the soil’s stiffness profile. It is nevertheless reminded that this methodology has a large field of
uncertainties too. Hence, these issues will also be addressed in the parameter studies in order to help to reach a balance
between the parameters of the problem, such that a better compromise takes place.

In order to make more supported conclusions, further interpretation of the results is left to be done in the ”Conclusions”
section, after a more general viewpoint is obtained from the parameter studies.

Parameter Study

Among all the possible factors each of which could be considered as an uncertain parameter in this problem (e.g. the
dimensions, density of aluminum etc.), the following 7 parameters were initially assumed to be the most influential and
uncertain ones, with their possible ranges of variation shown in Table 3. The model subjected to the parameter studies
accounts for both the cable system and the SSI.

Table 3. The Problem’s Initial Parameters (SI Units)

Parameter Abbreviation Minimum Maximum

Concrete’s Density Con Dens (1) 2200.0 2600.0
Concrete’s Young’s Modulus Con E (2) 3.36 ∗ 1010 5.04 ∗ 1010

Cable Spring’s stiffness K S pring (3) 67.06 ∗ 103 196.28 ∗ 103

SSI Spring, Horizontal DOF S S I H (4) 4.71 ∗ 108 1.15 ∗ 109

SSI Spring, Rotational DOF S S I R (5) 1.19 ∗ 109 1.67 ∗ 109

SSI Spring, Vertical DOF S S I V 1.28 ∗ 109 2.97 ∗ 109

SSI Spring, H-R Coupling DOF S S I HR (6) 5.07 ∗ 108 9.69 ∗ 108

In order to perceive the general influence of each individual parameter, each parameter was changed from its minimum
to its maximum in 15 steps, while the rest were kept constant at their mean value. The foremost conclusion was that
the change in S S I V does not affect the eigenfrequencies at all, hence it was omitted from the list of variables for the
upcoming sensitivity analyses.
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Figure 5. Comparison of the Models with the Experimental Data

Figure 6 shows the results of the parametric study, when the parameters change individually step-by-step in the mentioned
range. It is possible to interpret the graph either mode-wise (i.e. judging which parameters affect a specific mode more
intensely) or parameter-wise (i.e. concluding which modes a certain parameter affects).

It is understandable from the figure, that K S pring affects only the mode 2 (1st bending in X direction) majorly, and mode
4 slightly. Moreover, S S I R’s variation proves to have the least effect on the output, among the soil stiffness parameters,
and S S IH is the most decisive parameter in all modes except 2, in which the K S pring plays a more significant role.
Eventually, while the Con E varies the output significantly more than Con Dens when varying in their mentioned ranges,
both parameters remain to be influential in all of the modes.

Despite the benefits of the conclusions made, the complex nature of this problem triggers the need to a sensitivity analysis,
since the behavior of the model is highly nonlinear with respect to some parameters (mainly the SSI parameters) on one
hand, and the response also depends on the interaction between the parameters (e.g. the relative stiffness of the SSI and
the cable system springs etc.) on the other hand. This would allow the simultaneous, but yet random variation of all the
parameters, in order to gain a deeper insight into the problem. Last but not least, this would lead to quantitative measures
based on which one could judge on the importance of the parameters, rather than just making qualitative comparisons.

Brief Introduction to Sensitivity Analysis

The need to identify the most significant parameters in a multidimensional problem triggers the efforts to develop methods
addressing this issue. Sensitivity analysis, as a popular methodology, is a commonly used approach to fulfill this aim. The
final output of sensitivity analysis is a measure, based on which one can judge which parameters are more decisive in the
final output of the problem, hence a more efficient orientation of time and cost investment could be done to accurately
determine only the crucial parameters.

There are various approaches to perform this analysis. The methodology adopted in this work is a variance-based sensi-
tivity analysis proposed in [5]. In this approach, the first-order effect (S i) and total effect (S Ti ) of the parameter Xi on the
output Y is calculated for each i in order to get a general impression about the parameter prioritization.

Being a value theoretically always between 0 and 1, S i is in fact a measure indicating what would happen to the uncertainty
of Y if the i’th parameter would be fixed. Hence, a high value represents an important parameter while a small value does
not necessarily signal a low importance for the parameter. In fact, to achieve a thorough understanding of the sensitivity
pattern for a model with n parameters, one needs the total set of first-order and total effect indices of the parameters.
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Figure 6. CoV of the Modes When Only One Parameter Changes

Accounting for the total contribution to the output variation due to parameter Xi (that is, its first order effect plus all higher
order effects due to interactions among parameters), total effect of this parameter is calculated using a formula which
depends on the variances of both the input and the output. The condition S i = 0 is necessary but insufficient to identify
parameter i as non-effective, while S Ti = 0 is a necessary and sufficient condition for it being non-influential. Accordingly,
if S Ti = 0, Xi can be fixed at any value within its range of uncertainty without remarkably affecting the variance of the
output [5].

Based on the definitions mentioned, S Ti is larger than or equal to S i, where the latter case happens only when Xi is not
involved in any interaction with other parameters. Therefore, the difference, i.e. S Ti − S i indicates how much parameter
i is involved in interactions with other parameters. It is worth mentioning that 1 − ΣiS i is an indicator of presence of
interactions among the model’s parameters. Moreover, ΣiS Ti is always greater than 1 or, in case that the model is perfectly
additive w.r.t its variance, equal to 1 [5].

In spite of the efficiency of variance-based methods to perform sensitivity analysis, high computational costs due to the
relatively large number of required samples remains a major drawback of such methodologies, a disadvantage which is to
be addressed in this work using the metamodeling techniques.

Brief Introduction to Metamodeling

A common approach to reduce the computational cost of calculating the required outputs for a sensitivity analysis is the
application of the so-called Metamodels. A metamodel is generally an approximation function which adapts the behavior
of a set of input-output data (in this case, the parameters of the FEM model as the input, and the eigenfrequencies as the
output). In order to build a metamodel, a support data set x1, ..., xn ∈ Rk and the respective evaluations y = [y1, ..., yn]T =

[ f (x1), ..., f (xn)]T of the original function f (x) are used. Polynomial Regression [6][7], Moving Least Squares [10] and
the Kriging approximation [8][9] are examples of common metamodeling approaches mentioned in the literature. The
various techniques differ significantly in their calculation time and approximation quality, which, however, depends on
the nature of the observed problem. Accordingly, the optimal metdamodel choice is mainly a case-dependent issue to be
addressed.

In this research, various metamodeling techniques were compared and the two optimal models were used as approximation
functions. The first one, the Polynomial Regression, is a common and simple approach to adapt a function. There, the
original function is approximated by a polynomial function that results in the best fit with respect to the sum of least
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squares criterion [11]. This results in the approximation function

f̂ (x) = pT(x)ŵ = pT(x)(XTX)−1XTy (1)

with p(x) denoting the g-dimensional polynomial basis of x and X = [pT(x1), ..., pT(xn)]T being the matrix containing
the basis vectors of the support points. The approximation can be optimized by varying the degree g of the polynomial
function. A higher polynomial degree often leads to a better result; nevertheless, there is a risk of over-fitting and extreme
increase of the computation time.

The second approach, Kriging approximation, uses a completely different concept since it interprets the data as the output
of a stochastic process f̂ (xi) = µ + ε(xi) with an unknown constant trend µ and correlated residuals ε(xi). By application
of the maximum Likelihood criterion [9][11] the approximation function

ŷ = µ̂ + ψ (x)Ψ−1 (y − 1µ̂) , (2)

can be reached, where Ψ describes the correlation matrix of the support points and ψ(x) is the correlation vector between
the support points and the examination point x. [8] and [9] contain full details on derivations and specific formulations of
this method.

Compared with the Polynomial Regression, the Kriging method is much more flexible in the fitting procedure, so that
usually a higher approximation quality could be expected; however, it is one of the most complex, and hence expensive
metamodeling approaches.

In order to make a decent model selection between the possible metamodeling approaches, a meaningful error criterion
should be chosen. For the observed data set related to the problem studied here, the coefficient of determination (R2) [12]
with a validation data set was taken as a reference for the model selection. This error measure could be determined with

R2 = 1 −

m∑
i=1

(
yval

i − f̂ (xval
i )

)2

m∑
i=1

(
yval

i − yval
)2

, (3)

where yval is the mean value of the functions’ evaluations yval
1 , ..., yval

m . To avoid an over rating of the model quality, a set
of untrained data is used.

During the comparison process of various metamodels, the results of different methods with different number of support
points (number of samples, n = 200, 500 and 1000) were tested and the coefficient of determination was calculated with
a validation data set of m = 4000 points. Based on the calculated values, a separate decision for each of the first four
eigenfrequencies was made. Eventually, for the frequencies f 1, f 2 and f 4 the Polynomial Regression with g = 2 and
n = 200, and for f 3 the Kriging method based on n = 500 support points were used. In this work, these metamodels
were used to calculate the sensitivity indices of the parameters in the CaS1 model, when the first four eigenfrequences are
considered to be the output.

Results of the Sensitivity Analysis (Using the Metamodels)

Using the values mentioned in Table 3, different numbers of samples (n), each containing the mentioned six parameters,
were produced using a random procedure, such that they obeyed a uniform distribution. The responses (namely the f 1,
f 2, f 3 and f 4) were calculated using the mentioned metamodels. It is worth mentioning that the same calculation using
the original FEM model with the available computation power takes around 10 days for a sample size of only n = 500.
Increasing the number of samples in this method of conducting the sensitivity analysis, leads each sensitivity index (and
hence the sum of the indexes) to converge to a certain value. Figure 7 illustrates this convergence trend for the first order
sensitivity indexes, when the output is f 2 (the first bending in X direction).

Furthermore, Table 4 contains the sensitivity values for f 1 and f 2 calculated using the metamodels.

Based on the values in Table 4, it is concluded that the most decisive parameter on the frequency of the first bending
mode in X direction ( f 2) is the K S pring, a conclusion which is also consistent with the results of Figure 6. Furthermore,
the concrete’s Young’s modulus is a more important parameter compared to the density of the concrete in calculation of
both frequencies; It is also observed that in the Y direction, Con E has a relatively large first order effect on the response,
a conclusion that physically makes sense due to the absence of the large influence from the cable system; however, the
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Figure 7. First Order Sensitivity Indexes vs. n for f 2

Table 4. Sensitivity Indexes for f 1 & f 2

Parameter 1 2 3 4 5 6 Sum

f 1(S ) 0.03 0.70 0.00 0.01 0.03 0.00 0.77
f 1(S T ) 0.07 1.00 0.06 0.09 0.06 0.10 1.38

f 2(S ) 0.03 0.09 0.80 0.00 0.00 0.00 0.92
f 2(S T ) 0.05 0.21 0.80 0.03 0.02 0.04 1.15

conclusion that Con E is the most influential parameter on f 1 contradicts the results shown in Figure 6. Moreover, it was
also observed during the studies that the converging trend for the sensitivity indexes would not happen for f 3 and f 4,
besides the fact that such contradictions in the results of the sensitivity analyses with the metamodels continued to exist.
This was nevertheless expected, due to the low quality of the created metamodels (R2 value of around 0.4).

Conclusion & Outlook

The dynamic behavior of a pole structure used in a high-speed railway system in Germany was studied using the FEM,
to identify the effects of the catenary cables and the soil-structure interaction (SSI), and to propose a suitable model for
simulation of this structure. The numerical results were compared with results extracted from the data acquired from the
sensors installed on an in-service pole, to provide a trustable measure against which the numerical results could be judged.
The SSI was modeled using two assumptions for the soil profile, namely a constant and a parabolic profile for the stiffness
of the soil, while the cable system was modeled using a spring-mass system. A comparison between Figure 4 and Figure
5 shows that while a clamped boundary condition for the pole (no SSI effect and no cables included) is not a suitable
approach, the assumption of a parabolic stiffness profile for the soil also leads to a large modeling error in this case.
Based on Figure 6 it is concluded that the spring stiffness values of the SSI for the horizontal direction (S S I H) and the
coupling DOF (S S I HR) are the most decisive parameters of this problem in all modes, except mode 2 (1st bending in X
direction) in which the cable stiffness plays the most crucial role. The results of this parameter study were also supported
by sensitivity analyses conducted using the metamodels, although the quality of the metamodels led to shortcomings
in some areas. Taking these facts into consideration, one can conclude using Figure 5 that the CaS1 model (the model
accounting for both the SSI and the cable system, with a constant soil profile assumption) is the best compromise among
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all the six numerical approaches used in the study, to simulate the real response of the structure; however, the stiffness of
the spring which substituted the cable system should be reduced, while at the same time that of the SSI springs should be
increased in order to match the eigenfrequencies of the real pole in service.

However, the eigenfrequencies calculated from the data (the ”Exp” model in this work) exhibit different uncertainties
due to existing obstacles in conducting in-site measurements and also the quality of the acquired data. Moreover, despite
the structural resemblance of the poles used in this railway system, nonidentical boundary conditions for various poles
are practically expected to exist; hence, having a higher number of poles with their eigenfrequencies extracted from the
acceleration data would significantly increase the trustability of the conclusions made here. Furthermore, this problem
triggers the need to use a more advanced metamodeling strategy, e.g. a combination of metamodels for different ranges of
the various parameters, in order to cover a wider range of conclusions. Therefore, overcoming these issues and calibrating
the model using the results would remain an open problem to be addressed in an extensive work.
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Abstract 

Static tensile and tension-tension fatigue tests were conducted on 2.5D woven composites at 
room and elevated temperatures. Macro-Fracture morphology and SEM micrographs were 
examined to understand the corresponding failure mechanism. The results show that the 
stress-strain curves and the fractured morphology are significantly different in the room and 
elevated temperature environments. Furthermore, the static tensile properties decrease sharply 
with increasing the temperature due to the weakness of fiber/matrix interfacial adhesion. The 
fatigue life and damage progression at elevated temperature are also substantially different 
compared with those at room temperature. Meanwhile, a damage mechanism, called rotation 
deformation mechanism, was proposed to explain the elevated fatigue behavior. 

 

Keywords: 2.5D woven composites, Elevated temperature, Stress-strain behavior, Fatigue 

behavior, Scanning electron microscopy, Damage progression 

Introduction 

Textile composite materials are widely used in advanced aerospace industry, owing to their 

good comprehensive mechanical performance. However, numbers of structural components 

exposed to long-term temperatures in 100-200℃, such as aero-engine casing, require that pol-

ymer matrix composite materials have an advantage of elevated temperature resistance per-

formance. A new generation of high glass-transition temperature (Tg) polymers such as 

QY8911-IV[1] has enabled this progressive development, which can be easily used to manu-

facture the composites by resin transfer modeling (RTM). Additionally, compared to the rela-

tively complex 3D braided or woven structure, a new class of 2.5D angle-interlock woven 

composites has been proposed. Therefore, it is of great importance to understand the mechan-

ical behavior, especially the fatigue behavior of the materials at various temperatures. 

 

Unfortunately, due to the high-cost and difficult-to-test at elevated temperatures, the related 

researches related to the static behavior and fatigue life at elevated temperature are relatively 

backward and most of investigations were focus on FRP[2-4] or the mechanical properties of 

2.5D woven composites at room temperature (RT)[1]. Selezneva et al.[5] investigated the 

failure mechanism in off-axis 2D woven laminates at elevated temperature by experiment, and 

found that the woven yarns began to straighten out and rotated towards the loading direction 

just prior to failure. Vieille and Taleb[6] studied the influence of temperature and matrix duc-

tility on the behavior of 2D woven composites with notch and unnotched, and the results re-

vealed that the highly ductile behavior of thermoplastic laminates was quite effective to ac-

commodate the overstresses near the hole at temperatures higher than their Tg. Several static 

and fatigue tests were conducted by Montesano et al.[7,8] to investigate the fatigue behavior 
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of a triaxially braided composites at elevated temperatures, and the corresponding stiffness 

degradation model was proposed based on the measurements of actual observed damage 

mechanisms. 

 

This study aims to investigate the static tension and fatigue behaviors of 2.5D angle-interlock 

woven carbon fiber/ QY8911-IV composites at room and elevated temperatures by experi-

ments. In the first part, the corresponding elevated experiments are conducted. After that, 

scanning electron microscopy (SEM) is employed to study the failure mechanism subjected to 

the static or fatigue loading at different temperatures. Finally, some useful conclusions are 

presented.  
 
According to this basic research, the database related to the elevated temperature performanc-
es and fatigue behavior of 2.5D woven composites can be established at room and elevated 
temperatures. 

Materials and experimental procedure 

2.5D woven fabric was prepared using T300 carbon fiber yarns that consist of 3K filaments 

per bundle, and the matrix is QY8911-IV with a glass transition temperature 256℃.  

 

The flat composite panels with six plies of weft yarns were manufactured by the resin transfer 

molding (RTM) process. The static and fatigue test specimens with a fiber volume fraction of 

42.94% were obtained (see Fig. 1). In addition, the microstructure is actually a spatial net-

shape fabric, which is formed by interlacing binding threads in the thickness direction to join 

adjacent layers of warp and weft together, and cured with matrix under certain conditions. 

The architecture of 2.5D woven composites studied in this paper is also shown in Fig. 1. 
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(b) warp direction 

 

 
(c) weft direction 

Figure 1. Static tensile/ fatigue samples and the corresponding internal microstructure 

As there are no standards of static tensile and tension-tension fatigue tests for the 2.5D woven 

composites at elevated temperature, the corresponding test procedures were followed by 

ASTM D 3039[9] and ASTM D 3479[10], respectively. All of the tests were conducted by an 

MTS 810 hydraulic servo dynamic material test machine (see Fig.2a) with a 25.4mm MTS-

634-25 extensometer (see Fig.2b) used to monitor the strain continuously during the static and 

fatigue tests. Moreover, an MTS809 furnace with an integrated temperature controller was 
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used, which can ensure the temperature in the chamber is consistent throughout the duration 

of all tests within 2℃. 

   

Figure 1. Photograph of MTS-810 test machine (a) and 634-25 extensometer (b) 

Results 

3.1 Typical stress-strain behavior at different temperatures 

Fig. 3(a) shows the typical stress vs. strain curves of 2.5D woven composites tested at 20℃ 

and 180℃. At room temperature (20℃), the materials behave almost in a linear manner up to 

approximately 1%, after which an obvious nonlinear behavior can be observed up to the fail-

ure. At 180℃, the slope of the curves reduces significantly due to the resin matrix softening, 

interfacial debonding or sliding, resulting in a nonlinear response up to ultimate fracture. 

 

Fig. 3(b) summarizes the modulus and UTS of the composites at 20℃ and 180℃. Comparing 

the properties at RT with that at 180℃, the average moduli are 48.39GPa and 40.78GPa, re-

spectively, and the modulus at 180℃ decreases by 15.73%. Meanwhile, the average tensile 

strengths are 515.09MPa and 431.89MPa, respectively, and the property at 180℃ decreases 

by 16.15%. The results indicate that the mechanical properties are very sensitive to tempera-

ture (180℃). 
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Figure 3.(a) Representative tensile stress-strain curves of 2.5D woven composites for the 

virgin and fatigued specimens at 20℃ and 180℃;(b) Tensile properties of 2.5D woven 

composites at RT and 180℃ 

3.2 S-N curves at various temperatures 
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Fig. 4(a) shows the normalized stress-fatigue life curves of 2.5D woven composites at RT and 

180℃ and the corresponding values are listed in Table 1 and 2. There are significant differ-

ences in fatigue behavior between RT and 180℃. The elevated temperature causes a reduc-

tion in the fatigue life, and the fatigue strength for the specimens tested at RT is about 1.2 

times of that at 180℃. Additionally, it seems that there is a threshold for the elevated S-N 

curves. The elevated specimens subjected to the maximum fatigue loading in the range of 

73%-80% have a quite short fatigue life (less than 1×10
4
 cycles). Nevertheless, when the 

stress levels are lower than 70%, the fatigue life reaches the predefined infinite life. This phe-

nomenon was also observed by Zhu[11], who studies the fatigue behavior of 3D braided 

composites at RT. 

Table 1. Fatigue life (cycles) test result of 2.5D woven composites at room temperature 

Stress level No. Peak load/N 
Valley 

load/N 
Fatigue life Average life 

90%σu 1 23.13 2.32 9303 9303 

87%σu 
2 22.31 2.23 27658 

18909 
3 21.83 2.18 10159 

83%σu 4 21.33 2.13 44149 44149 

80%σu 
5 21.21 2.12 73918 

103545 
6 21.36 2.14 133171 

78%σu 7 20.25 2.033 10
6*

 10
6*

 

75%σu 8 20.33 2.04 10
6*

 10
6*

 

Table 2 Fatigue life (cycles) test result of 2.5D woven composites at 180℃ 

Stress level No. Peak load/N 
Valley 

load/N 
Fatigue life Average life 

80%σu 
1 18.06 1.81 1511 

1221 
2 18.60 1.86 931 

75%σu 
3 16.81 1.68 2672 

2411 
4 17.34 1.73 2150 

73%σu 
5 16.13 1.61 4125 

4221 
6 16.44 1.64 4317 

70%σu 

7 15.65 1.57 10
6*

 10
6*

 

8 15.31 1.53 10
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Figure 4(a). S-N curves of 2.5D woven composites at RT and 180℃;(b) Normalized stiff-

ness for maximum applied stress of 80% UTS at RT and 180℃ 

Additionally, from the view of residual strength (Fig .3(b)), it can be found that the residual 

strength at elevated temperature is higher than the virgin strength at the corresponding tem-

perature, which can result in an infinite life is reached. 

3.3 Stiffness degradation behavior at various temperatures 

Fig. 4(b) shows the normalized dynamic stiffness vs. cycle curves for test specimens cycled 

with maximum applied stress level of 80% at RT and 180℃. The stiffness degradation behav-

ior for the specimens tested at RT can be characterized by a rapid stiffness degradation trend 

during the first stage of cycling, followed by a gradual stiffness degradation trend during the 

subsequent stage and a rapid stiffness drop occurs prior to final fracture. The stiffness degra-

dation feature obtained at RT is similar with that for laminated composites tested at RT[12]. 

Whereas, the notably difference in stiffness degradation behavior is relative to the elevated 

temperature specimens compared to the room temperature specimens. Compared with the 

room temperature stiffness behavior, a more gradual stiffness degradation characteristic is ob-

served at elevated temperature environment (Fig. 4(b)). This may result from the duration of 

matrix affected by elevated temperature. 

3.4 Residual strength behavior 

In order to investigate on the abnormal fatigue behavior tested at 180℃ mentioned above, re-

sidual strength tests were performed subjected to 80% stress level at RT and 180℃. After 

reaching a certain cycle number (1×10
6
 cycles), fatigue tests were terminated, and then the 

as-fatigue strength (defined residual strength) was measured. The corresponding results have 

been plotted in Fig. 3(a). It can be seen that the tensile stress vs. strain behaviors at RT or 

180℃ after the cyclic loading are clearly different from those for the virgin specimens at the 

corresponding temperatures. The room temperature strength and modulus are both lower than 

the corresponding fatigued composites, however, the elevated strength and modulus are high-

er than the fatigued composites conducted at the same temperature, which suggests that alt-

hough the elevated temperature specimen has been experienced 1,000,000 cycles, the elevated 

mechanical properties can be strengthened instead. The increase in strength is in agreement 

with those observed on other composites[13, 14]. 

3.5 Fractured surface morphology 

Fig. 5 and Fig. 6 display the morphology of fractures observed from the macroscopic and mi-

croscopic views for the static tensile samples. From Fig. 5, there is no obvious necking phe-

nomena observed at the fractured surface at RT and 180℃, indicating a brittle-natured frac-

ture. The fracture mainly occurs in the warp bundles at the crossover points of warp and weft 

bundles. Although larger damage regions and more delamination cracks are observed at RT 

(see Fig. 5a, b), there is relatively less fiber pull-out for the specimen tested at RT (see Fig. 6). 

 

Fig. 7 and Fig. 8 show the magnified SEM photomicrographs of the fractured surface of the 

2.5D woven composites tested at RT and 180℃. From Fig. 7, for the room temperature failure 

fractures, the failure behaves as interfacial debonding between fibers and matrix and the local-

ized fibers bundles loosen within each other observed near the fractured surface. Whereas, for 

the elevated temperature failure fractures, the material maintains good integrity and less inter-
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facial debonding damage. Similar fractured morphology with the static tests at 180℃, it is no-

ticeable that the presence of fiber pull-out for the specimens conducted at 180℃ is revealed by 

the brushy appearance of the fracture surface (see Fig. 8). 

  
(a)                   (b) 

  
(c)                   (d) 

Figure 5. The fracture photographs of static tension samples at (a)-(b) room tempera-

ture and (c)-(d) 180℃ 

   

        (a) × 10                     (b) × 40                (c) × 500        

   

        (d) × 10                     (e) × 40                (f) × 500        

Figure 6. SEM photomicrographs of fracture surface taken from specimens subjected to 

static loadings, (a)-(c), RT, and (d)-(f), 180℃  

Magnified domain
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(a)                           (b) 

  
(c)                     (d) 

Figure 7. Fracture surfaces of the fatigue composites subjected to 80% UTS. (a), (b) RT, 

and (c), (d) 180℃ 

  
(a) × 40                            (b) × 500 

  
(c) × 40                           (d) × 500 

Figure 8. SEM photomicrographs of the fatigue composites subjected to 80% UTS. (a), 

(b) RT, and (c), (d) 180℃ 

Conclusions 

An investigation on the static and fatigue mechanical behavior of 2.5D woven composites at 

room and elevated temperatures was accomplished. The influence of temperature on the stress 

vs. strain curves, tensile modulus, strength, fatigue behaviors, stiffness degradation behaviors 

Magnified domain
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and residual strength at RT and 180℃ were analyzed and discussed in detail. The damage 

mechanisms were revealed by observing the fractured morphology and measuring the residual 

tensile properties. Several useful conclusions were made as following: 

(1) The results show the room temperature stress-strain curve has an initial linear behavior, 

followed by a non-linear feature, while the curves at 180℃ show an obvious non-linear fea-

ture. But both of the curves exhibit a brittle fracture feature. 

(2) The fatigue life and fatigue strength at 180℃ decrease significantly compared with those 

at RT subjected to the same stress level. However, the residual strength at 180℃ can be 

strengthened by fatigue. 

(3) The fracture morphology examinations indicate the damage and failure patterns of compo-

sites vary with the environmental temperatures. When the temperature is 180℃, there are lit-

tle indication of large-scale debonding, but the presence of fiber pull-out is revealed by the 

brushy the bare fibers under the fatigue loading. 
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Abstract 
Fibre-reinforced elastomeric isolator (FREI) in an un-bonded application is an improved 
device for seismic mitigation of low-rise buildings. It is expected to reduce the cost, weight 
and provide easier installation in comparison to the conventional elastomeric isolator, which 
consists of elastomeric layers interleaved with steel plate as reinforcement. The horizontal 
response of un-bonded isolator is nonlinear due to rollover deformation and the horizontal 
stiffness is a function of both vertical load and horizontal displacement. Most previous studies 
have been focused to develop the model for predicting stability of the bonded conventional 
elastomeric isolators with low shape factors. In the present study, predicting stability of a 
prototype un-bonded FREI is presented based on the dynamic response utilizing finite 
element (FE) analysis. A prototype isolator is investigated under the variation of vertical loads 
and cyclic horizontal displacement to evaluate the performance and the effect of the vertical 
load on the behaviour of the isolator. FE analysis result shows that the critical load capacity of 
the isolator is significantly higher than the design vertical load, and the effective horizontal 
stiffness decreases with the increase in the vertical loads. Furthermore, the horizontal 
response of the isolator is also conducted under the design vertical load and increasing 
horizontal displacement up to 2.00tr to observe the rollout instability. 
Keywords: Fibre reinforced elastomeric isolator, un-bonded isolator, rollout instability, 
dynamic stability, buckling, critical load, analytical model. 

Introduction 
Seismic isolation is a well-known earthquake mitigation technique, where a layer of low 
horizontal stiffness is introduced between the foundation and superstructure. As a result, the 
natural period of vibration of the structure changes beyond the high-energy period range of 
earthquakes, and hence the seismic energy transferred to the structure is significantly reduced. 
Conventional steel reinforced elastomeric isolators (SREIs) have become a widely accepted 
technique in the structure over the past four decades for protecting the buildings from strong 
ground motion. They consist of alternating layers of rubber bonded to intermediate steel 
shims with two steel end plates at top and bottom. In general, SREIs are often applied for 
large, important buildings like hospitals and emergency centres, in countries such as Japan, 
New Zealand, United States, Mexico, Italy, etc. This limited use is largely due to the high 
material, manufacturing and installation costs. It is expected that the use of seismic isolators 
can be extended to ordinary low-rise housing if the weight and cost of the isolators are 
reduced. In view of this, fibre reinforced elastomeric isolators (FREIs) are proposed by 
replacing steel shims in conventional isolators by multi-layer of fibre fabric as reinforcement 
sheets to reduce their weight and cost. An un-bonded fibre reinforced elastomeric isolator (U-
FREI) is a significant effort to improve FREI by removing two steel end plates and installing 
directly between the foundation and superstructure without any connection to these 
boundaries. Using U-FREI would reduce the weight and cost, easier installation, and can be 
made as a long strip and then easily cut to the required size. It means that the U-FREIs can be 
used for low-rise buildings subjected to earthquake loading in the developing countries. 
 
The stability of elastomeric isolators is an important parameter for the design of seismic 
isolation systems. Elastomeric isolators are used in the structure to resist strong ground 
motion of earthquake with large displacement. Study on stability of elastomeric isolators 
refers to the determination of critical load carrying capacity while undergoing large horizontal 
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displacement. Generally, the critical load carrying capacity of isolator reduces with increasing 
horizontal displacement due to the reduction of the effective horizontal stiffness. The critical 
load in an elastomeric isolator is defined as the vertical load for which the horizontal stiffness 
is reduced to zero. 
 
Procedures to evaluate critical loads of elastomeric isolators are based on an extension of 
Euler buckling load theory by Southwell [1932] to experimentally determine the buckling 
load in the flexible columns and a theoretical approach by Haringx [1948, 1949(a,b)] to 
predict the stability of rubber rods. Later, Buckle and Kelly [1986] carried out experimental 
studies to evaluate stability of SREIs under quasi-static loading using Southwell’s procedure 
and under dynamic loading on a scaled model of bridge deck using shaking table test. Stable 
rollover of isolators could be observed in this study. These studies were however conducted 
with linear model and under small imposed displacement. In general, the behaviour of 
elastomeric isolators is nonlinear when subjected to large horizontal displacement under 
strong ground motion.  
 
Some extensive analytical and numerical studies were performed to analyze the stability limit 
in elastomeric isolators and model their behaviour. Koh and Kelly [1989] proposed a two-
spring mechanical model and visco-elastic stability model based on extension of Haringx’s 
theory. The influence of vertical load on the horizontal stiffness of SREIs was evaluated. 
Stanton, et al. [1990] studied the stability of steel laminated elastomeric bearings using a 
modified linear model from Haringx’s theory with configuration accounting for nonlinearity. 
When an elastomeric bearing was simultaneously subjected to vertical load and increasing 
lateral displacement, the shear force on bearing was observed to have passed through a 
maximum value. This point is the location of zero tangential stiffness, which is considered as 
the stability limit. Buckle and Liu [1993, 1994] experimentally determined the critical 
buckling behaviour of SREIs at high shear strains and proposed a simple reduced-area 
formula to estimate the critical load in bearings by overlapping area method. However, this 
method predicted a simple linear (for rectangular bearings) or nearly linear (for circular 
bearings) reduction in critical load with lateral displacement independent of material or 
geometric parameters of bearings. Actually, this reduction is not linear as observed in 
experimental tests. A nonlinear analytical model consisting of two-spring systems was 
proposed by Nagarajaiah and Ferrell [1999] in an effort to more accurately predict the critical 
load capacity of SREIs of different sizes and shape factors at a certain lateral displacement. 
The model was developed from two-spring model by Koh and Kelly with large displacement, 
large rotations and nonlinearities in shear and rotational stiffness of the bearing. The model 
was shown to predict a reduction in the critical load capacity with increasing lateral 
displacement, and the critical load capacity was not equal to zero at a lateral displacement 
equal to width of bearing. Buckle, et al. [2002] validated the nonlinear analytical solutions 
proposed by Nagarajaiah and Ferrell [1999] and determined the effect of lateral displacement 
on critical load by experimental tests with a series of low-shape-factor elastomeric bearings. 
Iizuka [2000] proposed a macroscopic model based on the two-spring model by Koh and 
Kelly, where the linear springs were replaced by nonlinear springs for predicting the stability 
of laminated rubber bearings at large deformations and under different vertical loads. The 
nonlinear parameters of the shear and rotational springs were determined from basic load test. 
Detailed nonlinear finite element analysis and an improved analytical formulation for 
predicting the reduced load-carrying capacity of bearings based on overlapping area method 
were also presented by Weisman and Warn [2012]. A recent study by Sanchez, et al. [2013] 
focused on experimental tests to examine the behaviour of steel reinforced elastomeric 
bearings at and beyond their stability limits. Three methods (two quasi-static tests and one 
dynamic loading test) were conducted to predict the stability limits of bearings and compared 
with the reduced-area formulation. Han, et al. [2013] proposed a modified analytical model 
based on the sensitivity analysis using Iizuka’s model for the prediction of critical load 
capacity of bearings. Vemuru, et al. [2014] presented an enhanced analytical model based on 
a nonlinear analytical model by Nagarajaiah and Ferrell for application beyond stability limit. 
Thus, most previous studies were focused to improve the analytical model for predicting 
stability of elastomeric isolators and these models were developed for bonded conventional 
elastomeric isolators. Therefore, it is necessary to study on the stability of FREIs in un-
bonded application. 
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As a result of un-bonded application, isolators undergo large deformation due to stable 
rollover under large horizontal displacements. Some regions of the top and bottom surfaces of 
isolator lose contact with the superstructure and substructure when the isolator is displaced 
horizontally. The reduction of the effective horizontal stiffness due to rollover deformation 
increases the seismic mitigation efficiency of isolator; but stability of isolator must be 
maintained. If an un-bonded FREI with a certain shape factor, S (defined as the ratio of the 
loaded area to load free area of a rubber layer) and aspect ratio, R (as the ratio of width to total 
height of the isolator) is able to achieve positive incremental load-resisting capacity during the 
course of cyclic loading, the isolator is assumed to be stable. On the other hand, the effective 
stiffness of an un-bonded isolator may also increase due to the initiation of contact between 
the vertical faces of the elastomer layers with the support surfaces, when they undergo very 
large displacement. Thus, a transition region between the decrease and increase in the 
effective stiffness is observed, and at certain value of displacement within this region, the 
increase in the effective stiffness of isolator due to contact exceeds the decrease in the 
stiffness due to rollover, and a hardening behaviour is occurred. This hardening behaviour 
observed in an un-bonded FREI is considered to be an advantageous characteristic since it can 
limit the maximum horizontal displacement of the isolation system in situations beyond the 
design basis seismic events. Studies related to the prediction of stability of un-bonded FREIs 
under cyclic loading were carried out experimentally by Raaf, et al. [2011]. In this study, 
authors proposed a method of fitting a polynomial to experimental force-displacement 
hysteresis data to predict the critical load capacity of isolator. This method was used to 
determine the fitted backbone curve and horizontal tangential stiffness. Additional studies for 
the buckling behaviour of un-bonded isolators were conducted using theoretical analysis by 
Kelly, et al. [2011, 2012]. 
 
From the above-mentioned literature review, it is observed that most of the models for 
predicting stability of elastomeric isolators are developed for conventional isolators in bonded 
application. There are very few studies for ascertaining the stability of FREIs in an un-bonded 
application. In addition, scaled sizes of elastomeric isolators were considered in these studies 
with low shape factors and aspect ratio, e.g. Nagarajaiah and Ferrell [1999], Buckle, et al. 
[2002] considered isolators with S = 1.67 to 10; Sanchez, et al. [2013] with S = 5.51 to 10.16; 
Han, et al. [2013] with S = 5 to 10.2; Vemuru, et al. [2014] with S = 10.64. Experimental 
studies were conducted for isolators with larger shape factors such as Raaf, et al. [2011] with 
S = 11 but for a scaled size of 70x70x24 mm; Weisman and Warn [2012] with S = 10 to 12. 
Therefore, it is necessary to carry out the studies for predicting the stability of a prototype U-
FREI with high shape factor. 
 
This paper presents studies related to predicting stability of prototype un-bonded FREI by FE 
analysis. Determination of the stability limit of an prototype isolator by experimental tests is 
relatively accurate, but it is difficult to investigate in laboratory due to constraints of 
experimental facility. In this study, predicting stability of a prototype un-bonded isolator is 
investigated by FE analysis and the accuracy of the response of the isolator under design 
vertical load and increasing horizontal displacement up to 0.89tr (80 mm) is validated by 
comparing with the experimental results. A prototype FREI with size of 250x250x100 mm, 
shape factor of 12.5 and aspect ratio of 2.50 is investigated under the variation of vertical load 
and cyclic horizontal displacement to determine the critical load capacity and the effect of the 
vertical load on the behaviour of this isolator. Further, the horizontal response of the un-
bonded isolator is also evaluated under the design vertical load and increasing horizontal 
displacement up to 2.00tr (180 mm) to observe the rollout instability of the isolator. 

Procedure for determination the critical load capacity of un-bonded FREI 

As observed from literature survey, stability of an elastomeric isolator is evaluated based on 
the relation of shear force with horizontal displacement. The critical load capacity of the 
elastomeric isolator is defined as the vertical load for which the horizontal stiffness is reduced 
to zero (or zero tangential stiffness). When the elastomeric isolator is subjected to 
simultaneously the vertical load, P, and increasing horizontal displacement, u, shear force 
may pass through a maximum value, as illustrated in Fig. 1. The point of maximum shear 
force is considered the stability limit defined by the critical horizontal displacement, ucr, and 
corresponding vertical load referred to herein as the critical load, Pcr.  
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uucr  
Fig. 1. Shear force versus horizontal displacement 

 
From theoretical analysis, the critical load is defined as the point, where the shear force 
reaches a maximum value: 

                                                                   0h
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u

∂
= =
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                                                          (1) 

Using chain rule, 

                                                                  0h
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                                         (2) 

where F, u, P are shear force, horizontal displacement and vertical load, respectively. 
There is no requirement that /F P∂ ∂  must be equal to zero. Therefore,  

                                                                 0P
u
∂

=
∂

                                                                     (3) 

where /P u∂ ∂  = derivative of the vertical load with respect to the horizontal displacement. 
 
For a conventional elastomeric isolator in bonded application, the prediction of critical load 
capacity is often conducted by two quasi-static methods. In the first method, the isolator is 
subjected to a constant vertical load, P, and a monotonically increasing horizontal 
displacement, u, until the isolator reaches its stability limit (Kh = 0). The point of equilibrium 
is determined directly from shear force-horizontal displacement response as the point where 
the slope equals zero. The second method includes shearing the isolator to a constant 
horizontal displacement, u and applying monotonically increasing vertical load, P, while 
monitoring a reduction in shear force F. Repeating this procedure for different horizontal 
displacement levels provides unique equilibrium trajectories (F vs P) from which the point of 
neutral equilibrium, thus critical point (ucr, Pcr) can be indirectly obtained. 
 
However, for a FREI in un-bonded application subjected simultaneously to vertical load and 
horizontal dynamic displacements, the evaluation of critical load needs to be appropriately 
considered. Particularly for performance-based design, it is important to extend the theoretical 
understanding on the stability of isolators based on static/quasi-static methods to dynamic 
behaviour and enhance the ability to predict their response when subjected to extreme 
earthquake loading. Thus, it should use a dynamic method under cyclic loading to evaluate 
the critical load capacity of isolator in an un-bonded application. 
 
In dynamic method, the un-bonded isolators undergo simultaneously a variation of the 
vertical load and cyclic horizontal displacement. Two important parameters such as the 
effective horizontal stiffness and damping factor are obtained from the hysteresis loops. The 
effective horizontal stiffness of isolator at a amplitude of horizontal displacement is defined as  

                                                 max min

max min

h
eff

F FK
u u

−
=

−
                                                           (4) 

where, Fmax, Fmin are maximum and minimum value of the shear force, 
           umax, umin are maximum and minimum value of the horizontal displacement. 
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The equivalent viscous damping of isolator (damping factor, β) is computed by measuring the 
energy dissipated in each cycle (Wd), which is the area enclosed by the hysteresis loop. The 
formula to computed β is given by 

                                               2
max2

d
h
eff

W
K

β
π

=
∆

                                                              (5) 

where ∆max is the average of the positive and negative maximum displacements. 
 
Horizontal stiffness of an un-bonded FREI has two components, namely, horizontal secant 
stiffness and tangential stiffness. The present study is intended to determine the critical load at 
which the tangential stiffness becomes zero. In order to calculate the critical buckling load 
from the hysteresis loops obtained from the dynamic method, a curve is fitted to shear force-
displacement hysteresis. According to the previous studies by Toopchi-Nezhad, et al. [2008] 
and Raaf, et al. [2011], a method of fitting a polynomial to shear force-displacement 
hysteresis data is developed. The fitted curve, denoted as backbone curve, represents an 
idealized evaluate of horizontal response of an un-bonded FREI with the damping forces 
removed (Fig. 2).  

 
Fig. 2. Illustration of a fitted backbone curve in a hysteresis loop 

 
The total horizontal load, fb,i, experienced by the ith isolator is described as: 

                                                     , , ,( ) ( ) ( )b i sb i db if t f t f t= +                                                (6) 
where, fsb,i is stiffness force and fdb,i is the corresponding force due to damping.  
 
In a simple approach, the stiffness force can be modelled as a polynomial of order 5 given by: 

             
2 3 4

, , 0 1 2 3 4

2 3 4 5
, 0 1 2 3 4
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sb i b i b b b b b b b

sb i b b b b b
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= + + + +
          (7) 

where, vb(t) is horizontal displacement and kb,i(vb(t)) is the horizontal secant stiffness as a 
function of horizontal displacement: 

               2 3 4
, 0 1 2 3 4( ( )) ( ) ( ) ( ) ( )b i b b b b bk v t b b v t b v t b v t b v t= + + + +                                              (8) 

The five parameters b0 to b4 are determined by applying a least squares fit to shear force-
displacement hysteresis data. 
 
The corresponding force due to damping, fdb,i represents an idealized Rayleigh damping: 

                        , ,( ) ( ) ( )db i b i bf t c t v t= × &                                                                                    (9) 
where cb,i(t) is damping coefficient dependent on a equivalent viscous damping ratio ξ, 
tributary mass of structure on each isolator (mi) and the horizontal secant stiffness kb,i(vb(t)): 
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                        , ,( ) 2 ( ( ))b i b i b ic t k v t mξ=                                                                         (10) 
 
The tangential stiffness of the ith isolator, ktb,i(vb(t)), as a function of horizontal displacement 
is 

                        , 2 3 4
, 0 1 2 3 4

( )
( ( )) 2 ( ) 3 ( ) 4 ( ) 5 ( )

( )
sb i

tb i b b b b b
b

df t
k v t b b v t b v t b v t b v t

dv t
= = + + + +           (11) 

where the parameter b0 is the tangential stiffness of the ith isolator at vb(t)=0.  
 
According to the remark of the previous study by Stanton, et al. [1990], the tangential 
stiffness at zero horizontal displacement in a shear force-displacement hysteresis is referred to 
as the transverse stiffness (Kt) of the isolator. The transverse stiffness is not necessarily the 
minimum tangential stiffness in every fully reserved hysteresis loop under constant vertical 
load. However, the transverse stiffness represents the tangential stiffness at which zero 
horizontal stiffness first occurs under increasing vertical load. The vertical load corresponding 
to a transverse stiffness of zero (Kt = 0) is defined as the critical buckling load under cyclic 
loading for an un-bonded FREI. 

Prototype un-bonded fibre-reinforced elastomeric isolator 

Prototype FREI considered in this study were manufactured by METCO Pvt. Ltd., Kolkata, 
India. These are already in use in an actual building in Tawang, India. Figure 3 shows the 
view of a typical prototype isolator with component layers and finite element model. The 
isolator comprises of 17 layers of fibre reinforcement sheets interleaved and bonded between 
18 layers of rubber. Natural rubber and bi-directional (00/900) carbon fibre fabric are used in 
the isolator with the thickness of 5.0 and 0.55 mm for each layer of rubber and fibre, 
respectively. The physical dimensions and material properties of the isolator are shown in 
Table 1. 

Finite element modelling 

In this paper, fibre reinforced elastomeric isolator is numerically simulated using FE method 
in Ansys (v.14). The isolator is subjected to a variation of the vertical load and cyclic 
horizontal displacement to predict the stability of the isolator in an un-bonded application. FE 
analysis can address many issues which are rather difficult in closed-form solution. Analysis 
of isolator using FE method has some prominent advantages for the description of the detailed 
stress and strain of layers. Further, FE analysis can easily evaluate the response of the 
prototype isolator under high vertical load and large horizontal displacement, which is very 
difficult experimentally due to limitation of capacity in experimental facility. 
 

  R1

R18

R9 F9

   
         a) Cross section of isolator            b) FE model of isolator       c) Prototype FREI 

Fig. 3. The component of isolator 
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Table 1. Geometrical details and material properties of the square isolator 

 
               Description                                                                              Values 
 
               Size of specimen, mm                                                         250x250x100 
               Number of rubber layer, (ne)                                                   18 
               Thickness of single rubber layer, (te), mm                                 5 
               Total height of rubber, (tr), mm                                               90 
               Number of fibre layer, nf                                                         17 
               Thickness of single fibre layer, (tf), mm                                  0.55 
               Shape factor, (S)                                                                     12.5 
               Aspect ratio, (R)                                                                     2.50 
               Initial shear modulus of elastomer, (Go), MPa                         0.90 
               Elastic modulus of carbon fibre reinforcement, (Ef), GPa         40 
               Poisson’s ratio of carbon fibre reinforcement, (υf)                     0.2 
 

General description of the model 

In this study, the isolator is modelled by elements having capabilities like large strain, 
incompressibility of material and nonlinear solution convergence. Incompressible material 
may lead to some difficulties in numerical simulation, such as volumetric locking, inaccuracy 
of solution, checkerboard pattern of stress distributions, or occasionally, divergence. Lagrange 
multiplier-based mixed u-P element is used to overcome incompressible material problems. 
These elements are designed to model material behaviour with high incompressibility such as 
fully or nearly incompressible hyper-elastic materials and nearly incompressible elasto-plastic 
materials (high Poisson’s ratio or undergoing large plastic strain). Largange multipliers extend 
the internal virtual work so that the volume constraint is included explicitly. Further, an 
updated Lagrangian approach has been used in this study to update the local coordinate 
system on the deformed configuration of element when the isolator is subjected to very large 
horizontal displacement. 
 
In the FE model of FREI, the elastomer is natural rubber which exhibits nonlinear behaviour. 
It is modelled using SOLID185 which is an eight-node structural solid element having three 
degrees of freedom at each node such as translations in the nodal x, y, and z directions. The 
fibre reinforcement is modelled using SOLID46 which is a 3-D eight-node layered structural 
solid designed to model layered thick shells or solid. Fibre-reinforcements are provided in the 
form of bi-directional (00/900) layers and bonded between rubber layers. Two rigid horizontal 
plates are considered at the top and bottom of the isolator to represent the superstructure and 
foundation. Vertical load and horizontal displacement are applied at the top plate which is 
allowed to move both in the vertical and horizontal directions, while all degrees of freedom of 
bottom plate are constrained. In order to study un-bonded FREI, surface-to-surface contact 
elements are used. Contact element CONTA173 is used to define the exterior rubber surfaces 
and target element TARGE170 is used to define the interior surface of top and bottom rigid 
plates. The contact element supports the Coulomb friction model to transfer the shear forces at 
the interface of contact and target surface. The model is meshed using hexagonal volume 
sweep. 
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Material models used for the rubber and fibre reinforcement 

Material properties of isolator shown in Table 1 are used in FE model. Elastomer is modelled 
with hyper-elastic and visco-elastic parameters. Hyper-elasticity refers to materials which can 
experience large elastic strain that is recoverable. Rubber-like and many other polymer 
materials fall in this category. The constitutive behaviours of hyper-elastic materials are 
usually derived from the strain energy potentials. Further, hyper-elastic materials generally 
have very small compressibility. This is often referred to as incompressibility. Hyper-elastic 
materials have a stiffness that varies with the stress level.  
 
In this study, Ogden 3-terms model has been adopted to model the hyper-elastic behaviour of 
the rubber which is characterized by shear (Ge) and bulk (ke) modulus of the rubber and the 
vico-elastic behaviour is modelled by Prony Visco-elastic Shear Response parameter. The 
material parameters used are [Holzapfel , 1996].  
Ogden (3-terms): μ1 = 1.89x106; μ2 = 3600; μ1 = -30000; 

                    α1 = 1.3;          α2 = 5;       α3 = -2; 

Details of input loading 

The isolator is subjected to a variation of the vertical load to determine the effect of the 
vertical load on the dynamic properties and the predicting stability of un-bonded isolator 
under cyclic horizontal displacement. Elastomeric isolator is loaded simultaneously to the 
design vertical load of 350 kN, which is equal to the axial force in the column of the actual 
building and two fully reversed sinusoidal cycles of horizontal displacement of amplitude 80 
mm (0.89tr) (seen in Fig. 4) applied at the top steel plate. Amplitude of horizontal 
displacement is increased up to 135 mm (1.50tr). The vertical load is subsequently increased 
and the process is repeated starting at the displacement amplitude of 80 mm. The complete 
simulation is considered for three displacement amplitudes of 80, 112.5 and 135 mm (0.89tr, 
1.25tr and 1.50tr) and four vertical loads of 350, 550, 700 and 850 kN. In addition, the 
horizontal response of the un-bonded isolator is also conducted under the design vertical load 
of 350 kN and increasing horizontal displacement up to 2.00tr (180 mm) to investigate the 
rollout instability. 

Displacement

1.0 2.00

A

-A

Time (s)

 
Fig. 4. Imposed horizontal displacement history versus time 

Finite element model validation 

For the finite element model validation, the numerical results are compared with experimental 
findings from test conducted at the structural laboratory in IIT Guwahati, India for a prototype 
un-bonded isolator. This specimen with the same size, component layers and material 
properties as given in Table 1 is checked here before using in an actual building in Tawang, 
India. In this test, the specimen is subjected simultaneously to a constant vertical load of 350 
kN and three fully reversed sinusoidal cycles of horizontal displacement of amplitude 20 mm 
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(0.22tr), 40 mm (0.44tr), 60 mm (0.67tr) and 80 mm (0.89tr). Comparisons of numerical and 
experimental results are conducted to evaluate the accuracy of FE model. 
 

                                      
      a) Deformed shape from numerical simulation           b) Deformed shape from experiment 

Fig. 5. Deformed shapes of an un-bonded isolator at displacement amplitude of 80 mm 
 
Deformed shapes of isolator as obtained from both numerical and experimental result at the 
horizontal displacement amplitude of 80 mm are shown in Fig. 5. The top and bottom surfaces 
of un-bonded FREI exhibit stable roll off the contact surfaces without any damage and 
resulting in development of very low tensile stresses in that zone. This leads to reduction of 
the effective horizontal stiffness of the isolator. It can be seen from this Fig.5 that the 
deformed shapes of the isolator from FE analysis are observed to be in very good agreement 
with that from experimental test. 
 
Fig. 6 shows the back bone curve for horizontal load-displacement relationships of the un-
bonded isolator for displacement up to 0.89tr (80 mm) as obtained from both experiment and 
FE analysis. Good agreement is observed between the experimental and FE analysis results. It 
can be seen from the figure, the horizontal load-displacement relation is nearly linear in the 
range of small displacement. Slope of this line is the effective horizontal stiffness of the 
isolator. When displacement increases, the response of un-bonded isolator becomes nonlinear 
due to the rollover. Consequently, the horizontal stiffness decreases with the increasing 
horizontal displacement. Fundamental period of un-bonded isolator thus increases with the 
decrease in stiffness, which result in increasing seismic mitigation capacity of isolator.  

 
Fig. 6. Horizontal load versus displacement of the un-bonded FREI 
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Fig. 7. Comparison of hysteresis loops for the un-bonded isolator by FEA and 

experimental results 
Comparison of the hysteresis loops of the un-bonded isolator obtained as from experiment 
and FE analysis is presented in Fig. 7, which shows the discrepancy to be quite less. Thus, the 
adopted finite element analysis strategy is really effective in evaluating the dynamic response 
of un-bonded FREI under cyclic loading. 

Finite element analysis and discussion 

Critical buckling load capacity 

The objective of the dynamic stability analysis is to determine the critical buckling load at 
which the tangential stiffness becomes zero or the isolator would no longer be able to 
maintain positive incremental force resisting capacity. As noted above, the isolator is 
subjected to a variation of the vertical loads under cyclic horizontal displacement. According 
to the fitting method, the fitted backbone curves and corresponding hysteresis loops of the un-
bonded isolator for each vertical load and displacement amplitude up to 80 mm as obtained 
from FE analysis are shown in Fig. 8. The fitted backbone curve is obtained from the average 
value of shear forces at any given horizontal displacements in the corresponding hysteresis 
loop and described by a polynomial. It can be seen from the figure, each cycle of FE analysis 
result maintains both symmetric and comparable hysteresis loops for all the vertical loads 
investigated. Similarly, considering other displacement amplitudes (1.25tr and 1.50tr), the 
fitted backbone curves of the isolator under different vertical loads (350, 550, 700 and 850 
kN) are shown in Fig. 9.  

 
a) The vertical load of 350 kN 
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b) The vertical load of 550 kN 

 

 
c) The vertical load of 700 kN 

 

 
d) The vertical load of 850 kN 

Fig. 8. Hysteresis loops with backbone curves of the isolator at displacement amplitude 
of 80 mm  
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a) Displacement amplitude of 0.89tr (80 mm) 
 

 
b) Displacement amplitude of 1.25tr (112.5 mm) 

 
c) Displacement amplitude of 1.50tr (135 mm) 

Fig. 9. Fitted backbone curves of the un-bonded isolator at the horizontal displacement 
amplitudes of 0.89tr, 1.25tr and 1.50tr 

 

 
a) Displacement amplitude of 0.89tr (80 mm) 

 

 
b) Displacement amplitude of 1.25tr (112.5 mm) 
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c) Displacement amplitude of 1.50tr (135 mm) 

Fig. 10. Tangential stiffness obtained from the first derivative of the fitted backbone 
curve at the horizontal displacement amplitudes of 0.89tr, 1.25tr and 1.50tr 

 
The values of tangential stiffness results are evaluated from Eq. (11) and are presented in Fig. 
10. The tangential stiffness at zero horizontal displacement, does not represent the minimum 
effective stiffness in a fully reversed sinusoidal cycle of horizontal displacement under low 
vertical loads of 350 and 550 kN. As the vertical load increases, the minimum slope of the 
backbone curve (tangential stiffness) occurs at zero horizontal displacement. At the large 
horizontal displacement and under large vertical loads, the transverse stiffness may acquire a 
negative value (Fig. 10c). Consequently, the vertical load corresponding to zero transverse 
stiffness is predicted by the approximation method.  
 
As discussed above, the vertical load corresponding to zero transverse stiffness is defined as 
the critical buckling load for an un-bonded FREI. The points corresponding to zero transverse 
stiffness of the un-bonded isolator for different amplitudes of horizontal displacement as 
obtained by approximation method are shown in Fig. 11. As expected, the transverse stiffness 
decreases with the increase of the vertical load. The critical buckling loads are obtained from 
the points which have zero transverse stiffness. The relation of these critical buckling loads 
versus the horizontal displacement amplitude is shown in Fig. 12. 
 

 
Fig. 11. Influence of the vertical load on transverse stiffness for the un-bonded isolator 
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Fig. 12. The critical buckling load capacity of the un-bonded FREI. 

 
It can be seen from the Fig. 12 that the critical buckling load decreases with the increase of 
the horizontal displacement amplitude, and it is relatively great at low displacement 
amplitude. The critical load capacity as obtained from FE analysis is significantly higher than 
the design vertical load, as example, the critical loads are found to be 2.9, 2.5 and 2.3 times 
higher than the design vertical load at displacement amplitude of u = 0.89tr, 1.25tr and 1.50tr 
respectively. It is similar to the observation made by Raaf, et al. [2011] based on the 
experimental critical load carrying capacity of a scaled un-bonded isolator. From these results, 
it is thus realized that the prototype un-bonded specimen in the experimental tests didn’t 
obviously show any sign of damage and susceptibility to buckling under the design vertical 
load. 

The influence of vertical load on dynamic properties of the isolator 

During the course of evaluation of critical load carrying capacity of the isolator, the effect of 
the vertical loads on the characteristic properties of the un-bonded isolator under cyclic 
horizontal displacement is also investigated. The effective horizontal stiffness and damping 
factor of the isolator under the variation of the vertical loads and amplitudes of displacement 
obtained from equation (4) and (5) are provided in Table 2 and plotted in Fig. 13. 
 

Table. 2. Characteristic properties of un-bonded isolator 
 

                Vertical                             Amplitude of horizontal displacement 
                  load                  
                  (kN)            0.89tr (80mm)             1.25tr (112.5mm)                1.50tr (135mm)         

 
                                Keff

h (kN/m)    β (%)        Keff
h (kN/m)    β (%)        Keff

h (kN/m)    β (%)  
 
                  350            301.67        13.46            247.09         14.58             222.03       15.42 
                  550            288.09        15.61            233.67         16.92             209.04       17.87 
                  700            267.53        18.19            218.00         19.90             189.40       21.04 
                  850            238.72        21.69            194.13         24.45             165.19       27.00 
 
It can be seen from Fig. 13 that the effective horizontal stiffness of the un-bonded isolator 
decreases, while the equivalent viscous damping increases with the increase in the vertical 
load at a given amplitude of horizontal displacement. The decreases of the effective stiffness 
are found to be 20.9%, 21.4% and 25.6% under the vertical load ranging from 350 kN to 850 
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kN at the displacement amplitudes of 0.89tr, 1.25tr and 1.50tr, respectively. At a given vertical 
load, the effective horizontal stiffness decreases and the damping factor increases with the 
increasing horizontal displacement amplitudes. It is presented in more detail later. Despite the 
reduction in the effective horizontal stiffness at high vertical loads, the un-bonded isolator 
could maintain symmetric force-displacement hysteresis under cyclic loading. 

 

 
Fig. 13. The relation of the effective horizontal stiffness and damping factor versus 

vertical load 

The rollout instability of the un-bonded FREI under design vertical load 

As observed, the un-bonded isolator is not susceptible to buckling under the design vertical 
load at the amplitude of displacement less than 1.50tr. In this case, it is necessary to 
investigate the horizontal response of the un-bonded isolator under design vertical load of 350 
kN and increasing horizontal displacement such that the original vertical faces of isolator 
establish full contact with the support surfaces, herein up to 2.00tr (180 mm). At the large 
horizontal displacement, rollover deformation of the un-bonded isolator occurs and the rollout 
instability may be observed. Rollout is defined as the instability of a recessed isolator under 
shear displacement. The objective is to determine the horizontal displacement amplitude at 
which the tangential stiffness will be zero under design vertical load. 
 
The shear force-displacement curve and horizontal secant stiffness-displacement relationship 
of the un-bonded isolator under the design vertical load and increasing horizontal 
displacement up to 2.00tr are shown in Figs. 14 and 15. It can be seen from these figures that 
positive force resisting capacity is observed throughout the displacement range between zero 
to 2.00tr, and hence the isolator remains stable. Thus, the rollout instability of the un-bonded 
isolator is not observed here, although the results provide a shear profile having four stages of 
the horizontal response of the un-bonded isolator. 
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As observed in Fig.14, the horizontal stiffness of the un-bonded isolator is nearly linear under 
small horizontal displacement from zero to a displacement level at which the upper and lower 
contact surfaces of the isolator start to roll off the supports, denoted by ur, is at 18 mm 
(0.20tr). As the horizontal displacement is further increased, rollover deformation is observed 
in the isolator and the slope of force-displacement curve decrease to induce the reduction in 
the effective stiffness. At a certain displacement, portions of originally vertical faces of the 
isolator come in contact with the support surfaces. From these results from FE analysis, at u = 
uc = 1.40tr (126 mm) the appearance of initial contact is observed. More numbers of originally 
vertical faces make contact with the support surfaces under the additional increase in 
horizontal displacement. At u = uf = 1.88tr (169.2 mm), all the originally vertical faces of the 
un-bonded isolator are observed to be fully in contact with the supports. When displacement 
increases from ur to uc, the response of shear force-displacement is nonlinear, the effective 
horizontal stiffness of the isolator decreases due to rollover (seen in Fig. 15). Meanwhile, at 
the increasing displacement from uf to 2.00tr, the effective stiffness of the isolator increases 
due to the contact between the originally vertical faces of isolator and the support surfaces. 
When the displacement changes in uc to uf range, the effective horizontal stiffness is affected 
by two things: a reduction due to rollover deformation and an increase due to the contact 
between the originally vertical faces of isolator and the support surfaces. Thus, there exists a 
transition point in the range of uc and uf in which the increase in the effective horizontal 
stiffness of the isolator due to contact exceeds the decrease in the stiffness due to rollover, and 
here a hardening behaviour is observed at displacement uh = 1.70tr (153 mm). As seen from 
Fig. 15, the horizontal stiffness get the minimum value at the hardening point. At larger 
horizontal displacement u > 2.00tr, the increase in horizontal stiffness is very less and the 
deformed shape of the isolator maintains full contact between the originally vertical faces of 
the isolator and the supports. The horizontal stiffness of the isolator is found to increase by 
approximately 32% as the horizontal displacement increases from uh to 2.00tr. This hardening 
behaviour is advantageous as it can limit the horizontal displacement of the isolation system 
when subjected to extreme horizontal excitation events. The deformed shapes of the un-
bonded isolator at different horizontal displacements as obtained from FE analysis results are 
shown in Fig. 16. 
 

 
Fig. 14. Horizontal load–displacement curve of the un-bonded isolator. 
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Fig. 15. Horizontal secant stiffness versus displacement 

 

       
                    a) 0.44tr (40mm)                                                  b) 1.00tr (90mm) 

       
                         c) 1.50tr (135mm)                                                    d) 2.00tr (180mm) 

Fig. 16. Deformed shapes of un-bonded isolator obtained from FE analysis results 

Conclusions 

This paper presents the prediction of stability of a prototype un-bonded fibre-reinforced 
elastomeric isolator based on response from finite element analysis. The prototype isolators 
with the same dimensions, component layers and material properties are in use in an actual 
building in Tawang, India. Size of the isolator is 250 x 250 x 100 mm with the shape factor of 
12.5 and aspect ratio of 2.50. In this study, the isolator is subjected to a variation of the 
vertical loads under cyclic horizontal displacement to determine the effect of the vertical load 
on the dynamic properties and the predicting stability of the isolator in an un-bonded 
application. In addition, the horizontal response of the isolator is also gradually increased to 
investigate the rollout instability under the design vertical load. The concluding remarks are 
as follows. 

• The critical buckling load of the isolator as obtained by dynamic stability analysis 
corresponds to the point in which tangential stiffness is reduced to zero. The critical 
buckling load of the isolator decreases with the increase of the horizontal 
displacement amplitude. 

• The critical load carrying capacity of the prototype isolator as obtained from FE 
analysis is significantly higher than the design vertical load. The critical loads are 
found to be 2.9, 2.5 and 2.3 times higher than the design vertical load at 
displacement amplitude of u = 0.89tr, 1.25tr and 1.50tr respectively. It establishes the 
observation that the actual isolator in experimental testes didn’t show any sign of 
damage and susceptibility to buckling under the design vertical load. 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

516



• The effective horizontal stiffness of the un-bonded isolator decreases, while the 
damping factor increases with the increase in the vertical load at a given amplitude 
of horizontal displacement.  

• The effective horizontal stiffness of the un-bonded isolator decreases, while the 
damping  factor increases with the increase in amplitude of horizontal displacement 
at a given value of applied vertical load. 

• In the behaviour of the isolator under design vertical load, the effective horizontal 
stiffness decreases at the increasing horizontal displacement. However, under larger 
displacement up to 2.00tr the horizontal stiffness starts to increase due to the contact 
between the vertical faces of the isolator with the support surfaces. 
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Abstract: Large eddy simulation for a jet in crossflow at very low Reynolds number 
(Re=100) is performed for different jet-to-crossflow velocity ratios (r) ranging from 1 
to 4.5, and the corresponding streamlines, vortex characters and interaction between 
the vortices have been analyzed. The results show that the streamlines for the jet in 
crossflow are closely related to the velocity ratios. The evolution of three-dimensional 
vorticity for displaying the formation of large-scale vortices has also been investigated. 
Near the nozzle of the jet, the stable mixed vortices including the counter-rotating 
vortex pair (CRVP), the horseshoe-vortex (HSV), the wake vortices (WV), the 
upright-vortices (UV) and the ring-like vortices come into being. The presence of the 
CRVP and RLV structures can maintain a quite long distance even to the flow exits at 
lower velocity ratio. However, the RLV are in destruction soon at larger velocity ratios 
under the interaction for the mixed jet in crossflow. Vortex evolution at velocity ratio 
r=1.5 have been displayed to explain the mechanism of the regular vortex under the 
interaction of UV and WV. The velocity streamlines have been obtained 
computationally and analyzed in details. 

Keywords: jet in crossflow (JICF); large eddy simulation (LES); vortex interaction; 
vortex. 

A jet in crossflow (JICF) is an important flow phenomenon that is defined as the flow field 
where a jet of fluid enters and interacts with a crossflowing fluid [Muppidi (2007)]. There are 
various applications in the engineering problems such as the aerodynamic flow control, film 
cooling of turbines and combustors, control of separated flows over an airfoil, industrial 
mixing, and pollutant dispersion from effluent stacks [Lim (2006)]. 

In the past 70 years, numbers of experimental and computational research for JICF have 
been conducted. These researches mainly focus on the development and evolution of large-
scale vortex structures, trajectory and other related flow phenomena. The interaction between 
the jet and the crossflow can generate the coherent vortex structures: the counter-rotating 
vortex pair (CRVP), the horseshoe-vortex (HSV), the wake vortices (WV), the upright-
vortices (UV) and the ring-like vortices (RLV) [Cárdenas (2007)]. Fig. 1 has shown a side 
view of the corresponding vortex in the flow field. An experimental investigation on the 
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effects of jet velocity profiles on the flow field of a round jet in cross-flow (JICF) using laser-
induced fluorescence and digital particle-image velocimetry techniques (DPIV) have been 
conducted [New (2006)] in 2006. The results had shown that the parabolic JICF not only can 
exhibit a faster velocity recovery, it can also register a higher magnitude of the peak average 
vorticity. The establishment [Camussi (2002)] of different behaviours at various velocity 
ratios is interpreted physically as an effect of the Reynolds number of the jet. This means that 
the Reynolds number has an essential effect on the destabilization mechanisms for the 
formation of the mixed vortex. The CRVP undulates in the turbulent flow and interacts with 
the intermittent wake vortices which in turn interact with the boundary layer and the vortices 
therein [Salewski (2008)]. 

 

Fig. 1 Vortex Structures of a JICF [Jouhaud (2007)] 

A new model [Mashayek (2011)] for atomization of a turbulent liquid jet in a subsonic 
crossflow had been developed. The corresponding results had shown that the droplets 
stripping apart from the jet body can make a great contribution to the formation of the vortical 
structures along the wake of the jet. It was also shown that the spreading of the jet into a 
sheetlike shape strengthened the extent of the vortical structures in the JICF, which will affect 
the droplet dynamics downstream of the jet. The problem of the proper choice of the turbulent 
Schmidt number in the Reynolds-averaged Navier-Stokes (RANS) jet in crossflow mixing 
simulations had been summarized [Ivanova (2013)]. The mainly conclusion was that the 
turbulent Schmidt numbers ranging from 0.2~0.3 used in JICF simulations for obtaining the 
optimal mixing predictions were not in agreement with the physical reality. More accurate 
prediction of mixing in JICF is significantly important to the development of combustion 
systems. The turbulent mixing of a jet in crossflow performed at the Reynolds number of 
6930 by using the large eddy simulation method [Esmaeili (2015)]. The velocity profile for 
the jet pulsation substantially affected the JICF structures, and relatively low Strouhal 
numbers ranging from 0.0075 to 0.05 can develop an optimal condition for mixing, 
entrainment and penetration in the corresponding JICF. The effects of pulsing of high-speed 
subsonic jets (Ma=0.47~0.77) on mixing and jet trajectory in turbulent subsonic crossflows by 
using large-eddy simulation had been investigated [Srinivasan (2012)]. The regime of pulsed 
JICF had shown both the similarities and differences to the earlier experimental work. At the 
larger Strouhal number, the vortex interaction will still increase. However, the vortex ring will 
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be broken down in a relative short time, resulting in reduced penetration at a larger Strouhal 
number.  

One leading parameter determining the development and evolution of large-scale vortex 
structures in JICF is the velocity ratio r [Yuan (1999)], if the densities in the jet and the 
crossflow are the same, r can be defined as: 

jet

crossflow

V
r

V
=        (1) 

otherwise, the effective velocity ratio r can be obtained by the square root of the momentum 
flux ratio as [Gutmark (1999)]. 

 
2

2

( )
( )

jet

crossflow

V
r

V
ρ

ρ
=       (2) 

The simulation and analysis for a jet in crossflow at very low Reynolds number (Re=100) 
will be performed for different jet-to-crossflow velocity ratios (r) ranging from 1 to 4.5. 

2. Numerical methods and flow configuration 

2.1.Numerical methods 
At present research, the large eddy simulation (LES) has been adopted, because the LES 

turbulence model is different from Reynolds Averaged Navier-Stokes Equation (RANS) and 
Direct Numerical Simulation (DNS). The aim of the LES is to resolve the large scale of 
turbulence, and the smaller ones are modeled based on the universality. By filtering process in 
the large eddy simulation, the vortices less than a certain scale are filtered from the flow field, 
large eddy is calculated firstly. Then the solution of small eddy by solving additional equation 
will be obtained. Consequently, LES is more suitable for industrial configurations, in which 
large scales are known to be essential. In the case of the JICF, the unsteady behavior of the 
various flow structures is expected to be more important, the unsteady LES approach that 
provides spatiotemporal resolution should be used [Jouhaud (2007)]. 

In the LES method, the whole flow will be divided into large-scale eddy and small-scale 
eddy. Basic equations of LES are obtained after filtering Navier-Stokes equation and the 
continuity equation [Chen (2010)]: 

 
( )( ) i j iji i

j i j j j

u uu up
t x x x x x

ρ τρ µ
∂ ∂∂ ∂∂ ∂

+ = − + −
∂ ∂ ∂ ∂ ∂ ∂

（）    (3) 

 ( ) 0i

i

u
t x

ρρ ∂∂
+ =

∂ ∂
     (4) 

where ρ is the density of fluid , ui and uj are the velocity components, p is the pressure , μ is 
the kinematic viscosity coefficient, the variables of formula with an overline are the field 
variables filtered.  
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Component of subgrid-stress tensor (SGS) is obtained as ( )ij i j i ju u u uτ ρ= − − . And ui is 
defined as = +i i iu u u′ , therefore the SGS can be decomposed into three parts: 

( )( )ij i j i j i i j j i j

i j i j i j i j i j ij ij ij

u u u u u u u u u u

u u u u u u u u u u L C R

τ ′ ′= − = + + −

′ ′ ′ ′= − + + + = + +
   (5) 

where, ijL  is Leonard stress of the SGS, which can be obtained by =ij i j i jL u u u u− . 

=ij i j i jC u u u u′ ′+ , and it is named cross stress of the SGS. ijR  captured by =ij i jR u u′ ′  represents 
the Reynold stress of the SGS. ijL  shows the motion effect among the solvable large eddy, 

ijC  stands for the motion effect between the solvable large eddy and the unsolvable small 
eddy, and ijR  is the interaction among the unsolvable small eddy, respectively.  

Based on the assumption of Boussinesq, the relationship between ijτ  and ijS  can be 
expressed as: 

 1 2
3ij ij kk T ijSτ δ τ µ− = −     (6) 

where Tµ  is turbulent viscosity, ijδ  is Kroneker symbol, ijS  is strain rate tensor after filtering, 

1 ( )
2

ji
ij

j i

uu
S

x x
∂∂

= +
∂ ∂

      (7) 

Turbulent viscosity Tµ  can be configured as product between length scale l and velocity 
scale q. By assuming that the magnitude of small-scale is in equilibrium, length scale and 
velocity scale can be defined as sl C= ∆ , q = ∆ S , then the turbulent viscosity Tµ  can be 
expressed as: 

 2
t lµ = S         (8) 

where sC  is constant of Smagorinsky, the approximation of the constant is  

 3/431 ( )
2

k
s

CC
π

−≈       (9) 

The value measured in the atmosphere for Kolmogorov constant is 1.4, thereby 0.18sC ≈ . 
However, the value of sC  is usually taken as 0.1 in practical application. ∆  is the scale of 
grid filter, and it is obtained by 1/3=( )x y z∆ ∆ ∆ ∆ . For unstructured grids, ∆ could be acquired 
by extracting a cube root for the unit volume. S can be captured by  

 = 2 ij ijS S S         (10) 
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2.2.Flow configuration and grid distribution 

Fig.2 shows the flow configuration and the size of the computational domain. The flow 
region is rectangular, the length, breadth and height are 65D×20D×16D. The jet channel is 
circular and Reynolds number of the fluid is 100, D presents the diameter of round jet. The 
structured grids will be adopted in the calculation, and the corresponding mesh have also been 
refined near the entrance of jet. 

 

Fig. 2 View of the grid 

3. Results and discussion 

3.1.Time-averaged particle trajectory 

The connection of the jet center has been defined as the time-averaged particle trajectory 
for the JICF. Fig.3 shows different trajectories obtained from the stream traces. These time-
averaged particle trajectories show that by the action of the crossflow the jet is deflected 
downstream. In the proximity of the jet exit, it is noticed that the trajectories are almost 
vertical up to the main flow indicating that the ability of vertical penetration for the cases is 
about the dimension of the jet [Saha (2012)]. As shown in Fig.3, the jet has a larger kinetic 
energy and a stronger penetration compared with the crossflow near the nozzle, therefore the 
jet can quickly flow across the boundary layer. Once the jet reaches the crossflow in the flow 
channel, it will experience drastic exchange of energy and momentum, and penetration 
capability of the jet decreases leading to a deflected jet thereby. This phenomenon can 
produce more complex vortices, such as the counter-rotating vortex pair, upright vortex, 
vortex ring, horseshoe vortex and wake vortices, respectively. 
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Fig. 3 Time-averaged particle trajectories for the JICF 

Comparison of various cases in Fig.3, it has revealed that the jet penetration is highest for 
the highest r and it is almost followed by velocity ratio r. The upstream for the inflow with 
boundary layer near the nozzle can generate more kinetic energy loss. This will result in the 
higher pressure gradient in the vertical direction which rises fluid upwards to a higher extent. 
Thereby, the more momentum loss, the deeper penetration of jet in crossflow will reach for a 
given jet profile. 

The time-averaged particle trajectories in the JICF can be approximately expressed as 
[Chassaing (1974) and Camussi (2002)]: 

 ( )ny A x=       (11) 

where y is the height of the jet penetration, x is the streamwise position. In the presented cases, 
the corresponding A and n are listed in Tab. 1. The studied cases in this paper have shown a 
good agreement with the experiment results (Camussi 2002) within 5% error. This 
demonstrates that the large eddy simulation has higher accuracy. 

Table 1 Coefficient A and n 

veolicity 
ratio A 

A 
(Camussi 

2002) 

relative error 
of A (%) n 

n 
(Camussi 

2002) 

relative error 
of n (%) 

1 1.5377 1.5962 3.66% 0.3708 0.39 4.92% 
2 2.4926 2.5158 0.92% 0.3723 0.39 4.54% 
3 4.3904 4.566 3.85% 0.3755 0.39 3.72% 
4 7.5213 7.865 4.37% 0.3821 0.39 2.03% 

3.2.Evolution of three-dimensional vortex 

Fig.4 is an overall view of vortex structure in JICF at Reynolds number Re=100 with a 
velocity ratio r=1.5. It is apparent that the spatial evolution for large-scale such as CRVP and 
RLV can be clearly observed, the HSV, UV and WV have been also shown below the large 
scale vortices (CRVP and RLV). Near the nozzle, the CRVP and RLV have appeared due to 

r=1 

r=2 

r=3 r=4 
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the action of shear layer. While once produced, the vortices will not immediately fall off, but 
stretch along the flow at a certain frequency. The CRVP and RLV generate a gradually rising 
in the interaction among the small scale vortices (HSV, UV and WV) and boundary layer. As 
shown in Fig.4(a), the vortices are generated near the nozzle, with the increasing distance 
from the entrance of the jet, scale and strength of vortex rings are enhancing (Fig.4(a)~(e)). 
With the further development of the JICF, the intensity of vortices will be evolved stronger, 
the CRVP and RLV start to fall at a certain time after deformation and distortion. The falling 
frequency of vortices is much faster than the formation. After completing the process of 
falling, the JICF will generate more stable CRVP far away from the nozzle (Fig.4(f)). 

 

 
(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

Fig. 4 Evolution of vorticity for JICF with a circle nozzle 
(a) t=1.9s; (b) t =3.74s; (c) t =6.24s;(d) t =7.8s; (e) t =9.86s; (f) t =15.72s 

3.3.Analysis of three-dimensional vorticity 

After flowing into the crossflow, the jet will generate three processes under the interaction 
of the jet and crossflow: the initial phase, the curved phase and penetration phase. The JICF 
will make an access to the full development phase after shearing, wrapping and other effects. 
The small-scale structure in the jet core area surrounding is ongoing for stretch, rupture 
merged into the large scale vortices. The CRVP and RLV will be broken down into crossflow. 
Far away from the entrance, the previous vortices will gradually decline and evolve into 
CRVP at higher r. 

The evolution and interactions for the vortices structures are significantly affected by the 
variations of velocity ratio. In particular, the vortex content of the CRVP and RLV are 
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analyzed, showing a vortex flow phenomena which strongly depends on r. The most 
important effect of r on the flow behavior is the changing of the CRVP and RLV structures. 

  

(a) r=1     (b) r=1.5 

  

(c) r=2     (d) r=3 

 

(e) r=4     (f) r=4.5 
Fig. 5 Three-dimensional vorticity 

As shown in Fig.5, the presence of CRVP and RLV structures can last quite a long 
distance even to the flow exits at lower velocity ratio (Fig.5(a) and (b)). The interval between 
CRVP and RLV is relatively large. However, when the velocity ratio becomes larger 
(Figs.5(c)~(f)), the RLV could only maintain a short distance. Forming frequency of RLV 
increases with the increasing velocity ratio r. While with the augment of velocity ratio, the jet 
kinetic energy increases, gap of the RLV near the nozzle will be generated closer, and the 
diameter for the RLV will become smaller. However, due to the strong interaction of the WV, 
HSV, UV, RLV and shear layer, the RLV will be destroyed soon. 
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3.4.Vortex Interaction 

 

   
(a)           (b)          (c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 6 Evolution for interaction of HSV, WV and UV at r =1.5 
(a) t=1.9s; (b) t =3.74s; (c) t =6.24s;(d) t =7.8s; (e) t =9.86s; (f) t =15.72s 

It is essential to investigate the interaction of the WV, HSV, UV, RLV and shear layer, 
which is the main reason for the disappearing of the RLV. A scheme for clarifying this feature 
has been displayed in Fig.6, which has shown the evolution of interaction between the UV, 
HSV and WV at r=1.5. The formation of the HSV is near the nozzle (Fig.6(a)), which is 
seemed to show a fixed shape during the evolution. Once affected by UV in the initial phase, 
the HSV can generate a stable status through a period of development (Fig.6(a)~(f)). Since the 
HSV is formed earlier than the CRVP, the CRVP can only affect WV. 
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As shown in Fig.6, the most significant phenomenon is the evolving regular vortex, which 
can be attributed to the interaction between the UV and WV. From the outset, the core area of 
the jet is strongly influenced by the interaction between the boundary layer and the UV 
system, therefore, the jet is restrained which can result in lifting up from the jet core area. 
There is a clear exhibition about the flow of the oscillation along the direction of crossflow. 
The regular vortex will be generated below the CRVP and RLV under the interaction of the 
UV and WV. Due to the combined effect of the jet, boundary layer, the WV, HSV, UV in the 
jet core area, vortices including the regular vortices and large scale eddy will be soon 
decomposed to a series of shocking eddy wrapped into the wake zone (shown in Fig.6(f)) 
[Guan (2007)]. 

3.5.Spanwise Velocity Streamlines 

As shown in Fig.7, the CRVP have been clearly generated based on different velocity 
ratios (r=1~4) by adopting the spanwise velocity streamlines, which is formed due to the high 
velocity ratio. The annular area affected by the CRVP (marked with red circle) at lower 
velocity ratio has an approximately elliptical shape with a smaller acreage. The velocity 
stream is seemed to converge at one point above the CRVP. However, with the increasing the 
velocity ratio, the eccentricity for the annular area affected by CRVP is nearly generated at 
zero, which means that the shape of the annular area is almost in the circle shape. As a matter 
of course, the corresponding area is followed bigger by r. 

When r=1 (Fig.7(a)), to be same to the other studied cases (Figs.7(b)~(d)), the relatively 
symmetric vortices pair have been formed at the upper boundary. However, the corresponding 
intensity of the crimping and winding for the formed vortices at low ratio (r=1) are much 
weaker than the other cases. In addition, the whole rotating region is also much more flat. As 
the velocity ratio further increases, the whole former formed vortex cores have begun to move 
up gradually (shown in Figs.7(b)~(d)). And the corresponding strength have also been 
boosted up. The whole vortex regions have become more circular and greater. When r=4 
(shown in Fig.7(d)), the intensity and region of the formed vortices have reached the 
maximum value. The spanwise position for the vortex core has located nearly five times 
height compared with the lowest velocity ratio (shown in Fig.7(a)). Except this, as shown in 
Fig.7(d), the second vortices have also been induced by the formed CRVP at relatively higher 
velocity ratios (r=4). The higher velocity ratio got, the stronger second vortices can be 
obtained. And the corresponding position is also gradually moving up, which will be 
swallowed up by the CRVP ultimately at a certain downstream position. 
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(a) r=1     (b) r=2 

     
 

(c) r=2.5    (d) r=4 

Fig. 7 The spanwise velocity streamlines for the JICF 

4. Conclusions 

The jet in crossflow at Reynolds number (Re=100) have been performed based on the LES 
method, the corresponding conclusions have been listed as follows:  

(1) Three-dimensional streamlines are closely related to the velocity ratios, the higher 
velocity ratios become, the deeper the penetration can reach. The more stable mixed vortices 
including the CRVP, RLV, UV, HSV and WV can be generated. The RLV will move up at 
the beginning, and then start to fall after a certain period of time near the nozzle of the jet. 

(2) The presence of the CRVP and RLV structures can maintain quite a long distance even 
the flow exits at lower velocity ratio, but the RLV will be in destruction soon at larger 
velocity ratios under the interaction for the mixed jet in crossflow. The relative regular 
vortices can be generated below the CRVP and RLV under the interaction of UV and WV, 
which will be decomposed to a series of shocking eddy wrapped into the crossflow. 

(3) The relatively symmetric vortices pair can be generated at the upper boundary. The 
whole vortex regions can become more circular and greater with the increasing velocity ratio. 

Second induced vortex 
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The second vortices are also induced by the previous formed CRVP at relatively higher 
velocity ratios 
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Abstract
In this paper, an extended car-following model is derived by considering vehicle’s backward
looking effect which is based on the optimal velocity model and the optimal velocity (OV)
function is extended by introducing variable safety distance. Also, a new control signal
including more comprehensive information is introduced on the viewpoint of feedback control.
Furthermore, the stability condition for the model is derived and the numerical simulation is
carried out to investigate the advantage of the proposed model with control signal which can
alleviate the traffic jams efficiently. The results are also consistent with the theoretical
analysis correspondingly.
Keywords: Car-following model, Feedback control method, Stability condition, Variable
safety distance.

Introduction

In recent decades, traffic flow theories have attracted much attention of scientists’ and
researchers’ in the study of mathematical physics and control theory. Because the traffic
congestion has closely influenced human’s daily life up to present, such as traffic accident,
fuel consumption and air pollution. As for traffic behavior, many approaches have been
introduced to investigate the properties of traffic flow, and obtained some significant results
[1-5].

Modern traffic is one of the most significant symbols of social modernization which provides
much convenience for our daily life. However, traffic congestion problem is also being
increasingly deteriorated because of the huge traffic flux. Back to 1953, Pipes [6] developed
a car following model to restrain the traffic congestion and provided some relevant results
through theoretical analysis, which assumed that the behind vehicle adjusted its behavior
following the preceding vehicle’s action in the same lane. After that, Newell [7] proposed a
car-following model with a differential equation and gave some graphic description for the
optimal velocity (OV) function in 1961. Then it’s worth pointing out that an vital extended
car-following model called optimal velocity model (OVM) was introduecd by Bando et al. [8].
In the OVM, the acceleration of the vehicle at the same time was determined by the difference
between actual velocity and an optimal velocity. Based on this (OVM), a great deal of car-
following models have been extended by adding more comprehensive information into the
real traffic system [9-12].
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In 1999, Konishi et al. [13] developed a chaotic car-following model by setting time delay
feedback control signals, and studied single-lane traffic operation without reverse
phenomenon under an open boundary condition. In 2007, Han et al. [14] put forward to a
modified CM car-following model and found that their model could promote the stability of
traffic flow. Recently, Zheng et al. [15] presented an improved car-following model with
considering lateral effect and its feedback control research, and the obtained results were
correspond to the theoretical analysis. Additionally, other researches related to the control
scheme have been carried out in a piecemeal form gradually [16][17].

Even in the physical community, the car-following model is still a hot topic. But up to now,
we can hardly see studies concerning car-following in a viewpoint of control methods. So in
this paper, it’s necessary to provide a modified car-following model considering vehicle’s
backward looking effect based on the control theory which means a new control scheme that
takes more comprehensive information into account is proposed. Detail definitions are in the
section 3.

The outline of this paper is organized as follows. In Sec. 2, the modified car-following model
considering vehicle ’ s backward looking effect is presented, and its stability condition is
analyzed via control method. In Sec. 3, the model including control signal is established and
feedback control theory is used to analyze the stability conditions. In Sec. 4, several numerical
simulations are carried out to verify the theoretical results. Conclusions are given in Sec. 5.

Car-following model and its stability analysis

Modified model

This research is based on OVM [8] in 1995. The dynamic equation is described as

              tvtvtxqVtvtxpV
dt
tdv

nnnbnnp
n   11 ,,1


(1)

Where 1( ) ( ) ( )n n nv t v t v t   is the velocity difference between 1( ) ( ) ( )n n nx t x t x t   ,
the thn - considering vehicle and the preceding vehicle;  txn is the real position of

the thn - considering car at time t ;

1

a is the sensitivity of driver and is the inverse of delay

time  .   ( ),p n nV x t v t is the improved optimal velocity (OV) function for forward looking

and   1 1( ),b n nV x t v t  is the modified optimal velocity (OV) function for backward looking;
 qpqp , stands for the relative weights of two OV functions. The two OV functions are

given as:

( ( ), ( )) [tanh( ( ) ) tanh( )]
2

v vmax
p n n n n n

vV x t v t x t h h     (2)

1 1 1 1 1( ( ), ( )) [tanh( ( ) ) tanh( )]
2

v vmax
b n n n n n

vV x t v t x t h h         (3)

  cns
v
n htvTdh  1 ;   cns

v
n htvTdh   121 (4)

where maxv is the maximum velocity and ch is the traditional safety distance; sT is
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the time step unit, and d is the reaction coefficient for  tvn .

Stability analysis

The dynamical equation is rewritten as follows:

           1 1

1

( ) , , ,

( ) ( ) ( ),

n
p n n b n n n

n
n n

dv t a pV y t v t qV y t v t v t
dt

dy t v t v t
dt

 



      

  


(5)

where ( ) ( )n ny t x t  .

We suppose the desired velocity of vehicles and comprehensive distance are *v and *y , so the
steady state of the following vehicles is

* *[ ( ), ( )] [ , ] .T T
n nv t y t v y (6)

Then, consider an error system around steady state (6), that is,

            
     

















tvtv
dt
tyd

tvtvqtyqtvptypa
dt
tvd

nn
n

nnnnn
n





1

413121

(7)

where *( ) ( ) ,n nv t v t v  
    
     01|,

1 vVty
n

nn
pnty

tvtyV



 ,

    
    0

|,
2 vtv

n

nn
ntv

tvtyV



 ,

    
     01

1
|,

1

11
3 vVty

n

nn
bnty

tvtyV


 







 ,
    
    01

|,

1

11
4 vtv

n

nn
ntv

tvtyV








 ,     *ytyty nn  .

After Laplace transformation for traffic system (7), we can get

 
   

 
 
 























 



























sY
sV
sV

aqaq
apas

aps
spsY

sV

n

n

n

n

n

1

1

1
34

2

1

010
0

1
1 (8)

    12
2 1  apspassp (9)

where     tvLsV nn  ,     tyLsY nn  ,  .L denotes the Laplace transform and s is a
complex variable.

In reality, based on the control theory, we obtain the transfer function ( )G s , that is

   
  12

2
143

1 



apspas
apsaqaqsG

(10)
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Thus, traffic jams will never occur in the traffic flow system if ( )p s is stable and ( ) 1G s

 .

In fact, based on the Hurwitz stability criterion, we can get that  sp is stable. So, the stability
condition is given by

 
 
1 3 4

2
2

2
1

p q
a

p
   


 

(11)

Feedback control scheme

In this part, an extended feedback control signal including more comprehensive information is
added into system (1), so we have

                tutvtvtxqVtvtxpVa
dt
tdv

nnnnbnnp
n   11 ,, (12)

2( ) ( ) ( ( ) )( ( ) ),v v
n n n n n nu t v t H y t h y t h      (13)

where  is the reaction coefficient for the relative velocity ( )nv t and  is another reaction
coefficient for the ( ( ) )( ( ))n c c nH y t h h y t  . Function (.)H is described as

0, ( ) 0,
( ( ) )

1, ( ) 0 ,

v
v n n

n n v
n n

y t h
H y t h

y t h
  

  
 

(14)

As ( ) 0v
n ny t h  , our feedback control signal ( )nu t is

2( ) ( ) ( ( ) ),v
n n n nu t v t y t h     (15)

Under this condition, the dynamical Eq.(12) can be described as

           1 1

2
1

1

( ) , ,

( ( ) ( )) ( ( ) ),
( ) ( ) ( ),

n
p n n b n n n

v
n n n n

n
n n

dv t a pV y t v t qV y t v t v t
dt
v t v t y t h

dy t v t v t
dt

 

 





      
   

  


(16)

Similar to the analysis of second part, the transfer function ( )G s can be obtained after
Laplace transform.

     
  2

12
22

2
143~








apsapdTas
apsaqaqsG

s

(17)

    2
12

22~   apsapdTassp s (18)

In fact, the traffic jams will be weaken if  sp~ is stable and   1~



sG .

Furthermore,  jG~ must be smaller than 1 for all positive 2 to ensure stability. Hence, the
stability criterion of the extended mode is given by

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

534



02  CBaAa (19)

where  21  pA ,     2 2
2 1 3 42 1 2sB p dT p q q           ,    22 2 22sC dT       .

Numerical simulations

In this simulations, the parameters for the improved car-following model are set
as * 5.0y m , 12a s , * 20 /v m s , 8.0p , 2.0q , 3.0d and 0.1 .T s It is assumed that
all vehicles have the same parameters. The initial condition is the steady state for the model,
and the initial positions and speeds are set as *(0) ,ny y *(0) ,nv v and 120N  is the total
number of vehicles. We consider a case where the leading vehicle stops suddenly
for (0) 0, 100 103.nv t nT   

Figure. 1 shows the velocity-time patterns of the 1st, the 25th and the 50th vehicles with
different parameter values of  . It can be seen from Fig. 1 that with the control signal, as the
reaction coefficient  decreases from 0.85 to 0.35, the stability of the traffic system is
strengthened. And we can find that vehicles can reach steady running state in relatively short
time as the reaction coefficient  decreases. The amplitude of the velocity for the 25th vehicle
decreases and the 50th vehicle runs smoothly.

Figure 1. Numerical simulations for the modified car-following model with

0.65  , 25 /maxv m s , 0.85  (left); 0.65  , 25 /maxv m s , 0.35  (right)

Figure 2. Numerical simulations for the modified car-following model with
0.35  , 25 /maxv m s , 0.15  (left); 0.35  , 25 /maxv m s , 0.65  (right)
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Figure. 2 shows the velocity-time patterns of the 1st, the 25th and the 50th vehicles with
different parameter. It can be seen from Fig.2 that with the control signal, as the reaction
coefficient increases from 0.15 to 0.65, the stability of the traffic system is strengthened. And
we can find that vehicles can reach steady running state in relatively short time as the reaction
coefficient increases. The amplitude of the velocity for the 25th vehicle decreases and the
50th vehicle runs placidly. The simulation results of Fig. 1 and Fig. 2 illustrate that feedback
control plays an vital role in vehicle dynamic driving behavior.

Figure 3. (a) Space-time plot of the traffic system (b) Temporal velocity behavior of the
first,25th and 50th vehicles ( 0, 0, 20 /maxv m s    )

Figure 4. (a) Space-time plot of the traffic system (b) Temporal velocity behavior of the
first, 25th and 50th vehicles ( 0.75, 0.35, 25 /maxv m s    )

Then, we simulate the system with the modified control scheme. As the stability condition in
Eq. (11) and Eq. (18) is met, a comparison between the results in Figs. 3-4 illustrate that with
control signal, although the maximum speed is larger compared with Fig. 3, as we choose the
right parameters ( 0.75, 0.35, 25 /maxv m s    ), it can be seen that vehicles can reach
more steady running state in relatively short time. The amplitude of the velocity for the 25th
vehicle decreases and the 50th vehicle runs more smoothly. Thus, it can be concluded that the
proposed car-following model is useful for suppressing the increasingly serious traffic jams.

Conclusions

In this paper, an extended car-following model is established considering vehicle’s backward
looking effect. The optimal velocity (OV) function is extended by introducing variable safety
distance. The effect of some important information (such as the relative velocity and the
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difference between safety variable distance and headway) on the traffic current and the
jamming transition has been investigated with the use of numerical and analytic methods. The
stability condition is obtained for the new model via control method. The numerical
simulation is used to show the advantage of the proposed model with control scheme. The
results are consistent with the theoretical analysis.
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Abstract 

Unlike superstructure, it is necessary to bury underground structure model into model soil 
carried by a continuum model box, when conducting shaking table test under non-uniform 
excitation. The problem, how to transmit dynamic effectively between different shaking 
tables is need to be solved firstly. The present paper is devoted to study the effectiveness of 
continuum model box using when conducting non-uniform excitation shaking table test. A 
full-scale 3D entity finite element model of soil and model boxes is simulated. In order to 
avoid the randomness of calculation result, three conventional coherency models are adopted 
to synthetize non-uniform ground motions respectively. In order to evaluate the effectiveness 
of continuum model box, the calculation results, including time history and frequency 
spectrum of soil acceleration responses, are contrasted with those of 2D free field analysis. 
The calculation results show that the distribution of peak acceleration response of soil cased 
in the continuum model box is almost the same as that of 2D free field analysis. The Fourier 
Amplitudes of the surface acceleration responses of soil state that the frequency spectrum 
components of soil acceleration response have little difference between 3D dynamic analysis 
and 2D free field analysis. Thus, it is rational to adopt continuum model box with rigid 
connection to conduct shaking table test of underground structure under non-uniform 
excitation. 

Keywords: Effectiveness; Continuum model box; Shaking table test; Non-uniform excitation. 

1. Introduction  

Observations from earthquake strong-motion arrays show notable differences among the 

records of ground motions at different locations within the dimensions of typical extended 

structures [1]. That is called spatially varying ground motions, which is caused by the wave 

passage effect, the incoherence effect and the site-response effect [2]. Unlike the small-scale 

structure, it is necessary to conduct non-uniform excitation analysis for extended structures, 

such as tunnels, bridges and pipelines, since spatially varying ground motions may have 

significant influence on seismic response. 

 

In the last few decades, researches on seismic responses of tunnel induced by non-uniform 

excitations are mainly limited to numerical analysis. Hashash et al. [3] and Anastasopoulos et 

al. [4] performed 3-D dynamic analysis to study seismic responses of the San Francisco bay 

tunnel and Greece Rion-Antirrion strait tunnel under spatially varying ground motions, 

respectively. A consistent conclusion stated that spatially varying ground motions increased 

the seismic responses of the immersed tunnels significantly. Park et al. [5] conducted 

pseudo-static 3-D finite element analysis to investigate seismic responses of a tunnel under 

non-uniform excitations. Yu et al. [6] proposed a multi-scale method to simulate a water 
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delivery tunnel constructed by shield method and studied the influence of wave passage effect 

on seismic responses. Li and Song [7] developed a 3-D finite element model in time domain 

to provide feasible computational modeling technique for the tunnels under asynchronous 

excitations. However, few experimental investigations are conducted to study the seismic 

responses of tunnels under non-uniform excitations.  

 

Experimental method plays an important role in geotechnical engineering researches. It 

provided a realistic way to test and verify the results derived from theoretical analyses, and 

potentially to identify novel phenomena that are inaccessible by theoretical analysis alone. In 

recent years, centrifuge and shaking table tests are conducted to study the seismic 

performance and reveal failure mechanism of underground structure [8]-[10]. Since centrifuge 

test can reproduce the in situ stress state of soil, it is commonly believed that the is an 

attractive way to study seismic performance of underground structure [11]. However, shaking 

table test is precise in seismic loading, control and observation [12]. Moreover, shaking table 

array provides a feasible way to study the dynamic response of the extended underground 

structure, like tunnel, under non-uniform excitations. Unlike superstructure, it is necessary to 

bury underground structure model into model soil carried by a continuum model box, when 

conducting shaking table test under non-uniform excitation. Extremely limited shaking table 

test of underground structure under non-uniform excitations has been conducted. Chen et al. 

[13] performed a shaking table test of utility tunnel to study the effect of non-uniform 

earthquake wave excitations. However, two separating model boxes were adopted, and it 

ignored the continuum of soil. It is believed that this ignorance affects the evaluations of 

seismic performance since the deformation of the surrounding soil rather than structural 

dynamic characteristic is the control factor of response of underground structure. Thus, in 

order to represent the reality of dynamic response of line-like underground structure as far as 

possible, some efforts should devoted to develop a continuum model box before conducting 

non-uniform shaking table tests. Therefore, the problem, verifying the effectiveness of 

continuum model box connecting different shaking tables, is need to be solved. 

 

Aiming this goal, a full-scale 3D entity finite element model of soil and model box is 

simulated to verify the effectiveness of continuum model box in this paper. To avoid the 

randomness of calculation results, three conventional coherency models are adopted to 

synthetize non-uniform ground motions as input excitations, respectively. The conclusions of 

the presented paper could be valuable to the non-uniform excitation shaking table test of 

underground structure. 

2. Numerical modeling of shaking table tests 

The prototype shake table array is consisting of two Quanser Company shake tables, named 

Shake Table , at the Structural Engineering Laboratory in Tongji University. As shown in 

Fig.1, the dimension of each table stage is 46cm × 46cm in plane. The maximum acceleration 

is 2.5g with the maximum payload 7.5kg. The frequency of the input ground motion covers 

the range 0.1–20 Hz. Finite element model of the soil-continuum box system is established in 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

539



this section based on the prototype shake table array.  

 

Fig. 1. Prototype of Shake Table  

In the presented paper, dynamic time-history analyses are carried out using the 

general-purpose commercial ABAQUS software [14]. Element C3D8R is adopted to simulate 

model soil, and the soil density, elastic modulus and Possion’s ratio are set as 700kg/m
3
, 

4.89MPa and 0.35, respectively. Mohr-Coulomb model and Rayleigh damping are used to 

take the plasticity and nonlinear dynamical characteristics into account. The detailed 

information of soil is listed in Table 1.  

 

Table 1. Properties of the soil 

Description Parameter Value 

Density ρ(kg/m
3
) 700 

Elastic modulus E(MPa) 2000 

Possion’s ratio υ 0.35 

Friction angle φ(°) 33 

Cohesion c(kPa) 10.6 

Rayleigh damping 
α 0.288043 

β 0.045054 
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Fig. 2. 3D finite element model of the whole soil-continuum box system 

Fig. 2 illustrates the finite element model of the whole soil-continuum box system. There are 

two driving model box, consisting of driving box A and box B that are fixed on two shaking 

tables and a driven model box. The model box will be fabricated by organic glass in the future 

physical shaking table test, which is a homogeneous material with a stable mechanical 

property. Element C3D8R is also employed to simulate model box. The density, elastic 

modulus and Possion’s ratio of model box are set as 1120kg/m
3
, 3150MPa and 0.3, 

respectively. As shown in Fig. 2, the whole continuum box is with the length of 104cm, 

consisting of two driving model box (box A and B) are both with the length of 46cm and a 

driven model box (box C) is with the length of 12cm. Since the materials of driving and 

driven boxes are the same, the model box with the length of 104cm is established as one 

whole. The transverse dimension of the model box is 21cm (width) × 13 cm (height). The 

thickness of model box is 3mm. Due to capability limitation of the prototype shaking table, 

the height of soil cased in the model box, which is denoted as H, is set as 9cm. The surface 

interaction of the soil and the sidewalls of the model box are all set as Finite Slip with the 

friction and the slip tolerance factors of 0.2 and 0.005, respectively. Tie Constraint is adopted 

to simulate the surface interaction of the soil and the bottom of the model box. 

3 Analysis process and calculation cases 

3.1 Analysis process 

To verify the effectiveness of continuum model box used in shaking table test under 

non-uniform excitation, the following analysis process is used. 

 
 

 

Soil  

L1 

L41 
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1. As stated above, a full-scale 3D entity finite element model of soil and model boxes is 

established. Three conventional coherency models are adopted to synthetize non-uniform 

ground motions as input excitations to avoid the randomness of calculation results. 

2. In order to evaluate the validity of the above-mentioned 3D dynamic analysis, 2D free 

field analysis, as a reference standard, is performed under three different non-uniform 

excitations. The finite element model of 2D free field analysis is depicted in Fig. 3. There 

are three parts of the free field with the length of 46, 12 and 46cm, which are 

corresponding to the soil cased in boxes A, B and C in 3D dynamic analysis. The infinite 

element is adopted in two sides of the free field model to consider the boundary effect. 

Element CPE4R is used to simulate the soil with density, elastic modulus and Possion’s 

ratio of 700kg/m
3
, 4.89MPa and 0.35, respectively. Same as 3D dynamic analysis, 

Mohr-Coulomb model and Rayleigh damping are used to consider the plasticity and 

nonlinear dynamical characteristics. As shown in Table 1, the soil characteristics are the 

same as 3D dynamic analysis.  

3. After the aforementioned two steps, the soil acceleration responses in longitudinal 

direction, which emphasize the peak values and the Fourier Spectrum, of 3D dynamic 

analysis and 2D free field analysis are compared to each other. There are some 

conclusions drawn from the calculation results.  

 

Fig. 3. 2D finite element model of free field analysis 

3.2 Calculation cases 

In the presented paper, the effectiveness of continuum model box is studied by full-scale 3D 

dynamic analysis. 2D free field analysis is conducted as a reference standard. In order to 

avoid the randomness of calculation results, three conventional coherency models are used to 

synthetize non-uniform ground motions as input excitations, respectively. The selected 

coherency models are described as following. 

 

1) Hindy and Novak coherency model: When conducting a stochastic analysis of the pipeline, 

Hindy and Novak [15] firstly introduced the coherency model into earthquake engineering to 

describe the spatial variation of the ground motion. Based on wind engineering, the 

expression is relatively simple with only two parameters, that is: 

 

                              , =d exp d


                          (1) 

 

 

46 cm 46 cm 12 cm 
Element CPE4R 

Infinite element 
L1 L41 L2 … L40 
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Where, ω and d are the angular frequency and distance respectively; and the model 

parameters are α=3.007×10
-4

, β=0.9. H-N model is depicted in Fig. 4(a). 

 

2) Harichandran and Vanmarcke coherency model: Basing on the study of four events 

recorded by SMART-1 array in Taiwan, Harichandran and Vanmarcke [16] proposed an 

empirical coherency model, which has been widely applied. The expression of this coherency 

model is shown as follows: 

 

            
 

   
 

 
2 2

, exp 1 1 exp 1
d d

d A A A A A A   
   

   
           

      
         (2) 

 

Where, θ(ω)=k[1+(ω+ωo)
b
]

-0.5
; basing on Event 20 recorded by the SMART-1 array, the 

model parameters are A=0.636, α=0.0186, k=31,200 m, ωo=9.49 rad/s, b=2.95 [17]. H-V 

model is shown in Fig. 4(b). 

 

3) Qu-Wang-Wang coherency model: From the standpoint of coherency model in engineering 

application, Qu et al. [18] referenced to the method of determining the design response 

spectrum in seismic code, averaged the collected coherence value of the empirical coherency 

model for several earthquakes, and proposed a coherency model. It is beneficial for practical 

application to put forward a mean coherency model referencing the determination of design 

response spectrum. The function is shown as: 

 

                            
,

b
d e x p a d


    

 
                       (3) 

 

Where, a(ω)=a1ω
2
+a2; b(ω)=b1ω+b2; the parameters are a1=0.00001678, a2=0.001219, 

b1=-0.0055 and b2=0.7674. Q-W-W model is depicted in Fig. 4(c). 
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Fig. 4. Coherency Models: (a) H-N; (b) H-V; (c) Q-W-W 

As shown in Table 2, there are four test cases for both 3D dynamic analysis and 2D free field 

analysis, which are consisted of uniform excitation (Case 1) and three cases for three models, 

including Case 2 is of H-N model, Case 3 is of H-V model and Case 4 is of Q-W-W model, 

respectively. Fig. 5 depicts the time histories of the synthetic ground motions. The peak 

ground motion is 0.1g. In this paper, trigonometric series simulation algorithm put forward by 

Hao [19] to simulate multi-support ground motion time histories are adopted. The power 

spectrum model S(ω) (Eq. (4)) proposed by Clough and Penzien [20] is adopted to simulate 

ground motions. The expression of this model is shown as: 

 

         
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

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           (4) 

 

Where, S0 is spectral intensity factor; ω is the angular frequency; ωg and ξg are the resonant 

frequency and damping ratio of the first filter, which are relative to the site condition; ωf andξf 

are those of the second filter. The filter parameters corresponding to this soil type of Clough 

and Penzien power spectrum model are determined: S0=0.0123347; ωg= 9.67; ξg=0.9; 

ωf=1.934; ξf=0.9. To consider the non-stationary of ground motion, the envelope function 

adopted in this paper was proposed by Amin and Ang [21], and its expression shown as 

following: 

 

 

 

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

 

 

A
b

so
lu

te
 C

o
h

er
en

cy

Frequency  (Hz)

 d=20 m

 d=40 m

 d=60 m

 d=80 m

 d=100 m

(a)

 

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

 

 

A
b

so
lu

te
 C

o
h

er
en

cy

Frequency  (Hz)

 d=20 m

 d=40 m

 d=60 m

 d=80 m

 d=100 m

(b)

 

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

 

 

A
b

so
lu

te
 C

o
h

er
en

cy

Frequency  (Hz)

 d=20 m

 d=40 m

 d=60 m

 d=80 m

 d=100 m

(c)

 

  

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

 

 

A
b

so
lu

te
 C

o
h

er
en

cy

Frequency  (Hz)

 d=20 m

 d=40 m

 d=60 m

 d=80 m

 d=100 m

(a)

 

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

 

 

A
b

so
lu

te
 C

o
h

er
en

cy

Frequency  (Hz)

 d=20 m

 d=40 m

 d=60 m

 d=80 m

 d=100 m

(b)

 

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

 

 

A
b

so
lu

te
 C

o
h

er
en

cy

Frequency  (Hz)

 d=20 m

 d=40 m

 d=60 m

 d=80 m

 d=100 m

(c)

 

  

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

 

 

A
b

so
lu

te
 C

o
h

er
en

cy

Frequency  (Hz)

 d=20 m

 d=40 m

 d=60 m

 d=80 m

 d=100 m

(a)

 

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

 

 

A
b

so
lu

te
 C

o
h

er
en

cy

Frequency  (Hz)

 d=20 m

 d=40 m

 d=60 m

 d=80 m

 d=100 m

(b)

 

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

 

 
A

b
so

lu
te

 C
o

h
er

en
cy

Frequency  (Hz)

 d=20 m

 d=40 m

 d=60 m

 d=80 m

 d=100 m

(c)

 

  

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

544



                    

 

2

1 1

1 2

2 2

( / ) ,0 ;

1, ;

, .

t t t t

f t t t t

exp c t t t t

  


  


     

                        (5) 

 

Where, c is the attenuation coefficient; t1 and t2 are the beginning and the ending moment of 

the stationary vibration stage, respectively. The parameters in Eq. (5) can be obtained as 

c=0.15, t1=1.6s, t2=12s. 

 

Table 2. Detailed information of numerical analysis cases 

Case name Type of excitation Coherency model 

Case 1 Uniform － 

Case 2 Incoherent Hindy and Novak coherency model  

Case 3 Incoherent Harichandran and Vanmarcke coherency model 

Case 4 Incoherent Qu-Wang-Wang coherency model 

 

 

Fig. 5. Time histories of the synthetic ground motions 

4 Numerical analysis results and discussions 

Fig. 6 depicts the profile of longitudinal distribution of the peak acceleration response of soil 
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on ground surface. Peak acceleration responses of points L1-L41, whose locations are shown 

in Fig. 2, are selected to study. Non-uniform excitation causes differentia of acceleration 

response of soil among different locations in longitudinal direction. As shown in Fig. 6, the 

peak acceleration responses of soil are almost the same under uniform excitation (Case 1), 

while the profiles of distribution of the peak acceleration response of soil are asymmetric 

under non-uniform excitation (Case 2, Case 3 and Case 4).  

 

No matter under uniform excitation or non-uniform excitation, the profile of distribution of 

the peak acceleration response of soil of 3D dynamic analysis basically overlap that of 2D 

free field analysis, which the soil is cased in the continuum model box. It illustrates that a 

continuum model box has almost no influence on the acceleration response of soil in 

longitudinal direction. The effectiveness of continuum model box used in shaking table test 

under non-uniform excitation is verified. More results and discussions are shown from 

different aspects to verify the effectiveness of continuum model box in the following. 

 

Fig. 6. Profile of longitudinal distribution of the peak acceleration response of soil: (a) 

Case 1; (b) Case 2; (c) Case 3; (d) Case 4 

Fig. 7 shows the profile of vertical distribution of the peak acceleration response of soil. It 

should be noted that the peak acceleration response is normalized to the peak value of the 

input ground motion. Totally seven equidistant locations in vertical above each the middle 

point of the driving box A, driven box C and driving box B are selected to studied. In Fig. 7, 

H represents the height of the soil cased in the continuum model box as stated before. There is 

an amplification effect of soil acceleration response. The maximum amplification factor is 
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1.03, which means there is 3% larger than the peak value of the input ground motion, since 

the height of the soil is too small of only 9cm.  

 

Like in longitudinal direction, the profile of vertical distribution of the peak acceleration 

response of soil of 3D dynamic analysis is almost consistent with that of 2D free field analysis, 

especially for driven box C. Although it seems there exists great difference between the 

calculation results of 3D and 2D analysis in driving model box A (Fig. 7(c)), the greatest 

differential is less than 3% actually. Thus, it states that continuum model box has limited 

influence on the acceleration response of soil in vertical direction, and the effectiveness of 

continuum model box is also verified.  

 

Fig. 7. Profile of vertical distribution of the peak acceleration response of soil: (a) Case 1; 

(b) Case 2; (c) Case 3; (d) Case 4 

Fourier Spectrum is used to study the differential of frequency contents of soil acceleration 

response between 3D dynamic analysis with continuum model box and 2D free field analysis. 

Due to space limitation, only the Fourier Spectrum of surface soil acceleration responses 

above the middle point of driving box A, driven box C and driving box B under Case 1 

(uniform excitation) and Case 2 (non-uniform excitation) are depicted in this presented paper. 

Fig. 8 and Fig. 9 show the Fourier Spectrum of soil acceleration responses under Case 1 and 

Case 2, respectively. Under uniform excitation, the frequency contents of soil acceleration 

response in different locations are identical along the longitudinal direction (Fig. 8). There are 
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some differences among the frequency contents of soil acceleration response in different 

locations due to non-uniform excitation (Fig. 9). For example, the predominant frequencies of 

soil acceleration responses of driving box A and driving box B are 1.56 and 0.73Hz, 

respectively.  

 

Under both uniform excitation and non-uniform excitation Cases, the frequency contents of 

soil acceleration response of 3D dynamic analysis with continuum model box are basically 

identical with that of 2D free field analysis. It means continuum model box has little influence 

on the frequency contents of soil acceleration response. The effectiveness of continuum 

model box is demonstrated. 

 

 

Fig. 8. Fourier Spectrum of soil acceleration response under uniform excitation (Case 1) 
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Fig. 9. Fourier Spectrum of soil acceleration response under non-uniform excitation 

(Case 2) 

5 Conclusion 

The goal of this presented paper is to verify the effectiveness of continuum model box 

connecting different shaking tables. A full-scale 3D entity finite element model of soil and 

model box is simulated to study, and 2D free field analysis is conducted as a reference 

standard. To avoid the randomness of calculation results, three conventional coherency 

models are adopted to synthetize non-uniform ground motions as input excitations, 

respectively. The calculation results, including the distributions of peak acceleration response 

in longitudinal and vertical direction and Fourier Spectrum of soil acceleration response, 

show that continuum model box has very limited influence on soil acceleration responses. The 

effectiveness of continuum model box connecting different shaking tables is verified. In the 

end, the conclusion of the presented paper could be valuable to the non-uniform excitation 

shaking table test of underground structure.  
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Abstract 

A new reliability optimization allocation for multifunction systems considering differentiation 
of functions based on GO methodology is proposed in this paper. First, constraints 
considering differentiations of functions are proposed based on GO method, which are 
function importance factor constraint, and system reliability constraint, respectively. Then, the 
objective function of optimization allocation problem is built to minimize the system cost. 
Based on above, the mathematic model of reliability optimization allocation problem for 
multifunction systems considering differentiations of functions is established. In addition, an 
improved Ant Colony Optimization (ACO) is proposed to solve this mathematic model. 
Furthermore, the process of the new method is formulated. Finally, the new method is applied 
in reliability optimization allocation of Power-Shift Steering Transmission whose goal is to 
minimize the system cost. Compared with the results by using basic ACO, it is shown that the 
new method is reasonable, advantageous, and feasible for the reliability optimization 
allocation problem with differentiation of functions. Clearly, this study solves the 
disadvantages of the existing reliability optimization allocation methods efficiently so that it 
can quickly, efficiently, and directly allocate the system reliability index to design units for 
complex systems. All in all, this paper not only provides a new approach to conduct reliability 
optimization allocation for multifunction systems considering differentiation of functions, but 
also improves the theory and widens the application of GO methodology. In addition, this 
paper can also provide guidance for the similar reliability optimization problem 

Keywords: reliability optimization, differentiation of functions, importance factor, 
multifunction systems, Ant Colony Optimization 

Introduction 

The aim of reliability optimization allocation is that the system reliability index is allocated to 
design units considering restrictions, which are cost, size, and weight etc., in order to provide 
guidance for reliability design of product. Nowadays, a large number of studies on reliability 
optimization allocation are mainly as follows: (i) fault-tolerance mechanism, (ii) active and 
cold-standby redundancy, (iii) optimization techniques, (iv) multi-objective optimization, (v) 
optimization techniques: [Kuo et al., (2007)]. With development of technology, the 
multifunction systems are often applied in Engineering, and have a key role. While, a large 
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number of research works of reliability allocation for multifunction systems are only 
considered one single main function of system, and ignored other functions. Clearly, it will 
lead to an unreasonable and a bias of reliability allocation result. Thus, some researchers are 
focus on the reliability optimization of multifunction systems. Lim et al. proposed the 
allocation of the equipment path in a multi-stage manufacturing process: [Lim et al. (2015)]. 
An improved AGREE method is proposed to solve reliability allocation of multi-mission 
networked avionic system without considering resource constraint and system structure: [Li et 
al. (2015)]. For reliability optimization allocation of multifunction systems, Yi et al. proposed 
the reliability optimization allocation method for units designed and units selected versions 
[Yi et al. (2015a-b); Yi et al. (2016a)]. While, above reliability optimization allocation 
methods have three disadvantages, as follows: (i) The product is finalized production through 
multiple design revisions, but the above method is difficult to conduct reliability re-allocation 
quickly and efficiently at the situation of design changes, (ii) The reliability models used in 
above methods are hard to reflect product structure, working principles, (iii) It is difficult to 
quickly, efficiently, and directly allocate the system reliability index to design units for 
complex systems containing series structure and redundant structure. In addition, the 
optimization technologies, such as genetic algorithm, ant colony algorithm, and neural 
network algorithm etc. are used to solve the problem of reliability optimization allocation 
effectively. And Kuo et al. overviewed the optimization techniques for reliability optimization 
allocation: [Kuo and Rin (2007)]. And there are three concerns of the optimization 
technologies for reliability optimization allocation problem, as follows: (i) To obtain 
satisfactory convergence effects and efficiency, (ii) To avoid local extremum problem, (iii) 
For specific problems, the basic optimization algorithm need to improve. It is meaningful to 
improve the basic algorithm so that it is applicable for specific problems and can obtain the 
optimal solution efficiently: [Wang and Lee (2015); Alavidoost et al. (2015); Zhao et al. 
(2015); Yi et al. (2016a)]. 

 
Above all, a reliability optimization allocation method for multifunction systems is described 
through develop reliability optimization allocation problem, and solve this optimization 
allocation problem by optimization technologies. Goal Oriented (GO) methodology is a 
success-oriented method for reliability analysis of complex systems [Yi et al. (2014a-b); Yi et 
al. (2015c-e); Yi et al. (2016b)]. Moreover, the reliability analysis results can be obtained 
through GO operation according to GO algorithm and GO model. The GO model is developed 
directly using product schematic diagrams, its structure, and its functional hierarchy. And GO 
algorithm has a high efficiency and easy to operate. Thus, GO method can be suitable for 
reliability optimization allocation to overcome above disadvantages of the existing reliability 
optimization allocation method. Furthermore, Ant Colony Optimization (ACO) has been used 
widely.  
 
In view of advantages of GO method in aspects of establishing system model and reliability 
analysis, a reliability optimization allocation for multifunction systems considering 
differentiation of functions based on GO methodology is firstly proposed in this paper. First, 
constraints considering differentiations of functions are proposed, which are function 
importance factor constraint, and system reliability constraint, respectively. The function 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

553



importance factor constraint is consist of the predicted function importance factors by using 
allocated reliability of unit based on GO method, and the allocated function importance 
factors. And the system reliability constraint function is consist of the target reliability of 
system, and the predicted reliability of system by using allocated reliability of unit based on 
GO method. Then, the objective function of optimization allocation problem is built to 
minimize the system cost. Based on above, the mathematic model of reliability optimization 
allocation problem for multifunction systems considering differentiations of functions is 
established. In addition, an improved ACO is proposed to solve this mathematic model. 
Furthermore, the process of the new method is formulated. Finally, the new method is applied 
in reliability optimization allocation of Power-Shift Steering Transmission (PSST) whose goal 
is to minimize the system cost. To verify the advantages and engineering applicability of the 
new method, the results of the new method are compared with the results by using basic ACO. 

Reliability optimization allocation method considering differentiation of functions based 
on GO method 

A reliability optimization allocation for multifunction systems considering differentiation of 
functions based on GO method is proposed in aspects of description of reliability optimization 
allocation problem, and solving algorithm. 

Description of reliability optimization allocation problem 

The reliability optimization allocation problem is described through corresponding 
mathematic model, which contains constraints considering the differentiation of functions, 
objective function. 

Constraints considering the differentiation of functions 

(1) Reliability of function and system based on GO operation 

For reliability optimization allocation of multifunction systems considering differentiation of 
functions, the reliabilities of function and system can be obtained by using the success 
probability of design unit and GO algorithm to conduct GO operation according to GO model. 
Thus, GO model and GO operation are key elements in GO method. GO model is directly 
using product schematic diagrams, its structure, and its functional hierarchy, and is consist of 
GO operator and signal flow. GO operator represents design unit and logical relation in 
system, and signal flow represents the specific fluid, logical process, and the direction of GO 
operation. GO algorithm is key element of GO operation, and there are two kinds of GO 
algorithm, which are suitable for GO model with shared signal flow [Shen et al. (2000)], and 
GO model without containing shared signal flow [Shen et al. (2001)]. 
 
Therefore, the reliability of signal flow based on GO method for reliability optimization 
allocation is defined, as follows: 

1 2( , , , )x x x x xyR F R R R=                       (1) 
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where, xR  is the predicted reliability of xth signal flow, xyR  is allocated reliability of yth 

unit for calculating xth signal flow, ( )xF ⋅  is the success probability of xth signal flow 

obtained by using allocated reliability of unit to conduct GO operation according to GO 
model and GO algorithm. 
 
In GO model, the reliability of output signal flows for functions and system represents the 
reliability of system functions and system. 
 
(2) Constraints considering the differentiation of functions 

To deal with the differentiation of functions in the process of reliability allocation, the 
function importance factor constraint is proposed combined the predicted function importance 
factors by using allocated reliability of unit based on GO method with the allocated function 
importance factors, and the system reliability constraint are proposed combined the predicted 
reliability of system by using allocated reliability of unit based on GO method with target 
reliability of system. Assumed that a multifunction system is consists of m units, and can 
execute n functions. 
 
The higher importance factor of function, the higher reliability should be allocated. The 
function importance factor constraint indicates predicted function importance factor by using 
allocated reliability of unit based on GO method should meet the allocated function 
importance factor, as shown in Eq. (2). 

*

1 2

( 1) ( 1)*

( , , , )

( ) ( )Gw Gw

Gw w w w wj

R R
Gw Gw

R F R R R

g R e g R e− −

=


= ≥ =


             (2) 

where, GwR  is the predicted reliability of wth function, wjR  is allocated reliability of jth unit 

for wth function, ( )wF ⋅  is the reliability of output signal flow represented wth function by 

using allocated reliability of unit based on GO method, ( )Gwg R  is the predicted function 

importance factor of wth function, 
*( )Gwg R  is the allocated function importance factor by the 

estimation of function importance factors [Yi et al. (2016a)], 1, 2, ,w n=  , 1 j m≤ ≤ . 

 
The system reliability constraint indicates predicted reliability of system by using allocated 
reliability of unit based on GO method should meet the target reliability of system, as shown 
in Eq. (3). 

1 2
*

( , , , )S S m

S S

R F R R R
R R

=


≥


                      (3) 
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where, SR  is the predicted reliability of system, iR  is the allocated reliability of ith unit, 

( )SF ⋅  is the reliability of output signal flow of system by using allocated reliability of unit 

based on GO method, *
SR  is the target reliability of system, 1,2, ,i m=  . 

Objective function of reliability optimization allocation 

The cost of system is greatly concerned, so the objective function of reliability optimization 
allocation in this paper is to minimize the cost, as follows: 

( ),min ,max
1

min ( ) , , ,
m

S i i i i i
i

C R c P R R R
=

=∑               (4) 

where, ( )SC ⋅  is the cost function of system; ( ),min ,max, , ,i i i i ic P R R R  is the cost function of 

design unit, i.e. ( )
,max

,min ,max
,min, ,

i i

i i

R R
R R

i i i i ic P R R Pe
 −
  − = , iP  is the basic cost of ith unit, iR  is 

allocated reliability of ith unit, ,miniR  is the lower limit value of reliability of ith unit. 

Mathematic model of reliability optimization allocation 

Combining above the objective function and constraints, the reliability optimization allocation 
problem with differentiation of functions can be given by  

,min
1

1

,min ,max
*

1 2

*
1 2

min ( )

. .
1, 2, ,

( ) ( ( , , , )) ( ) 1, 2, ,

( , , , )

i

i

Rm
R

S i
i

i i i

Gw w w w wj Gw

S S m S

C R Pe

s t
R R R i m

g R g F R R R g R w n

R F R R R R

 
−  

 

=


 =




≤ ≤ =
 = ≥ =

 = ≥

∑



 

         

(5) 

Improved AOC for reliability optimization allocation problem 

In order to obtain the satisfactory results effectively, the basic AOC is improved for solving 
the reliability optimization allocation problem with differentiation of functions. Its steps are as 
follows: 
 
(1) Establishing ant colony path diagram 

All of the directed paths allowed the ant individual to walk constitute the ant colony path 
diagram. Each directed path corresponds to an optimization allocated results, and each node 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

556



value corresponds to an allocated reliability of design unit. The ant colony path diagram is 
shown in Figure 1. 

……

1

2

L1

……

1

2

L2

……

1

2

Lm

……

……

……

……
 

Figure 1. Ant colony path diagram 

In Figure 1, the node values of each column represent the selectable allocated results of 
corresponding design unit. And the number of node can be obtained by Eq. (6). 

,max ,mini i
i

R R
N

L
−

=                       (6) 

where, iN  is the number of node of i-th column, L is the step length of node interval. 

 
The ant colony path diagram can be represented by the cell array, as follows: 

1,1 1,2 1,m

2,1 2,2 2,

1,1 2,2 ,

m

L L Lm m

R R R
R R R

R

R R R

 
 
 =  
 
  





   



                  (7) 

where, ,j iR  is the j-th selectable allocated result of i-th unit, 1, 2, ,i m=  , 1, 2, , ij L=  . 

 
(2) Initializing pheromone path diagram 

According to ant colony path diagram, the corresponding pheromone path diagram can be 
established. The carrier of pheromone is the moving path of ant individual. And the 
pheromone concentration of the moving path for ant individual correspond the quality of 
objective function value for such moving path. The pheromone diagram will update with the 
change of the number of iterations, and the pheromone path diagram can be represented by 
the cell array, as follows: 

1,1 1,2 1,m

2,1 2,2 2,

1,1 2,2 ,

( ) m

L L Lm m

Loop

τ τ τ
τ τ τ

τ

τ τ τ

 
 
 =  
 
  





   



                  (8) 
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where, ,j iτ  is the pheromone element of the j-th selectable allocated result of i-th unit; Loop 

is the iterations times, when 1Loop = , the pheromone path diagram is the initialization 

pheromone path diagram, and , 1j iτ = , 1, 2, ,i m=  , 1, 2, , ij l=  . 

 
(3) Ant colony moving 

The process of formation path for each ant is defined as ant colony moving. Each path 
correspond a reliability allocated result. And the reliability allocated result is determined by 
the pheromone path diagram and the cost of each node. The reliability allocated result is 
obtained as follows: 
 
(i) To establish the node probability diagram in order to represent the selected probability for 
ant individual in the node. The node probability diagram can be represented by the cell array, 
as follows: 

1,1 1,2 1,

2,1 2,2 2,

1,1 2,2 ,

m

m

L L Lm m

P P P
P P P

P

P P P

 
 
 =  
 
  





   



                   (9) 

where, ,i jP  is the selected probability of the j-th selectable allocated result of i-th unit, 

,
,

,

,
1 ,

1

1i

i j
i j

i j L

i j
j i j

C
P

C

τ

τ
=

⋅
=

⋅∑
, ,i jC  is the cost of j-th selectable allocated result of i-th unit.  

 
(ii) To obtain the reliability allocated result by using the roulette wheel method to select node 
of each column in ant colony path diagram.  
 
(4) Constraint IF and solving the objective function 

After the ant colony moving, the reliability allocated result obtained by each ant individual 
needs to judge if it meets the constraints based on GO method. If it meets the constraints, 
setting constrain value is 1, i.e., 1constrain = ; otherwise, setting 0constrain = . Then, the 
ant individual corresponding to the minimum value of objective function is determined among 
the ant individuals Satisfied the constraint.  
 
(5) Updating pheromone path diagram 

When making the next iteration computation, the pheromone path diagram needs to update in 
order to improve the convergence efficiency and obtain the satisfactory results. The approach 
of updating pheromone path diagram is as follows: 
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(i) For the ant individual corresponding to the minimum value of objective function in the 
previous iteration, the formula of updating pheromone is given by  

, ,( 1) ( ) ( )i j i j
XLoop constrain Loop constrain
C

tt + = ⋅ + ⋅      (10) 

where, X is the convergence operator, C is the cost of such ant individual. 
 
(ii) For other ant individuals, the formula of updating pheromone is given by 

, ,( 1) ( )i j i jLoop constrain Looptt + = ⋅              (11) 

 
(6) Judging the termination condition 

The iteration times as the termination condition of the improve ACO. If it meets the 
termination condition, the optimal allocation results and system cost will be output. And if it 
does not meet the termination condition, it will operate the algorithm from Step (3): Ant 
colony moving. 
 
Above all, the operation process of improved ACO is shown in Figure 2. 

Setting the 
parameters of 
improved ACO

Outputting the 
optimization allocated 

results and the 
corresponding 

objective function 
value

N

Y

Initializing pheromone path

Establishing ant colony path

Ant colony moving

Constraint IF and solving the 
objective function

Updating pheromone path 
diagram

Judging the termination 
conditions

 
Figure 2. Operation process of improved ACO. 
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Reliability optimization allocation process considering differentiation of functions based on 
GO method 

For systems with differentiation of functions, the process of reliability optimization allocation 
under the goal of minimizing the system cost, based on GO method, are formulated, as shown 
in Figure 3. 

Analyzing system schematic diagrams, 
structure, and functional hierarchy

Determining  the importance factor  of 
functions

System analysis

Establishing GO model

Establishing importance factor hierarchy 
model of functions

Establishing  allocation models

Selecting GO model

Developing GO model

Determining target layer 

Determining criterion layer 

Determining object layer

Establishing constraints

Establishing 
objective function

Describing reliability optimization allocation problem

Determining  function importance factor constraint

Determining  system reliability constraint

Determining cost of unit 

Determining cost of system 

Establishing mathematic model of reliability optimization allocation problem

Setting the parameters of improved 
ACO 

Obtaining the  optimal solutions of 
different populations

Determining the final allocation result

Solving reliability optimization 
allocation problem  

Figure 3. Reliability optimization allocation process for systems with differentiation of 
functions under the goal of minimizing the system cost based on GO method. 

 
Example 

The reliability optimization allocation of PSST considering differentiations of functions under 
the goal of minimize the system cost is conduct by the new method proposed in this paper in 
order to illustrate its feasibility and advantage. In order to show conveniently and compare 
with other results, we assume that: 
 
(1) The PSST is very complex system, which is consist of hundreds of units in 16 subsystems, 
so the system reliability is allocated to units of the oil supple systems, and other subsystems in 
this paper. In addition, the tube and interface of system is not considered in the oil supple 
systems. 
 
(2) The four main functions of PSST is considering in this paper. They are straight driving 
function, steering function, braking function, and fan cooling function, respectively. 
 
(3) The basic costs of unit are set 15. 
 
System analysis of PSST 

(1) Analyzing system working principle and function 

The PSST is consist of 16 subsystems, as shown in Figure 4. 
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Figure 4. Working principle diagram of PSST. 

The oil supply systems contain pressure oil tank oil supply and constant voltage system, and 
hydraulic control oil supply system. And the structure diagram of oil supply systems is shown 
in Figure 5. 
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Figure 5. Structure diagram of oil supply systems. 

(2) Determining the important factor of function  

Only the four functions of PSST all meet the requirements in terms of importance factor, the 
system can be denoted as success. The reliability of function is affected by working time, 
functional property, and the design level. Thus, the target layer A corresponds to the system 
reliability index, the criterion layer C corresponds to the various factors, and the object layer P 
corresponds to the functions of system. 
 
Establishing allocation models of PSST 

(1) Establishing GO model of PSST 

According to the analysis result of PSST, the GO operator types are corresponding function 
description are presented in Tab. 1. In Tab. 1, there are 6 basic GO operators, Type 5’ 
represents virtual input signal, whose success probability is 1, Type 5 represents input unit, 
Type 1 represents two-state unit, Type 6 represents unit controlled by two signals, Type 2 
represents logical relation of OR, Type 10 represents logical relation of AND: [Shen et al. 
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(2002)]. In Tab. 1, Type 22 represents multiple-Input and multi-function unit, Type 15B 
represents multi-conditions control signal of multiple-Input and multi-function unit: [Yi et al. 
(2015b)]. 
 

Table 1. GO operator type in GO model 

NO. 
(operator) 

NO. 
(unit) Component Type NO. 

(operator) 
NO. 

(unit) Component Type 

1 1 Power input 5’ 25 22 HE 1 

2 2 Power input 
assembly 1 26 23 HEB 1 

3 3 Front drive 
assembly 1 27 — OR gate 2 

4 4 
Hydraulic torque 

converter 
assembly 

6 28 24 RV2 1 

5 5 
Planetary gear 
transmission 
mechanism 

6 29 — AND gate 10 

6 6 Auxiliary drive 
assembly 1 30 25 LF3 1 

7 7 
Hydro-viscous 
speed-adjusting 

clutch 
22 31 26 LF3B 1 

8 8 Fan drive 
assembly 1 32 27 CV2 1 

9 9 Oil pan 5 33 — OR gate 2 
10 10 LF1 1 34 28 RV1 1 
11 11 LF1 1 35 29 P4 6 
12 — OR gate 2 36 30 RV3 1 

13 12 P1 6 37 31 
Integrated 

pump-motor 
system 

6 

14 13 P1 6 38 32 Hydraulic control 
system 6 

15 — OR gate 2 39 33 Test system 5 

16 14 LF2 1 40 34 Electron control 
system 1 

17 15 LF2 1 41 — Auxiliary operator 15B 

18 16 LF2B 1 42 35 
Hydrodynamic 

retarder and 
control valve 

1 

19 — OR gate 2 43 — Auxiliary operator 15B 

20 17 Oil tank 1 44 36 Left side power 
integration gear 22 
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cluster 

21 18 P3 6 45 37 
Right side power 
integration gear 

cluster 
22 

22 19 P2 6 46 — AND gate 10 
23 20 DRV 1 47 — AND gate 10 
24 21 TCB 1 48 — AND gate 10 

 
According to Figure 4, Figure 5, and Tab.1, the GO model of PSST is developed from system 
input to system output, as shown in Figure 6. In operators of the GO model, the former 
number is type of operator, and the latter number is a serial number. The number on a signal 
flow is serial number of signal flow. Signal flows 8, 40, 46, 47, and 48 represent output of fan 
cooling, output of breaking, output of steering function, output of straight driving function, 
and system output, respectively. 
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Figure 6. Structure diagram of oil supply systems. 

(2) Establishing importance factor hierarchy model of functions 

According to important factor analysis of function, the corresponding importance factor 
hierarchy model of functions is shown as Figure 7. 
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Figure 7. Importance factor hierarchy model of functions. 

 
Describing reliability optimization allocation problem 

(1) Establishing constraints 

According to Eq. (2), Figure 6 and Figure 7, the function importance factor constraint based 
on GO method is obtained by Eq. (12). 
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−

−

−

−

 = ≥ =


= ≥ =


= ≥ =
 = ≥ =

               (12) 

where, 1( )Gg R , 2( )Gg R , 3( )Gg R , and 4( )Gg R  are the predicted function importance factors 

of fan cooling function, breaking function, steering function, and straight driving function, 

respectively; 8SP , 40SP , 46SP , and 47SP  are reliability of signal flow 8, 40, 46, 47 in GO 

model, respectively; *
1( )Gg R , *

2( )Gg R , *
3( )Gg R , and *

4( )Gg R  are the allocated function 

importance factors by the estimation of function importance factors [Yi et al. (2016a)]. 
 
According to Eq. (3), the system reliability constraint based on GO method is obtained by Eq. 
(13). 

*
48 0.951S S SR P R= ≥ =                       (13) 

where, SR  is the predicted reliability of system based on GO method, i.e. 48SP , *
SR  is the 

target reliability of system. 
 
(2) Establishing objective function 

The objective function of reliability optimization allocation in this paper is to minimize the 
cost, as follows: 
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37

1
min S i

i
C c

=

=∑                         (14) 

where, SC  and iC  are the cost of system and unit, respectively. 

 
(3) Establishing mathematic model of reliability optimization allocation problem 

According to Eq. (12), (13), and (14), the reliability optimization allocation problem with 
differentiation of functions is described by Eq. (15). 
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              (15) 

 
Solving reliability optimization allocation problem 

According to the improved AOC proposed in this paper, the parameters of improved AOC are 
presented in Tab. 2, and the system cost of different iterative times are shown in Figure 8. 
 

Table 2. The parameters of improved AOC for solving Eq. (9) 

Parameter Node Iterative times Ant individuals convergence operator 
Value 20 500 150 500 
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Figure 8. The system cost of different iterative times by improved ACO. 

 
According to Figure 8, the solution convergence is at the 200th convergence time, and the 
system cost is 7.768215814845887e+02. The allocated reliabilities of corresponding design 
units are presented in Tab. 3. 
 

Table 3. The optimization allocated reliabilities of design units by improved ACO 

NO. (unit) Reliability NO. (unit) Reliability NO. (unit) Reliability 
1 0.999885789 14 0.999104211 27 0.999260526 
2 0.999312632 15 0.999052105 28 0.999521053 
3 0.999468947 16 0.999104211 29 0.999100000 
4 0.999208421 17 0.999521053 30 0.999729474 
5 0.999156316 18 0.999364737 31 0.999052105 
6 0.999208421 19 0.999729000 32 0.999312632 
7 0.999000000 20 0.999261000 33 0.999208421 
8 0.999625263 21 0.999417000 34 0.999260526 
9 0.999364737 22 0.999000000 35 0.999208421 
10 0.999260526 23 0.999000000 36 0.999364737 
11 0.999468947 24 0.999469000 37 0.999260526 
12 0.999000000 25 0.999208000   
13 0.999521053 26 0.999469000   

 
4 Result Analysis 

In order to illustrate feasibility and advantage of the new method, the result the results by the 
new method is compared with the results by using basic AOC [Nahas N. et al. (2005)]. First, 
setting the parameters of the node, iterative times, and ant individuals are 20, 500, and 150, 
respectively. Second, the reliability allocated results for each ant individual are obtained by 
operating algorithm according to the node transition rule. Furthermore, the feasible solution is 
improved according to the heuristic rule, and the non-feasible solution is improved by local 
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search to let it become the feasible solution as much as possible. The optimal allocated results 
are obtained in once iterative. Then, the pheromones are updated. If it meets the termination 
condition, the optimal allocation results and system cost will be output. And if it does not 
meet the termination condition, it will operate the algorithm again. The system cost of 
different iterative times is shown in Figure 9. 

 
Figure 9. The system cost of different iterative times by basic ACO. 

 
According to Figure 9, the solution convergence is at the 450th convergence time, the system 
cost is 8.130765482215386e+02. The allocated reliabilities of corresponding design units are 
presented in Tab. 4. 
 

Table 4．The optimization allocated reliabilities of design units by improved ACO 

NO. (unit) Reliability NO. (unit) Reliability NO. (unit) Reliability 
1 0.999468947 14 0.999104211 27 0.999104211 
2 0.999208421 15 0.999910000 28 0.999521053 
3 0.999416842 16 0.999364737 29 0.999156316 
4 0.999416842 17 0.999312632 30 0.999312632 
5 0.999260526 18 0.999521053 31 0.999625263 
6 0.999500000 19 0.999416842 32 0.999915632 
7 0.999952105 20 0.999625263 33 0.999468947 
8 0.999416842 21 0.999677368 34 0.999941684 
9 0.999573158 22 0.999416842 35 0.999208421 
10 0.999312632 23 0.999416842 36 0.999156316 
11 0.999625263 24 0.999416842 37 0.999573158 
12 0.999915632 25 0.999364737   
13 0.999312632 26 0.999931263   
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Tab. 3, Tab. 4, Figure 8, and Figure 9 show that: 

(1) The system cost by using the basic ACO is larger than the system cost by using the 
improved ACO proposed in this paper. In addition, the solution convergence of improved 
ACO is faster than that of basic ACO. Thus, it is illustrated that the improved ACO is more 
effective, and more reasonable for solving the reliability optimization allocation problem with 
differentiation of functions. 
 
(2) The reliability allocated results of 7th unit, 15th unit, 26th unit, 32th unit, 12th unit, and 34th 
unit by using basic ACO exceed 0.9999, which is hard to design in engineering. While, the 
reliability allocated results of all units by using improved ACO are less than 0.9999. Thus, it 
is illustrated that the improve ACO can obtain more satisfactory results, which meet the 
engineering practice. 
 
(3) The analysis process of this new method shows that the new reliability optimization 
allocated method proposed in this paper can overcome the aforementioned disadvantages of 
the existing reliability optimization allocation methods efficiently so that it can quickly, 
efficiently, and directly allocate the system reliability index to design units for complex 
systems. 
 
Conclusion 

This study proposes a new reliability optimization allocation for multifunction systems 
considering differentiation of functions based on GO method. First, the description of 
reliability optimization allocation problem is proposed in aspects of constraints considering 
differentiations of functions based on GO method, the objective function of optimization 
allocation problem whose goal is minimize the system cost, and the mathematic model of 
reliability optimization allocation problem. Then, an improved ACO is proposed to solve 
above mathematic model. Furthermore, the process of the new method is formulated. Finally, 
the new method is applied in reliability optimization allocation of PSST whose goal is to 
minimize the system is cost. In order to verify the advantages and engineering applicability of 
the new method, the results by using improved ACO are compared with the results by using 
basic ACO. And the comparison results show that the new method is reasonable, 
advantageous, and feasible for the reliability optimization allocation problem with 
differentiation of functions. Clearly, this study solves the aforementioned disadvantages of the 
existing reliability optimization allocation methods efficiently so that it can quickly, 
efficiently, and directly allocate the system reliability index to design units for complex 
systems. 
 
All in all, this paper not only provides a new approach to conduct reliability optimization 
allocation for multifunction systems considering differentiation of functions, but also 
improves the theory and widens the application of GO methodology. In addition, this paper 
can also provide guidance for the similar reliability optimization problem. 
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Abstract.  
Stress/displacement field analyzing of mechanical assembly is important for 
predicting mechanical property, and optimizing structural parameters and assembly 
technology parameters of mechanical assembly. However the structural discontinuity 
and material difference of mechanical assembly determines the complexity of stress 
function, it is difficult for analytically computing stress/displacement field of 
mechanical assembly. In this paper, taking bolted joint under the action of normal 
load as the research object, a stress/displacement field layered mapping and 
calculating model of mechanical assembly is proposed, with considering the 
stress/displacement transmission characteristics of mechanical assembly, combining 
state space method and elastic mechanics theory. The model divides mechanical 
assembly as the layered structures, and determines layered constraint conditions 
according to structural discontinuity or continuity in different positions, such as the 
structure at the junction surfaces is discontinuous. Considering the difference between 
bolted joint and the common axsymmetric structure, taking the stresses z , zr and the 
displacements u , w as the state variables, the state equations based on Fourier-Bessel 
series was built to express the stress/displacement transmission relationships. 
Linearizing the stress/displacement transmission rules, the relationships between state 
variables at arbitrary and external load were determined by accumulated calculating, 
and stress/displacement characteristics at arbitrary positions of bolted joint structure 
were obtained. Finally, the pressure distribution of the bolted joint interface, and 
stress/ displacement distribution of the whole bolted joint structure was calculated, the 
comparison among the analytically calculation, FEA and the test data proves the 
effectiveness of the model. 
 

Keywords: Structural discontinuity, Bolted joint, Stress/displacement field,  State 
space method,  Elastic mechanics 

1. Introduction 

Mechanical systems are usually composed of multiple parts, which were assembled 
according to the specific requirements. The contact surfaces among these parts are 
known as the "joint surfaces" or "interfaces", such as bolted joint surfaces, guide 
contact surfaces and the mating surface between hole and shaft. The joint surfaces, 
together with the influence area of stress/deformation in the connected mechanical 
components, are known as "joint" [1]. 
 
Joint surfaces / joints have remarkable influence on the statics, dynamics and 
thermodynamic characteristics of mechanical systems, and obtaining the stress / 
displacement distribution in joints is the basis for accurately analyzing the 
characteristics of mechanical systems. Joint surfaces / joints stiffness, which is closely 
related to the stress / displacement distribution in the joints, is a key factor affecting 
the accuracy of the mechanical systems [2, 3]. Bolted joints and hole-shaft mating 
surfaces often occur fretting fatigue under the external alternating loads, which leads 
to premature parts failure, and the stress / displacement distribution in joints is the 
main factor affecting fretting fatigue [4]. The dynamics characteristics are the key 
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features of mechanical assemblies, the stiffness distributions in joints are the 
important factors influencing dynamics characteristics, and obtaining the stress / 
displacement fields is the premise of calculating stiffness of joints and revealing the 
dynamics of assemblies [5-7]. Moreover, determining the contact area distribution and 
elastic-plastic contact state in joints have also great significance for analyzing heat 
transfer mechanism of assemblies [8, 9]. However, it is difficult to measure directly 
the stress/displacement distribution in joints, theoretical analysis and calculation are 
the primary means of obtaining stress / displacement fields information. 
 
Compared to a single part, the structural discontinuity and material difference of 
mechanical assemblies makes it difficult to calculate the stress / displacement field 
based on the traditional elasticity theory. The traditional elasticity theory based on the 
continuity, uniformity and other basic assumptions, and one component is composed 
of the same material, the stress, deformation and displacement characteristics in one 
component are completely continuous. The mechanical assemblies have the 
discontinuous structure characteristics, the stress /displacement distribution of joint 
surfaces is unknown. Because lacking mature stress/ displacement distribution 
function under the unknown boundary conditions[10-12], it is difficult to accurately 
calculate the stress/displacement field of the mechanical assembly in the traditional 
elastic mechanics system.  
 
Finite element method (FEM) is the current main method of calculating the stress / 
displacement field in mechanical assembly [4, 6, 13-16]. The stress / displacement 
field calculation of joint surfaces / joints belongs to contact nonlinear problem, which 
requires large computation memory but embodies a low computational efficiency. 
Additionally, the FEM computation results depend on the high quality of grids, 
especially need dense grids in the contact area, which also limits the efficiency of 
solving such problems. 
 
Combining with elastic mechanics, the state space methods have been used to 
calculate exactly the stress / displacement fields of laminated plates, functionally 
graded plates, and multi-layer civil structures, etc., these studies provide references 
for the stress/displacement field calculation of bolt joint. Such as, Xiang and Wang[17] 
obtained the exact buckling and vibration solutions of unidirectional ladder 
rectangular plates by combining the Levy method and the state space theory. Chen 
and Ding[18] derived two independent state equation with variable coefficients, and 
analyzed the freedom vibration of transversely isotropic piezoelectric material 
rectangular plate on the basis of three-dimensional theory equations of transversely 
isotropic piezoelasticity. Ying et al. [19] put forward the exact solutions of bending 
and free vibration for functionally graded beams placing on a Winkler–Pasternak 
elastic foundation, based on the two-dimensional elasticity theory and state space 
method. Adopting state space method, Hongyu and Jiarang [20, 21] obtained the 
analytical solutions of bending problem for clamped or simply supported thick 
laminated circular plate, as well as thick laminated circular plate on elastic foundation 
with free edges. 
 
Taking the external load of joint surfaces/joints as the input information and 
stress/displacement distribution as the output information, and expressing the 
transmission characteristics of the stress/displacement as state transition matrix, the 
stress/displacement field can be calculated based on state space theory. The 
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stress/displacement field calculation of mechanical assemblies have the similar theory 
basis to the previous research objects[17-21], with discarding any assumptions about 
displacement pattern and stress distribution, and constructing the stress/displacement 
transfer matrix of mechanical assembly by adopting the state space differential 
equation. 
 
The bolted joint under the action of normal load was selected as research object in this 
paper, the structure, material and loading mode of bolted joint are different from the 
laminated plates, etc., a new calculation model for bolted joint was built. And the 
traditional axial symmetry stress/displacement state equations do not completely 
match with the structural characteristics of bolted joint, the state equations for bolted 
joint was built.  

2. State Space Method in Elastic Mechanics Problem 

State space method is a method to analyze and synthesize control systems based on 
the state variable description in modern control theory. State space method describes 
the state of the system with the state variables, and establishes the relationship 
between the state variables within the system and the external input/output variable. 
State equation is the mathematical description which reflects the causal relationship 
between state variables and input variables in state space method. Because state space 
method uses matrix representation, the increase in the number of state variables, input 
variables or output variables, does not increase the complexity of the system 
description, which makes it especially suitable for dealing with multiple input, 
multiple output and multivariable system problems. 

 
Using the state space method to solve the elastic mechanics problem, first of all, 
should select the key unknown variables as state variables, and then set up the 
mechanics model according to the actual problem. The number and the type of the 
state variables depend on the specific problem. For example, the stresses z , xz , yz

and the displacements u , v , w  can be selected as state variables，and constitute the 
state vector 

T

z xz yzS u v w      . The ordinary differential state equation of 
elastic mechanics problem can be obtained by physical equation, equilibrium equation, 
and a series of changes, such as series expansion, Laplace transform, Hankel 
transform, etc. Generally the form of ordinary differential state equation as follows:  
 

     d
S z DS z z

dz
                            (1) 

 
where  S z  is the state vector, D  is a square matrix related to material parameters, 
 z  is an array related to boundary conditions. The state equation is obtained by 

solving Eq. (1) as follows: 
 

       0S z T z S z                               (2) 

 
where square matrix  T z  is the state transition matrix. Thus, the state  S z  that 
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transfers any distance along the z direction is obtained from Eq. (2), with the known 
initial state  0S . 
 
The state space method is an effective way to deal with the discontinuous structure 
problem of mechanical joints, which divides the matching components into different 
"chains" and sets the boundary conditions so as to adapt to the material discontinuous 
characteristic in structure and material. And it calculate the stress/ displacement 
exactly by dividing a single component (corresponds to a "chain") into different 
virtual "layers". Moreover, the assembly that is divided into virtual layers, is an 
end-to-end chain system, whose state variables can be obtained from the simple 
accumulation of the state transition matrix. Since the number of the state variables 
don't vary with the number of "chains" or "layers", to a great extent, complex 
problems can be simplified. 

3. Calculation Model for Bolted Joint 

3.1 Model Assumption 

To research the stress/displacement field in bolted joints, the analytical model is 
assumed to be the axisymmetric mechanics problem as shown in Fig. 1. The two 
bolted plates are expressed as hollow cylinder andⅠ Ⅱwith inner diameter 2a  and 
outer diameter 2b , whose thicknesses are 1h and 2h  respectively. Preload is an 
axisymmetric distributed pressure  p r  on the upper surface of hollow 
cylinder over an annular region Ⅰ a r c  . Hollow cylinder corresponds to the Ⅱ
bolted member with a fixed lower surface. All of the cylindrical surfaces of hollow 
cylinder andⅠ  Ⅱ are free boundaries. Take the center of upper surface of hollow 
cylinder as the coordinate originⅠ O . Take the central axis of the hollow cylinders as 
the symmetry axis z , whose direction is vertical downward, and axis r  is in the 
horizontal direction, the global cylindrical coordinate system  , ,r z  is established 
as shown in Fig. 1(a). in the same way, the local cylindrical coordinate systems 
 1, ,r z  and  2, ,r z  are established on hollow cylinder and , respectively.Ⅰ Ⅱ  
 
To make the model as simple as possible, following basic assumptions are used: 
 
(1) The material of each hollow cylinder is assumed to be ideal elastic, continuous, 
homogeneous, and isotropic. 
 
(2) Body forces are ignored. 
 
(3) The roughness, flatness and other practical machining errors of the contact surface 
are ignored, the joint surface is absolutely smooth and flat. 
 
(4) The points in the contact surface of the two pieces of hollow cylinders always 
maintain contact during the loading process.  
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(a)                                 (b) 

Fig. 1 Analytical model of bolted joint 

3.2 Boundary Conditions 

To simplify the calculation, the distributed pressure  p r  in Fig. 1 is assumed to be a 
uniformly distributed load whose resultant force is F : 
  

 
 

 

2 2( )
0

F
p a r c

c ap r

c r b


     
  

                   (3) 

 
In this paper, the superscripts (1) and (2) denote the mechanical characteristics of 
hollow cylinderⅠ and Ⅱ respectively, and u  and w  denote horizontal and vertical 
displacement respectively. The boundary conditions are given by Eq. (4) ~ (7).  
 
(1) The upper surface of hollow cylinderⅠ: 

 
1 0z  ：  (1) (1), 0z zrp r    ，                      (4) 

 
 (2) The lower surface of hollow cylinderⅡ: 
 

2 2z h ： (2) (2) 0u w                             (5) 

 
 (3) The contact surface of hollow cylinder and :Ⅰ Ⅱ  

 

1 1 2, 0z h z  ： (1) (2) (1) (2) (1) (2), , = =0z z zr zrw w                 (6) 

  
(4) All of the cylindrical surfaces: 

 

,r a b ： (1) (2) (1) (2)=0, 0zr zr r r                         (7) 
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3.3 State Equations 

The stress/displacement field calculation in bolted joint under the normal load belongs 
to axisymmetric problem, whose physical equations are expressed as follows: 
 

( 2 )

( 2 )

( 2 )

( )

r

z

zr

u u w
G

r r z
u u w

G
r r z
u u w

G
r r z
w u

G
r z



   

   

   



       
       

      
  
    

 

                    (8) 

 
where   is Lame Constant, G  is the shear modulus. 
 
The equilibrium equations of axisymmetric problem are expressed as follows: 
 

0

0

rr zr

zr z zr

r z r

r z r

  

  

      
    
  

                       (9) 

 
Let 
 

2

1 2

2

3 4 5

, 2
2 2

1 1, ,
2 2

C C G
G G

C C C
G G G

 
 


 

    
 

   
 

          

       

 
Eliminating r  and   from Eq. (8), we obtain 
 

2 3 1r z

u u
C C C

r r
 

  


                       (10) 

3 2 1 z

u u
C C C

r r 
  


                       (11) 

 
Selecting u , w , zr and z  as the state variables, the following is obtained from Eq. (8) 
and (9). 
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5

1 4

2

2 12 2

0 0

1 0 0

1 1 0 0

10 0 0

zr zr

z z

C
r

u uC C
r rw w

z
C C

r r r r r

r r

 
 

   
                                        

        

   (12) 

 
This paper expands the solution of Eq. (9) into following Fourier-Bessel series 
 

     

     

     

     

1
1

0 0
1

1
1

0 0
1

, (z)

, ( )

,

, ( )

m m
m

m m
m

zr m m
m

z m m
m

u r z U z V r rU

w r z W z W z V r

r z R z V r

r z Z z Z z V r





 

 


















 




 

 

  











                  (13) 

 
The form of Fourier - Bessel series Hongyu and Jiarang [20,21] proposed, can meet 
the boundary conditions of circular plate, but cannot meet the boundary conditions of 
bolted joint structure (hollow cylinder). To solve this problem, the form of the 
function ( )mV r   is structured as follows: 
 

   
   ( ) m

m m m
m

J b
V r J r Y r

Y b


  



  


   

 
where  mJ r   and  mY r   are the first type and the second type  -order Bessel 
functions separately.  U z  is an unknown function for z . mU , mW , mR  and mZ

 0,1,2,3,m    are respectively the coefficients of Fourier-Bessel series of u , w , zr  
and z . /m m a  ,  1,2,3,m m    is the m -th positive root satisfying the 
following equation 
 

   1 1 1 1 1 2 30, (0 )m m m m

b b
J Y J Y

a a
                

   
        (14) 

 
1( )mV r  satisfies 1 1( ) ( ) 0m mV a V b   , therefore Eq. (13) satisfies the boundary 

conditions =0zr  in Eq. (7). In addition, to satisfy boundary conditions of cylindrical 
surfaces, there should be 0r   at r a  or b . Substituting the first and the forth 
equation of Eq. (13) into Eq. (10) and setting 0r  , the following two equations can 
be obtained, and the unknown function  U z  can be determined from Eq. (15) and 
(16). 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

577



 

 

           3 2 2 1 0 1 0
1

0m m m m
m

C C U z C U z C Z z V a C Z z 




       ,at r a        

(15) 

           3 2 2 1 0 1 0
1

0m m m m
m

C C U z C U z C Z z V b C Z z 




       ,at r b         

(16) 

Performing the following series expansion 
 

 

 

 

1
1

0 0
1

2

12 2
1

1

1 1

m m
m

m m
m

m m
m

r A V r

r B B V r
r r

r C V r
r r r r























      
        









 



                (17) 

 
The coefficients are obtained according to related knowledge of Fourier - Bessel 
series as follows 
 

   

 

2 2
2 2

0 2

0, 1,2,3,

m m
m

m m

m m

c V c a V a
A

M

B

B C m

 







  





 

 

 

Where 

 

   2 2 2 2
0 0

2
m m

m

b V b a V a
M

 
  

 
Substituting Eq. (13) and (17) into Eq. (12), the following equation can be obtained  
 

     d
S z DS z z

dz
                           (18) 

 

Where 

 

          T

m m m mS z U z W z R z Z z                 (19) 
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5

1 4
2

2 1

0 0
0 0
0 0

0 0 0

m

m

m m

m

C

C C
D

C C



 



 
 
 
 
 

 

                    (20) 

       1 2 0
T

m m m

dU z
z A C B U z C C U z

dz

 
    

  


            (21) 

 
Eq. (17) is a nonhomogeneous ordinary differential equation, and solving it yields the 
state equation as follows 
 

       0S z T z S z                         (22) 

 

Where 

 

     DzT z e                              (23) 

       
0

z D z tz e t dt                            (24) 

 
In Eq. (22),  S z  is the state vector at z , namely the coefficient terms of 
Fourier-Bessel series,  0S  is the initial state vector on the upper surface. For a 
certain m , the matrix D  is a constant matrix, so  T z can be obtained. The 
parameters of  z  are known except  U z . Therefore, For a certain m , the state 
vector  S z , namely the coefficients of Fourier-Bessel series mU , mW , mR  and mZ  
at z , can be obtained with the initial state vector  0S  in Eq. (22), only if the 
function  U z  is determined. 
 
Particularly, there are the following relation for 0m  . 
 

 

     

0

0 4 0 1 0

0d
Z z

dz
d

W z C Z z C B U z
dz

 

  


 
                    (25) 

3.4 Coefficients of Fourier-Bessel Series for 1m   

Determining the function  U z  is the key to Stress/displacement  field  calculation. 

As shown in Fig. 2, the j -th hollow cylinder is divided into jN  virtual sublayers 
averagely, and the thickness of each sublayer is /j j jd h N . Let ,j ix  and , 1j ix   be 
the end-values of the upper surface and the lower surface of the i -th sublayer in the 
j -th hollow cylinder, respectively. As shown in Fig. 3, provided that the sublayer is 
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thin enough, it is reasonable to consider that the unknown function  U z  in the 
sublayer is linear distributed along z direction [20]. So in the i -th sublayer of the j

-th hollow cylinder, function  U z  can be denoted by  , ,j i j iU z  as follows, in the 
local coordinate system whose origin of axis ,j iz  is on the upper surface of the 
sublayer. 
 

  , 1 ,
, , , , ,, (0 , 1,2, , , 1,2)j i j i

j i j i j i j i j i j j
j

x x
U z z x z d i N j

d
 

             (26) 

 

1h

2h

















1,1x

1,ix
1, +1ix

11, 1Nx 
2,1x

22, 1Nx 

 U z
O

1N

2N





 





 
Fig. 2 Sublayers and corresponding  U z  

,j iO  , ,j i j iU z
,j ix

, +1j ix

,j iz  
Fig. 3 Linear distribution assumption 

 

Linear distribution assumption (26) causes calculation error, but if the number of the 
sublayers jN increases gradually, the error will decrease. So the error is controllable 
and jN can be determined based on the accuracy requirement. For any sublayer, the 
ordinary differential state equation is obtained according to Eq. (18), (21) and (26) 
 

     , , , , , ,j i j i j j i j i j i j i

d
S z D S z z

dz
                       (27) 

 

Where 

 

  , , 1
, , 0 0 0

T

j i j i
j i j i m

j

x x
z A

d
 

   
  
                      (28) 

 
According to Eq. (22) ~ (24), the solution of Eq. (27) is obtained 
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       , , , , , ,0j i j i j j i j i j i j iS z T z S z                        (29) 

 

Setting ,j i jz d  in Eq. (29), the solutions of adjacent sublayers within the same part 

as follows. 

 

       
       

, , ,

, 1 , 1 , 1

0

0

j i j j j j i j i j

j i j j j j i j i j

S d T d S d

S d T d S d  

   


  
                  (30) 

 
The continuity condition between the sublayers is 
 

   , , 1 0j i j j iS d S                               (31) 

 
Perform Eq. (30) and (31) successively for all the sublayers, and finally the 
relationship between the state vectors of the lower surface of the j -th hollow 
cylinder  , jj N jS d  and the upper surface  ,1 0jS  can be expressed as the following 
formula: 
 

         , ,1 ,0 , 1, 2j

j j

N

j N j j j j j N jS d T d S d j                  (32) 

 

Where 

 

         
     

1 2

, ,1 , 2

, 1 ,

j

j j

j j

N

j N j j j j j j j j N j

j j j N j j N j

d T d d T d d

T d d d








          

  


         (33) 

 
In the local coordinate system of each sublayer, the state vector is  
 

         ( , ) ( , ) ( , ) ( , )
, , , , , ,

T
j i j i j i j i

j i j i m j i m j i m j i m j iS z U z W z R z Z z           (34) 

 
where  denots sublayer’s upper surface,  denots sublayer’s lower 
surface. 
 

According to the boundary condition (4), the following is given: 

 

 (1,1) 0 0mR                              (35) 

 

, 0j iz  ,j i jz d
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In addition, the distributed pressure  is known, so  can be expressed as 

the form of Fourier-Bessel series according to Eq. (30) 

 

       (1,1) (1,1)
0 0

1
0 0m m

m

p r Z Z V a r




                           (36) 

 
According to the boundary condition (5), the following is given: 
 

   2 2(2, ) (2, )
2 2 0N N

m mU d W d                   (37) 

 
According to the boundary condition (6), the following is given: 
 

   1(1, ) (2,1)
1 0N

m mW d W ，    1(1, ) (2,1)
1 0N

m mZ d Z ，    1(1, ) (2,1)
1 0 0N

m mR d R   (38) 

 
Regarding the variables of  and  in Eq. (33) as unknown, 
there are 16 unknown variables in total, eight of which can be eliminated by Eq. (35) 
~ (38). Therefore, the expression of other unknown variables can be solved from Eq. 
(32). Obviously, the expression of  is also obtained. It is important to note that 
the expression of  also contains the undetermined constants  
( ； ). After determining the expression of , by repeating 
the derivation process of Eq. (32) , the stress/displacement of the -th sublayer in the 

-th hollow cylinder can be calculated, matrix  , ,j i j iz  and vector  , ,j i j iz  are 
not difficultly to obtain. 

 

       , , , , ,1 , ,0j i j i j i j i j j i j iS z z S z                         (39) 

 
If global coordinate  locates in the -th sublayer of the -th hollow cylinder, 

,j iz  is given by 
 

 
 

1
,

1 2

1 , ( 1)

1 , ( 2)j i

z i d j
z

z h i d j

    
   

                        (40) 

3.5 Coefficients of Fourier-Bessel Series for 0m   

The following formulas is obtained from Eq. (25) and (26): 
 
 

     
       

( , ) ( , ) (1,1)
0 , 0 0

( , ) ( , ) ( , )
0 , 0 4 0 , 1 , , 1 ,

0 0

0 0

j i j i
j i

j i j i j i
j i j i j i j i j i

Z z Z Z

W z W C Z z C x x z

  


   
       (41) 

 p r  p r

 , jj N jS d  ,1 0jS  1, 2j 

 ,1 0jS

 ,1 0jS ,j ix

1,2, , 1ji N  1,2j   ,1 0jS

i

j

z i j
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Particularly, setting , the following formulas can be obtained: 
 

       ( , ) ( , ) (1,1)
0 0 4 0 1 , , 10 0j i j i

j j j i j i jW W d C Z d C x x d             (42) 

 
According to the boundary conditions, the following is given: 
 

 
   
   

2

1

(2, )
0 2

(1, )(2,1)
0 2 0 1

( , 1) ( , )
0 0

0

0

N

N

j i j i
j

W d

W d W d

W W d







                            

 
Therefore, all of the  can be solved from Eq. (42), and then the expression 

of  at any position can be obtained from Eq. (41). 

3.6 Solving the Undetermined Constants 

There are  undetermined constants  in the -th hollow cylinder, add up 
to 1 2 2N N   undetermined constants in hollow cylinder Ⅰand Ⅱ, to solve the 
undetermined constants,  equations were needed. Set ，

,where ， 2n  are positive integer. By solving Eq. (26), (39), (40) and (41) ，
 ,j iU z ,  and  at the position of Eq. (43) can be determined, and 

substituting them into Eq. (15) and (16),  linear equations are obtained, 
and all the undetermined constants can be solved. The state variables at any position 
in the two hollow cylinders can be determined according to Eq. (39) and (41), and 
the corresponding stress/displacement can be obtained by substituting the 
coefficients into Eq. (13). 
 

1 1 1 1

2 2 2 2 2 2

2 , ( 0,1,2,3, , )
2 , ( 0,1,2,3, , , 1)

k d k n
z

k d k n but k n


    




            (43) 

4. Calculation Example  

4.1 Comparison of Three Methods 

To verify the effectiveness of the above method, a specific example is designed, as 
shown in Fig. 4, the contact stress of the joint surface is extracted, and comparing 
with the experimental measurement and the finite element analysis result is carried 
out.  
 
Both the material of the two hollow cylinders are Q235, Young's modulus 

5
1 2 2 10 MPaE E   , Poisson's ratio . the parameters in Fig. 1 are 

, , , , . The normal load on the surface 

,j i jz d

 ( , )
0 0j iW

 ( , )
0 ,

j i
j iW z

1jN  ,j ix j

1 2 2N N  1 12N n

2 22N n 1n

 ( , )j i
mU z  ( , )j i

mZ z

1 2 2N N 

1 2 0.3  

6.3a mm 45b mm 12c mm 1 10h mm 2 20h mm
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is , which can be expanded into the form of Fourier-Bessel series 
according to Eq. (36). The coefficients is given by 
 

 
 

   

2 2

2 2
(1,1)

1

, 0
0

, 1,2,3,
m

m

m m

c a
p m

b a
Z

pcV c
m

M




 
   
 



                      

 
A satisfactory results was obtained by setting and selecting first 10 items 
of the Fourier-Bessel series. 
 
In the experimental, two hollow cylinders of Q235 with 12.6  through-hole were 
placed on worktable and connected by M12 bolt and 24  gasket. The normal load 
reached 4500N , which was measured by a pressure sensor. The contact stress was 
measured by means of the pressure-sensitive film, as shown in Fig. 4. 
 

 
Fig. 4 Experimental setup for joint contact stress test 

 
The white pressure-sensitive film turns red under pressure, and the red concentration 
increases with the increase of intensity of pressure. So the contact stress can be 
measured by evaluating the color concentration of the film. Fig. 5(a) shows the 
scanning image of the pressure-sensitive film after experiment. Fig. 5(b) shows the 
contact stress distribution with a three-dimensional figure. The figure clearly shows 
that the contact stress presents "steep peak" shape distribution, the maximum contact 
stress appears near the center of the load, and the stress decreases rapidly from the 
center to the edge until reduces to zero. 
 

1l
2l

3l
4l

o

          

z


    
 (a) Scanning image of the film                (b) 3-D distribution figure         

Fig. 5 Contact stress distribution in bolted joint 

4500F N

1 2= =80N N
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As shown in Fig. 5, because of the machining error of specimens, the position 
deviation of bolt installation and the measurement error of pressure-sensitive film, 
measurement result is not absolutely axisymmetric. In order to eliminate the impact 
of these factors on the measurement result, four straight paths along radial direction, 

1l ~ 4l , are set up on the film, as shown in Fig. 5(a). The pressure value of several 
points of the paths are extracted, and the average value of the same radial position 
are obtained. Thus, the contact stress distribution along radial direction are obtained. 
It should be noted that because the measurement error is large near the edge of the 
hole, the experimental data at the position isn't extracted.  
 
Fig. 6 shows the contact stress distribution curves of state space method (SSM), 
experimental measurement and finite element method (FEM). The negative value 
denotes compressive stress. It can be seen that three distribution curves have a good 
consistency, so the state space method of this paper is accurate and reliable. 
 

 

Fig. 6 Data comparison of contact stress  

4.2 Stress / Displacement Field in Bolted Joint 

The stress and displacement information of bolted joint are extracted on the basis of 
the state space method calculate model proposed in this paper. Some stress and 
displacement distribution curves along radial direction are shown in Fig. 7. It can be 
seen that normal stress z  and vertical displacement w  both own considerable 
variation gradient at r c , but tangential stress zr  and horizontal displacement u  
appear to be bigger values at r c  than other positions. Moreover, with the increase 
of coordinate r , all the stresses and displacements tend to zero as shown in Fig. 7. 
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 (a) Normal stress z                         (b) Tangential stress zr  

 

      
(c) Vertical displacement w                    (d) Horizontal displacement u  

Fig. 7 Stress and displacement distribution curves along radial direction 
 

For mechanical discontinuous structure problem, normal stress z  and vertical 
displacement w  are likely to be the mechanics characteristics people pay more 
attention to. Some stress and displacement distribution curves along z  direction are 
shown in Fig. 8. It can be seen that z and w  decrease nonlinearly with the 
increase of z . In order to display the distribution of bolted joint under the normal 
load more visually, the contour map of z  and w  are drawn, as shown in Fig. 9. 
The z  and w  in the bolted joint subjected to a normal load, can transmit 
swimmingly from the upper plate to the lower plate, and shows a good continuity. 
The influence region of the external load is mainly on the surface region a r c  , as 
well as its lower region. With the increase of z , the influence region spreads 
gradually, nevertheless, the stress and displacement decrease rapidly.  
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(a) Normal stress z                         (b) Vertical displacement w  

 Fig. 8 z and w  distribution curves along z  direction 
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Fig. 9 Contour map of z  and w  

5. Conclusions 

A stress/displacement field calculation model combining elastic mechanics with state space theory 
is established to solve the mechanical calculation problem associated with the discontinuity of 
structure and material in bolted joints. The stress / displacement distribution regularities of the 
joint surface and the components are obtained accurately, and the transfer characteristic of 
mechanics characteristics in bolted joint structure is analyzed. 
 
The calculation model based on state space theory is a new way to calculate the stress / 
displacement field in bolted joints rapidly. It can rapidly and accurately obtain the relationship 
between the mechanics characteristics distributions in bolted joint and the factors such as structure, 
material, load, and so on, and has a wide application prospect in the design and optimization 
process of bolted joints. 
 
This model still has some shortcomings. For example, because of ignoring the flatness, waviness 
and roughness of the contact surfaces, there will be a deviation between the calculation results and 
the actual situation to some extent. The object of the model is only limited to simple geometric 
shapes and force conditions. The analytical model of the mechanics characteristics of the complex 
geometry parts subjected to non-axisymmetric loads or horizontal load (unidirectional load, 
rotational load) needs further study. 
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Abstract 

Seismic response of structure under soil-structure interaction effect (SSI) is an impressive 
subject in earthquake engineering domain. Many analytical models and methods have been 
proposed and utilized. These methods can be categorized as direct and substructure (indirect) 
approach. Due to the simplicity requirement, substructure approach is frequently utilized in 
practical work and research field. In this approach, the analysis procedure is distinguished into 
three steps: foundation input motion (FIM), dynamic impedance (Spring-Dashpot), and 
seismic response of structure. However, the state of problem in this approach was found and 
needed to improve. In the existing analytical model under substructure approach, SSI problem 
is performed with equivalent-linear of soil material and motion in frequency domain (FD). 
This restriction can lead to mismatched response results between SSI analysis and actual 
response of structure during earthquake disaster. 

Therefore, the objective of this paper is to propose an analytical model considering nonlinear 
response of soil material and motion in time domain (TD), which leads to perform the seismic 
response of structure under nonlinear SSI effect using substructure approach.  

In this paper, the proposed analytical model procedure considering nonlinear response of soil 
material and motion were presented. An example was provided to validate this proposed 
analytical model. Moreover, the seismic response of structure under existing analytical model 
and proposed analytical model considering nonlinear response of soil material and motion 
were conducted. The seismic response of structure was performed under linear response of 
base-shear, overturning-moment, acceleration, and relative-displacement. Furthermore, the 
foundation stiffness-damping and hysteretic curve were also provided.  

According to the nonlinear response motion in TD from the proposed analytical model, this 
motion showed a good agreement compared to the linear and equivalent-linear response of 
ground motion in FD. This agreement confirmed about the validation of this proposed 
analytical model. Furthermore, the seismic response of structure, it was showed that the 
response results under existing analytical model were larger than the responses under the 
proposed analytical model. These discrepancies showed about the overestimated results of 
using existing model compared to the actual response of structure under earthquake disaster.  

Keywords: Soil-structure interaction, substructure approach, nonlinear response of soil 
material, nonlinear SSI effect. 

Introduction 

Soil-Structure Interaction (SSI) problem is regarded as a crucial major in earthquake 
engineering domain. SSI analysis permits evaluating the seismic response of structure and 
foundation system including the interaction effect of soil medium. This analysis leads to an 
understanding the actual response of structure under earthquake disaster and controlling the 
damage response of structural elements. 

In order to perform SSI analysis, there are three significant interaction effects that have to 
consider: kinematic interaction effect, inertial interaction effect, and soil-foundation flexibility 
effect [1]. To evaluate these interaction effects, various methods have been proposed and 
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utilized such as Finite Element Method (FEM), Boundary Element Method (BEM), the 
coupling of FEM-BEM, Discrete Element Method (DEM), etc. However, these methods can 
be categorized as direct and substructure (indirect) approach [2]. In direct approach, the 
structure and soil are simulated within the same model and analyzed as a complete solution. 
This approach can deal with complicated structural geometry and soil condition. Many studies 
have been conducted base on this approach. However, this approach is rarely used in practical 
work, especially for complex geometrical structure and nonlinearity behavior of soil medium 
as a result of large computer-storage, running time, and cost consumption [3]. In substructure 
approach, SSI problem is commonly distinguished into three evaluation steps, which are 
combined to a complete solution of the seismic response of the whole structure base on the 
law of superposition [1]. These evaluation steps include foundation input motion (FIM), 
dynamic impedance (Spring-Dashpot), and seismic response of structure. This approach is 
widely used in research and practical works due to the simplicity, time, and cost consumption. 
However, this approach is commonly performed with equivalent-linear response of soil 
material and motion in FD. This restriction can cause mismatched structural responses 
between analysis and actual response of structure under earthquake disaster. 

In order to deal with this restriction, the objective of this paper is to propose an analytical 
model considering nonlinear response of soil material and motion, which facilitates 
performing seismic response of structure under nonlinear SSI effect using substructure 
approach. In order to obtain this objective, the 3D RC frame structural model was used in this 
study. This structure was assumed as a rigid surface foundation and supported by uniform soil 
medium. The Kobe earthquake record data was used as input motion in this study. Other 
relevant parameters were presented in the following sections.  

Existing Analytical Model of SSI Effect under Substructure Approach  

Foundation Input Motion (FIM) 

FIM can be derived from the relationship of free field ground motion (FFGM) and transfer 
function. FIM component is composed by translation and rotation motion that can be 
expressed in Eq. (1) and (2) [4] [5], respectively. 

( ),FIM u gu f H u=       (1) 

( ), ,FIM gf u I Bφφ =                  (2) 

  Where 

    ,FIM FIMu φ : translation and rotation of FIM 

    gu : free field ground motion 

    ,uH Iφ : translation and rotation of transfer function 

    B : foundation dimension   

In this step, FFGM is performed in FD using equivalent-linear method, which is extensively 
described in the geotechnical earthquake engineering [6]. This method has been used and 
described in many programs such as SHAKE [7], EERA [8], etc. According to this method, 
the equivalent-linear response of soil material (,EL ELG ξ ) and the corresponding FFGM at the 
ground surface (gu ) were achieved.  

Regarding for the transfer function ( ,uH Iφ ), various expressions under relationship of 
foundation and wave motion types were described in NIST guideline for SSI problem [5], 
Mylonakis et al [4], Nikolaou et al [9], etc. 

Based on the description above, the FIM can be achieved corresponding to soil conditions, 
wave motions, and foundation types.  

Dynamic Impedance (Spring-dashpot) 

Dynamic impedance function is an interaction function between foundation and soil medium. 
This function is represented by spring and dashpot of soil-foundation interaction system as 
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shown in Fig. 1. The equation of this function is composed by the stiffness (real part) and 
damping (imaginary part) as expressed in Eq. (3) and (4) [3]-[5]. 

i i iK k i cω= +        (3) 

      ( )1 2i i iK k i β= +       (4) 

      
2

i
i

i

c

k

ωβ =        (5) 

  Where   

    iβ : radiation damping ratio of foundation 

    iK : complex-valued impedance function 

,i ik c : frequency-dependent foundation stiffness and dashpot 

 

 
 
 
 
 
 

Figure 1. Soil-foundation system [5] 

In the Eq. (4), the foundation stiffness ik  can be expressed in function of constant equivalent-
linear soil material values (,G υ ) from the FFGM analysis in FD and foundation dimensions 
while the foundation damping can be expressed in function foundation stiffness and radiation 
damping ratio as shown in Eq. (5). 

Various expressions have been proposed for both functions (,i ik c ) related to different types of 
foundation and soil conditions. For instance, Mylonakis et al. [4], Gazatas [11] [12], Pais et al. 
[13] have proposed the solutions for surface and embedded foundation with different types of 
soil condition while the solution for single pile and group of pile have been discussed in NIST 
[5].  

Seismic Response of Structure 

For the seismic response of structure, the structure was assumed to support by spring and 
dashpot that computed in the second step and subjected to FIM in the first step, as shown in 
Fig. 2. The seismic response of the structure under SSI effect can be solved under both FD 
and TD [25] as expressed in Eq. (6) and (7), respectively.   

 

 

 

 

 

 

 

Figure 2. Structure model under SSI effect 
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-FD Equation: 

 [ ] [ ] [ ]( ){ } [ ]{ }2 2
01M i C K U M Uω ω ω− + + =       (6) 

 

-TD Equation:                 

     [ ]{ } [ ]{ } [ ]{ } [ ]{ } 01M u C u K u M u+ + = −ɺɺ ɺ ɺɺ           (7) 

Where 

                              [ ] [ ] [ ], ,M C K : mass, damping, stiffness of the whole structure 

0,U U : structure displacement and foundation input motion 

, ,u u uɺɺ ɺ : acceleration, velocity and displacement of structure 

0uɺɺ : foundation input motion 

According to the description in the existing analytical model above, the seismic response of 
structure considering SSI effect is solved under equivalent-linear of soil material and FFGM 
in FD. However, due to this condition, this analytical model might not represent the actual 
response of structure under earthquake disaster. Therefore, an analytical model of SSI effect 
considering the nonlinear response of soil material and FFGM in TD was proposed as in the 
following sections. 

Proposed Analytical Model of Nonlinear SSI Effect using Substructure Approach 

Free Field Ground Motion Analysis in TD 

As described above, the existing analytical model of SSI problem can be performed only with 
equivalent-linear response of soil material, which can lead to mismatched response of analysis 
results compared to the actual response of structure under earthquake disaster. Thus, the 
objective of this paper is to propose an analytical model considering the nonlinear response of 
soil material and motion that facilitated performing the seismic response of structure under 
nonlinear SSI effect. 

In order to perform FFGM analysis in TD, the cooperation of FFGM analysis in FD was 
necessary. FFGM analysis in TD was performed by using Newmark’s equation [14]-[18], as 
expressed in Eq. (8). Furthermore, the modified Ramberg-Osgood model [19] was used for 
hysteretic rule of nonlinear response of soil material. In each layer, soil model can be 
represented by consistent mass, dashpot, and nonlinear spring, as shown in Fig. 3. 

 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } gM u C u K u M I u+ + = −ɺɺ ɺ ɺɺ                           (8) 

Where 

                [ ],[ ],[ ]M C K : mass, damping, stiffness matrix 

                                        { },{ },{ }u u uɺɺ ɺ : acceleration, velocity, displacement vector 

                                        { }guɺɺ : acceleration at the base of column  

                                        { }I : unit vector 

The soil element matrix in each layer can be expressed from the Eq. (9) to (11): 

                                                  
2 1

[ ]
1 26

h
M

ρ  =  
 

       (9) 

                                                   
1 1

[ ]
1 1

G
K

h

− =  − 
      (10) 
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                                                   [ ] [ ] [ ]R RC M Kα β= +                                                           (11) 

                     Where 

                                         ρ : unit weight of soil,       h : thickness in each layer 

                                         G :shear stiffness of soil,    ,R Rα β : coefficient of Rayleigh damping 

According to Rayleigh [20], Rα and Rβ coefficient can be computed using two significant 
modes m and n: 

                                                

1
1

12

m
n mR

R nn
m

ωω ξα
β ξωω

 
     =          

                                                 (12) 

This matrix can be solved as the following expressions: 

                                 2 22 m n n m
R m n

m n

ω ξ ω ξα ω ω
ω ω

 −=  − 
           2 22 m m n n

R
m n

ω ξ ω ξβ
ω ω

 −=  − 
 

If the damping ratio is frequency independent, Rα and Rβ coefficient becomes: 

                                   2 m n
R

m n

ω ωα ξ
ω ω
 

=  + 
  

1
2R

m n

β ξ
ω ω
 

=  + 
 

Where 

                   ξ : damping ratio ,m nω ω : two significant frequency modes 

 

 
 
 
 
 
 
 
 
 
 

Figure 3. Soil deposit model for TD analysis 

As mentioned above, the nonlinear response of soil material was conducted using the 
modified Ramberg-Osgood model, as shown in Fig. 4, which was proposed by Tatsuoka et al. 
[19]. The skeleton and hysteretic curve equations were expressed in Eq. (13) and (14), 
respectively. 

 ( )
0

1
G

βτγ α τ= +      (13) 

                                                       
0

1
2 2 2

a a a

G

βγ γ τ τ τ τα
 ± ± ±= +  
 

                                      (14) 

                       Where  
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max

2

2

h

h

πβ =
−

,        
0.5 0

2

G

β

α
γ
 

=  
 

 

                                      0.5γ : corresponds to 
0

0.5G
G =        ,α β : parameter of modified R-O 

                                      ,a aγ τ : reversal shear strain and stress   0G : initial shear soil stiffness 

                                      maxh : maximum soil damping 

  

  
 
 
 
 
 
 
 
 

Figure 4. Stress-strain relationship of Ramberg-Osgood model [21] 

According to hysteretic rule, the nonlinear response of shear stiffness ( )iG t can be derived 
from Eq. (15) and shown in Fig. 5. 

     1

1

( ) i i
i

i i

G t
τ τ
γ γ

−

−

−=
−

     (15) 

  Where 

    1,i iτ τ − : reversal shear stress of point i and i-1 

                                                 1,i iγ γ − : reversal shear strain of point i and i-1 

 

 

 
 
 
 
 
 
 
 

Figure 5. Reversal points of shear stress-strain 

Besides this, in order to perform nonlinear response analysis of FFGM in TD, the analytical 
procedure of input motion at the base of soil column was very important in order to obtain a 
properly output motion at the ground surface. 

Analytical Procedure for Input Motion in TD 

In this step, the FFGM in FD was needed to obtain the input motion for FFGM analysis in TD.  

In linear analysis (LN), the target earthquake motion was input at the base of soil column (or 
surface layer) as an outcrop motion (2E). Then, the within output motion (E+F) was extracted 
at the base of soil column and applied this motion at the same layer of soil column (as input 
motion) for TD analysis, as shown in Fig. 6. The within motion (E+F) of any location is an 
actual motion of that location. 
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In nonlinear analysis (NL), the procedure was the same as linear analysis but it was required 
to perform in both linear and equivalent-linear (EL) analysis in FD and the within output 
motion (E+F) of both analyses were significant to be the same or almost the same. Due to this 
requirement, some extra layers might be needed. Then, this within output motion (E+F) was 
applied at the same layer of soil column for TD analysis, as shown in Fig. 6. 

 

 
 
 
 
 
 
 
 
 
 

Figure 6. Linear and nonlinear input motion procedure for TD analysis 

Furthermore, in order to validate the nonlinear response output motion at the ground surface 
in TD, a comparison of this motion with linear and equivalent-linear analysis at the ground 
surface were necessary. This comparison can lead to an understanding how correctly of this 
nonlinear response motion. 

Example of FFGM Analysis in TD 

In this study, the uniform soil column in depth 20m was assumed rested on the bedrock. This 
uniform soil column consisted the same properties as in class E of IBC [22], as shown in table 
1. Kobe earthquake record data were assumed as input motion at the base of soil column. The 
motion in X and Y direction were assumed as the same as the motion in EW and NS of record 
data as shown in Fig. 7 while the motion in UD direction was ignored in this study. 

Table 1. Uniform soil column properties 

H (m) Vs (m/s) γ  (kN/m3) ξ (%) 

0.00-20.0 180 18.0 5 

Bedrock 900 21.0 1 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Kobe earthquake record motion data 
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For linear analysis, according to the procedure described above, the output result at the 
ground surface for both analyses was shown in Fig. 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

Figure 8. Linear analysis of FFGM in FD and TD 

For nonlinear analysis, according to the procedure described above, two extra layers were 
needed for this study case, as shown in Fig. 9. The first layer consisted 5m in depth and 900 
m/s for shear velocity while the second layer consisted 800m in depth and 8km/s for shear 
velocity above the bedrock, which consisted 8 km/s for shear velocity. The within output 
motion in FD was shown in Fig. 10 and the output motion at the ground surface in TD was 
shown in Fig. 11. 

 

 

 

 

 
 
 
 
 
 

Figure 9. Analytical procedure for input motion in TD 
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Figure 10. Within input motion (E+F) in TD 

As shown in Fig. 10, the within output results (E+F) from both analyses showed a good 
agreement and adequate for input motion for TD analysis. These within outputs (E+F) were 
applied at the same layer and property for TD analysis. The FFGM at the ground surface for 
both directions and nonlinear response of soil stiffness (NLG ) were obtained.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. FFGM at the ground surface in TD 

However, as described above, the comparison of these nonlinear response motions with linear 
and equivalent-linear motions at the ground surface in FD was necessary. These comparisons 
were shown in Fig. 12 and 13. 
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Figure 12. Comparison between LN, EL, and NL motion in E-W direction 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Comparison between LN, EL, and NL motion in N-S direction 

As shown in Fig. 12 and 13, the nonlinear response result showed a good agreement with 
linear motion response for a few seconds from starting point and with equivalent-linear 
motion response for the last several seconds. These agreements confirmed that the nonlinear 
motion response at the ground surface in TD started from linear to nonlinear motion response. 
This confirmation showed about the validation of the proposed analytical model considering 
the nonlinear response of soil material and motion. The hysteretic curve of nonlinear response 
of soil medium at the ground surface was also provided, as shown in Fig. 14.  
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Figure 14.  Hysteretic curve of nonlinear response of soil medium 

The response of soil stiffness under both analytical models, FD and TD, were shown in Fig.15. 

 

Figure 15. Soil stiffness response analysis in TD and FD 

Seismic Response of RC Frame Structure under Nonlinear SSI Effect 
After obtaining the nonlinear response of soil materials and FFGM at the ground surface, the 
linear response of RC frame structure under equivalent-linear and nonlinear SSI effect were 
conducted.   

In order to achieve this objective, the 3D RC frame structural model (from E-defense test [23] 
[24]) was used in this study. This structure was supported by rigid surface foundation and was 
assumed to rest on uniform soil deposit subjected to vertically incident S wave. The relevant 
parameters were shown in the following sections.  

Structural Model Assumption 

As mentioned above, the model of 3D frame structure was used in this study as shown in Fig. 
16. This structural model consisted six stories and 3.5m for height in each story. There were 
two spans in X-direction and three spans in Y-direction with the same length 5m in each span. 
In this study, the column C1 section was 0.5mx0.5m with 8-D19 and C2 section was 
0.3mx0.3m with 4-D19, beam section was 0.3mx0.5m with 5-D19, and both shear-wall and 
sidewalls thickness were 0.15m with doubly reinforcing bar D10@300. Furthermore, the 
shear reinforcing bar of column was D10@100 while beam element was D10@200. The 
nominal strength of reinforcing bars were SD345 and SD295 for D19 and D10, respectively, 
and concrete strength was 21MPa for all structural elements. Besides this, the non-structural 
element load was assumed 3.0 kPa and live load 2.5kPa for each story. 
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      (a)  Perspective view                                             (b) Top view [24] 

Figure 16. E-Defense test structure model 

Soil Property and Input Motion 

The uniform soil property and input motions were assumed to be the same as described in the 
previous sections. The equivalent-linear and nonlinear of soil stiffness values were shown in 
Fig. 15. 

Foundation Input Motion (FIM) 

Due to the condition of rigid surface foundation and subjected to the vertically incident S 
wave, the FIM was the same as the FFGM [4]. The FIM response of both FD and TD were 
shown in Fig. 17 and 18, respectively. 

 

Figure 17. Foundation Input Motion in FD 

 

Figure 18. Foundation Input Motion in TD 
 

Dynamic Impedances 

The dynamic impedance of rigid surface foundation was expressed in Eq. (3) and (4). The 
static stiffness, dynamic stiffness modifier and radiation damping can be expressed in the 
following equations: 
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1. Static Stiffness 
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2. Dynamic Stiffness Modifier 
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3. Radiation Damping    
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Linear, Equivalent-linear and Nonlinear Foundation Stiffness-Damping  

In this comparison, there are six directions for foundation stiffness ik and damping ic for rigid 
surface foundation as shown in Fig. 19. 

 

- Direction X: 

  
 

- Direction Y: 
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- Direction Z 

  

- Direction XX: 

 

- Direction YY: 

  

- Direction ZZ: 

 

Figure 19. Linear, Equivalent-linear, and Nonlinear Foundation Stiffness 
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Hysteretic Curve of Foundation-Soil System 
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Figure 17 Hysteretic curve of foundation-soil system under both analytical models 

 

Seismic Response of RC frame Structure 

In this section, the seismic response of frame structure under both equivalent-linear and 
nonlinear SSI effect were presented under linear response of base-shear, overturning-moment 
acceleration, and relative displacement in TD based on Eq. (7), as shown from Fig. 17 to 20, 
respectively.  

- Base-Shear: 

 

 
 
 
 
 
 
 
 
 
 
 

  

 
 
 
 

Figure 17. Base-Shear response under equivalent-linear and nonlinear SSI effect 
- Overturning-Moment: 
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Figure 18. Overturning-Moment under equivalent-linear and nonlinear SSI effect 
- Acceleration in each floor: 

 

 

 
 
 
 
 
 
 
 
 

  

 
 
 
 

Figure 19. Acceleration under equivalent-linear and nonlinear SSI effect 
- Relative Displacement: 
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Figure 20. Relative displacement under equivalent-linear and nonlinear SSI effect  
Based on the response results above, it was showed that the responses of structure under 
equivalent-linear SSI effect were larger than the responses under nonlinear SSI effect using 
substructure approach. These discrepancies showed about overestimated responses of using 
existing analytical model of SSI problem compared to the actual response of structure under 
earthquake disaster. 

Conclusions 

In this paper, the analytical model considering nonlinear response of soil material and motion 
in TD was proposed. The nonlinear response of motion in TD showed a good agreement with 
linear response for a few seconds from starting point and with equivalent-linear analysis in 
FD for the last several seconds. This agreement confirmed about the validation of proposed 
analytical model. 

Furthermore, the seismic response of structure under existing and proposed analytical model 
were conducted under linear response of base-shear, overturning-moment, acceleration, and 
relative displacement. The output results showed that the structural response under existing 
model were larger than the responses under proposed model. These discrepancies showed 
about the overestimated results of using existing analytical model compared the actual 
response of structure under earthquake disaster. 

In conclusion, the proposed analytical model considering nonlinear SSI effect using 
substructure approach on the structural response under earthquake loading would be a good 
candidate for SSI problem and showed about the adequateness of this approach compared to 
the actual response of structure.  
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Abstract 
The paper presents a concise review on the latest achievements made in the context of 
projection-based particle methods, including MPS and Incompressible SPH (ISPH) methods. 
The latest achievements corresponding to stability, accuracy, boundary conditions and energy 
conservation enhancements as well as advancements related to simulations of multiphase 
flows, fluid-structure interactions and surface tension are reviewed. The future perspectives 
for enhancement of applicability and reliability of projection-based particle methods are also 
highlighted. 

Keywords: particle methods, projection method, Moving Particle Semi-implicit (MPS), 
Incompressible Smoothed Particle Hydrodynamics (ISPH), stability, accuracy, conservation 

Introduction 
Projection-based particle methods, including MPS [1] and Incompressible SPH (ISPH) [2] 
methods, are founded on Helmholtz decomposition of an intermediate velocity vector field 
into a solenoidal (divergence-free) one and an irrotational (curl-free) one. These methods  
potentially result in accurate solutions to the continuity and Navier-Stokes equations, 
especially in terms of pressure calculation and volume conservation. In particular, the 
prediction-correction feature of projection-based particle methods provides the opportunity 
for numerical error minimization through the application of, for instance, error mitigating 
functions in the source term of the Poisson Pressure Equation (PPE) [3,4]. This paper aims at 
illustrating a concise summary of the latest achievements made in the field of projection-
based particle methods, as well as some future perspectives. 
 
The latest achievements made in the field of projection-based particle methods correspond to 
enhancements of stability, accuracy, boundary conditions, energy conservation and enhanced 
simulations of multiphase flows, fluid-structure interactions, surface tension, etc. In this 
paper, these achievements will be concisely reviewed. 

Latest Achievements 
 
Stability enhancement: A distinct category of methods developed for enhancement of both 
stability and accuracy for both explicit and semi-implicit projection-based particle methods 
correspond to particle regularization schemes. For instance, Lind et al. [5] proposed a 
generalized Particle Shifting (PS) technique on the basis of Fick's law of diffusion. Despite its 
simplicity and effectiveness, the particle shifting scheme may violate the overall conservation 
properties [5] including conservations of momentum and energy. 
 
To ensure the stability of projection-based particle methods, Tsuruta et al. [6] presented a 
Dynamic Stabilization (DS) scheme which is aimed at producing exactly adequate repulsive 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

610



forces in a momentum-conservative manner. The applicability and effectiveness of this 
scheme has to be further examined for a wider range of free-surface, internal and multi-phase 
flows. Recently, the authors have conducted a study on accuracy and conservation properties 
of particle regularization schemes including PS and DS schemes. Despite providing exact 
local and thus global momentum conservation, the DS scheme may result in small-scale 
particle perturbations. This issue can be seen from a simple and well-known numerical 
benchmark test, namely, the Taylor-Green vortex. 
 
Fig. 1 shows a qualitative comparison in between DS and PS schemes through illustrating 
calculated normalized pressure and velocity fields at normalized time of tU/L = 1.0 for Re = 
106 in a Taylor-Green vortex test [5]. In the performed simulations of Taylor-Green vortex, 
particles are considered to be 5 mm in diameter (d0 = 0.005 m) resulting in a total number of 
40,000 particles. The calculation time step is set based on Courant stability condition and a 
maximum allowable time step of tmax = 5.0E-4 s. Without a proper particle regularization 
scheme, a purely Lagrangian simulation of Taylor-Green vortices will be most likely 
characterized by unfavourable anisotropic particle distributions along the flow streamlines. 
Here both DS and PS schemes have been successful in providing stable calculations. 
Nevertheless, distribution of particles by PS appears to be more regular in comparison to that 
by DS. As previously stated, at least for this test, the DS scheme has apparently resulted in 
small-scale particle perturbations. This would indicate the need to revisit the derivation of this 
scheme and possibly present an enhanced version. 
 
As for the PS scheme, a distinct issue arises for free-surface or multiphase flows. In other 
words, special care must be taken with application of this scheme to interface particles due to 
large concentration gradients. Lind et al. [5] proposed a special treatment (Eq. 27 of [5]) for 
free-surface and its nearby particles to eliminate shifting normal to the free-surface. 
Theoretically, this treatment is justified for proper implementation of PS to free-surface flows. 
However, several numerical challenges arise, especially in long term simulations, resulting in 
unphysical perturbations and/or accumulation of particles at free-surface (e.g. Fig. 17 [5]). In 
addition, in order to minimize the unphysical perturbations at free-surface, the PS scheme of 
Lind et al. [5] for free-surface contains two tuning parameters to allow slight diffusion normal 
to the interface. Recently, the authors proposed a new OPS (Optimized Particle Shifting) 
scheme to enhance the accuracy of PS at the phase interfaces (e.g. free-surface). Unlike PS, the 
OPS does not contain any tuning parameters. Fig. 2 illustrates the improved performance of 
OPS with respect to PS in simulation of a square patch of fluid [7]. Fig 2(c) and (d) present the 
time histories of mechanical energy dissipation and calculated pressure at the center of the 
patch. In our performed simulations, the square's length, L, and angular velocity, , are 
considered as 1.0 m and 1.0 m/s, respectively. Particles are considered to be 0.01 m in diameter 
(d0 = 0.01 m). 
 
Accuracy enhancement: For both ISPH and MPS methods refined differential operator 
models have been proposed to enhance the accuracy of pressure calculation [3,8,9,10,11] and 
particle motion [3,11]. Refined differential operator models have been proposed for 
discretization of either source term [8,10] or Laplacian of pressure [9,12,13] in the PPE. 
 
Inspired by the excellent work of Kondo and Koshizuka [10], Khayyer and Gotoh [3] 
proposed a so-called ECS (Error Compensating Source) scheme to minimize the projection-
related errors. The PPE incorporating the ECS is formulated as [3]: 
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Fig. 1. Calculated normalized pressure (a,c) and velocity (b,d) by Enhanced ISPH + DS [6] (a,b) and 
Enhanced ISPH + PS [5] (c,d) - Taylor-Green flow (Re =106) 
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where p, , n, n0, t, t, i and k represent pressure, density, particle number density, reference 
particle number density, time, calculation time step, target particle i and calculation step 
number, respectively. Hence, the source term of PPE is comprised of a main term and two 
error mitigating terms multiplied by dynamic coefficients (, ) as functions of instantaneous  
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Fig. 2. Qualitative comparison in between PS [5] (a) and newly proposed OPS (b) schemes, 
elimination of unphysical discontinuity at free-surface (a) by OPS (b) - time histories of energy and 
normalized pressure at the center of the patch - evolution of a square patch of fluid [7] 
 
flow field. The dynamic coefficients adjust the intensities of error mitigating terms depending 
on the instantaneous state of flow field. Similar ECS scheme has been formulated and 
validated for the ISPH [11]. 
 
Once an accurate pressure field is obtained, particles should be moved in space according to 
accurately computed accelerations corresponding to pressure gradient. In this regard, 
enhanced pressure gradient models with consistency-related corrections (e.g. 
[3,4,11,14,15,16]) have been proposed. 
 
Improvement of boundary conditions: These improvements correspond to wall, free-surface 
and inflow/outflow boundary conditions. 
 
Adami et al. [17] proposed a generalized wall boundary condition for SPH which correctly 
imposes no-slip conditions even for complex geometries. Despite being relatively simple for 
implementation, application of mirror particles may lead to inaccuracies in the convergence of 
differential operator models [18]. A more favored and recent approach is related to 
development of so-called semi-analytical wall boundary conditions. Di Monaco et al. [19] 
developed a semi-analytic approach for treatment of wall boundaries that can be considered as 
an integral version of the mirror particles of Adami et al. [17] for fixed boundaries. Similar 
approaches have been proposed by Ferrand et al. [20] and Mayrhofer et al. [21] that provide 
accurate and direct modeling of boundary integrals at the frontiers of the fluid domain 
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resulting in precise pressure forces, wall friction and turbulent conditions. Recently, Leroy et 
al. [22] extended the unified semi-analytical wall boundary condition of Ferrand et al. [20] for 
the projection-based particle methods, and more precisely, the ISPH method. 
 
In projection-based particle methods, a challenging issue is to detect free-surface particles 
accurately to impose the dynamic free-surface boundary condition, i.e. p equal to zero, to 
them. Khayyer et al. [23] proposed an auxiliary condition based on the non-symmetric 
distribution of free-surface particles to be used together with the original simple criterion. Ma 
and Zhou [24] proposed a Mixed Particle Number Density and Auxiliary Function Method 
(MPAM) for identifying the free surface particles in their Meshless Local Petrov-Galerin 
method based on Rankine source solution (MLPG-R) method. Park et al. [25] used a so-called 
Arc Method for an accurate assessment of free-surface particles. Nair and Tomar [26] 
presented a semi-analytical approach to impose Dirichlet boundary conditions on the free 
surface and thus eliminating the need for free-surface particle detection. This necessity was 
also eliminated by proposal of a new free-surface boundary condition referred to as Space 
Potential Particles (SPP [27]), through introduction of a potential in void space. 
 
There have been a number of researches specifically targeting inlet/outlet boundary conditions 
in both weakly compressible (e.g. [28]) and incompressible (e.g. [29]) frameworks. In order to 
enhance the ISPH solution for both pressure and velocity near the boundaries including 
inlet/outlet ones, Hosseini and Feng [30] presented an approach which utilizes a rotational 
pressure-correction scheme with a consistent pressure boundary condition. 
 
Energy conservation: Violeau [31] highlighted the compatibility, and more precisely, the 
skew-adjointness of gradient and divergence operators for energy conservation in calculations 
by particle methods. In the context of projection-based particle methods, this important 
property is required for an exact projection [32] which is a necessity for an exact energy 
conservation. A clear link exists also in between energy conservation and consistency of 
differential operator models and specifically, pressure gradient model. 
 
Khayyer et al. [33] performed a study on energy conservation properties of projection-based 
particle methods. Their study highlighted the significance of Taylor-series consistent pressure 
gradient models and enhancing effect of a consistency-related gradient correction in providing 
enhanced energy conservation. Both ISPH and MPS were found to provide accurate 
predictions of physical dissipations in fluid impact problems. Fig. 3 depicts improved MPS 
results corresponding to a normal impact of two rectangular fluid patches [34]. The 
rectangular patches have a length L, width 2H and the impact occurs at t = 0. The fluid is 
considered to be inviscid and incompressible, and thus the impact will be associated with a 
theoretically sudden loss of a fraction of the initial energy [35]. For the performed simulations 
L = 1.0 m, H = 0.33 m and U = 3.4 m/s. The maximum allowable time step is set as Δtmax  
5.0E-5 s and the particles are set to be of 0.01 m in diameter, i.e. d0 = 0.01 m. A set of typical 
snapshots illustrating this phenomenon are presented in Fig. 3(a-c). From Fig. 3(d), the 
improved MPS method has provided an accurate estimation of energy loss corresponding to 
this impact. 
 
To further illustrate the performance of improved MPS in reproduction of physical dissipation 
the normal impact of two rectangular fluid patches with different masses is considered. An 
analytical expression for the energy loss during this specific impact is given by Rogers and 
Szymczak [36]. A set of snapshots corresponding to this interesting classical fluid mechanics 
problem are presented in Fig 4. The performed simulation is characterized by a Mach number  
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Fig. 3. Snapshots of particles together with pressure field (a-c), analytical [35] and calculated energy 
loss (d) - results by improved MPS - normal impact of two identical fluid patches [34,37]   
 
of Ma = 0.2. For this simulation, the maximum allowable time step, Δtmax , is set as 5.0E-7 s, 
and particles are set to be of 0.01 m in diameter, i.e. d0 = 0.01 m. Fig. 4(e) shows the excellent 
performance of improved MPS in providing almost accurate prediction of the energy loss for 
this impact. 
 
The superior performance of improved MPS in predictions of energy loss in fluid impact 
problems as well as its excellent capability in shock capturing and propagation can be further 
pronounced by comparing the achieved results with those of advanced particle methods, 
including -SPH (e.g. Figs 14 and 15 in [37]) and Riemann SPH (e.g. Figs 9 and 10 in [34]). 
It should be noted in both of the mentioned references [34,37] weakly compressible SPH 
formulations are adopted. 
 
Enhanced simulations of multiphase flows: Khayyer and Gotoh [4] presented an improved 
MPS method for multiphase flows characterized by large density ratios. The stability of their 
calculations was guaranteed through the application of a Taylor-series-based density 
smoothing scheme, and accuracy enhancement was achieved through the application of a 
PPE's error mitigating term, i.e. ECS scheme, and refined discretizations of source term and 
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Fig. 4. Snapshots of particles together with pressure field (a-d), analytical [36] and calculated energy 
loss - results by improved MPS - normal impact of two fluid patches with different masses [34] 
 
Laplacian of pressure. Fig. 5 presents two typical snapshots corresponding to a multiphase 
violent sloshing flow characterized by air entrainment/entrapment with a realistic air/water 
density ratio of 1:1000. Conditions of the performed sloshing simulation corresponded to the 
experiment by Rognebakke et al. [38]. Sinusoidal excitations with maximum amplitude of 
150 mm and frequency of 1.2 Hz were considered. The particles were 5.0 mm in diameter and 
the calculation time step was set according to the Courant stability condition and a maximum 
allowable time increment of 4.0E-5 s. 
 
The ECS scheme was extended to minimize the projection-related errors in an 
incompressible-compressible multiphase calculation of wave slamming where actual speeds 
of sounds in air and water were implemented [39]. The newly proposed scheme was referred 
to as CIECS (Compressible-Incompressible ECS). The effectiveness of CIECS in 
minimization of projection-related errors in a typical Compressible-Incompressible 
multiphase flow, namely, slamming with entrapped air was shown through two sets of 
simulations corresponding to experiments by Lin and Shieh [40] and Verhagen [41]. 
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Fig. 5. Snapshots of gas and liquid particles (a,b) and calculated density fields (c,d) - muliphase 
simulation of a violent sloshing flow [38] by an improved MPS method [4] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Multiphase MPS with CIECS scheme applied to water slamming, experiments by Lin and 
Shieh [40] (a,c) and Verhagen [41] (d) - importance of air cushioning effect in prediction of slam 
induced pressure (c) and comparisons of multiphase MPS with multiphase SPH [42] and FVM [43] (d)   
 
Fig. 6(a-c) depicts the water slamming simulation results related to the experiment by Lin and 
Shieh [40] by multiphase and single-phase MPS methods. The figure portrays the importance 
of consideration of air and its cushioning effect for prediction of slamming-induced pressures.  
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Fig. 6(d) presents a comparison in between the multiphase MPS with CIECS scheme with 
results by Lind et al. [42] and Ma et al. [43] with respect to the experiment by Verhagen [41]. 
A common experiment-simulation inconsistency seen in this figure corresponds to inaccurate 
prediction of post-impact negative pressure. The authors are investigating the probable 
reasons behind this apparent inconsistency. In the performed water slamming simulations, the 
diameter of particles was set as 3 mm. Considered viscosities for the water and air phases 
corresponded to their physical ones, i.e. w = 1.0E-6 m2/s and a = 1.5E-5 m2/s. The 
calculation time step was set based on the Courant stability condition and tmax  1.0E-4 s. 
 
Fluid-structure interactions: Particle methods including projection-based ones appear to be 
suitable computational tools for FSI (Fluid-Structure Interaction) simulations, mainly due to 
their Lagrangian feature. These methods have been applied to simulate interactions in 
between fluid flows with either rigid (e.g. [44]) or flexible (e.g. [45]) structures. In the latter 
case, a proper structural model should be carefully coupled with the fluid solver. 
 
In the context of projection-based particle methods, Lee et al. [46] developed a MPS-FEM 
coupled method to study incompressible fluid flow interactions with elastic structures. Rafiee 
and Thiagarajan [45] proposed a fully-Lagrangian SPH-based solver for simulation of 
incompressible fluid-hypoelastic structure interactions. In their study, the PPE was solved 
simply using an approximate explicit scheme. Hwang et al. [47] developed a fully-Lagrangian 
MPS-based FSI analysis method for incompressible fluid-linear elastic structure interactions. 
The key feature of this solver was absence of any artificial numerical stabilizers commonly 
applied in particle-based FSI solvers. This feature was achieved by implementation of an 
appropriate coupling algorithm. 
 
Khayyer et al. [48] presented an enhanced version of Hwang et al.'s method by incorporating 
several refined schemes for the fluid phase and presenting an improved calculation of fluid 
force to structure. The achieved enhancements as well as applicability of developed MPS-
based FSI solver are portrayed in Fig. 7, corresponding to simulations of an entry of a 
deformable aluminum beam into an undisturbed water [49] and a dam break flow impacting 
on an elastic plate [50]. Fig. 7(a) presents a representative snapshot of the pressure and stress 
fields in fluid and beam. A schematic sketch of this beam entry test and time histories of 
deflection at point C is shown in Fig. 7(b), where improved results are obtained by the 
enhanced coupled MPS [48]. For this aluminum beam entry test, the analytical solutions were 
derived by Scolan [51], on the basis of the hydrodynamic Wagner's model and linear Wan’s 
theory. The material properties of the aluminum beam, namely, its Young’s modulus, Poisson 
ratio and density were considered as 67.5 GPa, 0.34 and 2700 kg/m3, respectively. Both 
structural and fluid particles were 0.01 m in size. Fig. 7(c) and (d) portray two typical 
snapshots by coupled MPS [47] and enhanced coupled MPS [48] solvers together with their 
corresponding experimental photo as well as the result by a FDM-FEM solver [50] for the 
second FSI test. The superior performance of enhanced MPS is clearly illustrated in this 
figure as this method provides more consistent deflections of the elastic plate. 
 
Surface tension: Surface tension modeling in the context of particle methods have been 
performed using either potential approach or continuum one. In the so-called potential 
approach surface tension is modeled by assuming that microscopic cohesive intermolecular 
forces can be mimicked by macroscopic inter-particle forces. The main advantage of this 
approach is related to its computational simplicity in that surface tension is modeled via 
particle-particle interactions explicitly without the necessity of calculating surface normals 
and curvatures, as required in the continuum approach. The main disadvantage of potential 
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Fig. 7. Entry of an aluminum beam into undisturbed water [49] (a,b) and dam break with elastic plate 
[50] (c,d), results by an enhanced coupled MPS solver [48] (a,d) and a coupled MPS solver [47] (c) 
 
approach corresponds to the fact that the surface tension forces depend on the intensity of 
particle-particle interactions. These interactions have to be adjusted numerically by varying 
the macroscopic input parameters depending on the simulation case to reproduce desired 
surface tension forces. 
 
The most common approach for incorporation of surface tension in macroscopic particle-
based simulations is the continuum approach and specifically those based on the Continuum 
Surface Force (CSF) model introduced by Brackbill et al. [52]. In this approach, the surface 
tension is treated as a continuous, three-dimensional effect across the interface, derived 
directly from the Young-Laplace equation. Morris [53] showed several possible 
implementations of CSF model in SPH and highlighted the challenges in accurate calculations 
of interface curvature. These challenges are not only limited to difficulties in accurate 
particle-based calculation of Laplacian of color function for approximation of interface 
curvature, but also to the fact that a smoothed color function is usually used. The use of a 
smoothed color function may become problematic for approximation of interface normals 
near the boundaries and sharp-angled areas. 
 
In MPS-based simulations of surface tension, the CSF based simulations can be categorized 
into two distinct groups, depending on the computational procedure for calculation of the 
curvature and the normal vector. These two categories are: arc fitting at interface [54] and 
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differential approach (e.g. [55]). As the name indicates the arc fitting approach is aimed at 
approximating the normal vector and curvature by constructing local arcs at the surface 
particles via specific computational procedures. The accuracy of arc fitting approach is highly 
dependent upon the instantaneous smoothness of the free-surface. In the differential approach, 
the continuum surface forces are calculated by applying differential operator models for both 
gradient and Laplacian so that potentially accurate approximations of the unit normal vector 
and the curvature can be obtained. 
 
Khayyer et al. [56] proposed a new differential CSF-based model in the context of MPS. 
Their model benefits from a novel formulation for curvature estimation using direct second 
order derivatives of color function via a precise discretization. By applying a high-order 
Laplacian scheme [9] including the approximation of boundary integrals, relatively accurate 
approximation of interface curvature and thus surface tension could be achieved. Accordingly, 
the Laplacian of color function, C, at an interface target particle i was calculated as [56]: 
 

  BI
r

w

r

D

r

w
C

r

w

r

C

n
C

ji ij

ij

ij

s

ij

ij
ij

ij

ij

ij

ij
i 






































 


11
2

2

0

2                          (2) 

 
where Cij = Cj  Ci , rij = rj  ri , w represents kernel function, Ds stands for number of space 
dimensions and BI denotes the boundary integrals [57] formulated as: 
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where n denotes interface normal, r symbolizes position vector and for 2D simulations Sj 
signifies the length (diameter) of boundary particle j. Therefore, the surface tension force is 
evaluated via achieving a direct Laplacian-based approximation of curvature. The enhanced 
performance of the Laplacian-based surface tension model [56] with respect to the arc fitting 
one [54] is illustrated in Fig. 8, corresponding to simulations of a water drop impact [58] for 
Froude and Weber numbers of 639 and 395, respectively. The figure portrays the superior 
performance of Laplacian-based surface tension model in better reproduction of crown 
development and splash drops. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Improved MPS results of a water drop impact [58], no surface tension model (a), Laplacian-
based surface tension model [56] (b) and arc fitting surface tension model [54] (c) 
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Future Perspectives 

In spite of the achieved advancements, rigorous researches should continue to be conducted to 
further enhance the reliability and accuracy of particle methods for practical engineering and 
scientific purposes. In particular, important issues of stability, conservation, convergence, 
boundary conditions, turbulence modeling [59,60], multi-scale and multi-physics simulations 
[61] will be among the future perspectives corresponding to projection-based particle 
methods. 
 
For extended engineering and industrial applications, it is important to keep the developed 
computational methods free of any numerical term with constants that may require 
calibration. Several key insights on extended engineering and industrial applications of 
particles methods are highlighted in excellent review papers by Koshizuka [62] and by 
Violeau and Rogers [63]. Indeed, prior to any practical application, precise verification of 
particle-based codes must be conducted by consideration of appropriate benchmark tests with 
analytical solutions in terms of reproduced velocity and pressure together with comprehensive 
investigations on conservation and convergence properties. 
 
Further advanced multi-scale and multi-physics applications of particle methods are expected 
to be achieved with forthcoming theoretical and computational enhancements. In particular, 
rigorous enhancements of stability, accuracy and conservation properties of particle methods 
along with advancements made in high performance computing as well as developments of 
accurate variable resolution schemes [64] will enable particle methods, including projection-
based ones, to serve as advanced, reliable and efficient computational methods.  
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Abstract 

In this paper, the edge-based smoothed finite element (ES-FEM) method and application of 
elemental radiators is presented to solve the free vibration and sound radiation problems for 
the rectangular plates. The edge-based smoothed finite element is utilized for the modeling of 
plate structure. Three-node triangular elements is used to discretize the three-dimensional 
(3D) shell, due to its convenience for generating and good adaptability for complicated 
geometries. The system stiffness is obtained by using the strain smoothing technique over the 
smoothing domains, such as edge-based domain. Consequently, the employing of the strain 
smoothing technique can provide a proper softening effect to the FEM model, and cure the 
“overly-stiff” property existing in the standard FEM. Hence, this implementation can 
significantly improve the accuracy of the solution for free vibration. The application of 
elemental radiators can rapidly compute the sound radiation of the rectangular plates without 
fluid elements.  

Keywords: the rectangular plates, free vibration and sound radiation, ES-FEM, elemental 
radiators.  

1. Introduction 

Nowadays, the plates have been used widely in many branches of structural engineering, 
such as aircraft, ships, bridges, buildings, etc. The vibration and sound radiation of plates 
have attracted engineering’s more attention, due to the bad influence to structure’s strength 
and acoustic performance.  

Many researchers have carried out the analysis of plates. M. Levinson[1] studied linear elastic 
theoretical solution to free vibration of the simply-supported plate. Raske, Schlack and 
Fryba[2][3] researched dynamic response of isotropic rectangular plate under various moving 
loads. Gbadeyan and Oni[4] also computed dynamic response of rectangular plate under 
various moving loads based on the improved integral transformation method. The radiation 
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resistance and efficiency of the plate in frequency domain was computed by using the 
approximate method, which has been widely applied in many research[5][6] . Williams and 
Maynard[7] used Rayleigh integral and Fast Fourier Transformation to solve the sound 
radiation of a plate. 

Owing to limitations of the analytical methods, the finite element method (FEM) becomes 
one of the most popular numerical method to analyze plate structures. In the practical 
applications, lower-order Reissner-Mindlin shell elements are preferred due to its simplicity 
and efficiency. However, these low-order shell elements have a defect of the shear locking 
phenomenon, which has the root of incorrect transverse forces under bending. In order to 
eliminate shear locking, the discrete shear gap (DSG)[8] was used.  

In order to overcome the “overly-stiff” problem in FEM, Liu[9] firstly proposed that the 
combination of the strain smoothing technique[10] and FEM, so-called the Smoothed Finite 
Element (S-FEM). In S-FEM models, the finite element mesh is used similarly as in the FEM 
models, however, the weak form is evaluated based on smoothing domains created from the 
entities of the element mesh such as cells (CS-FEM), or nodes (NS-FEM), or edges 
(ES-FEM)[11]. These smoothing domains are linear independent and hence ensure stability 
and convergence of the S-FEM models. 

Due to the easy and automatic generation for complicated domains, the three-node triangular 
element. In this work, the discrete shear gap technique (DSG) is combined the ES-FEM to 
give a so-called ES-DSG element for plate analysis. The ES-DSG has a superior property 
compared to standard FEM. The employing of the strain smoothing technique can provide a 
proper softening effect to the FEM model, and cure the “overly-stiff” property existing in the 
standard FEM.  

2. Three-node Reissner-Mindlin shell element 

The middle surface of plate is defined as the reference plane, and let u  v  w，，  be the 

displacements of the middle surface in the ,  ,  x y z  direction, let , ,x y z  β β β  be the rotation 

in the y, x, z direction, which is shown in Fig. 1. 

 

Figure 1.  Reissner–Mindlin flat plate 
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The six independent freedom of three-nodes shell element at any node can be written as below, 
as is shown in Fig. 2. 

 T[ ]x y zu  v  w      β β β=u    (1) 

 

Figure 2.  The three-node Reissner–Mindlin shell element 

Therefore, the membrane strain mε , the curvature of the shell element κ  and the shear 

strain γ  are constructed as 

 T T( )   + ,    + ,  .
x

y ym x x

y

w
u v u v x

wx x y x x x y x
y

ββ ββ β

β

∂ + ∂ ∂   ∂ ∂∂ ∂ ∂ ∂ ∂ = = =   ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      + ∂ 

ε κ γ   (2) 

For the free vibration analysis of Reissner–Mindlin shell, the standard Galerkin weak form 
can be written as 

 T T T T( )  dΩ+  dΩ+  dΩ  dΩ 0m m m b sd d d d
Ω Ω Ω Ω

+ =∫ ∫ ∫ ∫ε D ε κ D κ γ D γ u mu   (3) 

where m  is the mass matrix containing the density of the material ρ and thickness of the 

plate t   as 

 3diag ,  ,  ,  /12,  0t t t tρ ρ ρ ρ =  m ，  (4) 

 2

1 0
= 1 0 ,

1
10 0

2

m

v
Et v

v
v

 
 
 
 −  −
 
 

D   (5) 
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 
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D   (7) 

Discretize the problem domain Ω  into eN  finite elements, and 
1

Ne
ee=

Ω = Ω  and  

i jΩ Ω =∅ (i ≠ j). Consequently, the finite element displacement solution 

Th   v  w      x y zu β β β =  u  of the Reissner–Mindlin shell model is defined as 

 h
6

1 1
( )

n nN N

I I I I
I I

N
= =

= =∑ ∑u x I d N d   (8) 

where 6I  is the 6th rank unit matrix; nN  is the total number of nodes in the problem 

domain; ( )IN x  is the shape function at Ith node; 
T

          I I I I xI yI zIu v w β β β =  d  is the 

displacement vector of Ith node. 

In order to eliminate the shear locking, the “Discrete Shear Gap” method is adopted. In each 
triangular element, the shear strain can be written as  

 
3 3

1 1

( ) ( )i i
yz xi yi

I I

N Nw w
y y

γ
= =

∂ ∂
= ∆ + ∆

∂ ∂∑ ∑x x
  (9) 

 
3 3

1 1

( ) ( )i i
xz xi yi

I I

N Nw w
x x

γ
= =

∂ ∂
= ∆ + ∆

∂ ∂∑ ∑x x
  (10) 

where xiw∆  and yiw∆  are Discrete Shear Gap at Ith node given by  

 

1 3 1 2

2 2 1 1 2 1 2

3 3 1 1 3 1 3

0,

1 1( ) ( ) ( ),
2 2
1 1( ) ( ) ( ).
2 2

x x y y

x x x y y

y x x y y

w w w w

w w w a b

w w w c d

bbbb  

bbbb  

∆ = ∆ = ∆ = ∆ =

∆ = − + + + +

∆ = − + + + +

  (11) 
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The ,  ,  ,  a b c d  in Eq.11 are defined as 

 2 1 2 1

3 1 3 1

,   = ,
,   = .

a x x b y y
c x x d y y
= − −
= − −

  (12) 

where ix  and iy  (i=1-3) are the coordinates of the nodes in a triangular element.  

Therefore, the membrane, bending and shear strains can be expressed in the matrix forms as 

 m s,  ,  =I I I I I I
I I I

= =∑ ∑ ∑ε R d κ B d γ S d   (13) 

where  
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B   (15) 

 e

ee

01 2 2 2 2=           
02

2 2 2 2

I

ad bd bc bdb d d bA
A ac bc ac adA c a c a

− − − − 
 

− − − −  

R   (16) 

Thus, the global stiffness matrix K  can be expressed as  

 
T T T=  dΩ+  dΩ+  dΩm b s

Ω Ω Ω∫ ∫ ∫K R D R B D B S D S   (17) 

and the global mass matrix M  can be expressed as 

 T  dΩ
Ω

= ∫M N mN   (18) 

and the load vector F  can be defined as 

 b dΩ+p
Ω

= ∫F N f   (19) 

For free vibration analysis of the Reissner–Mindlin shell model, we get 

 2( ) 0ω− =K M d   (20) 
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where ω  is the natural frequencies and d  is the mode shape vectors.  

3. Edge-based smoothed finite element method 

The edge-based strain smoothing technique for shell elements will be implemented in the 
sub-domain based on edge of triangular elements. The domain is firstly discretized as 
triangular elements as the standard FEM. However, the numerical integral in Eq. (17) are no 
longer based on triangular elements, but based on the smoothing domain 

( )1,  2,  Ω   ,k k N= … , in which N  is the total number of the edge in the problem domain. 

The smoothing domain of each edge k  is constructed by connecting two end-points of the 
edge and the middle point of its surrounding triangular elements, as is shown in Fig. 3.  

 

Figure 3.  The edge-based smoothing domain 

By using the edge-based strain smoothing technique, the integration over the whole triangular 
elements can be transform to an integral over the whole smoothing domains. Then, the 
smoothed global stiffness matrix can be rewritten as  

 
T T T

1
= (  dΩ+  dΩ+  dΩ)

k k k

N
m b s

k
Ω Ω Ω

=
∑ ∫ ∫ ∫K R D R B D B S D S   (21) 

Employing the strain smoothing operation over each smoothing domain on the membrane, 
bending and shear strains of the shell elements, the smoothing membrane, bending and shear 

strains over the domain  Ω  k  can be written as  
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 m m

Ω Ω Γ

1 1 1( ) ( ) dΩ=  dΩ=  dΓ
A A Ak k k

k k k k k k
k k k

= ∫ ∫ ∫ε x ε x R d R d   (22) 

 
Ω Ω Γ

1 1 1( ) ( ) dΩ=  dΩ=  dΓ
A A Ak k k

k k k k k k
k k k

= ∫ ∫ ∫κ x κ x B d B d   (23) 

 s

Ω Ω Γ

1 1 1( ) ( ) dΩ=  dΩ=  dΓ
A A Ak k k

k k k k k k
k k k

= ∫ ∫ ∫γ x γ x S d S d   (24) 

where Ak  is the area of the smoothing domain Ωk , and Γk  is the boundary of the 

smoothing domain Ωk . 

After performing the integral, the smoothed membrane, bending and shear strains in the 

smoothing domain Ωk  can then be written in following matrix 

 m ( ) ( )  
k

k i k i
i M=

= ∑ε x R x d   (25) 

 ( ) ( )
k

k i k i
i M=

= ∑κ x B x d   (26) 

 s ( ) ( )
k

k i k i
i M=

= ∑γ x S x d   (27) 

where kM is the total number of the nodes in the smoothing domain Ωk . 

4. The sound radiation analysis of plate 

By employing the Rayleigh surface integral, each triangular element on the plate can be 
treated as a simple point source (elemental radiator) that radiating sound. Therefore, the sound 
pressure[12] at an arbitrary observation location Q of the plate is written as below, as is shown 
Fig. 4 

 
j

0
S

j e( ) ( ) dS
2π

kr

p Q v P
r

ωr −

= ∫   (28) 

where k  is the wave number, 0ρ  is the air density, S  is the area of the plate, r   is the 

distance between the observation location Q  and the centroid P  of a triangular element. 
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Figure 4.  The sound pressure at an arbitrary observation location Q 

The sound intensity at the observation location Q  is defined as  

 
1( ) Re ( ) ( )
2

I Q p Q v Q∗ =     (29) 

where ( )v Q∗  is the complex conjugate velocity value at the observation location Q . 

The sound power radiating into the semi-infinite space over the plate can be written as  

 
'

'

S
( ) dSW I Q= ∫   (30) 

where 'S  is an arbitrary surface which cover the plate. 

Substituting Eq. 28 and Eq. 29 into Eq. 30, and supposing 'S  is coincide with S , we can 

deduce[13]  

 
'

'0
S S

sin( )( ) ( ) dS  dS
4π

krW v P v Q
r

ωr ∗ =   ∫ ∫   (31) 

where ( )v P  is the normal velocity at location P , ( )v Q∗  is the normal velocity at location 

Q . 

By discretizing Eq. 31 into a finite form 

 20

1 1

sin( ) ( ) (ΔS)
4π

N N

i j
i j

krW v C v C
r

ωr ∗ ∗

= =

≈ =∑∑ vZv   (32) 

where N  is the total number of triangular elements, ( )iv C  is the normal centroid  velocity 
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of ith triangular element, and ΔS  is the area of a triangular element. 

 

Figure 5.  The discretization of a rectangular plate 

Z  is the sound resistance matrix defined as below[14] 
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Z




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

  (33) 

where 0c  is the sound velocity in air. 

Finally, the sound power level pL  of the plate can be defined as 

 
0

10 logpL W
W

=   (34) 

where 0W  is the reference sound power defined as 10-12 W. 

5. Numerical example  

Consider two rectangular plates that is simply supported and clamped. The length, width and 
thickness of the plates are 0.5 m, 0.4 m and 0.005 m, respectively. The material parameters of 
the plates are given by Young’s modulus 210 GPa; Poisson’s ratio  0.3v =  and the density 
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3 7850 /kg mρ = . A uniform discretization of 20 × 16 elements is used, as shown in Fig. 6. 

 

Figure 6.  The mesh of a rectangular plate 

For free vibration analysis, the eigen frequencies of the plates by the ES-FEM, together with 
the reference of the commercial software ANSYS are listed in Table 1 below. Fig. 7-9 is the 
mode shape of the clamped plate computed by ES-FEM and the ANSYS, Fig. 10-12 is the 
mode shape of the simply supported plate by ES-FEM and the ANSYS. 

Table 1. The eigen frequencies results (Hz) of the plates from different methods  

 The simply supported plate The clamped plate 

Mode ES-FEM 
(20 × 16) 

ANSYS 
(20× 16) 

ANSYS (high 
quality mesh) 

ES-FEM 
(20 × 16) 

ANSYS 
(20 × 16) 

ANSYS (high 
quality mesh)) 

1 126.0 127.3 125.4 235.0 238.2 232.3 

2 275.6 279.4 272.3 417.6 425.3 407.8 

3 360.6 365.6 355.3 543.9 556.6 531.8 

4 512.4 523.8 501.0 715.1 729.3 692.5 

5 529.9 540.5 517.3 726.9 751.3 693.0 
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Figure 7. The first mode shape of the clamped plate  

 

Figure 8. The second mode shape of the clamped plate 

 

Figure 9. The third mode shape of the clamped plate 
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Figure 10. The first mode shape of the simply supported plate 

 

Figure 11. The second mode shape of the simply supported plate 

 

Figure 12. The third mode shape of the simply supported plate 

From Table 1, it is observed that the results of the ES-FEM are more accurate than results of 
the commercial software ANSYS with the same mesh. 

As shown in Fig. 13, the rectangular plate is subjected to a normal concentrated force 1 N on 
centroid of the surface. Then, computing sound power level of the plates from 1-1000 Hz in 
semi-infinite domain, together with the reference of the commercial software 
LMS Virtual.Lab are listed in Fig. 14-15. The density and velocity of air are defined as 1.205 
kg/m3 and 340 m/s. 
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Figure 13.  The rectangular plates with a concentrated force  

 

Figure 14.  The sound power level of the clamped plates  
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Figure 15.  The sound power level of the simply supported plates 

From Fig. 14-15, the results from elemental radiators are similar to the results from the 
Virtual.Lab, especially for the first peak. Due to the difference of two methods above in free 
vibration analysis, the rear peaks are slightly noncoincidence. 

6. Conclusion   

In this work, the edge-based smoothed finite element method with the Discrete Shear Gap is 
used in free vibration analysis of the plates, and the application of elemental radiators is 
utilized in sound radiation analysis. Through the numerical examples, some conclusion can be 
drawn below: 

(1) The ES-DSG can give better accuracy than standard FEM in free vibration analysis using 
the same element mesh. 

(2) The application of elemental radiators can not only provide a rapid computation, but 
manifest a desirable accuracy. 
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ABSTRACT

The desiccation cracks can be observed on dry-out soil fields or other various materials under desiccation. These cracks
have a net-like structure and tessellate the surface of the materials into polygonal cells. The averaged cell sizes change
systematically depending on the size of the specimen. In spite of the varieties of the materials, these fundamental features
of the cell topology are conserved. This implies the existence of the governing mechanism behind the desiccation crack
phenomenon regardless of the material. In this paper, the desiccation crack phenomenon is modeled by the coupling of
the desiccation, deformation, and fracture. We perform the simulations for the reproduction of the desiccation cracking
based on this coupling model. In the simulation, the finite element analysis for the desiccation problem and the analysis
of particle discretization scheme finite element method for the deformation and fracture problems are weakly coupled.
The results of the simulation show the satisfactory agreements with the experimental observation in terms of the geometry
of the crack pattern, the increase tendency of the averaged cell size depending on the size of the specimen, and the
hierarchical sequence of the cell formation. These agreement indicate that the proposed model and method capture the
fundamental features and mechanism of the desiccation cracking.

Keywords: Desiccation cracks, Pattern formation, Coupled problem, PDS-FEM.

Introduction

The desiccation cracks can be observed on dry-out soil fields or other various materials under desiccation. These cracks
have a net-like structure and tessellate the surface of the materials into polygonal cells with almost constant size and
the averaged cell sizes change systematically depending on the size of the specimen. These features of the desiccation
cracks are searched on the various materials in previous researches [1]-[8]. In spite of the varieties of the materials,
the fundamental features of the cell topology (i.e., the net-like structure of the cracks, the change in averaged cell size
depending on the thickness of the specimen) are conserved. This conservation of the features implies the existence of
the governing mechanism behind the desiccation crack phenomenon regardless of the choice of the materials. However,
the experimental researches cannot explain this governing mechanism because the measurement of the local distribution
of the physical quantities near the cracks such as the water content and the stress is still difficult. Thus, the numerical
approaches are required for detailed quantitative discussion.

In previous researches, a number of models and analysis methods for the analysis of the desiccation crack phenomenon
are proposed. Most of these models assume the homogeneous water distribution and ensuing uniform drying shrinkage
[9]-[12]. While this assumption might be sufficient for the thin-layer specimen where the gradient of the water distribution
can be neglected, it cannot be applied for the thick-layer specimen where the gradient of the water distribution remarkably
appears. On the other hand, some models attempt to embed the inhomogeneous water distribution due to desiccation in the
stress analysis [13][14]. However, these models and methods do not introduce the effect of the cracks in the desiccation
and deformation problem. Thus, they can be regarded as the pseudo-coupling analysis. This pseudo-coupling analysis
can reproduce the crack initiation or the final crack pattern in the limited case, the process of the crack pattern formation
cannot be reproduced.

In this paper, the desiccation crack phenomenon is modeled as the coupling of the desiccation, deformation, and fracture.
The desiccation problem and the deformation problem are described by the diffusion equation and the equation of force
equilibrium respectively and the effect of fracture is embedded in each problem. We perform the simulations for the
reproduction of the desiccation cracking based on this coupling model. In the simulation, the finite element analysis for
the desiccation problem and the analysis of particle discretization scheme finite element method (PDS-FEM) [15][16] for
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the deformation and fracture problems are weakly coupled. The simulation results are comparedwith the results of drying
experiments of calcium carbonate slurry to validate the proposed model and simulation method qualitatively. Throughout
this paper, the summation convention is employed for the subscripts in the equation.

Drying Experiment of Calcium Carbonate Slurry

We performed the drying experiments of calcium carbonate slurry to observe the change in cell sizes depending on
the thickness of the specimen and the pattern formation process of the desiccation cracking. The change in averaged
volumetric water content was measured during desiccation for the determination of the parameters used in the numerical
analysis. The saturated calcium carbonate slurry was prepared at the volumetric water content rate 72%. Then, the slurry
was poured into the rectangular acrylic container; the size of the container was 100× 100× 50 mm. The thickness of the
specimen was set as 5 mm, 10 mm, 20 mm, and 30 mm. The slurry was dried at 20◦C temperature and at 50% relative
humidity in the air until the entire of the specimen dried out completely.

Figure 1. The final crack patterns formed on the topsurface of the specimen after the desiccation
with different thickness. (a) 5 mm, (b) 10 mm, (c) 20 mm, (d) 30 mm.

Figure 2. The cell formation process of the drying experimentin the case of 10 mm thickness.
(a) the crack initiation, (b) the primary cracks growth, (c) the secondary cracks growth and the
tessellation of the lager cells, (d) the final crack pattern.

During the desiccation, the excessive water layer on the top surface of the specimen disappeared at the volumetric water
content 56.6% and the cracks initiated on the top surface of the specimen at the volumetric water content 22.4%. The
pattern formation of the desiccation cracks terminated before the entire specimen dries out (at the volumetric water content
20.4%). Figure 1 shows the final patterns of cracks formed on the top surface of the specimen with different thickness. The
size of the cells framed by the cracks is kept almost constant in each thickness and the averaged cell size increase with the
increase of the thickness of the specimen. Figure 2 shows the pattern formation process of the cracks on the top surface of
the specimen in the case of 10 mm thickness. On the initial stage of the desiccation cracking, some long and curved cracks
initiate on the edge of the specimen and extend to the other edges traversing the specimen (Fig 2 (a) and (b)). These cracks
(considered as the primary cracks) do not branch and form the largest structure of the cells. Then, relatively short cracks
are formed and tessellate the lager cells (Fig 2 (c) and (d)). These cracks (considered as the secondary cracks) often branch
and terminate when they meet the existing cracks. This hierarchical cell tessellation by the secondary cracks continues
until the crack initiation terminates. During the desiccation, the volumetric water content reduced almost linearly.
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Mathematical Model for Desiccation Cracking

Field Equations for Desiccation Cracking

Thedesiccation crack phenomenon can be regarded as the coupled problem of the desiccation, deformation, and fracture.
For the formulation of this coupled model, we introduce the governing equations for the desiccation problem in fractured
medium and the deformation problem in fractured medium.

The desiccation process of the mixture of the powder and the water can be expressed by the Richards’ equation:

∂θ

∂t
= ∇(D(θ)∇θ) + ∂K(θ)

∂z
(1)

whereθ is a volumetric water content,t is time, K(θ) is an unsaturated hydraulic conductivity, andD(θ) is a moisture
diffusion coefficient. When we assume the constant moisture diffusion coefficient and neglect the gravitational effect, the
Richards’ equation is simplified to the linear moisture diffusion equation in terms of the volumetric water contentθ:

∂θ

∂t
= D∇2θ. (2)

Here, the volumetric water contentθ is a function of the positionx andtime t.

Consider a permeable and linearly elastic bodyΩ with external boundary∂Ω. When the initial volumetric water content
in Ω is set asθ0(x) and the water evaporates from the external boundary∂Ω, the desiccation process inΩ is expressed as
the next initial boundary value problem: 

θ̇ = D∇2θ x ∈ Ω (3a)

θ(x,0) = θ0(x) x ∈ Ω (3b)

D
∂θ

∂n
= −qΩ(x, t) x on∂Ω (3c)

whereqΩ(x, t) is a water flux due to evaporation from theexternal boundary∂Ω. In the desiccation problem, the crack
surfacesΓ can be regarded as the newly created evaporation surfaces. Therefore the effect of cracks on the desiccation
process is embedded as the Neumann boundary condition:

D
∂θ

∂n
= −qΓ(x, t) x onΓ (4)

whereqΓ(x, t) is a water flux due to evaporation from thecrack surfacesΓ.

On the other hand, the deformation process of an isotropic and elastic bodyΩ corresponding to the change in the volu-
metric water contentθ given by the initial boundary value problem (3) is governed by the equation of force equilibrium:

σi j, j = 0 x ∈ Ω (5a)

σi j = ci jkl (εkl − εs
kl) x ∈ Ω (5b)

εi j =
1
2

(ui, j + u j,i) x ∈ Ω (5c)

whereσi j is a stress,ci jkl is a elastic modulus,εi j is a total strain,εs
i j is a shrinkage strain, andui is a displacement. In the

case of the drying shrinkage, since the drying shrinkage strainεs
i j resulting from the volume reduction due to desiccation

is inelastic, the drying shrinkage strain does not contribute to the generation of the stress. Therefore, the elastic strain
εe

i j = εi j − εs
i j becomes the source of the stress instead of the total strainεi j as shown in Eq. (5b). This approach can be

also seen in Peron et al.[14]. Considering the isotropy ofΩ, the shrinkage strainεs
i j is derived from the volumetric drying

shrinkage strainεv corresponding to the reduction of the volumetric water contentθ as follows:

εv(x, t) =
1
α

ρw

ρd
{θ(x, t) − θ(x,0)} (6)

εs
i j =

1
3
εvδi j (7)

whereρw is the mass density of the water,ρd is the dry bulk density of the powder,α is the moisture shrinkage coefficient
of the powder andδi j is the Kronecker’s delta.
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When the displacement boundary condition ¯ui(x) is prescribed on the externalboundary∂Ω, the deformation process of
Ω is given by the next boundary value problem:

σi j, j = 0 x ∈ Ω (8a)

σi j = ci jkl (εkl − εs
kl) x ∈ Ω (8b)

εi j =
1
2

(ui, j + u j,i) x ∈ Ω (8c)

ui = ūi x on∂Ωu. (8d)

In the deformation problem, the crack surfacesΓ can be regarded asthe traction-free surfaces and the effect of crack
surfacesΓ is embedded as

σi j n j = 0 x onΓ (9)

whereni is a unit normal vector of the crack surfacesΓ.

Thus, the problems of desiccation and deformation in fractured medium are coupled by Eq. (6) (the relationship between
volumetric water content and volumetric shrinkage strain) and embedding the effect of common crack surfaces in each
problem.

Discretized Form of the Field Equations of Desiccation Cracking

(b)

(a)

Figure 3. The discretization of the analysis domainΩ in two-dimension. (a)Volonoi tessellations
Φα, (b) The Delaunay tessellationsΨβ.

In this research, the analysis of the deformation and fracture are performed by using PDS-FEM. PDS-FEM applies the
particle discretization for the variables using a discontinuous and non-overlapping characteristic functions defined on the
Voronoi blocks{Φα} and the Delaunay tetrahedrons{Ψβ}; this conjugate pair of geometries are uniquely defined for the set
of nodes{xα} as shown in Fig. 3. In two-dimension, the Delaunay block becomes a triangle. The characteristic functions
are defined as

ϕα(x) =

{
1 (x ∈ Φα)
0 (x < Φα)

(10)

ψβ(x) =

{
1 (x ∈ Ψβ)
0 (x < Ψβ).

(11)

Then, the displacementui and the strainεi j are discretized as

ui(x) =
N∑
α=1

uαi ϕ
α(x) (12)

εi j (x) =
M∑
β=1

ε
β
i jψ

β(x) (13)

whereN is a number of Voronoi blocks andM is a number of Delaunay tetrahedrons. Thus, the displacement is discretized
by the Voronoi blocks{Φα} and the variables related to the spatial gradient of the displacement (i.e., strain and stress) are
averaged over the Delaunay tetrahedrons{Ψβ}.
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The boundary value problem (8) for the deformation problem is equivalent to the next variational problem:

I(ui(x)) =
∫
Ω

1
2

(
εi j − εs

i j

)
ci jkl

(
εkl − εs

kl

)
dV

Minimize I(ui(x)) s.t.ui(x) = ūi(x) on ∂Ω (14)

Applying the particle discretization scheme to this functional I, the discretized functionalÎ becomes

Î =
M∑
β=1

1
2

(
ε
β
i j − ε

sβ
i j

)
cβi jkl

(
ε
β
kl − ε

sβ
kl

)
Ψβ (15)

whereΨβ is the volume oftheβ-th Delaunay block.

In PDS-FEM, the strain-displacement relation is expressed as

ε
β
i j =

N∑
α=1

1
2

(Bβαj uαi + Bβαi uαj ) (16)

where

Bβαi =
1
Ψβ

∫
Ψβ
ϕα,i (x)ψβ(x)dV

=
1
Ψβ

∫
∂Ψβ

nαi (x)dS

=
1
Ψβ

∫
∂Φα∩Ψβ

nαi (x)dS. (17)

Note thatBβαi is identical to theB matrix for the strain field in the ordinaryFEM with the linear tetrahedral elements.
Applying this strain-displacement relation to the discretized functionalÎ in Eq. (15), the discretized functionalÎ can be
expressed in terms of the nodal displacementuαi . Then, the stationary condition forÎ results in the equation of force
equilibrium

N∑
γ=1

Kαγ
ik uγk = f αi , (18)

where stiffness matrixKαγ
i j and external force vectorf αi is

Kαγ
ik =

M∑
β=1

Bβαj cβi jkl B
βγ
l Ψ

β (19)

f αk =

M∑
β=1

ε
sβ
i j

(
cβi jkl B

βα
l

)
Ψβ. (20)

In PDS-FEM, fracture is expressed as the loss of the interaction between Voronoi blocks and the fracture surfaces are
defined on the boundary of Voronoi blocks (i.e., in the Delaunay tetrahedron). The loss of the interaction between Voronoi
blocks is expressed as the removal of the contribution of the nodal displacement to the strain averaged over the fractured
Delaunay tetrahedron. Thus,Bβαi related to the Delaunay tetrahedron and Voronoi blocks composing the fracture surface
becomes zero. The effect of this removal ofBβαi is finally embedded in the stiffness matrixKαγ

i j . Thus, the Neumann
boundary condition (9) on crack surfacesΓ (i.e., traction-free surface) is introduced as the change in the stiffness matrix
Kαγ

i j of the equation of force equilibrium (18) in discretized form of the deformation problem.

The analysis of desiccation process is performed by using the ordinary FEM with linear tetrahedral elements correspond-
ing to the Delaunay tetrahedrons used in analysis of deformation and fracture by PDS-FEM. The initial boundary value
problem (3) is spatially discretized by using the shape function for the linear tetrahedral elements. Therefore, the Eq. (6)
expressing the relation between the volumetric water content and the volumetric drying shrinkage strain is discretized as

εvβ(x, t) =
1
α

ρw

ρd
{θ̄β(t) − θ̄β(0)} (21)

whereθ̄β (function of timet) is an average of the nodal volumetricwater content consisting theβ-th Delaunay tetrahedron.
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Figure 4. The geometry and the boundary conditions for the numericalanalysis of the desicca-
tion cracking.

For the introduction of the Neumann boundary condition (4) to the discretized form of the initial boundary value problem
(3), the expression of the crack surfaces on PDS-FEM is applied to the FEM analysis of the desiccation process. Thus, the
crack surfacesΓ is defined on the boundary of Voronoi blocks. The Neumann boundary condition (4) can be interpreted
as i) elimination of the water flux normal to the crack surfacesΓ and ii) the prescribed water fluxqΓ due to evaporation on
the crack surfacesΓ. The elimination of the water flux normal toΓ can be introduced as the anisotropic moisture diffusion
coefficient. The water flux vectorJ in the orthonormal coordinate system{ei} is expressed by Darcy’s law:

J = −D∇θ. (22)

We set the orthonormal coordinate system{e′i } with e′3 in the normal direction of the crack surfaceΓ. The components of
the projection ofJ onΓ (denoted asJc) in the{ei} coordinate system is

Jc
i = T ji P jkTklJl (23)

where coordinate transform matrixTi j and the projection matrixPi j are

Ti j = e′i · ej (24)

Pi j =

{
1 if i = j = 1,2
0 otherwize.

(25)

Thus, the elimination of the water flux normal toΓ (i.e., the replacement ofJ with Jc) corresponds to the introduction of
the anisotropic moisture diffusion coefficient (DT ji P jkTkl) to the fractured tetrahedral elements.

Since nodes are not placed on the crack surfaces expressed in the analysis of PDS-FEM, the water fluxqΓ is prescribed on
the nodes placed on the boundary of fractured tetrahedral elements and unfractured tetrahedral elements. This prescription
of the water flux corresponds to the assumption of the blunt crack.

Numerical Analysis of Desiccation Cracking

We perform the simulations for the reproduction of the crack patterns and the cell formation process observed in the
drying experiments of calcium carbonate slurry. The distribution of the volumetric water content is obtained by the FEM
analysis for the initial boundary value problem (3) with a constant time step∆t = 0.1 hour. Then, the seamless analysis
for the deformation and the fracture by PDS-FEM is performed at each time step. Since the time scale for the desiccation
and the fracture have a strong contrast, we performed the weak coupling analysis for these problems (i.e., weak coupling
of the FEM analysis and the analysis of PDS-FEM). To capture the effect of the fracture surfaces promptly, the time step
is reduced to∆t = 0.01 hour when the maximum traction among all elements reached to the 97% of the tensile strengthtc.

The model sizes and the boundary conditions is set to fit the drying experiments of calcium carbonate slurry; see Fig. 4
The thickness is set as 5 mm, 10 mm, 20 mm, and 30 mm. The nodal displacement of the sides and the bottom surfaces of
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Table 1. Mesh sizes for the numerical analysis of the desic-
cation cracking

model size [mm] number of elements number of nodes

100× 100× 5 253,930 50,355
100× 100× 10 278,337 51,726
100× 100× 20 309,509 55,304
100× 100× 30 347,551 61,146

Table 2. The parameters for the numerical analysis of the desiccationcracking

parameters

Soil dry density ρg 800 kg/m3

Initial volumetric water contentθ0 0.560
Volumetric water contentat the end of the simulationθ f 0.204
Evaporation speed on the top surfaceqΩ 8.8× 10−5 m/hour
Evaporation speed of the crack surfacesqΓ 4.4× 10−5 m/hour
Moisture shrinkage coefficient α 0.69
Moisture diffusion coefficient D 3.6× 10−6 m2/hour
Poisson’s ratio ν 0.3
Young’s modulus E 5.0 MPa
Tensile strengthtc 1.6 MPa

the analysis model are constrained in all directions to express the adhesionbetween the slurry and the container wall on
the drying experiments. The water evaporates from the top surface of the analysis model and crack surfaces. We prepare
the finite element models with unstructured mesh for each model; the mesh sizes are shown in Table 1.

The measurable parameters are determined from the drying experiments of calcium carbonate slurry; see Table 2. The
initial volumetric water content is set as the volumetric water content at which the excessive water layer disappeared
in the drying experiments. The analysis is stopped when the volumetric water content reach to the 20.4% at which the
crack pattern formation terminated in the drying experiments. The other parameters which are not measured in the drying
experiments of calcium carbonate slurry (Young’s modulus, tensile strength, and the moisture diffusion coefficient) are
determined from the drying experiments of clayey silt in previous researches[6]. The evaporation speed on the crack
surfacesqΓ can be considered as slower than that on the top surfaceqΩ because the opening width of the cracks is narrow.
Therefore, the evaporation speed on the crack surfacesqΓ is set as 50% ofqΩ.

Figure 5 shows the final crack patterns formed on the top surface of the analysis models with different thickness. The
cracks have net-like structure and form polygonal cells. The cell sizes are kept almost constant on each thickness and the
averaged cell size increases with the increase of the thickness. These geometric features of the crack pattern (i.e., net-like
structure and polygonal cells) and the increasing tendency of the cell sizes depending on the thickness of the analysis
model can be also observed in the drying experiment of calcium carbonate slurry.

The cell formation process on the top surface of the analysis model in the case of 10 mm thickness is shown in Fig. 6. In
the early stage of the desiccation process, some long cracks initiate on the edge of the analysis model and extend traversing
the top surface (Fig.4 (a) and (b)). These cracks can be considered as primary cracks observed on the drying experiment
of calcium carbonate slurry. Then, relatively short cracks propagate to tessellate the lager cells (Fig.4 (c) and (d)). These
cracks often branch and propagate until they meet other cracks; the emergence of the secondary cracks. The features of
the shape of the cracks and the hierarchical sequence of the cell formation coincide with the drying experiment of calcium
carbonate slurry.
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Figure 5. The final crack pattern formed on the topsurface for each analysis model. (a) 5 mm,
(b) 10 mm, (c) 20 mm, (d) 30 mm.

Figure 6. The cell formation process of the numerical analysisin the case of 10 mm thickness.
(a) the crack initiation, (b) the primary cracks growth, (c) the secondary cracks growth and the
tessellation of the lager cells, (d) the final crack pattern.

Conclusions

In this paper, the problem of the desiccation cracking is modeled by the coupling of desiccation, deformation, and fracture.
In the proposed model, the diffusion equation with the anisotropic diffusion coefficient and the equation of the force
equilibrium with the stiffness matrix reflecting the loss of the interaction due to fracture are coupled. This coupling
analysis is performed by introducing the relation between volumetric drying shrinkage strain and embedding the effect of
the common crack surfaces in desiccation and deformation problem.

The simulations with the FEM analysis and the analysis of PDS-FEM are performed to reproduce the crack patterns
and the cell formation process observed in the drying test of calcium carbonate slurry. The simulation results show the
satisfactory agreements with the experimental observation in terms of the geometry of the crack pattern, the increasing
tendency of the averaged cell size depending on the thickness of the specimen, and the hierarchical sequence of the
cell formation. These agreement indicate that the proposed model and method capture the fundamental features and
mechanism of the desiccation cracking. For more quantitative discussion, we need the parametric study on the parameters
which can not be measured in experiments.
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Abstract 
We present results from an on-going research effort which aims at applying the Smoothed Particle 
Hydrodynamics (SPH) method to the large-scale particle transport as well as complex flows 
involving particle-suspension/structure interaction. The main application to this modelling work is 
related to the estimation of the seabed disturbance created by a moving harvesting device near the 
seabed for deep-sea applications. Current results are presented for a lab-scale model of sediment 
disturbance in the vicinity of the harvester as well as ocean-scale sediment transport. The latter 
includes new developments on SPH formulations of anisotropic diffusion. 
Keywords: Smoothed Particle Hydrodynamics, turbulent sediment transport, anisotropic diffusion, 
sediment/equipment interaction. 

Introduction 
In view of the environmental impact assessment required prior to harvesting operations in deep-sea 
environment, predictions of the extent of sediment disturbance and transport need to be provided. 
The proposed method relies on the description of particle suspensions via a mixture model [1] 
which was adapted to the Lagrangian framework of SPH [2-3]. Particle transport is modelled 
through the convection-diffusion of the sediment volume fraction. This accounts for particle 
sedimentation and particle turbulent diffusion which can be obtained from standard models relating 
the diffusion coefficient to the turbulent viscosity. In the case of complex flows such as 
equipment/seabed interactions, the latter can be extracted from the solution of standard turbulence 
models which are coupled to the momentum equation via Boussinesq’s concept of turbulent 
viscosity. For ocean-scale sediment transport however, the turbulent diffusion is usually specified as 
directionally dependent and an improved SPH formulation for anisotropic diffusion is presented. 
The proposed implementation offers the possibility to account for the non-Newtonian nature of the 
seabed rheology which is mainly composed of clay material. Cohesive particle suspensions may be 
modelled through volume fraction dependent yield stress fluid models such as Herschel-Bulkley’s 
(for classical viscoplastic fluid models, see [4]) or Papanastasiou’s [5] models. The rheological 
properties of the sediment suspensions may be regarded as functions or functionals of local particle 
concentration and shear rate. With this perspective in mind, the formulation is applied to a near-
field and a far-filed sediment dispersion problem. In the near-field problem, a laboratory-scale setup 
was designed and comprises a horizontally translating inclined blade partially immersed into a layer 
of clay sediment. The behavior of the sediment layer was characterised by means of rheological 
measurements and is modelled as a yield stress fluid. The induced sediment dispersion is 
investigated for various cases and the SPH predictions are compared with visual observations 
obtained from the experiments, highlighting the capture of various flow and sediment transport 
characteristics. In the far-field problem, the spread of the sediment due to a logarithmic steady 
current from a distributed source is investigated. With a sediment released rate of 3.6 tons per hour 
for 5 hours (total of 18 tons), the simulation results show that about 93% of the released sediment 
has been deposited on the floor up to about 11km from the source location, after 3.5 days. 

Methodology 
The model used is based on the mixture model [5] in which the continuity, momentum conservation 
and transport of the sediment concentration φ are given respectively by 
 𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
+ 𝜌𝜌∇ ∙ 𝒖𝒖 = 0, (1) 
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 𝜕𝜕
𝜕𝜕𝜕𝜕
𝒖𝒖 + ∇ ∙ 𝜌𝜌𝒖𝒖𝒖𝒖 = −∇𝑃𝑃 + ∇ ∙ �𝐓𝐓η + 𝐓𝐓T� + 𝜌𝜌𝒈𝒈, (2) 

 𝐷𝐷φ
𝐷𝐷𝐷𝐷

= −φ∇ ∙ 𝒖𝒖 − ∇ ∙ �φ �1 −
φ𝜌𝜌𝑠𝑠
𝜌𝜌
�𝒖𝒖𝑠𝑠� + ∇ ∙ �𝐷𝐷T∇φ�. (3) 

Here, 𝒖𝒖 is the barycentric velocity of a volume of mixture, 𝐷𝐷/𝐷𝐷𝐷𝐷 is the material derivative, and 
𝜌𝜌 = φ𝜌𝜌𝑠𝑠 + (1 − φ)𝜌𝜌𝑓𝑓 is the mixture density, 𝐓𝐓η and 𝐓𝐓T  are the viscous and turbulent diffusion 
stresses, 𝒖𝒖𝑠𝑠  is the sediment settling velocity and 𝐷𝐷T  is the diffusivity. In addition, the standard 
𝑘𝑘 − 𝜀𝜀  and 𝑘𝑘 − 𝜔𝜔 SST  models have been considered to model turbulent viscosity and particle 
diffusivity. These equations have been transformed in a Lagrangian framework and discretized 
using the standard SPH derivatives. The turbulent modelling aspects are not in focus here – rather, 
the diffusion of the sediment is of concern. 

Anisotropic diffusion of sediment 
Due to stratifications of the water column in oceans, disturbed sediment diffuses mainly in the 
horizontal directions and is quite limited in the vertical direction. In other words, the sediment 
diffusion process near the ocean bottom is basically anisotropic. In the transport equation, diffusion 
coefficient thus is not a scalar but a tensor, 
 

𝑫𝑫 = �
𝐷𝐷𝑥𝑥𝑥𝑥 𝐷𝐷𝑥𝑥𝑥𝑥 𝐷𝐷𝑥𝑥𝑥𝑥
𝐷𝐷𝑦𝑦𝑦𝑦 𝐷𝐷𝑦𝑦𝑦𝑦 𝐷𝐷𝑦𝑦𝑦𝑦
𝐷𝐷𝑧𝑧𝑧𝑧 𝐷𝐷𝑧𝑧𝑧𝑧 𝐷𝐷𝑧𝑧𝑧𝑧

�, (4) 

which is a symmetric and positive definite tensor. Currently, there is a lack of an appropriate SPH 
formulation for an anisotropic diffusion operator. Thus, a new SPH expression for a general 
diffusion operator is derived in this study and it is named ASPHAD (Anisotropic SPH 
approximation for Anisotropic Diffusion). ASPHAD has the form  

 �𝛁𝛁 ∙ (𝑫𝑫𝛁𝛁𝑐𝑐)�
𝑖𝑖

= 2�
𝑐𝑐(𝒓𝒓)− 𝑐𝑐(𝒓𝒓′)

|𝒓𝒓′ − 𝒓𝒓||𝑳𝑳−1𝒆𝒆𝒓𝒓′𝒓𝒓|2
𝜕𝜕𝜕𝜕(|𝒓𝒓′ − 𝒓𝒓|,ℎ)

𝜕𝜕|𝒓𝒓′ − 𝒓𝒓| 𝑑𝑑𝒓𝒓′
Ω𝑖𝑖

+ 𝒪𝒪(ℎ2) (5) 

in which 𝒆𝒆𝒓𝒓′𝒓𝒓 = (𝒓𝒓′ − 𝒓𝒓)/|𝒓𝒓′ − 𝒓𝒓| and 𝑳𝑳−1 is inverse matrix of 𝑳𝑳, which is given by 𝑫𝑫 = 𝑳𝑳𝑳𝑳𝑇𝑇. The 
tensor decomposition could be either singular value decomposition or Cholesky decomposition. 
Particle, or SPH, discretization form of ASPHAD is 

 �𝛁𝛁 ∙ (𝑫𝑫𝛁𝛁𝑐𝑐)�
𝑖𝑖

= 2�
𝑉𝑉𝑗𝑗𝑐𝑐𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖�𝑳𝑳−1𝒆𝒆𝑖𝑖𝑖𝑖�
2
𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖

𝜕𝜕𝑟𝑟𝑖𝑖𝑖𝑖𝑗𝑗

 (6) 

For illustration purposes, ASPHAD is used to simulate anisotropic diffusion of a contaminant 
source in fluid with diffusion coefficients given by 
 

𝑫𝑫 = �0.12 0
0 0.02�  (𝑚𝑚2/𝑠𝑠) (7) 
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Figure 1: Anisotropic diffusion with diffusing rates of 𝟎𝟎.𝟏𝟏𝟏𝟏 𝒎𝒎𝟐𝟐/𝒔𝒔 in x-direction and 𝟎𝟎.𝟎𝟎𝟎𝟎 𝒎𝒎𝟐𝟐/𝒔𝒔 in y-direction. 
(a) Analytical solution, (b) ASPHAD, (c) and (d) Vertical and horizontal concentration distribution through 

source location (𝒙𝒙𝟎𝟎,𝒚𝒚𝟎𝟎) = (𝟒𝟒𝟒𝟒𝟒𝟒,𝟑𝟑𝟑𝟑𝟑𝟑) 

Sediment/Equipment Interaction Problems 
In order to generate relevant experimental data to validate the proposed model for sediment 
disturbance induced by a harvester in operation on the seabed, a lab-scale experimental setup was 
designed in which an inclined blade moves horizontally through a layer of clay suspension 
mimicking the behavior of the seabed. The experiments take place in a 2𝑚𝑚 × 0.5𝑚𝑚 × 0.5𝑚𝑚 tank 
with a blade velocity 𝑂𝑂(0.1𝑚𝑚. 𝑠𝑠−1) and the scale of the experiment is only about one order of 
magnitude smaller than the real operation scales. Seabed samples recovered from the operation 
region revealed a behavior similar to suspensions of bentonite clay. Hence, the latter was used as a 
model for the seabed and the rheological properties of suspensions of various concentrations were 
measured and fitted to a Papanastasiou model [4] for yield stress fluids. The concentration 
dependent parameters obtained were fed into our numerical model. The induced seabed disturbance 
is then compared with SPH numerical simulations and a typical example is shown in Fig. 2, where 
it can be observed that the numerical simulation captures several of the flow features and sediment 
disturbance, notably the development of vortex trails in the wake of the blade.  
 

  

  
Figure 2. Comparison between SPH simulation results (left) and the experiments (right) 

Far-field sediment dispersion simulation 

   
(a)                           (b)                                                 (c)   

Figure 3: (a) mass fraction of still suspended sediment (to the total amount of released sediment), (b) maximum 
sediment concentration (kg/𝒎𝒎𝟑𝟑) during the simulation period, (c) mass fraction of sediment deposited on the 

floor versus radial distance from the source location. 
 
Sediment at seabed disturbed by technical activities has a spectrum of sizes, from a few microns to 
hundreds of microns. These sediment particles are heavier than water and therefore in the presence 
of a subsea current, they can be persistent in ocean water and indeed can be carried away to 
relatively long distances away from the disturbance site. Together with current-related convections, 
sediment particles also settle downward and deposit on the ocean floor. These deposited sediments 
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may be re-suspended if the shear stress on the floor is high enough. The distributions of suspended 
and deposited sediments are the main concern in an environmental impact assessment. 
A large-scale sediment dispersion simulation is carried out with SPH in a 150m(𝐻𝐻) ×15km(W) 
domain. Mathematical model basically follows equations (1)-(3). Boundary condition for the 
sediment concentration at the ocean bottom is generally given by 𝑤𝑤𝑠𝑠𝑐𝑐𝑏𝑏𝑓𝑓𝑑𝑑 + 𝑀𝑀𝑒𝑒𝑓𝑓𝑒𝑒, in which 𝑓𝑓𝑑𝑑  and 
𝑓𝑓𝑒𝑒  are probabilities of sediment deposition and bottom erosion, 𝑤𝑤𝑠𝑠  and 𝑐𝑐𝑏𝑏  are  sediment settling 
velocity and sediment concentration right above the bottom. Current flows from left to right and is 
assumed to follow logarithmic profile with a height-averaged velocity of 0.05m/s. Eddy viscosity 
and sediment-fluid mixing coefficients are calculated from a mixing length model. Average settling 
velocity of sediment is 𝑤𝑤𝑠𝑠 = 10−4 𝑚𝑚/𝑠𝑠  (corresponding to a sediment size of about 10 µm). 
Sediment source, locating at 2km from the left boundary, follows Gaussian distribution in 
horizontal direction and exponential distribution in vertical direction and continually releases 
sediments at a rate of 3.6 tons per hour during 5 hours. The simulation results for suspended and re-
deposited sediment after 3.5  days are shown in the figure 3. After 3.5 days, about 93% of the 
released sediment deposited along the floor up to about 11km from the source location. Maximum 
concentration reaches to 2.6𝑔𝑔/𝑙𝑙  (or 𝑘𝑘𝑘𝑘/𝑚𝑚3) at 5 hours and gradually reduces to 0.09𝑔𝑔/ 𝑙𝑙 after 3.5 
days. 

Conclusions 
The motivation behind these works is to provide an assessment of the sediment dispersion problem 
due to a sediment source disturbance at a certain location. To this end, we find that SPH is a good 
numerical method that tracks fluid particles and interfaces, including the complexity of the 
constitutive equations for the fluids and flows with an immersed moving structure. The 
experimental setup is currently being equipped with sensors in order to measure the force exerted 
on the blade and to compare it with the one extracted from simulations. The prediction and 
minimization of this force is also useful in the design of the harvesting equipment. Further work 
includes the extension to 3D and harvester-scale simulations in order to provide of sediment source 
estimates for the ocean-scale simulations.   
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ABSTRACT

Present work demonstrates an efficient method for reliability analysis using sequential development of the stochas-

tic response surface in sparse grid framework. Here, stochastic response surface is formed by orthogonal Hermite

polynomial basis, whose unknown coefficients are evaluated using moving least squares technique. To construct

the response surface, collocation points (as in the conventional stochastic response surface method (SRSM)) are

replaced by the sparse grid scheme that reduces the number of function evaluations. Additionally, the sparse grid

is populated sequentially based on the optimization process for finding the most probable failure point. After con-

structing the sequential SRSM, reliability analysis is conducted using importance sampling. Numerical study shows

the efficiencies of the proposed sequential SRSM in terms of accuracy and number of time-exhaustive evaluation

of the original performance function.

Keywords: Reliability Analysis, Polynomial Chaos Expansion, Moving Least Squares, Hermite Polynomial,

Sparse Grid.

Introduction

Surrogate modelling has become an important numerical tool in the recent past for various engineering applica-

tions like optimization [1], reliability analysis [2] [3], uncertainty quantification [4]. However, this approximate

modelling is not always convergent and may yield significant modelling error [3][5]. One of the method is polyno-

mial chaos expansion (PCE) [2] which can be used for complex scientific and engineering problems. Using PCE,

Isukapalli [6] proposed stochastic response surface method (SRSM) to approximate the performance function. For-

mation of the SRSM is done using the actual function evaluations at Gauss quadrature points (a.k.a. collocation

points) to determine the unknown coefficients by regression. The method proves to be robust and stable as it uses

regression and orthogonal polynomials (i.e. Hermite polynomial) making it convergent in L2 sense [2]. Later, Xiu

and Karniadakis [4] proposed generalized PCE formulation for solving stochastic differential equations using the

Askey polynomial scheme. Application of this method have been studied for various engineering problems like

foundation on heterogeneous soil, aircraft joined-wing structure and so on [7][8]. Sudret and Der Kiureghian [7]

proposed an application of PCE along with first order reliability method (FORM) and importance sampling tech-

nique for solving random field problems. Similar effort has been made by Kameshwar et al. [5] to combine PCE

with FORM for reliability analysis. They substituted the individual contribution of the random variables in limit

state by unidimensional Hermite polynomials which is later solved for reliability index. Gavin and Yau [9] pro-

posed a higher order SRSM (HO-SRSM) using Chebyshev polynomials in which the polynomial order with respect

to individual random variable is determined based on the significance of the respective polynomial coefficients.

Apart from using regression analysis which is a widely accepted tool for determining the unknown coefficients in

SRSM, advanced techniques like least angle regression (LARS) [10], moving least squares (MLS) [11] and so on,

have been adopted for improving the accuracy of the stochastic response surface approximation. However, MLS

based SRSM can give inaccurate estimation of failure probability in some cases as shown by Xiong et al. [12].

They suggested a double weighted strategy where extra weightage is imposed on the support points near the limit

state for better local approximation of SRSM.

Although SRSM is considered to be accurate but it suffers from substantial increase in the number of actual

function calls with the increase of number of random variables (i.e. curse of dimensionality). This, in turn, makes
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the process computationally exhaustive and inefficient. To counter this issue, Blatman and Sudret [10] proposed

hyperbolic PCE with LARS. Another technique is adaptive-sparse PCE method [13] where the insignificant terms

in the bivariate polynomial expansion are dropped. However, the literatures still lack in limiting the number and

the location of support points which affects the overall performance to replicate the original surface.

With this in view, present work suggests an efficient method for reliability assessment for large field problem.

A sequential algorithm for SRSM is presented to address the curse of dimensionality. The stochastic response

surface is formed using the Hermite polynomial basis function. The unknown coefficients of the response surface

are evaluated by MLS technique. For constructing the response surface, collocation points (as in the conventional

SRSM) are replaced by the sparse grid scheme which reduces the function evaluations. Additionally, the sparse

grid is populated sequentially based on the optimization process for finding the most probable failure point. Once

the sequential SRSM is formed, importance sampling is adopted for reliability evaluation.

MLS based SRSM

In stochastic response surface method, the original performance function is replaced by a summation of orthogonal

polynomial described in terms of the random variables. Different orthogonal polynomials are described in the

literature (e.g. Legendre, Laguerre, Hermite, Chebyshev) for different applications. Off all these polynomials,

Hermite polynomial is popular in reliability analysis and stochastic finite element modelling. Mathematically,

Hermite polynomial of order o can be expressed as [6]

Γo(ξi1 , ξi2 , . . . , ξio ) = e
1
2
ξT ξ(−1)o ∂oe−

1
2
ξT ξ

∂ξi1∂ξi2 . . . ∂ξio

. (1)

where, ξ = {ξ1 ξ2 . . . ξn}
T denotes the vector of standard normal random variables. Thus, using polynomial of a

predefined order o, the original performance function can be expressed as

y(ξ) = α0 +

n∑

i1=1

αi1Γ1(ξi1 ) +

n∑

i1=1

i1∑

i2=1

αi1i2Γ2(ξi1 , ξi2 ) + . . . +

n∑

i1=1

i1∑

i2=1

· · ·

io−1∑

io=1

αi1i2...ioΓo(ξi1 , ξi2 , . . . , ξio ). (2)

The unknown coefficients of the aforementioned equation can be denoted by b = {α0 α1 . . . αn α11 α21 . . . αnn...n}
T .

Thus, rewriting the Eq. 2 in simplified matrix form, one gets

y(ξ) = Ξ(ξ)b (3)

where, Ξ(ξ) consists of the Hermite polynomial basis of order ≤ o. A total of nb =
(n+o)!
n! o!

coefficients need to be

determined in the representation of SRSM. Usually, these unknown coefficients b are evaluated using regression

analysis [6]. However, a global approximation of the original performance function often lead to large error as it

fails to capture local variations, if any [14]. To address this problem, moving least square (MLS) based regression

is often prescribed in the literature where the unknown coefficients change with locations (i.e. support points).

Using this modified regression technique, the unknown coefficients b can be expressed as follows [15]

b = [ΞT WΞ]−1 [ΞT W] y (4)

where, the actual values of the performance function evaluated at the support points are expressed by the vector y.

Also, each row of the matrix Ξ represents the polynomial basis corresponding to the location. The weight matrix

W in the above equation consists of weight function w which is given by [15]

w(δ) =






w̄(δ)
∑k

i=1 w̄(δi)
if δ ≤ r

0 elsewhere
(5)

where,

w̄i(δ) =
{( δ

r
)2 + ε}−2 − (1 + ε)−2

ε−2 − (1 + ε)−2
(6)

In the above equation, δ represents the Euclidian distance between the respective support point, r is the influence

radius of the weight function and ε is adopted as 10−5 [15] [14]. Although, this evolving regression technique

improves the performance of the meta model significantly, it still suffers computational challenges in problems

with large dimensions and multiple optima. Besides this, computational cost for problem with large dimension
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has remained a major challenge to the designers. Thus, there is a constant demand for a more efficient technique

for reliability estimation that involves less functional evaluations and subsequent computational cost without com-

promising with the quality of the end results. With this in view, present study aims to demonstrate sequential

development of stochastic response method where the support points are generated using sparse grid technique.

Proposed Sequential SRSM with Sparse Grid Scheme

In this section, the details of the proposed sequential stochastic response surface using MLS based PCE in sparse

grid scheme is presented.

Sequential SRSM

As in the Eq. 2, stochastic response surface is constructed by Hermite polynomial basis with unknown coefficients.

To evaluate these coefficients, support points are generated using different techniques namely collocation method,

Latin hypercube design, monomial cubature rule among many others [11]. The location of these points are known

prior to the determination of the coefficients for constructing the polynomial basis matrix Ξ. Hence, the number

of support points ne should be at least equal to the number of unknown coefficient (i.e. nb). Thus, the support

points generation scheme can be dense or sparse depending on various issues like number of random variables n

and order of the polynomial o. In case of dense generation, computation cost rises making SRSM less effective

whereas the sparse population of support points might lead to inaccurate approximation. Additionally, for an ideal

situation in reliability analysis, more support points are required in the vicinity of the limit state (i.e. y(x) = 0). As

these points account for better approximation and accuracy in estimation of probability of failure [12]. Therefore,

customizing the number of support points ne in a single go based on o, n etc. becomes a difficult task. To overcome

this problem, the present study uses an iterative scheme where the support points are generated only in the vicinity

where it is required. This is done by optimizing the Gaussian space of the approximated surface to find the most

probable failure point (or design point) as

Find : ξ

Minimize : |ξ|2

Subjected to : ỹ(x) = 0.

(7)

Above optimization is executed over the approximated surface [i.e. ỹ( . )] which imposes no restriction on the

choice of the optimization tool. Hence, different searching tools like gradient based methods, genetic algorithm

can be adopted to perform the constrained optimization. Thus, the accuracy of the optimization largely depends on

the accuracy of the meta modelling. Although, the accuracy of the meta model increases with number of support

points, a tradeoff between the number of points and modelling error is adopted to optimize computational cost. In

this study, sequential quadratic programming (SQP) inbuilt in MATLAB R© [16] is adopted for solving the Eq. 7 to

evaluate the design point ξ∗ in the Gaussian space.

From the above discussion, it is evident that the ideal condition requires more points in the failure region and less

points elsewhere. This, in turn, improves the efficiency of the reliability method by limiting the number of function

calls in order to reduce cost of computation. To explain this phenomenon, Fig. 1 demonstrates the points generated

by the full grid formation using the collocation method. These points almost uniformly cover the domain with

increase in the order o of PCE, especially the domain with high probability [11]. This might lead to inclusion of

points that are insignificant for estimation of probability of failure and lead to excessive computational burden.

Whereas the points generated by the sparse grid scheme are selective which is explained later.

Thus, to minimize the function calls (in other words, the number of support points), the proposed method initiates

at a predefined point. Without loss of generality, this initial design point is considered as the mean values of the

random variables (i.e. µx). The support points are allocated around this design point, preferably with the extent to

incorporate the failure region (i.e. y(x) ≤ 0). PCE is constructed using Eq. 2 of order o for n random variables.

In this context, the number of support points must be ≥ nb for solving the PCE based approximation by MLS

technique as explained in the Eq. 4. After constructing the approximated surface ỹ(x), constrained optimization

problem as explained in Eq. 7 is solved to identify the failure region and the corresponding new optima. This new

deign point is further used for generating more support points as explained earlier for the following iteration. In

order to generate more support points in the area near the limit state, the spatial extent of the generated support
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Figure 1: Collocation points with different order and dimension

points in every iteration it is reduced by factor λ (λ < 1.0). The value of this reduction factor depends on the

required convergence speed and the accuracy to be attained. After every iteration, convergence of the solution is

checked by |ỹ(x∗)it−1− ỹ(x∗)it| ≤ ĕ1 and |x∗
it−1−x∗it | ≤ ĕ2, where ĕ1 and ĕ2 are the permissible errors of order, typically

in the range of 10−2 − 10−3. Once the convergence is achieved, reliability analysis is conducted using importance

sampling method as explained later in this section. The proposed sequential SRSM provides the information of the

most probable failure point x∗ and the probability of failure p
f

associated with it.

Sparse Grid Scheme

The proposed method employs sparse grid scheme where support points are judiciously selected from the full grid.

The sparse grid formation follows Smolyak’s algorithm which includes the points from the lower product grids

[17] and is controlled by a factor l such that

S Gl =
∑

∑m
i=1 i j≤l+m−1

(∆i1 ⊗ ∆i2 ⊗ · · · ⊗ ∆im )(y) (8)

where, this factor l is the level of the sparse grid scheme. In Eq. 8, ∆ represents the unidimensional difference

quadrature term defined in the unit space i.e. [0, 1]. Present study uses an equidistant sparse grid scheme as

proposed by Clenshaw and Curtis [18]. The number of points generated by this scheme in unidimensional direction

is given by [19]

nc,i =

{

1 if i = 1

2i−1 + 1 if i > 1
(9)

where, i denotes a positive integer like 1, 2, 3, . . .. The coordinates of these points in the unit space is obtained

from [19]

x
i, j

k
=






0.5 for j = 1 if nc,i = 1
j−1

nc,i−1
for j = 1, 2, . . . , nc,i if nc,i > 1

(10)

where, x
i, j

k
represents the set of coordinates for the kth random variable. Fig. 2 shows the Clenshaw-Curtis sparse

grid generated for various l values. In contrary to the collocation points which is a full grid scheme as shown in
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Fig. 1, sparse grid scheme fills the domain (in this case it is a unit space) non-uniformly. Thus, creating large voids

between adjacent points. The proposed sequential method in this study attempts to fill such voids in the vicinity of

critical regions of the limit state only.
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Figure 2: Support points generated by Clenshaw-Curtis sparse grid scheme

Reliability Assessment

After satisfying convergence criteria, reliability analysis is conducted for estimating the probability of failure p
f
.

Based on the support points generated sequentially in the iterative manner, approximate surface ỹ(x) is constructed.

In this context, it may be noted that support points generated in every iteration along with the corresponding

values of the original function are saved to construct the global response surface. Using this global response

surface, proposed method estimates the most probable failure point x∗. Here, importance sampling is chosen with

sample size (say 103 or 104) for conducting the reliability assessment in this study. The probability of failure p
f

is

calculated as [20]

p
f
≈

1

ns

ns∑

p=1

S [ỹ(xp) ≤ 0] fx(xp)

f ∗x(xp)
(11)

where, ns is sample size of the simulation. In the above equation, S [ . ] is a discrete indicator function with binary

output (i.e. either 0 or 1) based on the satisfaction of the condition stated in the third bracket. Additionally, fx(x)

is the joint probability density function (pdf ) of the random variables and f ∗x(x) denotes a modified pdf applied as

the weight function to balance the simulation in the vicinity of the most probable failure point. Readers may refer

[20] for further details of this technique. A flowchart of the proposed sequential modelling is shown in Fig. 3 and

the application of this method is discussed in the following section.

Numerical Results and Discussion

The proposed sequential SRSM discussed in the previous section is considered here for numerical analysis. Results

obtained from this method is compared with other methods (e.g. FORM, SORM, HO-SRSM, SRSM, MCS) to
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Figure 3: Flowchart of the proposed sequential SRSM
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Figure 4: Comparison of (a) pdf and (b) CDF of a random variable following Weibull

distribution evaluated from different methods

demonstrate its efficiency and accuracy. The order of the proposed MLS based SRSM is fixed at 2 as it is sufficient

to accurately capture the nature of the non-normal pdf. For this purpose, Weibull distribution is considered to check

the adequacy of the order. The random variable is assumed to have mean and variance as 4.60 and 0.85 respectively.

For MLS based PCE modelling, the effective range of [0, 8] is subdivided in 8 equidistant segments. Fig 4 shows

the pdf and CDF of the Weibull distribution using conventional PCE of different order and propose MLS-PCE. As

the order increases, conventional PCE matches with the exact value. It is noticed that an order 7 is adequate for
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conventional PCE to map the Weibull distribution. However, same accuracy is achieved with MLS-PCE of order

2.

With this performance of the MLS-PCE in hand, proposed sequential SRSM is tested with different benchmark

problems. For this purpose, three different problems are considered from literature with different complexities. The

performance of the sequential SRSM is tested vis-à-vis with other methods. Finally, a design problem involving

nonlinear finite element analysis of a composite plate is presented to demonstrate the superiority of the proposed

algorithm for reliability analysis.

Example 1: Franke’s Test Surface

In this example, a non-algebraic bivariate performance function is considered which is given by

y(x) = 0.75 exp{−0.25(9x1 − 2)2 − 0.25(9x2 − 2)2} + 0.75 exp
{

−
(9x1−2)2

49
−

(9x2−2)2

10

}

+ 0.50 exp{−0.25(9x1 − 7)2 − 0.25(9x2 − 3)2} − 0.25 exp{−(9x1 − 4)2 − (9x2 − 7)2} − 0.25 (12)

where, x1 and x2 are independent Gaussian random variables with mean µx = 0.40 and standard deviation σx =

0.10. The function in Eq. 12 is a modified version of the original Franke’s test surface where the limit for failure is

set to 0.25 [21]. It is widely considered as a benchmark exercise for testing the interpolation of scattered data. Fig.

5a shows the profile of the original surface which includes two humps (i.e. maxima) and a crater (i.e. minima).
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Figure 5: (a) Surface plot and (b) contour plot of the Franke’s test surface with limit state

Now, to demonstrate the sequential response surface, Franke’s test surface is simplified by cutting the surface using

an imaginary plane through the mean value of the random variable x1 as shown in Fig. 6. This, in fact, reduces the

test surface to a 1D function of the random variable x2. As stated in the flowchart (Fig. 3), the process commences

from the mean of the random variable (i.e. µx2
) which is assumed as the initial design point. The support points

using Clenshaw-Curtis sparse grid of level l are generated around this design point. Lower and upper bounds of the

support points are adopted using a prior guess which is sufficient enough to accommodate the limit state condition

(i.e. y(x) = 0). The sequential SRSM employs Hermite polynomials which are in Gaussian space. Hence, the limits

for the random variable x2 in the standard normal space is considered to be [−5 5]. Based on the sparse grid level

l = 2, three equidistant support points are generated in the first iteration such that the points are placed on the

limits and the mean as shown in Fig. 6a. In this context, it may be noted that support points for ξ2 are generated

in the standard normal space and converted into its original space defined by x2. Using these three points, an

approximated surface with PCE of order o = 2 is constructed using MLS technique as discussed earlier. Eq. 7 is

optimized for determining the next optimal location (i.e. new design point) for generating more support points. In
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Figure 6: Sequential generation of the support points using the sparse grid scheme
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Figure 7: Plot of the approximate surface from (a) sequential SRSM and (b) the support

points generated by the sparse grid scheme

the following iteration it = 2, additional support points are generated around the new design point using l = 2.

Here, the extent (i.e. difference between the bounds) of the new support points is reduced from the previous one

by a factor λ < 1 so that more points are segregated near the design point. In this case, λ = 0.82 is adopted which

is observed to give quick convergence. The positions of these new support points are shown in Fig. 6b. It can be

observed that the position of one support point lies beyond the domain [−5 5]. Therefore, the position of all new

support points are shifted uniformly to fit within the given limits. This uniform shifting of the positions is done

to maintain the symmetry of the new support points. However, if the initial guess on bounds does not contain the
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Table 1: Comparison of the probability of failure for the Franke’s function

Method Order p
f

Function Calls Error (%) Remark

MCS - 0.02459 106 - -

FORM - 0.02714 36 10.37 -

SORM - 0.02386 56 2.97 -

SRSM

4 0.03489 25 41.89 -

6 0.03142 49 27.78 -

8 0.02968 81 20.70 -

10 0.02812 121 14.36 -

HO-SRSM - 0.02647 70 7.65 o = [6, 7]

Seq. SRSM 2 0.02446 36 0.53
l = 2( f or it= 1,2)

and l = 1( f or it= 3,4)

limit state [i.e. y(x) = 0], the bounds may be suitably readjusted to incorporate the failure region. Once the position

of the new support points are shifted as shown in Fig. 6b, Eq. 4 is solved to determine the unknown coefficients at

these positions. The approximated surface is improved using the old as well as the new support points. Again the

optimization is executed to determine the next location for it = 3. In every successive iteration, new support points

are accommodated by further narrowing their extent by reducing the factor λ from it = 3 onwards. This eventually

helps is concentrating the support points at the failure region for fast convergence. In this case, the convergence is

achieved in 5 iterations requiring 15 function calls. However, only 13 actual function calls are executed because in

it = 2 and 3 have two common points. Fig. 6e shows the performance function (i.e. original and proposed) after

convergence.

Using this sequential development of response surface, Franke’s function is modelled with two different sparse

grid levels. Iteration 1 and 2 used l = 2 while all other it used l = 1 until convergence. This leads to an total of 4

iterations and 36 actual function calls. Fig. 7 shows the approximation achieved and the support points generated

in the proposed sequential SRSM for the bivariate Franke’s test surface. The example is also solved by different

methods for reliability estimation and the results from these methods are summarized in Table 1. In this study,

MCS is assumed to be most accurate estimation of probability of failure which gives p
f
= 0.02459 with one

million samples (i.e. ns = 106). The solution using FORM and SORM converges after 36 and 56 function calls

and p
f

estimated from both these methods are 0.02714 and 0.02386 with 10.37% and 2.97% error, respectively.

Additionally, it was observed that the initial choice of design point in FORM and SORM (e.g. [0.2 0.2]) may lead to

difficulty in achieving convergence and eventually yields erroneous results. Conventional SRSM is executed with

PCE of order 4, 6, 8 and 10 for both the variables. It requires 25 to 121 function calls for estimating p
f

with error

14.36–41.89% as shown in the Table 1. HO-SRSM [9] solves the limit state with the order o = 6 and 7 for random

variables x1 and x2, respectively which gives p
f
= 0.02647 (i.e. 7.65% error) with 70 function calls. Almost half

number of function calls are demanded to perform the proposed sequential SRSM to get p
f
= 0.02446 which is

fairly accurate as the error is 0.53%.

Example 2: Fortini’s Clutch

Next example in this study is Fortini’s clutch assembly which consists of a hub and four roller bearings placed in

a cage as shown in Fig. 8. Its application for reliability methods is discussed by Lee and Kwak [22]. The clutch

is designed for the overturning based on the contact angle θ as shown in the Fig. 8. This angle θ is formed by a

vertical axis passing through center of hub and a line connecting the centers of the opposite roller bearings and the

hub center. Thus, the limit state can be defined as
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Figure 8: Fortini’s clutch assembly

y(x) = arccos





x1 +
1
2
(x2 + x3)

x4 −
1
2
(x2 + x3)





︸                          ︷︷                          ︸

θ

−0.08726 (13)

where, x1, x2, x3 and x4 are independent random variables with statistical properties mentioned in Table 2. In order

Table 2: Statistical properties of the variables in Fortini’s clutch assembly

Random variables Mean (µx) Standard deviation (σx) Distribution

x1(mm) 55.29 7.93 ×10−2 Beta

x2(mm) 22.86 4.30 ×10−3 Gaussian

x3(mm) 22.86 4.30 ×10−3 Gaussian

x4(mm) 101.60 7.93 ×10−2 Rayleigh

to avoid overturning of the clutch and operate smoothly, the contact angle θ must lie within 5◦ (i.e. 0.08726 radian).

Table 3 summarizes the probability of failure, error and number of function calls obtained from various methods.

The gradient based methods (i.e. FORM and SORM) diverge [22] and are unable to estimate the probability of

failure. MCS estimates the p
f
= 0.00130 with a sample size of 105. For this example, conventional SRSM

computes probability of failure using orders o = 3, 5 and 7 for all random variables which yields 0.00116, 0.00120

and 0.00118, respectively. It suffers from inaccuracies of 7.69% to 10.77% in spite of using significant number

of support points (i.e. ne = 256, 1296 and 4096, respectively). The problem is further solved using HO-SRSM

where the order of the polynomials in Eq. 13 are determined to be 5, 2, 2 and 5 respectively. This consumes 192

support points to give p
f
= 0.00094 of error nearly 28%. Finally, p

f
is estimated using the proposed method for

different values of sparse grid level l as shown in Table 3. A mixed usage of l is demonstrated where the initial few

iterations adopt higher value of l as compared to the later iterations. Four cases are shown in the Table 3, including

three cases where l = 2 is considered for initial few iterations and then, level l is reduced to 1 until convergence is

achieved. From this table, it may be noticed that the accuracy decreases with the decrease in level of sparse grid.

It is obvious as there are less number of points in lower level over the effective range leading to inaccurate meta

modelling. However, as the level is increased (i.e. more support points), algorithm demands more computational

cost which may impose serious restrictions for large problems. Thus, there must be a tradeoff between the level

and the accuracy that varies from problem to problem and demands an intermittency criteria to choose an optimal

level for the specific problem. In this context, l = 2 in first two iterations followed by l = 1 in successive iterations

is found to produce optimal results.
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Table 3: Estimation of probability of failure p
f

using MCS and the proposed sequential

SRSM for different sparse grid levels l

Method Order p
f

Error Function
Remark

(%) Calls

MCS - 0.00130 - 105 -

FORM - - - - -

SORM - - - - -

3 0.00116 10.77 256 -

SRSM 5 0.00120 7.69 1296 -

7 0.00118 9.23 4096 -

HO-SRSM - 0.00094 27.77 192 o = [5, 2 , 2, 5]

Seq. SRSM

2 0.00125 3.85 164 l = 2( f or it = 1,...,4)

2 0.00130 0.00 132 l = 2( f or it= 1,2,3); l = 1( f or it = 4)

2 0.00124 4.62 100 l = 2( f or it= 1,2); l = 1( f or it= 3,4,5)

2 0.00116 10.66 77 l = 2( f or it= 1); l = 1( f or it = 2,...,5)

Example 3: Non-differentiable Function

In this example, a hypothetical limit state is examined where it is expressed as [21]

y(x) = 35 −

2∑

i=1

x2
i −

6∑

j=3

x j −
x7x8 x9

max(1, x10)
(14)

In the above limit state, max( . ) gives the largest value among the set in the first bracket. This leads to non-

Table 4: Random variables in the non-differentiable function example

Random variables Mean (µx) Standard deviation (σx) pdf

x1, x2 -0.200 1.200 Gaussian

x3 2.500 0.400 Gaussian

x4, x5, x6 2.500 1.400 Gaussian

x7 1.000 1.000 Gaussian

x8 1.230 0.350 Gaussian

x9 0.980 0.023 Gaussian

x10 2.000 1.000 Gaussian

differential nature of the performance function that restricts the use of any gradient based reliability analysis (e.g.

FORM, SORM) [21]. Thus, for this case, the random variable x10 is responsible for discontinuity in the limit state.

Table 4 shows the statistical properties of the five uncorrelated random variables in this case. For checking the

accuracy, results from MCS with 106 simulations is presented in Table 5. Conventional SRSM is performed with

order o = 2 and 3 for all the random variables which demands 59046 and 1048576 support points, respectively.

This makes the process very expensive as the later (i.e. SRSM with o = 3) requires more function calls than MCS.

Besides constant order of PCE for all the variables as in the fist two cases, SRSM with variable orders are also tried
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Table 5: Comparison of the probability of failure for the non-differentiable function

example

Method Order p
f

Function Calls Error (%) Remark

MCS - 0.000396 106 - -

FORM - - - - -

SORM - - - - -

SRSM

2 0.000422 59046 6.57 -

3 0.000417 1048576 5.30 -

- 0.000400 19440 1.01
o = [2, 2, 1, 1, 1,

1, 2, 2, 2, 4]

HO-SRSM - 0.000430 1804 8.59 o = [2, . . ., 2, 4]

Seq. SRSM 2 0.000387 504 2.27
l = 2( f or it= 1,2)

and l = 1( f or it= 3,4)

and tabulated above. Different orders of these PCE for ten random variables are shown in the third case of SRSM.

The result obtained in this case with 19440 function calls has 1.01% error. Although the result is fairly accurate,

the computation cost is significantly high. HO-SRSM is further used to calculate the probability of failure which

is estimated to be 0.000430 (i.e. 8.59%) with 1804 support points, consuming relatively less computation cost.

This results in huge reduction in ne and enhanced accuracy as compared to previously discussed case of o = 2

and 3. The observation clearly indicates that in full grid schemes, the unnecessary support points might reduce its

efficiency. Application of sequential SRSM further reduces the computational effort to 504 function calls which

is nearly 72% reduction from that in HO-SRSM. Additionally, the accuracy of the proposed method is also well

within acceptable limits.

��

��

��

�

�

Laminates

Figure 9: Composite plate

Example 4: Geometrically Nonlinear Composite Plate

Finally, the reliability based design of a carbon-epoxy composite plate is carried out to study the performance of

the proposed sequential SRSM. The composite plate, as shown in Fig. 9, consists of laminates stacked in proper
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sequence with different orientations. In the present work, geometrically nonlinear composite plate is studied for

reliability analysis where the properties of the laminates are adopted to be similar with identical thickness. The

laminates in the plate are analyzed using first order shear deformation theory (FSDT) which is based on the as-

sumption that transverse normal is allowed to rotate. This, helps to include transverse shear strains in equilibrium

equation and thus, the displacement field is given as [23]

u(x̂, ŷ, ẑ) = u0(x̂, ŷ) + ẑφx̂(x̂, ŷ)

v(x̂, ŷ, ẑ) = v0(x̂, ŷ) + ẑφŷ(x̂, ŷ)

w(x̂, ŷ, ẑ) = w0(x̂, ŷ)






. (15)

In the above equation, mid-plane displacements u0, v0 and w0 are associated to x̂, ŷ and ẑ directions, respectively.

The rotation with respect to transverse normal denoted by φx̂ is about ŷ and similarly, φŷ is about x̂. Using thin

plate condition where rotations are determined by slopes of the transverse deflection and applying the von-Karman

assumptions in Eq. 15, yields [23]





εx̂x̂

εŷŷ

γx̂ŷ





=





εm
x̂x̂

εm
ŷŷ

γm
x̂ŷ





+ ẑ





ε
f

x̂x̂

ε
f

ŷŷ

γ
f

x̂ŷ





(16)

γ =

[

γx̂ẑ

γŷẑ

]

(17)

where, γx̂ẑ and γŷẑ represents shear strains. In Eq. 16, the superscripts m and f denotes membrane and flexural

components, respectively. Geometric nonlinearity caused by large deformations gives rise to additional higher

order terms in the strain field. This modifies the membrane strain to [23]

εm
x̂x̂
= u0,x̂ +

1
2
(w0,x̂)2

εm
ŷŷ
= v0,ŷ +

1
2
(w0,ŷ)

2

εm
x̂ŷ
= u0,ŷ + v0,x̂ + w0,x̂ w0,ŷ






. (18)

Thus, the constitutive equation for a laminate is expressed as [23]





σ1

σ2

τ12

τ23

τ13






=





Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q44 0

0 0 0 0 Q55










ε1

ε2

γ12

γ23

γ13






(19)

where, Qi j represents the plane stress reduced stiffness coefficients. In Eq. 19, these coefficients are defined in the

material axes of the laminate which can be transformed into the global axes by

Q̆ = [T ][Q][T ]′ (20)

where, [T ] is the transformation matrix. The orthotropic laminate, after this transformation, acts as anisotropic

which also include coupling terms. Thus, the constitutive equation for a composite plate by adding the laminates

to get a equivalent single layer is given as
[

[N]

[M]

]

=

[

[A] [B]

[B] [D]

] [

εm

ε f

]

(21)

where, [N] and [M] are the force and moment resultants, respectively. Also, [A] is the extensional stiffness matrix,

[B] represents the bending-extension coupling stiffness matrix and [D] denotes the bending stiffness matrix.

Here, total Lagrangian incremental formulation is adopted for developing the geometric nonlinear equilibrium

equation [23]. Hence, the virtual work equation of undeformed plate with volume V and area a is given as
∫

V

(dεT σ dV) =

∫

V

(ρ duT g dV) +

∫

A

(duT p da) (22)

where, dε is the virtual Green strain vector, du gives the virtual displacement, σ represents Piola-Kirchoff stress

vector, ρ is the mass density of the material, g is the body force per unit mass and p denotes the pressure applied

on the plate. The displacement field can be discretized using finite elements which is given by

ū =

nn∑

i=1

[ΩiI]qi (23)
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where, I is the identity matrix, Ωi denotes the shape function for any arbitrary node i, qi = [ui vi wi φxi φyi]
T gives

the nodal displacements. Extending the above equation for the complete thickness yields the elemental nonlinear

equilibrium equation as

ψ(q) =

ne∑

i=1

[∫

a

([B̌]′ σ̄ da) − {P̄}e

]

= 0 (24)

where, B̌ denotes the strain-displacement matrix with nonlinear terms, ψ(q) represents the summation of external

and internal forces, σ̄ gives the force and moment resultant and {P̄}e is the total external force at the element level.

The nonlinear equilibrium equation can be evaluated by solving Eq. 24 with respect to the displacement vector q.

This yields the expression in the terms of displacement, force and stiffness. In the present study, Newton-Raphson

iterative technique [23] is used for solving this nonlinear equilibrium equation.

Using this finite element model of a geometrically nonlinear plate, fragility analysis is carried out for the reliability

based design. Table 6 shows the statistical properties of the random variables used in this example. In this study,

modified Tsai-Hill failure [24] criterion is adopted to define the limit state. This criterion is an extension of the von-

Mises distortion energy theory [25]. The limit state based on the modified Tsai-Hill failure index F is expressed

as

y(x) = 1 −






(
σ11

X

)2

+

(
σ22

Y

)2

−

(
σ11σ22

X2

)

+

(

σ12

T12

)2





︸                                                 ︷︷                                                 ︸

F

(25)

where, σ11, σ22 and T12 are the laminate stresses along the respective material coordinates whereas X and Y are

the tensile and compressive strengths. As shown in the Eq. 25, the limit state reflects the condition when the failure

index F of any laminate exceeds unity [24].

Table 6: Statistical parameters and distribution of the random variables in the

composite plate

Random
Units Mean cov (%) pdf Parameters

Variables

ν12 → x1 - 0.281 7.5 Lognormal - -

G12 → x2 GPa 4.5 8.8 Lognormal - -

Xt → x3 GPa 2.409 6.7 Lognormal - -

Xc → x4 GPa 1.148 18.1 Lognormal - -

T12 → x5 GPa 0.083 5 Lognormal - -

E1 → x6 GPa 154.9 5.9 Weibull 158.820 21.6

E2 → x7 GPa 8.7 9.5 Weibull 9.055 12.9

Yt → x8 GPa 0.046 20 Weibull 0.050 5.7

Yc → x9 GPa 0.196 15.3 Weibull 0.209 7.7

A square carbon-epoxy composite plate is considered of dimension 1 × 1 m and thickness 0.010 m. The plate is

simply supported in all four sides with uniformly distributed load (UDL = 0.090 MPa) acting downwards. The

laminates are placed with orientation [0◦/90◦/0◦]. To perform the finite element analysis, quadrilateral nine noded

element with a mesh size 8 × 8 is used. The random variables in this study are elastic modulus E1 and E2, shear

modulus G12, Poisson’s ratio ν12 and strength parameters Xt, Xc, Yt, Yc and T12. Their statistical parameters and pdf

types are adopted from Sasikumar et al. [24] and mentioned in Table 6. Using these parameters, the reliability of

the plate against modified Tsai-Hill failure criterion is evaluated by all the methods described in previous examples

and the results are tabulated in Table 7. As usual, the MCS is conducted with 104 samples and is considered as the

benchmark for further analysis. Gradient based methods (i.e. FORM and SORM) gives satisfactory results with

220 and 751 function calls respectively. The probability of failure estimated for these two cases have error around

3.1% and 2.99%. A marginal improvement in second order method is noticed. However, the quality of the results

largely depends on the initial guess which is known drawback of the gradient based techniques. With these results
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Table 7: Comparison of the probability of failure for the nonlinear composite plate

Method Order p
f

Function Error
Remark

Calls (%)

MCS - 0.1906 104 - -

FORM - 0.1965 220 3.10 -

SORM - 0.1963 751 2.99 -

SRSM

- 0.2187 1280 14.74 o = [1, 1, 1, 1

1, 1, 1, 4, 1]

- 0.2632 1536 38.09 o = [1, 1, 1, 1

1, 1, 1, 5, 1]

HO-SRSM - 0.1900 3324 0.31 o = [2, 2, 2, 2

2, 5, 3, 5, 2]

Seq. SRSM 2 0.1975 456 3.64
l = 2( f or it= 1,2)

and l = 1( f or it= 3,4,5)

in hand, SRSM and its modified versions are tried. First, the conventional SRSM is tried with order 2 and 3 that

need 19683 and 262144 function calls. These are well above the function calls required for MCS. As each function

call needs to solve nonlinear finite element code to check the failure criterion involving significant computation

time, this method for reliability estimation of the nonlinear composite plate is not feasible. Moreover, the results

from the SRSM have 14.74% and 38.09% error for two different combination of orders of random variables which

are not satisfactory at all. Once the performance of conventional SRSM is studied, HO-SRSM is tried with different

order. It is found that it converged with p
f
= 0.19 that has 0.31% error with 3324 function calls. Finally, proposed

sequential SRSM is used to study the failure. It is noticed that the proposed method with l = 2 in first two iterations

followed by l = 1 converges after 5 iterations with error less than 3.84%. It requires 456 function calls which is

more than FORM but well below that required for SORM and HO-SRSM. This clearly justifies the superiority of

the proposed method for actual design problems involving large finite element models.

Summary

An efficient reliability analysis using sequential development of SRSM is demonstrated here. In this process,

the proposed MLS based SRSM is formed with Clenshaw-Curtis sparse grid scheme with equidistant support

points in each successive iterations. The order of the polynomials and the level of the sparse grid are adjusted

in every iteration that offers significant flexibility to optimize computational cost while compromising with the

accuracy of the end result. In this context, different optimization tool may be adopted as the proposed imposes no

restriction. Using this sequential SRSM, different benchmark problems are solved to demonstrate its performance.

The numerical study presented in this paper clearly demonstrates that level of accuracy and computation cost

involved in the proposed method. It may be concluded that the proposed sequential SRSM offers appreciable

accuracy at an optimal computational cost. Overall, it proves to be an effective tool for reliability analysis for

problems with large dimension and other complexities.

With simple modifications, the proposed method can be adopted for problems with multiple performance function

and/or multiple failure points and uncertainty quantification. Authors wish to address these issues in their future

work.
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Abstract 

In order to design photonic crystals with complete band gaps, a topology optimization algorithm is 
proposed based on finite element analysis and bi-directional evolutionary structural optimization 
method. The photonic crystals are assumed to be periodically composed of two materials with 
different electromagnetic property. By introducing discrete design variables and calculating the 
sensitivity of each element, the BESO algorithm gradually re-distributes the dielectric materials 
within the unit cell until the photonic crystal have a complete band gap between specified photonic 
bands. The proposed optimization algorithm is efficient and some innovative designs have been 
obtained. 
 
Keywords: Topology optimization; complete band gap; finite element analysis (FEA); 
bi-directional evolutionary structural optimization (BESO). 

Introduction 

Photonic crystals are micro optical periodic structures in 1, 2 or 3 dimensions. Due to the periodic 
arrangement of dielectric materials with different electromagnetic properties, photonic crystals will 
be able to modulate the propagation of light and generate some special functions like photonic band 
gap[1], negative refraction[2] and slow light[3]. Photonic band gap refers to the property that the 
propagation of electromagnetic waves within a certain frequency ranges are totally prohibited in the 
photonic crystal. It is an important and fundamental feature which lays the ground for many utilities, 
for example wave guide[4, 5] and resonant cavity[5, 6]. It has significant meaning to design 
photonic crystals with large band gaps which can modulate light signals in a broader frequency 
range. 
 
For two dimensional photonic crystals, electromagnetic wave can be decomposed to transverse 
magnetic waves, whose electric field is perpendicular to crystal plane, called TM mode, and 
transverse electric waves, whose magnetic field is perpendicular to crystal plane, called TE mode. 
Design and optimization of photonic band gap structures for an independent polarization have been 
reported in many literatures. These methods include the traditional trial-and-error method based on 
physical intuitions[7, 8] and advanced topology optimization methods such as genetic algorithms[9, 
10], level set method[11], SIMP[12] and BESO[13]. 
 
Compared with band gaps for a single polarization, complete band gaps, which can prevent 
electromagnetic waves of both polarizations, are apparently more meaningful. However, the 
calculation of complete band gap takes the photonic bands of both TM and TE mode into 
consideration, which makes the optimization process very low-efficient and laborious. Therefore, 
only limited results have been reported so far [14-19], and most of them are designed based on 
physical intuitions. Furthermore, some of them share a similar pattern, like the results in Refs. [15], 
[17] and [18]. 
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While these designs are attractive, it is important to attempt new methods and algorithms in order to 
find wider complete band gaps or different topologies. In this paper, a new approach based on 
bi-directional evolutionary structural optimization (BESO) method is proposed. BESO is a 
structural optimization method based on finite element analysis (FEA). Its key concept is gradually 
removing inefficient materials from and adding high efficient materials into the design domain, 
until the optimal design is achieved[20]. BESO has been successfully applied to the optimization of 
materials with periodic micro structures, including photonic band gap crystals[13]. 
 
In this paper, the finite element method used to calculate the photonic bands is firstly introduced. 
An objective function is put forward and the corresponding sensitivity analysis is conducted. Then 
based on the FEA and the sensitivity analysis, a BESO algorithm is established by introducing 
discrete design variables. Starting from a simple initial design without band gap, BESO evolves the 
topology of the unit cell step by step until a desired complete band gap emerges and enlarges to its 
maximum. Finally, several numerical examples are presented to demonstrate the effectiveness and 
efficiency of the proposed optimization algorithm. 

Finite element analysis of photonic crystals 

The propagation of light in a photonic crystal is governed by the Maxwell’s equations. For 2D 
photonic crystals, when there is no point source or sink of electric and magnetic fields, the Maxwell 
equations can be reduced to two decoupled master equations as 
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where k = (kx, ky) is the wave vector and r = (x, y) denotes the coordinates. ε(r) is the dielectric 
function. E(k, r) is the electric field, H(k, r) is the magnetic field, c is the speed of light, and ω is 
the corresponding eigenfrequency. 
 
Due to the periodicity of the crystal, ε(r) = ε(r+R), E(k, r) = E(k, r+R) and H(k, r) = E(k, r+R), 
where R is the lattice translation vector. Based on the Bloch-Floquet theory [21], E(k, r) and H(k, r) 
can be represented by the product of a periodic function and an exponential factor 

( ) ( ) ( )rkrrk ⋅⋅= iEE exp,  for TM mode      (2a) 

( ) ( ) ( )rkrrk ⋅⋅= iHH exp,  for TE mode     (2b) 

Substitute Eqs. 2a and 2b into Eqs. 1a and 1b, the governing equations can be converted to 
eigenvalue problems within the representative unit cell. 
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For a given wave vector k = (kx, ky), Eqs. 3a and 3b can be solved by finite element method. The 
weak expressions FE(v, E(r)) and FH(v, H(r)) corresponding to TM modes and TE modes 
respectively are 
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where v is the test function. By discretizing the unit cell with 4-node square elements, the above 
eigenvalue problems can be written in the matrix format as 
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where ∑= eKK , ∑= eeMM e  and Eu =  for TM modes, while ∑= e
e

KK
e
1 , ∑= eMM  

and Hu =  for TE modes. eK  and eM  denote the elemental stiffness and mass matrices, εe is 

the relative permittivity of element e. 

BESO process 

In this paper, our aim is to design photonic crystals with a large complete band gap. The size of the 
band gap can be measured by the band gap-midgap ratio, which is independent on the size of the 
photonic crystal and hence more meaningful than the absolute value of the band gap. The position 
of the band gap is controlled manually by specify the adjacent TM bands (referred as band TM

iω  
and band TM

1+iω ) and TE bands (referred as band TE
jω  and band TE

1+jω ). The upper limit of the band 

gap is the smaller value of TM
1+iω  and TE

1+jω , while the lower limit is the larger value of TM
iω  and 

TE
jω . Therefore, the objective function f(X) in can be expressed as 
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where X = {x1, x2 ... xn} is the elemental design variable, n is the total number of elements. Each 
elemental design variable corresponds to its material property, εe,, so X represents the topology of 
the unit cell. In the optimization process, the evolution of topology is reflected by the change of 
design variables. 
 
The design variable is constructed by assuming xe = 0 means element e is consist of material 1 
which has a low permittivity ε1, and xe = 1 denotes material 2 with high permittivity ε2. According 
to our numerical experience, in order to have a stable and reliable optimization process, xe is set to 
be a discrete value between 0 and 1 with a custom step size. Then, the permittivity of this element is 
interpolated by following functions. 
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Finally, the optimization problem can be stated as 
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        (8) 

The topology of the unit cell is updated iteratively based on the elemental sensitivity numbers, i.e. 
the relative ranking of elemental sensitivities, which is the derivative of the objective function with 
regard to a design variable. Based on the objective function, the sensitivity of element e can be 
expressed as 
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frequency ωi(k) and its corresponding eigenvector ui, its derivative to xe can be expressed as 
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The derivatives of matrix K and M can be calculated from the interpolation functions 7a and 7b 
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In order to improve the stability and convergence of optimization process, a heuristic filter scheme 
is integrated into the optimization algorithm and the elemental sensitivity numbers are further 
averaged with their corresponding values in the previous iteration. The specific procedure of the 
filter and average scheme can refer to Ref. [13]. 
 
After obtaining the elemental sensitivity numbers, BESO will modify the design variables based on 
the specified proportions of two constitutive materials. The BESO process starts from an initial 
design filled up with material 2 except a tiny void at the center of the unit cell. The total volume of 
material 2 in each iteration is evolved gradually[13]. 
 
BESO will increase design variables for elements with highest sensitivity numbers and decrease 
design variables for elements with lowest sensitivity numbers simultaneously. Based on the relative 
ranking of the elemental sensitivity numbers, a threshold of the sensitivity number, α*, is 
determined by using bi-section method so that the volume of material 2 in the next iteration is equal 
to the target volume. The design variable for each element is modified by comparing its sensitivity 
number with the threshold. Different from other topology optimization methods with continuous 
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design variable, BESO method uses discrete design variable. In each iteration, the variation of a 
design variable is a constant Δx (Δx = 0.1 is used in this paper). The design variable xe is updated as 
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aa

ee
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e xx
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Although discrete intermediate design variables are used in the optimization process, the final 
design tends to be a clear 0/1 design because a larger permittivity contrast leads to a larger band 
gap[22]. 

4. Results and discussion 

2D photonic crystals with square lattice and C4v symmetry are considered in this paper. The 
photonic crystals consist of 2 materials: Air, relative permittivity ε1 = 1 and GaAs, relative 
permittivity ε2 = 11.4. In the topology images below, the air is indicated by white color and the 
GaAs is indicated by black. The model is meshed with 64×64 four-node square elements. The FEA 
and BESO are programed with MATLAB codes.  
 
To illustrate the optimization process of BESO method, the evolution history of the topology and 
band diagrams of an example are shown in Fig. 1. The position of the band gap is between the 5th 
and 6th TM photonic bands and the 9th and 10th TE bands. For the simple initial design, the band 
gap-midgap ratio is a negative value, which means there is no band gap at all. With the optimization 
continues, the topology gradually evolves and the band gap-midgap ratio gradually increases. The 
volume fraction of GaAs gradually decreases from almost 100% to 30.06% at the end of the 
optimization process, and a complete band gap with a band gap-midgap ratio of 20.93% emerges. 
The whole optimization process cost 91 iterations which demonstrate the high computational 
efficiency of the proposed optimization algorithm. 
 

 
(a) Initial design                         (b) Iteration 10 

 
(c) Iteration 20                            (d) Iteration 30 
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(e) Iteration 40                            (f) Final design 

Figure 1. Evolution history of a complete band gap formed by the overlapping of 9th TM and 
5th TE band gap 

 
Although the size of the maximized band gap illustrated in Fig. 1f is slightly larger than the result in 
Ref. [15], [17] and [18], all of them have a similar structure. However, by appointing different 
position of the complete band gap, some new designs can be obtained, as illustrated in Fig. 2. These 
designs are both obtained in less than 100 iterations. The resulting complete band gaps are 7.34% 
and 13.91%, respectively. It indicates that the solution is highly depended on the specified TE and 
TM bands for optimization. Therefore, the further study is recommended for finding a maximum 
complete band gap by appointing appropriate TE and TM bands. 
 

 
(a) Complete band gap formed by the overlapping of 5th TM and 3rd TE band gap 

 
(b) Complete band gap formed by the overlapping of 8th TM and 5th TE band gap 

Figure 2. New designs of photonic crystals with complete band gap 

Conclusions 

This paper investigates the topology optimization of 2D photonic crystals with complete band gaps. 
An optimization scheme based on FEA and BESO is proposed to find the optimal design. 
According to the defined objective function and sensitivity analysis, the initial design gradually 
evolves to its optimum and a large complete band gap is formed between specified photonic TE and 
TM bands. The numerical results indicate the high-efficiency of the proposed algorithm and some 
new topologies with complete band gaps have been obtained. The proposed method can be equally 
applied for photonic crystals with other lattices. 
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Abstract 
Inspired by natural nacreous materials with the excellent performance, a kind of 3D nacreous 
composite material is designed based on the thought of staggered and combined soft and hard 
materials. In the 3D band structure analysis, the designed material generates an ultrawide low 
frequency band gap. Additionally, the influences on the band gap with different material parameters 
of the model are examined. Furthermore, the numerical tests for the transmission characteristics 
reveal the significant vibration attenuation effect of the nacreous material which fit remarkably well 
with the band gap.  

Keywords: Nacreous composite material, Phononic crystal, Band gap, Vibration isolation, Multi-
level substructure. 

Introduction 

Mother nature is the best designer. This belief enlightens people to set foot on the way to mimic and 
understand nature. In the exploration of nature, people find out that many biological materials 
feature excellent mechanical or physical properties compared with engineering materials people 
usually use [1]. The feet of geckos and insects possess remarkably strong adhesion contact ability; 
cobwebs boast considerably high toughness and strength; animal bones are shaped in multi-scale 
and porous structures with light weight and high strength; nacreous composite materials exhibit the 
strength stronger than any member of single-phase material. All of these have prompted the flourish 
of biomimetic materials. Nacre is composed of 95% mineral substance (which is relatively hard 
material) and 5% protein (which is relatively soft biological material). This material, however, is 
more than several times strength than the single-phase mineral material [2]. Taking this into 
consideration, Gao et al. [3] proposed an explanation that the microstructures of nacreous 
composite materials are insensitive to flaw, and then built a Brick-and-Mortar (B-and-M) model to 
describe nacreous materials. Yao’s study [4] showed that nacreous composite materials are not only 
insensitive to flaw under the micro scale, but perform well to restrain the stress concentration. 
 
It should be noticed that nacreous composite materials exhibit periodicity in the soft and hard 
hierarchical structures, which is the basic characteristic of phononic crystals [5]. They are capable 
of tailoring the wave propagation through some frequency ranges (band gaps) in which the 
propagation of sound and elastic waves is forbidden [6]. Inspired by nacreous composite materials 
with the excellent performance, the elastic wave propagation in the 3D nacreous composite material 
is studied. 

Three-dimensional Band Strucuture 

Most researchers spare much less time for the dynamic characteristics of the B-and-M composite 
structure. As our attention in this paper is mainly paid to the band structure and wave propagation 
characteristics of the designed 3D B-and-M composite material. The geometric parameters of the 
3D finite element model (FEM) are shown in Fig. 1(a). The model is divided into six basic 
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substructures [Fig. 1(b)] based on a multi-level substructure technique [7] to improve computational 
efficiency and reduce memory usage significantly which has the same accuracy with the traditional 
FEM. The material of the Brick is aluminum, and that of the Mortar is silicone rubber (material 
parameters shown in Table 1). 
 

 
(a) Geometric parameters 

 
(b) Substructure model 

Figure 1. The unit cell of a 3D nacreous composite material 
 

Table 1. Two-phase parameters of nacreous material 
Material Density /kg/m3 Elastic modulus /MPa Poisson’s ratio 

Aluminum (Brick) 2700 70000 0.3 
Silicone rubber (Mortar) 1300 0.1175 0.4688 

 

The band structure of the designed 3D nacreous material (Fig. 2) illustrates that this material opens 
up an ultrawide band gap in the low frequency regime (84.4155Hz ~ 467.5685Hz). This kind of 
nacreous composite material, however, is a typical kind of Bragg phononic crystal rather than the 
locally resonant phononic crystal, which can be verified from its reduced frequency of the central 
gap frequency. Owing to its band characteristics, this material is suitable for the engineering 
application in the vibration isolation in the low frequency range. Foreseeably, this material will 
have a remarkable effect on the vibration isolation if elastic waves’ frequencies locate in the band 
gap regime. 

 

  
Figure 2. The band structure of the 3D nacreous material 

 
It is known that the scaling law [8] uniformly expanding or shrinking the physical sizes of phononic 
crystals by a factor β  results in the frequency spectrum being scaled by 1/ β . This law can also be 
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explained by a view of finite element method. The generalized eigenvalue problem of the phononic 
crystal with finite element method can be written as, 
 

 2[ ]{ } [ ]{ }ω=K u M u . (1) 

 
When the physical size of the phononic crystal is expanded or shrinked by a factor β , the new 
generalized eigenvalue equations with the constant density and elasticity can be written as, 

 

 2 3 1[ ]{ } [ ]{ },β ω β ω ω
β

= =K u M u . (2) 

 

In addition, Chen’s study [9] showed that the size-effect becomes more important and the non-
classical elastic continuum should be taken into account when a system is in the dimension of 
several nanometers. The results illustrated that the classical elastic continuum is still applicative 
above the dimension of ten nanometers, otherwise the size-effect should be considered. Therefore, 
the analysis of nacreous material with the B-and-M pattern is reasonable in the classical elastic 
continuum. Moreover, a lot of researches using the classical elastic continuum to discuss phononic 
crystals in the micron scale and nano scale were found in Ref. [10][11]. The vibration isolation 
performance for a given B-and-M structure is dependent on the length scale, but the B-and-M 
structures at macroscale and microscale have similar vibration isolation performance. According to 
the scaling law, the first band gap of the 3D nacreous composite material (Fig. 1) has a range of 
16.88MHz～93.51MHz, if the length of the unit cell is 350nm. 

Influences of Material Parameters on the Band Gap 

In order to design the nacreous composite material for vibration reduction in the low frequency 
regime, four material parameters of the 3D B-and-M model are studied to examine their influence 
on the band gap. The four material parameters are the elastic modulus and density of Brick, the 
elastic modulus and Poisson’s ratio of Mortar (with corresponding ranges shown in Table 2). 

 
Table 2. The range of parameters of four materials with two-phase model 

 Brick Mortar 
Elastic modulus (GPa) Density (kg/m3) Elastic modulus (MPa) Poisson’s ratio 

Lower limit 1 1000 0.1 0.2 
Upper limit 100 20000 100 0.49 
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(a) Elastic modulus of Brick 
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(b) Poisson’s ratio of Mortar 
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(c) Density of Brick 
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(d) Elastic modulus of Mortar 

Figure 3. The influence of the four material parameters on the first band gap 
 

The influence exerted by the four material parameters is shown in Fig. 3. The band gap results 
demonstrate that the elastic modulus of Brick and the Poisson’s ratio of Mortar exert little influence 
on the first band gap. However, a larger density of Brick, which leads to a larger mass, contributes 
to a wider first band gap. Moreover, a smaller elasticity modulus of Mortar, which makes the shear 
stiffness of Mortar smaller, leads to the lower boundaries of the first band gap with a narrower first 
band gap. 

Transmission Characteristics 

To verify the vibration isolation effect of the 3D nacreous composite material, the transmission 
characteristics of the designed material are studied in this paper. A finite periodic structure of 3×3
×3 cells is modeled for the numerical analysis with the help of the software MSC.Nastran. We are 
interested in the x-directional (horizontal) and z-directional (vertical) displacement transmission 
characteristics, which are valued by the ratio between the output displacement and the input 
displacement. The response curves are usually described in the logarithmic form. 
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(a) Horizontal direction 

 
(b) Vertical direction 

Figure 4. The transmission characteristics of the designed material 
 

The horizontal and vertical transmission characteristics of the designed material are shown in Fig. 4. 
According to the results, the 3D nacreous composite material isolates the vibration effectively 
within an ultrawide frequency regime in both horizontal and vertical directions. Given that the 
frequency range of the elastic wave attenuation and the band gap regime are consistent with each 
other, the correctness of the computed results is verified from an additional aspect. The results also 
show that the 3D nacreous composite material is a kind of Bragg phononic crystals which do not 
present the Fano-like interference phenomenon [12] found in locally resonant phononic crystals, 
thus benefiting the application in the engineering vibration reduction. 

Conclusions 

Enlightened by the nacreous composite material with the excellent performance, a 3D phononic 
crystal material is designed based on the idea of staggered and combined soft and hard materials. 
The results demonstrate that the material generates an ultrawide first band gap in the low frequency 
regime, and that its size makes it suitable to be applied to the engineering vibration reduction and 
isolation. Moreover, the band gap could be furtherly changed via adjusting material parameters. In 
the numerical tests for transmission characteristics, this material boasts remarkable effect on 
vibration reduction and isolation, which is in consistency with the band gap results. 
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Abstract 

Determination of optimal placements of sensors/actuators in large structures is a difficult job 
as large number of possible combinations leads to a very high computational time and 
storage. Therefore this kind of optimization problem demands a parallel implementation of 
the optimization schemes. Island model genetic algorithm (GA) being inherently parallel has 
been used for searching optimal placements of collocated sensors/actuators. Numerical 
simulations have been done for determination of optimal placements of collocated PZT 
sensors and actuators in smart fiber reinforced shell structures using island model parallel GA 
(IMPGA) in conjunction with electro-mechanical finite element analysis with an objective of 
maximizing the controllability index. It has been observed that the present IMPGA based 
formulation not only makes it possible to determine optimal sensors/actuators locations for 
large structures but also leads to a better solution at a much reduced and achievable 
computational time.  

Keywords: Optimal placement, Sensors/Actuators, Island Model Parallel Genetic Algorithms, 

Smart Structures. 

Introduction 

Optimal placement of sensors and actuators plays an important role in deciding the efficacy of 
smart structures in suppressing undesirable disturbances. For active vibration control of large 
structures requiring a large number of sensors/actuators a very large number of possibilities 
exist from which the optimal locations of the sensors/actuators need to be chosen to achieve 
the maximum actuation. Therefore, determination of optimal placements of sensors and 
actuators has been an important area of research and a number of works have already been 
reported. Some of the important works are described here.  Kang et al [1] has worked on 
optimal placement of piezoelectric sensor/actuator for active vibration control of laminated 
beams. Kim and Kim [2] presented optimal distribution of an active damping layer consuming 
minimum control energy on a flexible plate. Since optimal placement of sensors and actuators 
is a discrete optimization problem, genetic algorithm (GA) ideally suits as an optimization 
tool for this kind of problems. Rao et al [3] used GAs to obtain the optimal actuators 
placement in an actively controlled two-bay truss.  Dhuri and Seshu [4] used GA for active 
vibration control of flexible structure. Roy and Chakraborty [5] presented an improved GA 
for optimal vibration control of smart fiber reinforced polymer (FRP) composite structure. 
Multi-objective optimization of hybrid composite laminates using serial genetic algorithm 
(SGA) and finite element method (FEM) has also been reported by Rahul et al. [6].  Agarwal 
et al [7] proposed a gene manipulation, multi-objective genetic algorithm to optimize the 
placement of active devices and sensors in frame structures. Roy and Chakraborty [8] used 
GA based linear-quadratic regulator (LQR) control scheme for designing an optimal 
controller to maximize the closed loop.  
 
It has already been reported that GA based placements leads to superior results compared to 
commonly used mode shape based placement [5]. However necessary requirements of large 
population size and a large number of generations for convergence to the optimal solution put 
constraints on computational time and storage. Moreover, for structural applications, the 
fitness is calculated using FEM whose accuracy is again decided by spatial and time 
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discretizations. This is more important for large structures where the number of combinations 
to be searched for converging to the optimal solution is very large. Therefore, IMPGA could 
be advantageously used to search optimal sensors/actuators placements in such smart 
structures. Even though there are few works [9] where IMPGA has been used for design of 
optimal stacking sequence of composite structures, to the best of author’s knowledge, no 
work has been reported in literature to obtain optimal sensors and actuators placement using 
IMPGA.  Therefore the present paper aims at developing an island model parallel GA based 
methodology to search for optimal placements of collocated sensors and actuators leading to a 
better solution compared to SGA and at a reduced and achievable computational time.  

Problem Formulation 

Figure 1 shows the schematics of a smart laminated 

structure having patches of piezoelectric material 

bonded on the top and bottom surfaces of the base 

structure, one as sensor and the other as actuator. 

Signal from the sensor is used as a feedback in a 

closed–loop feedback control system. An appropriate 

control law determines the feedback signal to be given 

to the actuator. In Fig. 1, tF is the excited force,  sφ  is 

the voltage generated by the sensor and  aφ  is the 

voltage input to the actuator in order to control the 

displacement. 

 

Finite Element Formulation for Controllability Index 

 

An eight noded isoparametric shell elements have been used for finite element 

electromechanical analysis of the smart FRP shells [10]. The direct and converse piezoelectric 

equations are given by equations (1) and (2) respectively as 

 

{ } [ ]{ } [ ]{ }+D = e ε E∈∈∈∈
        

(1) 

{ } [ ]{ } [ ] { }
T

σ = C ε - e E
       

(2)
 

 

where, { }D  denotes the electric displacement vector, { }σ  denotes the stress vector, { }ε  

denotes the strain vector and { }E  denotes the electric field vector. Further[ ] [ ][ ]e = d C , where 

[ ]e  comprises the piezoelectric coupling constants, [ ]d  denotes the piezoelectric constant 

matrix and [ ]∈∈∈∈  denotes the dielectric constant matrix. Electrical potential has been assumed to 

only vary in the thickness direction linearly and the electric field strengths of an element in 

terms of the electrical potential for the actuators and the sensors patches respectively are 

expressed as 

{ } { } { } { } { } { }

0 0

0 and 0

1 1

e e e e e e e e

a a a a s s s s

a sh h

   
   
      − = = − = =      
   
   

E B E Bφ φ φ φφ φ φ φφ φ φ φφ φ φ φ

     

(3) 

where subscripts a and s refer to the actuator patch and the sensor patch respectively. e

a
  B  

and   
e

sB  are the electric field gradient matrices of the actuator  and the sensor elements 

respectively. The dynamic finite element equations of a piezo-laminated composite shell can 

be derived from the Hamilton principle and for one-element it is 

Figure 1. Smart structure 
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where e  uuM  is the global mass matrix, e

uu
  K  is the global elastic stiffness matrix,   

e

uaK  

and e  usK  are the global piezoelectric coupling matrices of actuator and sensor patches 

respectively. [ ]aaK  and e  ssK are  the global dielectric stiffness matrices of actuator and 

sensor patches respectively. { }d is displacement vector, { }
eF  is the element external 

mechanical force vector and  { }
eG  is the element external electrical force vector. After 

assembling the overall dynamic finite element equation is 

[ ]{ } [ ] [ ][ ] [ ] [ ][ ] [ ] { } { } [ ]{ }
1 1

uu uu ua aa au us ss su ua a

− − + − − = −
 

..

M d K K K K K K K d F K φφφφ

          
(5)

 

The decoupled dynamic equations considering modal damping can be written as 

( ) { } ( ){ } [ ] { } [ ] [ ]{ }
.. .

22 ( )
T T

i di i i i i ua a
t t tξ ω ω

 
+ + = − 

 
η η η ψ F ψ K φφφφ                  (6) 

where iω the i
th

 natural frequency andξdi
 is the damping ratio, [ ]...1 2 r[ψ] = ψ ψ ψ  is the truncated 

modal matrix  which transforms the generalized coordinates ( )d t to the modal 

coordinates ( )η t  as
 

t t={d( )} [ψ]{η( )} . In state-space form  
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ψ F
 is the disturbance matrix, { }du  is the disturbance input vector, { }aφφφφ is the 

control input, and { }
.

.

..

η
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η

η
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X  . The sensor output equation can be written as  

                                                                                         

{ } { }[ ]0y = C X
        

(8) 

 

where [ ]0C  depends on the modal matrix [ ]ψ and the sensor coupling matrix [ ]usK . The 

modal control force 
cf  applied to the system can be written as 

 

{ } [ ]{ }c a=f B φφφφ          (9) 
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It follows from Eq. (9) that  

 

{ } { } { } [ ] [ ]{ }
TT T

c c a a
=f f B Bφ φφ φφ φφ φ

              
 (10) 

 

Using the singular value analysis, [ ] [ ][ ][ ]
T

=B M S N where [ ] [ ] [ ]
T

M M = I  ,[ ] [ ] [ ]
T

N N = I  and  

 [ ]

1 0

0

0 0

an

σ

σ

 
 
 

=
 
 
  

…

� �

� …

…

S   where 
an is the number of actuator. Eq. (10) can be rewritten as 

 

{ } { }
2 2 2

c a=f Sφφφφ       (11) 

 

Thus, maximizing this norm independently on the input voltage { }aφφφφ induces maximizing
2

S . 

The magnitude of 
iσ  is a function of location and the size of piezoelectric actuators. Wang 

and Wang [11] proposed maximizing the controllability index as 

 

1

 
an

i
i

Maximize
=

Ω = ∏σ       (12) 

 

Island Model Parallel Genetic Algorithm for Optimum Sensor/Actuator  

In the present problem, the design variables are the positions of the actuators, and are 

represented in a string of integers specifying the locations 

of actuators. Referring to Eq. (12), the higher the 

controllability index, the smaller will be the electrical 

potential required for control. In modal control, however, 

one of the important issues is to decide the number of 

control modes where actuations need to be done. 

Providing actuations to higher modes (which are residual 

modes actually not excited) might lead to instability 

known as control spill over.  In the present work therefore 

the fitness/objective function which needs to be 

maximized in the GA ensuring optimal actuators locations 

has been proposed as follows     

 

1 1 11

-12

1 1

   

 10 ,  

a a a a

a a

n n n n
R R

i i i i
i i ii

n n
R

i i
i i

if

otherwise

γ γ

γ

= = ==

= =

      
′ ′∏ − ∏ ∏ > ∏      

     
=  

  ′∏ − ∏ ×    

σ σ σ σ

σ σ

ΩΩΩΩ      (13) 

 

where R

i
σ  are the components of [ ]RS corresponding to residual modes and  γ ′  is a weight 

constant. In this objective function, if the contribution of residual modes dominates, fitness of 

that population is forced to a very low value thereby eliminating the chances of such 

populations to grow in successive generations.         

In IMPGA approach (Fig.2), first the population size is decided as a multiple of number of 

processors so that the total population of chromosomes is divided into a number of sub-

 
Figure 2. A 5 processor IMPGA 
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populations. String length of each population is decided by the number of actuators. For 

example referring to Fig. 3 if the population size is 60 and there are 5 processors (islands), 

each processor will handle a sub population size of 12. In each of the processor, for sub 

populations, the fitness value for each chromosome is obtained using the FEA independently 

and new sets of chromosomes are generated by applying genetic operators after each 

generation. After a certain number of generations, the best population of one processor is 

allowed to migrate only to its neighboring processor, replacing the worst population. For 

example, the best candidate from processor 1 will replace the worst candidate of processor 2, 

the best candidate of processor 2 will replace the worst candidate of processor 3 and so on. 

Thus, migration does not change the size of population. At the end of each generation, a better 

population results, and is used in successive generations to achieve populations with even 

better fitness. This is repeated until the solution converges and the optimal locations of 

actuators are selected corresponding to the chromosome with best controllability index. 

Results and Discussions  

A parallel code has been developed using MPI libraries as 

well as migration routines (Island Model) for optimization. 

The parallel code has been run on parallel cluster at IIT 

Guwahati. The cluster has 5 nodes and each node consists of 8 

(1.5 GHz) processors. On one of the nodes of the cluster, the 

code has been run using SGA corresponding to same genetic 

parameters and population. The results obtained from IMPGA 

as well as SGA model for optimal placement of sensors and 

actuators have been compared to study the efficacy of the 

present approach.    

                                                   

Problem Definition  

 

In this study, a [p/[0/90]s/p] graphite/epoxy (GR/E) doubly curved shell with the four edges 

simply supported, having a=b=0.02m, R1=2R2=R=0.06m R/a =3, a/h=10 (Fig. 3) has been 

considered.  Here ‘p’ stands for piezo-patches one for sensing and the other for actuation. 

Thickness of each piezoelectric patch has been considered as 0.5 mm and that of each GR/E 

lamina has been considered as 0.25 mm. A 10×10 finite element mesh has been used to model 

the shell panel and optimal actuators placements have been calculated considering the first 

eight modes with first four modes as control modes and others as residual modes. The 

material properties have been listed in the Table 1.    
                  

 

                 

 

 

 

 

 

 

 

 

 

 

Table 2. Input parameters for GA 

Initial population  60 

Maximum generation 100 

Number of actuators/sensors 6 

Mutation rate 20% 

Crossover rate 90% 

 

Table 1.  Material properties 

Property Gr/E PZT 

E1 (GPa) 172.5 63.0 

E2=E3 (GPa) 6.9 63.0 

G12=G13  (GPa) 3.45 24.6 

G23 (GPa) 1.38 24.6 

υ12=υ13=υ23 0.25 0.28 

ρ  (kg m
-3

) 1600 7600 

e31=e32 (C m
-2

) 0.0 10.62 

∈11=∈22=∈33 (F m
-1

) 0.0 0.15 x10
-7 

 

Figure 3. Curved shell 
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Table 2 shows various input parameters considered for SGA as well as IMPGA. The stated 

genetic parameters used in IMPGA are finalized from the values obtained from multiple runs 

in the SGA. Thus, an optimized value of 100 generation with an initial population 60 is used 

to obtain comparative results regarding fitness and time between IMPGA and SGA. Six 

numbers of actuators are considered leading to a string length of 6. 

 

         
 

 

 

 

Effect of Population Size on Controllability Index and CPU time 

 

The code has been run up to 100 generations in one processor as SGA with increasing 

population size and table 3 shows the effect of population size on the controllability index. It 

is clear from the table that as the population size increases, controllability index increases but 

as expected the computational time also increases. It is therefore necessary that the optimal 

placement of sensors and actuators are searched from a larger population. However 

computational time requirement puts a restriction on the upper limit of the population size 

when such a problem is run on a serial platform. Therefore a parallel GA provides a feasible 

solution for such problems and island model GA being inherently parallel has been 

advantageously used in the present study. 

 

Optimal Placement using Island Model Parallel GA 

 

Five different schemes were used to study the effect of parallelization. The schemes are 

decided based on two factors viz. a maximum population size which could be run in a serial 

GA and with different number of processors such that in each case the number of processors 

is an integer factor of the population size. Different schemes considered here are: 

 

• Scheme 1:-   SGA with one processor having population size of 60.  

• Scheme 2:-   IMPGA with 6 processors having a sub population size of 10 in each  

• Scheme 3:-   IMPGA with 10 processors having a sub population size of 6 in each  

• Scheme 4:-   IMPGA with 12 processors having a sub population size of 5 in each  

• Scheme 5:-   IMPGA with 15 processors having a sub population size of 4 in each 

 

Table 4 shows the comparative performances of these 5 schemes up to 100 generations. It 

could be observed that increasing number of processors leads to increase in fitness up to 12 

processors but beyond that the fitness decreases. This indicates that for this particular 

problem, the maximum number of processors that could be used for a population of 60 is 12. 

This is due to the fact that depending upon the number of populations increasing the number 

of processors leads to smaller sub population size in each processor and more communication 

Figure 4. Convergence of fitness 

Table 3. Controllability index for SGA 

Initial 

population 

Maximum 

generation 
Fitness 

Time  

(sec) 

5 100 0.237  210993 

30 100 0.248  1264376 

60 100 0.255    2526150 
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overheads. Thus the minimum population size for this problem is 5. Figure 4 shows the 

convergence of fitness for the optimal placement problem of smart shell structure for these 5 

schemes. It is clear that with the increasing number of processors, it is not only that the fitness 

is higher compared to that in SGA but this fitness is achieved at a much less number of 

generations. This is due to the fact that the better solutions evolve independently in different 

processors and those processors (islands) interact (migration) after certain number of 

generations thereby passing on populations with better fitness only in each processor. 

Therefore even though the population size is larger, increasing number of processors still 

reduces the number of generation required for convergence. 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison Serial GA and IMPGA 

 

Figure 5 shows the variation of computational time with the increasing number of processors 

  

while using IMPGA. Here, the use of one processor implies SGA executed using a single 

processor on the parallel platform. It could be observed from Fig. 5 that for a fixed number of 

initial population and generation, increase in number of processors leads to significant 

decrease in computational time. In the present problem of optimal placement of collocated 

actuators/ sensors using IMPGA with 12 numbers of processors takes 2,27,651 seconds while 

SGA takes 25,26,150 seconds under the same condition. The better computational 

performance of IMPGA is only because of better mixing of population due to migration 

which leads to faster convergence to optimal solution. The performance of a parallel code is 

 

Table 4.  Controllability index for different schemes 

Scheme Initial 

population 

Maximum 

generation 

Number of 

processor 
Fitness 

Time 

(Sec) 

1 60 100 1 0.255 2526150 

2 60 100 6 0.256 443612 

3 60 100 10 0.258 270812 

4 60 100 12 0.260 227651 

5 60 100 15 0.252 183234 

 

                 
Figure 5. Time Vs no. of processors         Figure 6. Speedup Vs no. of processors 
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evaluated in terms of factors such as speedup, efficiency and scalability. The 

speedup, /
N S par

S T T= where, ST  and  
par

T  represent time taken with a single processor 

multiple processors respectively. The efficiency of a parallel algorithm, /N NE S N= where N 

is the number of processors. In the present study, a comparison has been made between SGA 

and IMPGA based on these factors. Table 5 shows the speed up obtained with increasing 

number of processors for a fixed population size of 60 up to 100 generations. Figure 6 shows 

the speedup comparison between SGA and IMPGA. It could be observed that with the 

increase in number of processors, speedup increases effectively. This is also clearly observed 

that there is a decrease in efficiency with the increase in processors (Fig.7). This is due to the 

fact that in the IMPGA, overhead increases due to increase in migration as the number of 

processors increases.  

 

Further, to understand the behavior of the present IMPGA application, with increasing 

number of population, scalability analysis has been carried out keeping the number of 

processors fixed and the same is compared with SGA. In the present study, computational 

time has been noted for 100 generations for SGA and 15 processors IMPGA. Figure 8 shows 

the CPU time versus population size for both the cases. It could be clearly observed that in the  

case of SGA the magnification in CPU time is equal to the magnification in population size. 

However, in the case of 15 processors IMPGA, increase in CPU time is much less compared 

to the magnification in population size. This shows that the proposed IMPGA based model in 

determination of optimal sensors/actuators location will be more efficient for larger 

population size and hence for larger structures. 

 

 

Table 5: Speedup and efficiency for 100 generation with fixed population size of 60 

No. of 

Processors  

Time  

(Sec) 

Speedup 

Actual 

Speedup 

Theoretical 

Efficiency  

Actual 

Efficiency  

Theoretical 

1(Serial)   2526150 1 1 -- -- 

6 443612 5.69 6 94.9% 100% 

10 270812 9.32 10 93.2% 100% 

12 227651 11.09 12 92.5% 100% 

15 183234 13.78 20 91.9% 100% 

 

                          
Figure 8 Time Vs no of  processors            Figure 7. Efficiency Vs no of  processors 
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Conclusions 

In the present work an island model parallel genetic algorithm in conjunction with FEA has 

been developed for evaluation of optimal placements of collocated actuators/ sensors on a 

smart FRP shell structure. Controllability index determined from finite element analysis has 

been used as the measure of fitness with the actuators location as the variables. The present 

method not only leads to a better solution, but also finds that at a much reduced computational 

time. This method will be especially suitable for large structures where large number of 

sensor and actuators need to be used requiring larger population size and sequential GA fails 

due to limitation in population size. It has been observed from the present study that the 

present IMPGA based method is far superior compared to the sequential GA method in 

determining the optimal placements of actuators/sensors.  
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Abstract

This work is concerned with the computation of two- and four-sided lid-driven cavity flows us-
ing a transient higher-order compact (HOC) scheme. The multiplicity of steady states for most
of these configurations through the use of non-compact schemes is well known. In this work,
these cases are re-examined using a spatially fourth- and a temporally second-order compact
scheme. The threshold values of certain parameters such as the cavity aspect ratio (A) and the
flow Reynolds number (Re) are also computed beyond which there is multiplicity of solutions.
It is observed that for the motion of non-facing walls of a square cavity, multiple solutions can
be obtained for Re = 975, which is significantly lower than the previously established value.
For all the other cases, these critical values of parameters are in good agreement with the exist-
ing investigations. Multiple solutions are also obtained for antiparallel wall motion in two-sided
square cavities, which do not feature in any of the previous investigations using non-compact
schemes.

Keywords: lid-driven, higher-order compact, Reynolds number, aspect ratio

1 Introduction

Over the years the single lid-driven cavity flow has been used as a benchmark problem to test
the performance of numerical schemes and algorithms for incompressible flows. The problem
has attracted researchers because it contains a wide variety of interesting phenomenon in the
simplest of geometric settings. The single lid-driven cavity flow was extended to two- and
four-sided cavity flows by various investigators [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], who observed that a
plethora of vortex patterns can be generated with different aspect ratios and directions of motion
of the walls.

It is well known that many nonlinear problems exhibit multiple steady solutions even though the
governing equations and boundary conditions remain the same. As the governing equations for
fluid flow are nonlinear in nature, the possibility of multiple solutions exists. Many researchers
have found multiple solutions for parallel wall motion of facing walls for both rectangular and
square cavities, and for antiparallel wall motion for rectangular cavities [1, 2, 3, 4, 5, 6, 7, 8,
9, 10]. Albensoeder et al. [2] were among the first to investigate the nonlinear regime and
find multiple 2D steady states in rectangular two-sided lid-driven cavities. They have found
upto five different flow states for both parallel and antiparallel motion of facing walls. Very
recently Lemée et al. [6] addressed the issue of multiple solutions in square cavity with parallel
motion of facing walls and found out a critical Reynolds number above which multiple solutions
exist, which is consistent with [2]. Similar investigations have been carried out for two-sided
cavities with motion of non-facing walls and for four-sided cavities [1, 8]. All these existing
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investigations have been carried out using non-compact schemes. It can be observed from these
investigations, that the additional solutions, if they exist, always exist in pairs.

In this work, we re-examine these solutions using a higher-order compact (HOC) scheme of
spatially fourth- and temporal second-order accuracy. This scheme was developed by Kalita
et. al [11] by differentiating the governing equation to obtain compact approximations for
the leading truncation error terms. Grid independent results are carefully computed so that the
results can be used as means to test other schemes and algorithms. For the two-sided rectangular
cavity, computations are carried out at a fixed Reynolds number (Re) of 600 at various aspect
ratios (A) for parallel motion of facing walls. It is seen that atRe = 600 multiple solutions exist
only above a critical aspect ratio of 0.556. This value is very close to the value 0.559 reported
in [2]. Computations are also carried out for square cavities having antiparallel and parallel
motion of facing walls at various Re’s. For parallel wall motion in a square cavity, a threshold
value of Re = 983.5 is observed below which only stable symmetric solutions exist. This
value is in good agreement with previously reported values in [2, 6]. For antiparallel motion
of facing walls in a square cavity, till very recently, existence of multiple steady solutions was
not experienced. In a recent communication [12], using the same HOC scheme as the one used
here, we demonstrate that existence. This shows the accuracy and effectiveness of the present
scheme, which we use here to compute multiple solutions for the motion of nonfacing walls
in two- and four-sided configurations as well. It is observed that the limiting value of Re for
four-sided cavity is very close to previously reported value in [8], however for motion of non-
facing walls in two-sided cavity, multiple solutions are seen to exist even for Re = 975, which
is significantly lower than the previously reported threshold value of 1071 [8].

This paper is organized in five sections. Section 2 describes the HOC scheme formulation and
associated descritization. In Section 3 the credibility of the present HOC code is established
through a comparison exercise with the results of a previously known benchmark work [13].
Section 4 presents the results and discussion. Concluding remarks are made in Section 5.

2 Scheme formulation

There have been various attempts at developing HOC schemes [14, 11, 15, 16, 17]. The scheme
used in this work was developed by Kalita et al. [11]. We present here a brief description of
their HOC scheme formulation.

The unsteady 2D transport equation for a general variable φ in some continuous domain with
suitable boundary conditions can be written as

a
∂φ

∂t
−∇2

φ+ c(x, y, t)∂φ
∂x

+ d(x, y, t)∂φ
∂y

= g(x, y, t) (1)

where a is const, c and d are convection coefficients and g is forcing function. We take the
steady state form of equation (1), which is obtained when φ,c,d and g are independent of t.

−∇2
φ+ c(x, y)∂φ

∂x
+ d(x, y)∂φ

∂y
= g(x, y) (2)

Discretization with second-order central differencing on a uniform grid with spacing h and k in
the x− and y−directions respectively yields

−δ2
xφij − δ2

yφij + cδxφij + dδyφij − τij = gij (3)
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where φij denotes φ(xi, yj); δx, δ
2
x and δy, δ

2
y are the first and second-order central difference

operators along x− and y−directions respectively. The truncation error τij is given by

τij =
[
h2

12

(
2c∂

3φ

∂x3 −
∂4φ

∂x4

)
+ k2

12

(
2d∂

3φ

∂y3 −
∂4φ

∂y4

)]
+O(h4, k4) (4)

In order to obtain a fourth-order compact formulation for equation (2), each of the derivatives
of the leading term in equation (4) are compactly approximated to O(h2, k2). In order to do
this the original PDE (2) is differentiated to yield expressions for higher derivatives. After these
substitutions (3) yields [11]

−αijδ
2
xφij − βijδ

2
yφij + Cijδxφij +Dijδyφij

−h
2 + k2

12
[
δ2

xδ
2
y − cijδxδ

2
y − dijδ

2
xδy − γijδxδy

]
φij = Gij (5)

where the coefficients αij, βij, γij, Cij, Dij, Gij are as follows

αij = 1 + h2

12
(
c2

ij − 2δxcij

)
(6)

βij = 1 + k2

12
(
d2

ij − 2δydij

)
(7)

γij = 2
h2 + k2

(
h2δxdij + k2δycij

)
− cijdij (8)

Cij =
[
1 + h2

12(δ2
x − cijδx) + k2

12(δ2
y − dijδy)

]
cij (9)

Dij =
[
1 + h2

12(δ2
x − cijδx) + k2

12(δ2
y − dijδy)

]
dij (10)

Gij =
[
1 + h2

12(δ2
x − cijδx) + k2

12(δ2
y − dijδy)

]
gij (11)

For unsteady case (1), the equation with variable coefficients will be similar to (2), but the
coefficients c and d are functions of x, y and t; and the expression on the RHS becomes
g(x, y, t) − a[(∂φ)/(∂t)]. Using this we can obtain the semi-discrete form of the unsteady
equation (1) using HOC as

a

[
1 + h2

12(δ2
x − cijδx) + k2

12(δ2
y − dijδy)

]
δtφij =

αijδ
2
xφij + βijδ

2
yφij − Cijδxφij +

[
δ2

xδ
2
y − cijδxδ

2
y − dijδ

2
xδy − γijδxδy

]
φij +Gij (12)

This scheme can be used to solve any 2D unsteady transport equation using a suitable time
integration technique along with proper boundary conditions. In this work Crank Nicholson
scheme has been used for time integration. This makes our HOC scheme fourth-order accurate
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in space and second-order accurate in time.

a

[
1 + h2

12(δ2
x − cijδx) + k2

12(δ2
y − dijδy)

]
δ+

t φ
n
ij = 1

2
(
Hn

ij +Hn+1
ij

)
(13)

where δ+
t denotes the forward difference operator and the superscript n stands for the time level.

Hn
ij is given as

Hn
ij = αijδ

2
xφ

n
ij + βijδ

2
yφ

n
ij −Cijδxφ

n
ij + h2 + k2

12
[
δ2

xδ
2
y − cijδxδ

2
y − dijδ

2
xδy − γijδxδy

]
φn

ij +Gn
ij

(14)

3 Code Validation

The above HOC formulation (13) can be used to solve streamfunction-vorticity form of the 2D
Navior-Stokes given by

−∇2ψ = ω (15)

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= 1
Re
∇2ω (16)

where ψ stands for streamfunction and ω for vorticity. The velocities in x− and y−directions
are given by

u = ψy (17)

v = −ψx (18)

To lend credibility to the present HOC code its results for single lid-driven square cavity flow
(Fig. 1(a)) are compared with the results of Ghia et al. [13] at various Re’s at grids 51 X 51,
71 X 71 and 101 X 101. Fourth-order compact approximations for velocities obtained from
equations (16)-(18) are given by

uij = δyψij + h2

6
(
δyωij + δ2

xδyψij

)
+O(h4) (19)

vij = −δxψij −
h2

6
(
δxωij + δxδ

2
yψij

)
+O(h4) (20)

The value of the streamfunction ψ is taken to be zero on all the boundaries while the Neumann
boundary condition for vorticity is derived using a fourth-order compact scheme. For example,
on the leftmost wall (x = 0, 0 ≤ y ≤ 1), the approximation for ω can be found from the relation
v = −ψx and equations (15) and (16) to get

−δ+
x ψ0j −

[
h

2 + h2

6 δ
+
x −

h3

24
(
Rev0jδy − δ2

y

)]
ω0j = v0j −

h3

24
(
δ+

x δyv0j − δtω0j

)
(21)

where the suffixes 0 and j stand for the leftmost wall and the vertical space index respectively.
Using the boundary conditions for left wall, i.e., v0j = 0 and ψ0j = 0, the vorticity at the left
wall can be explicitly written as

ωn+1
0j = 24∆t

h3

[
−
ψn

1j

h
− h

2ω
n
0j −

h

6
(
ωn

1j − ωn
0j

)
− h

24
(
ωn

0j+1 − 2ωn
0j + ωn

0j−1

)]
+ ωn

0j (22)
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(a) Single lid-driven Cavity (b) Two-sided lid-driven cav-
ity (parallel motion of facing
walls)

(c) Two-sided lid-driven cavity
(antiparallel motion of facing
walls)

(d) Two-sided lid-driven cavity
(motion of non-facing walls)

(e) Four-sided lid-driven cavity

Figure 1: Geometry and boundary conditions for cavities considered in this work.

(a) Streamlines (b) u velocity along vertical centreline (c) v velocity along horizontal centreline

Figure 2: Code validation: single lid-driven square-cavity (Re = 1000).

The boundary conditions for the other walls can be derived in a similar manner.

For corners it is not possible to obtain fourth-order expressions of vorticity due to geometry
constraints. Hence we use a third-order approximation. For example, for the upper left corner
(x0, yN−1), vorticity can be written by approximating equations (17) and (18) in both x− and
y−directions and approximating the higher-order terms appropriately. This results in[

h

2 + h2

6
(
δ+

x − δ−
y

)]
ω0,N−1 = −

[
δ+

x + δ−
y

]
ψ0,N−1 − u0,N−1 − v0,N−1
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(a) Streamlines (b) u velocity along vertical centreline (c) v velocity along horizontal centreline

Figure 3: Code validation: single lid-driven square-cavity (Re = 5000).

−h
2

6
[
δ+

x δ
−
y u0,N−1 + δ+

x δ
−
y v0,N−1

]
+O(h3) (23)

where the suffix N −1 denotes all the points lying on y = 1. The boundary conditions for other
corners can be written in a similar manner. The procedure for boundary conditions is outlined
in [18].

The results presented here are on a 101 X 101 grid for Re’s 1000 and 5000 (Figs. 2 and 3).
The obtained results are in very good agreement even for a relatively high Reynolds number
(Re = 5000) on a coarse grid of 101 X 101. This shows the higher-order nature of the scheme.
Thus the present HOC code stands validated.

4 Results and Discussion
4.1 Two-sided cavity - Motion of facing walls

Figs. 1(b) and 1(c) show the two-sided cavity with parallel and antiparallel motion of facing
walls respectively. All computations are performed at Re = 600 for parallel wall motion of
rectangular cavity (Fig. 1(b)). Multiple solutions are obtained when A ≥ 0.556. This value
is in good agreement to the previously reported value of 0.559 [2]. Fig. 4 shows the multiple
solutions obtained at A = 0.65. It is observed that one symmetric and a pair of asymmetric
solutions exist at this aspect ratio. However at A = 0.875, an extra pair of weakly asymmetric
solutions can also be seen to exist. Thus a total of five solutions exist for A = 0.875. These are
shown in Fig. 5.

Computations are also carried out at various Re’s for parallel motion of a square cavity (Fig.
1(b) with A = 1). It is seen that a total of three solutions exist for Re ≥ 983.5. This threshold
value is again in good agreement with previously investigations [2, 6]. Fig. 6 shows multiple
solutions at Re = 3500 for this configuration.

For antiparallel motion of facing walls in a square cavity (Fig. 1(c)), multiple solutions are
seen for Re ≥ 3203 [12]. Below this Re value, the additional solutions merge to form a single
solution. Fig. 7 shows the multiple solutions at Re = 3300.
4.2 Two-sided cavity - Motion of non-facing walls

Using the same HOC scheme, an attempt is now made to re-examine the existence of multiple
solutions for motion of non-facing walls of a square cavity. Existing literature has shown that a
total of three solutions exist above a critical Re value of 1071 [8]. In this work, we show that
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(a) Symmetric solution (b) Asymmetric solution-1

(c) Asymmetric solution-2

Figure 4: Multiple solutions of parallel wall motion for A = 0.65 at Re = 600.

(a) Symmetric solution (b) Asymmetric solution (c) Weakly asymmetric solution

Figure 5: 3 out of 5 multiple solutions of parallel wall motion for A = 0.875 at Re = 600.

these extra solutions can be obtained at a significantly lower Re value of 975. Figs. 8 and 9
show multiples solutions at Re = 975 and 2000 respectively. It may be noted that ψ = 0 along
the main diagonal for the solutions shown in Figs. 8(a) and 9(a).
4.3 Four-sided cavity

The geometric configuration for four-sided cavity flow is given in Fig. 1(e). Wahba [8] obtained
a threshold value of Re = 129 above which multiplicity of solutions was obtained. Using the
HOC scheme (13), multiple solutions are seen for Re ≥ 130. For Re < 130, only a single
symmetric solution can be obtained. Figs. 10 and 11 show all the multiple solutions obtained
at Re = 150 and 300 respectively.
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(a) Symmetric solution (b) Asymmetric solution 1 (c) Asymmetric solution 2

Figure 6: All solutions at Re = 3500 for parallel lid motion in a square cavity (Grid: 101
X 101).

(a) Symmetric (b) Asymmetric 1 (c) Asymmetric 2

Figure 7: All solutions at Re = 3300 for antiparallel lid motion in a square cavity (Grid:
101 X 101).

(a) Symmetric solution (b) Asymmetric solution 1 (c) Asymmetric solution 2

Figure 8: All solutions atRe = 975 for motion of non-facing walls in a square cavity (Grid:
101 X 101).
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(a) Symmetric solution (b) Asymmetric solution 1 (c) Asymmetric solution 2

Figure 9: All solutions at Re = 2000 for motion of non-facing walls in a square cavity
(Grid: 101 X 101).

(a) Symmetric solution (b) Asymmetric solution 1 (c) Asymmetric solution 2

Figure 10: All solutions at Re = 150 for four-sided square cavity (Grid: 101 X 101).

(a) Symmetric solution (b) Asymmetric solution 1 (c) Asymmetric solution 2

Figure 11: All solutions at Re = 300 for four-sided square cavity (Grid: 101 X 101).
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Table 1: Comparison of current computation with previous investigations
Cavity Configuration Threshold Parameter

HOC non-compact
Two-sided rectangular cavity with parallel facing wall motion (Re = 600) A ≥ 0.556 A ≥ 0.559 [2]

Two-sided square cavity with parallel facing wall motion Re ≥ 983.5 Re ≥ 980 [6]
Re ≥ 990 [2]

Two-sided square cavity with antiparallel facing wall motion Re ≥ 3203 -

Two-sided square cavity with non-facing wall motion Re ≥ 975 Re ≥ 1071 [8]

Four-sided square cavity Re ≥ 130 Re ≥ 129 [8]

5 Conclusion

A higher-order compact scheme of fourth-order spatial and second-order temporal accuracy is
used to examine multiple stable steady-state solutions for both two-sided and four-sided cavity
flows. For two-sided cavity flows with parallel motion of facing walls at Re = 600, three to
five multiple steady solutions are obtained depending on the cavity aspect ratio. These solutions
consist of a symmetric solution and one or two pairs of asymmetric solutions. It is seen that
multiple solutions do not exist and only the symmetric solution exists for the movement of
the longer plate below an aspect ratio of 0.556. For parallel lid motion of facing walls in a
square cavity (when aspect ratio equals one) only symmetric solutions exist below Re = 983.5.
The threshold values, of aspect ratio for rectangular and Re for square cavities, are carefully
computed and they are close to those obtained in earlier investigations. Multiple solutions are
also presented for antiparallel of facing walls in a square cavity. For two-sided cavity flows
with motion of non-facing walls, we establish the existence of multiple solutions at Re = 975,
which is significantly below the previously known threshold value of 1071. An exhaustive grid
independence exercise was undertaken in order to obtain this threshold value. Multiple solutions
are computed for four-sided square cavity flows as well. The critical Re value above which the
multiple solutions exist in this configuration is in good agreement with previous investigations.
It is well known that many nonlinear flow problems exhibit multiple solutions and this work
demonstrates the ability of HOC schemes to obtain such solutions that violate the desirable
mathematical condition of well-posedness.
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Abstract 

Hydrodynamic interaction performance between an unmanned underwater vehicle 

(UUV) and a submarine was presented using Reynolds Average Navier-Stokes 

(RANS) techniques, when submarine was recovering an UUV. The hydrodynamic 

characteristics of UUV in different positions relative to submarine was simulated 

numerically based on RANS techniques, and the variation of UUV’s hydrodynamic 

coefficients interfered by flow around the submarine was analyzed. Then combined 

with the dynamic grid techniques, unsteady hydrodynamic performance was 

numerically calculated when an UUV performed parallel movement and vertical 

movement relative to the longitudinal axis of the submarine, and the changing law of 

the hydrodynamic coefficients of UUV under corresponding conditions was revealed. 

The method presented could predict the maneuvering and controlling performance of 

the UUV retrieved to a submarine. 

Keywords: Computational Fluid Dynamics, Hydrodynamic Interaction, Unmanned 

Underwater Vehicle, Submarine. 

Introduction 

With the exploitation of marine resources being intensified and more extensive 

military applications, the Unmanned Underwater Vehicle (UUV) is required to have 

longer operation time. For an UUV equipped in a submarine, energy refuel and 

information exchange can be achieved through underwater recovery[1]. Ronald W. 

Yeung and Wei-Yuan Hwang[2] has predicted nearfield hydrodynamic interactions of 

ships in shallow water based on the slender-body theory. H. Zhang[3] et al. studied 

effect of turbulence intensity to the fluid dynamic interference of two cylinders side 

in side. Zeng Yifei[4]
 
presented equivalent extension-body method to calculate the 

interaction between two underwater cylinders in relative motion. Y.R. Choi[5] 

investigated the hydrodynamic interference between floating multi-body system with 

the boundary element method. Wang Fei[6] developed a program based on the panel 

method and calculated the hydrodynamic performance of an underwater vehicle in 

motion near the submarine. B.J. Koo[7]
 
and S.Y. Hong[8]

 
simulated numerically the 

hydrodynamic interaction and mechanical coupling effects of two floating platforms 

and vessels connected by elastic lines respectively. Chen Li and Zhang Liang et al. 
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pointed that the minimal interaction path exists for underwater bodies in approaching 

process in theory from the computation results of a cylinder near a plane wall 

according to potential flow theory[9], and according to the combination bodies in 

periodic heave and pitch motion in unbounded flow field and near a plane wall, they 

used unsteady theory method to calculated nonlinear unsteady interference force 

related to the vortex evolution and motion. They, based on which, also revealed the 

typical characteristics of unsteady hydrodynamic interference. The hydrodynamic 

characteristics of a 2D oval with length-thickness ratio 7.0 while moving near plane 

wall were presented through towing-tank tests by them, then, they gave the regressive 

formula of hydrodynamic coefficients relative to clearances, attack angles and 

divided three typical interaction regions, defined as Lifting, Mixed and Blocking 

Region[10]-[11]. HeYuzhi[12]
 
simulated the process that an UUV approached a 

conical docking device with numeral method and obtained the change law of drag 

coefficient and lift coefficient of the UUV during which. Leong, Z. [13]
 
investigated 

the hydrodynamics performance when an AUV moved in various horizontal and 

vertical positions of a submarine at a series of relative speeds with CFD method based 

on N-S equation. S.A.T. Randeni P.[14]
 
et al. investigated the hydrodynamic 

interaction between an AUV operating in close proximity to a submarine, with the 

development of a CFD model to replicate the pure sway motion of the AUV and 

figured out that the percentage difference between the CFD and EFD (experimental 

fluid dynamics) sway forces were generally below 6%. 

 

However, UUV’s appendages were not taken into consideration in most of the 

researches above. Steady and unsteady hydrodynamic performance between an UUV 

and a submarine was numerically calculated based on RANS techniques and the 

results of UUV models with appendages were compared with which without attached 

parts in this paper. The condition in focus is more complex and more applicable to 

engineering reality, which may provide a reference for prediction and analysis on the 

hydrodynamic performance during UUV’s underwater recovery. 

1 Calculated Models 

1.1 Geometric models and calculated conditions 

An axisymmetric body with characteristic diameter D = 0.534m and length L = 7m 

was elected as UUV model and the model without appendages was defined as UUV-1 

while the other one with which was identified as UUV-2. The distance from the 

buoyancy center of the UUV-1 to the head is 3.2446m while which of the UUV-2 is 

3.2499m. As for submarine model, the research utilized a 1:18 scaled model of the 

SUBOFF submarine hullform as the submarine’s main body and defined as SUB-1, 

while the model with complete appendages including the main body, fairwater and 

caudal fin as UUV-2. The full length sL
 
of the submarine model is 78.408m, length 

between perpendiculars ppL  is 76.698m and maximum diameter sD
 
of which 
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equals 9.144m. In addition, dimensionless fluid force and torque coefficients are 

defined as 

 
2 21 1

/ /
2 2

xx xx a xx xx aC f S U M m S U 
   

    
   

，  （1） 

In the formula (1), xxf  and xxm  represent the component of fluid force and torque 

along the direction of the coordinate system xx respectively, while xxC  and xxM  

correspond to the dimensionless coefficient of fluid force and torque components. 

The largest cross-sectional area of the UUV model was selected as aS  and UUV’s 

full length was considered as aL  in dimensionless hydrodynamic coefficients. The 

aL  and aS  of submarine’s dimensionless hydrodynamic coefficients were set as 

ppL  and its square accordingly. 

 

In order to facilitate the description of working conditions and the analysis of 

calculation results, a coordinate system oxyz was established and the feature positions 

of UUV relative to the submarine were defined as shown in Figure 1. 
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（a）3D                             （b）xoz 

Figure 1 The coordinate system definition and feature positions of UUV relative 

to the submarine 

As shown in Figure 1 (a), the central point of the bow was defined as the coordinate 

origin, the ox axis is along the vertical symmetry axis of the submarine, oy axis lies in 

submarine’s longitudinal symmetry plane and vertical to the ox axis, and the oz axis 

meets the right-hand rule. The position of the UUV relative to the submarine was 

determined by its longitudinal position(the coordinate of the UUV along the ox axis) 

and relative direction, and chose three different longitudinal positions along the ox 

axis relative to the submarine and labeled as “1, 2, 3” respectively. When the UUV 

model situates in the submarine’s lateral plane, it is recorded as “side”; in the 

submarine’s vertical plane and the positive ox axis, it is denoted as “up”, otherwise as 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

703



“down”. Based on the definition of the above markers, the feature orientation of the 

UUV relative to the submarine can be represented as “side1” and “down2”. As 

depicted in Figure 1 (b), take “side1” as the example, the distance from the UUV’s 

wall to the submarine’s was marked as s . Therefore, the feature position of the 

UUV relative to the submarine can be obtained with the combination of feature 

orientation and s , which was denoted as “side1- s ”. The ox coordinate of the 

UUV’s head point was marked as x . In order to study the influence of UUV’s three 

different longitudinal position: near the head, tail and central of the submarine, on the 

hydrodynamic coefficients, the values of s  corresponding to three different 

longitudinal position labeled as “1, 2, 3,” are shown in Table 1. 

 

Table 1 The values of s corresponding to different longitudinal position 

ox axis label 1 2 3 

Distance  (m) 18 31.5 45 

1.2 Meshing 

A rectangular domain with a size of 5Ls×20Ds×20Ds was chosen as computational 

domain. The SUBOFF model was arranged in the center of the domain, and the 

distance from the velocity inlet to the head of the model is 1.5Ls. Except for the 

velocity inlet and pressure outlet, the four remaining faces of the rectangular domain 

were set as slip wall.  

 

Structured grid was utilized for computational domain meshing, and based on based 

on the concept of block partition, the computational domain of a single submarine 

was generated firstly, then a portion of grid blocks in the overall calculation domain 

was excised and embeded in the grid block containing the UUV model inside the 

overall domain through internal interface to complete the grid generation, which is as 

shown in Figure 2 and Figure 3. 

     

Figure 2 The overall grid generation     Figure 3 The merged grid generation 

For the unsteady motion, used dynamic layering method to simulate the motion of the 

interface of the UUV and whole grid in the dynamic area relative the submarine. 

x
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2 Analysis of steady hydrodynamic interference between the UUV and 

submarine 

2.1 Results and analysis of hydrodynamic interference of models without appendages 

The turbulence model selected was RNG -k   and set inlet velocity as 2 kn ignoring 

the influence of gravity. 

 

Figure 4 to Figure 6 shows the pressure coefficient distribution corresponding to three 

feature orientations: “side1”, “side2” and “side3” when s  = 0.5. From the pressure 

coefficient contours in the lateral xoz section it can be seen that: in “side1” feature 

orientation the head of the UUV-1 model was close to the low pressure area of the 

SUB-1 head, and influenced by which the pressure drag of the UUV-1 got smaller 

than that in unbounded flow condition, even resulted in a pressure surplus (a negative 

value). Therefore, the hydrodynamic interference of the flow around the submarine to 

the UUV-1 performed as drag reduction. In “side2” feature orientation, the tail of the 

UUV-1 model was close to the low pressure area of the SUB-1 aft body and 

influenced by which the pressure drag of the UUV-1 got bigger than that in 

unbounded flow condition, so the hydrodynamic interference increased the resistance. 

While in “side2” feature orientation, the UUV-1 was in the stable flow field near the 

parallel middle part of the SUB-1, and the low pressure area near the SUB-1 tail had 

little effect on the UUV-1, as a result, the pressure drag of the UUV-1 approximated 

that in unbounded flow condition. It can be seen from pressure coefficient contours in 

the local transverse yoz section that the isobar shaped as an inverted “C” type, namely 

a low pressure region formed in the adjacent zone of the UUV-1 and SUB-1, which 

shows that the SUB-1 acted suction on the UUV-1. 

     

     （a）The lateral xoz section         （b）The local transverse yoz section 

Figure 4 The pressure coefficient distribution in the position “side1-0.5m” 
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     （a）The lateral xoz section         （b）The local transverse yoz section 

Figure 5 The pressure coefficient distribution in the position “side2-0.5m” 

     

     （a）The lateral xoz section         （b）The local transverse yoz section 

Figure 6 The pressure coefficient distribution in the position “side3-0.5m” 

Now defined the dimensionless distance from the UUV’s wall to the submarine’s as 

s  and the UUV’s diameter was selected as the feature space. The variation of the 

drag coefficient xC  with s  according to the three feature positions of the UUV-1 

above was as shown in Figure 7. Regarded the drag coefficient of the UUV-1 in 

unbounded flow field as reference value, Figure 8 shows the change percentage of the 

resistance coefficient with s . 

   

  Figure 7  corresponding to s   Figure 8 The change percentage of  
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According to Figure 7 and Figure 8 it can be found that when the UUV-1 was located 

in “side1” near the head of the submarine, xC  of the UUV-1 decreased with the 

decrease of s ; while in “side2” where the flow field was stable, xC  varied little; 

however, xC  increased with the decrease of s  in “side3”. And xC  approached to 

the value in unbounded flow field with the increase of s  under the three 

conditions. When s >30, xC  of the UUV-1 corresponding to the three conditions 

all tended to converge, in another word, the interference function distance of the flow 

around the SUB-1 on UUV-1 model is about 30 times its diameter.  

2.2 Results and analysis of hydrodynamic interference of models with appendages 

The turbulence model selected was also RNG -k   and set inlet velocity as 2 kn 

ignoring the influence of gravity as well as the condition without appendages.  

 

The model with full appendages involved eight different feature orientations. For the 

convenience to analyze the hydrodynamic interference of the flow field in different 

feature orientations, defined the plane determined by the longitudinal axes of the 

SUB-2 and SUB-2 as the main interference plane, based on which, the main 

interference force coefficient along the vertical direction to the ox axis was marked as 

xxC , and suction was recorded as positive, repulsion as negative; the main 

interference moment coefficient vertical to the main plane was denoted as xxM , the 

moment deviating the head of the model UUV-2 from the SUB-2 was denoted by 

positive, otherwise negative.  

 

The numerical results of xC  and its change percentage compared to the unbounded 

condition corresponding to different feature orientations are shown in Figure 9.  

     

(a) Result in longitudinal position “1 （b）Result in longitudinal position “2” 
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 （c）Result in longitudinal position “3” （d）The change percentage of xC  

Figure 9  Results of xC and its change percentage compared to that in 

unbounded condition 

It can be seen from Figure 9 that when the UUV was in the same longitudinal position 

and the relative direction was “side” and “up”, the change laws of xC  with s were 

almost identical. For the condition “up2”: when s ≤4, frictional resistance was 

small, pressure drag was large and the overall was small for the flow field around 

fairwater; when s >5.6, with the increase of s , the model UUV-2 got close to the 

up edge of the wake flow and the interaction on frictional resistance decreased while 

the interference to frictional resistance came to an effect gradually; when s =7.5, 

xC  in the condition “up2” was larger than that in the conditions “side2-4m” and 

“down2-4m”; when s >7.5, the wake flow of the fairwater had little effect on the 

velocity field of UUV-2, with the increase of s , the influence of local high pressure 

in the wake flow of the fairwater on the UUV-2 weakened and xC  decreased; when 

s =22.5, xC  approximated that in “side2” and “down2”. For the condition “up3”: 

the interaction of the wake flow of the fairwater on xC  mainly concentrated the 

range of s ≤4, when s >5.6, xC  approximated that in “side3” and “down3”. 

From Figure (d), the interference distance of the flow around the SUB-2 on UUV-2 

model is about 30 times its diameter. 

 

The calculated results of xxC
 
and xxM

 
of the UUV-2 in different longitudinal 

positions are as shown in Figure 10 to Figure 12. Graphical results show that when 

the UUV was in the same longitudinal position, and the relative directions were “side” 

and “up”, the change laws of xxC  and xxM  with s were almost consistent, xxC
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both performed as suction; when s =5.6 and s =7.5, for the collective influence 

of the wake flow of the fairwater and submarine’s external flow, xxC
 
corresponding 

to “up2” was negative, performed as repulsion; xxC
 
corresponding to “up3” was a 

small positive value close to zero, performed as slight suction; when s ≥9.4, the 

change laws of xxC  and xxM  with s  in position “up” were almost consistent 

with the conditions in “side” and “down”. When the longitudinal position was “1”, 

xxM  were all positive, so the moment deviated the head of the UUV-2 from the 

SUB-2, and with the increase of s , it increased firstly and then decreased, similar 

to parabola change rules; as the longitudinal position was “2”, with the increase of 

s , the change trends of xxM  in “side” and “down” conditions were almost 

identical and they both decreased at first and then remained stable approximately, but 

due to the influence of the wake flow of the fairwater , when 9.4s  , the curve of 

xxM
 
in “up” condition is similar to an inverted “N” type, then xxM

 
tended to be 

stable as well; when the longitudinal position was “3”,
 
the change of xxM  was 

consistent with the condition in longitudinal position “2”.  

     

            （a） xxC                                 （b） xxM  

Figure 10  xxC
 
and xxM  in longitudinal position “1”   
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            （a） xxC                                 （b） xxM  

Figure 11  xxC
 
and xxM  in longitudinal position “2”   

     

            （a） xxC                                 （b） xxM  

Figure 12  xxC
 
and xxM  in longitudinal position “3”   

2.3 Comparison of computational results of models with and without appendages 

Selected the calculated results of the model without appendages UUV-1 and the 

model with appendages UUV-2 in “side” position for comparision. Figure 13 shows 

xC
 
of the model UUV-1 and UUV-2 corresponding to s  in three different “side” 

conditions. It can be seen from the comparative results that: while in the same feature 

orientation, for the UUV-1 and UUV-2, the change rules of xC
 
with s were 

similar to each other and the difference between xC
 
of the two models 

corresponding to the same s  basically maintained at a certain range. Combined 

with Figure (d), the difference was close to that in the unbounded flow field, from 

which we can see the hydrodynamic interference of the submarine to the UUV mainly 

acts on its main body and has little effect on the fin.  
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（a）“side1”                        （b）“side2” 

     

          （c）“side3                  （d）The change percentage of xC
 

Figure 13 xC
 
and its change percentage of the UUV-1 and UUV-2 in three “side” 

conditions 

Figure 14 to Figure 16 show the side force coefficient zC
 
and yawing moment 

coefficient yM
 
of the model UUV-1 and UUV-2 corresponding to s  in three 

different “side” conditions. From the comparative results we can find that in the same 

calculated condition, for the UUV-1 and UUV-2, the change rules of zC
 
and yM

 

with s were similar to each other. On the whole, the absolute value of zC
 
of the 

UUV-2 was bigger than that of the UUV-1, which illustrates that the side interference 

to the UUV was greater because of the appendages. For the condition “side1”, yM  

of the UUV-2 was smaller than that of the UUV-1 corresponding to the same s ; for 

the condition “side2”, when s <2, yM  of the UUV-2 was larger than that of the 

UUV-1, while s >2, yM
 
of the two models were almost the same corresponding 
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to the same s ; for the condition “side3”, when s <3.7, the absolute value of yM
 

of the UUV-2 was bigger than that of the UUV-1, while s >3.7, the absolute value 

of yM
 
of the UUV-2 was smaller than that of the UUV-1.  

     

（a） zC                              （b） yM  

Figure 14 zC
 
and yM

 
of the UUV-1 and UUV-2 in the condition “side1” 

     

（a） zC                              （b） yM  

Figure 15 zC
 
and yM

 
of the UUV-1 and UUV-2 in the condition “side2” 
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（a） zC                              （b） yM  

Figure 16 zC
 
and yM

 
of the UUV-1 and UUV-2 in the condition “side3” 

3 Analysis of unsteady hydrodynamic interference between the UUV and 

submarine 

3.1 Simulation research on the motion of the UUV parallel to the submarine’s 

longitudinal axis 

Selected the light body UUV-1 and SUB-1 as the research objects and the simulation 

time step was 0.2s. Considering the condition that s  =3m, the UUV-1 moved from 

the initial position side3-3 to side3-2 paralleled to the submarine’s longitudinal axis at 

three different speeds 0.4kn, 0.75kn and 1kn, the change rules of the hydrodynamic 

coefficients of the UUV-1 with x  were investigated. The specific calculation results 

are shown in Figure 17 to Figure 20. 

     

 Figure 17 xC corresponding to x     Figure 18 The change percentage of xC  

Figure 17 and Figure 18 show xC
 
and its change percentage while the UUV-1 

moving paralleled to the submarine’s longitudinal axis at various speeds. From which 

we can figure out that the change laws of xC
 
with x  were similar at different rates 

and xC  between two conditions corresponding to different speeds was about a 

certain value. The larger the relative velocity was, the smaller xC
 
was corresponding 

to the same x , that is, resistance of the UUV was smaller.  
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    Figure 19 Calculated results of zC     Figure 20 Calculated results of yM  

The change of zC
 

and yM
 
with x  are shown in Figure 19 and Figure 20. From 

which we can see that the change laws of zC
 
with x  were similar at different rates 

and they were all negative, implying the side force acting on the UUV-1 was suction; 

the larger the relative velocity was, the smaller the absolute value of zC
 
was 

corresponding to the same zC , but the difference between which was small, in other 

words, improvement of the local Reynolds number of the UUV-1 can decrease the 

interference of the submarine on its side force coefficient slightly; the influence of 

different velocities on yM
 
was the same as zC , i.e. improvement of the local 

Reynolds number of the UUV-1 can also decrease the interference of the submarine 

on its side force coefficient modestly. 

3.2 Simulation research on the motion of the UUV vertical to the submarine’s 

longitudinal axis 

We also elected the light body UUV-1 and SUB-1 as the research objects and the 

simulation time step was 0.2s. Considering the condition that the UUV-1 approached 

the submarine vertical to the its longitudinal axis from three initial positions side1-8m, 

side2-8m and side3-8m, the change rules of the hydrodynamic coefficients of the 

UUV-1 with x  were investigated. The specific calculation results are as shown in 

Figure 21 to Figure 24. 
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   Figure 21 Calculated results of xC   Figure 22 The change percentage of xC  

The simulation results of xC
 
and its change percentage corresponding to s are as 

shown in Figure 21 and Figure 22. It can be seen that with the UUV-1 approaching  

SUB-1 laterally, when SUB-1 was located in the side1 feature orientation, s >2.8, 

xC  showed approximate linear decrease, when s <2.8 it displayed approximate 

parabolic increase; in side 2 feature orientation, when s >2.8, xC
 
increased slowly 

with the decrease of s , but once s <2.8, it increased significantly; in side3 

feature orientation, when s >2.8, with the decrease of s , xC
 
showed an 

approximate parabolic increase trend, while s >2.8, it turned out approximate 

parabolic increase. Compared steady with unsteady numerical results in Figure 22, we 

can discover that when s >2.8, changes of the two results were similar to each other, 

and the calculated value in unsteady state was smaller than that in steady state 

corresponding to the same s ; when s <2.8, the change gradient of xC
 
with s

was larger in unsteady state. 

 

The simulation results of zC
 
and yM

 
corresponding to s  when the UUV-1 

approaching the SUB-1 from different positions are as shown in Figure 23 and Figure 

24. From the graphic results it can be seen that with the UUV-1 getting close to the 

SUB-1, due to the interference of the submarine, zC  was positive , manifested as 

repulsion; yM  was also positive, presented as deviating the head of the UUV-1 from 

the SUB-1. 
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Figure 23  zC                        Figure 24  yM  

Conclusions 

In this paper RNG k    turbulence model was used to close the RANS equations, 

and combined with the dynamic grid techniques, unsteady and steady hydrodynamic 

performance was numerically calculated when the UUV was recovered by the 

submarine. 

 

When the UUV maintained static relative to the submarine and the distance s

between them is small, the hydrodynamic interference of the submarine on the UUV 

is strong, and with the increase of s , it weakens, and the function distance of the 

flow around the submarine on xC  is about 30 times its diameter; the more rear the 

longitudinal position is, the larger xC  is. The UUV will also be subjected to the 

suction of the submarine for the flow around the submarine. When the UUV-2 with 

appendages is in the same longitudinal position and the relative direction is “side” 

and “up”, the change laws of xC , xxC and xxM with s are almost identical, while 

in “up” position, it is more complicated as a result of the wake flow of the fairwater. 

In the same feature position, for the UUV-1 and UUV-2, the change rules of xC , zC
 

and yM  with s  are similar accordingly. 

 

When the UUV moves paralleled to the submarine’s longitudinal axis at various 

speeds, the larger the local Re is, the smaller resistance coefficient is; even though the 

UUV is also subjected to the suction and yawing moment, the velocity has little effect 

on them. When the UUV approaches the submarine laterally in different feature 

positions, the change rules of the resistance coefficient of the UUV is similar to that 

in steady state; zC  is positive , manifested as repulsion; yM  is also positive, 

presented as deviating the head of the UUV from the submarine. 
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Abstract 
Complex dynamical systems such as car body, aircraft fuselage or train coach are conveniently 
modeled with Finite Element Method (FEM) in the Low Frequency range (LF). Increasing the 
frequency range to Mid-Frequencies (MF), typically up to 1000-2000 Hz, requires larger and 
larger FEM mesh. Presently, MF fluid/structure interaction problems on large structures cannot 
be solved in decent time at engineering level. Reduction of model size is required especially 
under random distributed loads. Energy methods like Statistical Energy Analysis (SEA) provide a 
theoretical framework for building small models based on power-balanced- equations they can be 
run in High Frequency range (HF). Nevertheless, SEA parameters are derived from analytical 
solutions of differential operators and submitted to many assumptions and simplifications. They 
cannot provide robust enough prediction in MF range due to inherent complexity of industrial 
systems. 
To improve predictability of energy models, the relevant parameters are then identified by 
inverse method from the “statistical” dynamic information contained in side FEM model. The 
FEM-derived SEA models are called Virtual SEA models (VSEA). They use the same 
parameters than the classical “analytical” SEA models. VSEA parameters can then be directly 
compared to their analytical counterparts. VSEA models may be understood as compressed FEM 
models in which the narrow-band frequency and spaced-varying FEM dynamic is replaced by 
band-integrated frequency and spaced averaged dynamic applied to a partition of FEM domain 
into subsystems. This compression leads to very small models while minimizing the information 
depredation. For example car body-in-white dynamic described by 6 million DoF’s in FEM is 
encapsulated as a real-valued 50x50 matrix relating injected power from impressed forces to 
energy in each of the subsystems. Problems involving random loads can then be solved by using 
VSEA models rather than original FEM’s. VSEA models can also be complemented by analytical 
other subsystems such as fluid cavities to solve full vibroacoustic response involving airborne 
and structure-borne propagation paths. Outputs from VSEA models are also more easily 
interpreted and provide description of propagation paths in the system.  
Keywords: Statistical Energy Analysis, SEA, Virtual SEA, VSEA, Computational Dynamic, 
Propagation path.  

Introduction 
SEA [1] has been and is still a very popular method in vibroacoustic engineering to predict 
random vibrations and fluid –structure interaction over a broadband frequency range. SEA 
describes the interaction of subdomains of a given dynamical systems in term of energy through a 
set of power-balanced equations. To build a valid SEA representation of the actual vibrational 
state, the system needs to be partitioned into subsystems and coupling coefficients calculated 
with appropriate physical laws. Some restrictive assumptions such as “weak” subsystem coupling 
must also be fulfilled. The three latter tasks have been for a long time the drawback of the SEA 
method due to lack of guidance in constructing models of complex systems. The use of analytical 
dynamical operators for computing SEA parameters was also limiting engineers in their ability to 
handle the structural complexity. 
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Nevertheless over years, despite all these obstacles, SEA method has been successful in 
predicting responses of a large class of industrial systems but generally with lack of control over 
frequency-band modeling limit and variance. From early 2000th’s SEA modeling capabilities have 
been leveraged up over Mid-Frequency (MF) by relying on Finite Element Method (FEM) to 
provide more robust SEA representation using FEM derived-parameters. This technology called 
Virtual SEA (VSEA) has enlightened the general dynamical behavior of complex systems, 
leading as side effects to improvement of equivalent analytical modeling rules always required 
for extending VSEA results above the frequency limit of the FEM mesh. There are theoretical 
connections with the parallel development of stochastic FEM modeling over the MF range 
[2][17]. 

The SEA Power Equilibrium 
A given dynamical system is partitioned into two subsystems for easier presentation. Between the 
resulting two subsystems, a set power-balanced equations Eq. (1) traduces the conservation of 
energy. Power flowing into a subsystem, from either a local source or arising from another 
coupled subsystem, is, for a fraction, dissipated into the subsystem and for another fraction, sent 
back to the coupled subsystem. 

 1 1 1 12 1 21 2

2 2 2 21 2 12 1

/
/

c

c

E E E
E E E

= + −
 = + −

π ω η η η
π ω η η η

 (1) 

1 1Eη , 2 2Eη  are the vibrational energies dissipated by subsystem 1 and 2. 12 12 1 21 2/ c E E= −π ω η η  
is the net power flow between subsystems expressed as the difference of radiated energies from 1 
to 2 and 2 to 1 and 21 12= −π π . 

1π  and 2π  terms represent the injected power by external random loads in resp. subsystem 1 and 
2 over a frequency band of width B centered around radian frequency cω .  

1η  and 2η  are the mean modal Damping Loss Factors of the subsystems (or DLF) and 12η , 21η  
the Coupling Loss Factors between related subsystems (CLF). 

Under external random impressed loads, the subsystem vibrational energy is related to the 
frequency and spaced-averaged mean squared velocity 2v< >  times the subsystem mass:  

 2E m v= < >  (2) 

Injected power due to random loads is independent of the modal subsystem response. Therefore, 
knowing DLF and CLF, we can build a loss matrix relating injected power vector to energy 
vector and calculate the energies in function of injected power in the band B:  

 
1

1 1 12 21 1

2 12 2 21 2

/ c

E
E

η η η π
ω

η η η π

−+ −     
=     − +     

 (3) 

For Eq. (3) being a valid representation of the actual energy exchange between the two 
subsystems, impressed powers 1π and 2π  need to be uncorrelated. For describing the energy 
exchange between two continuous bounded subsystems (two plates or a plate and an acoustic 
cavity), the concept of modal energy is introduced. In a band B, the continuous subsystem is 
statistically described by a set of modal oscillators carrying modal energy. If N oscillators are 
resonating in B, the statistic modal energy is equal to /E Ne =  where E is the sum of the N 
modal energies. Considering two set of modal oscillators resonating in B with respectively N1 and 
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N2 number of resonance frequencies in B, SEA states that the net power flow between the set is 
expressed by Eq. (4). 

 ( )12 1 2 1 2N Nπ β ε ε= −   (4) 

It leads the symmetrical SEA power-balanced equations given by Eq. (5). 

 ( )
( )

1

1 12 1 21 21 1 1 1

12 1 2 21 22 2 2 2

/
/

/ c

N NE N
N NE N

η η ηε π
ω

η η ηε π

−
 + −      

= =        − +        
 (5) 

Off-diagonal terms are equal due to reciprocity relationship, 1 12 2 21N Nh h= , making the loss 
matrix symmetrical as the modal coupling coefficient β  is always symmetrical due to linearity of 
dynamical operators. 

The modal formulation of SEA provides an easier interpretation of the “weakly” coupled 
assumption. Under this assumption, the subsystem modes can be considered as an acceptable 
orthonormal basis for projecting its responses and the related total energy is then found much 
closer to the discrete sum of modal energies. If subsystems 1 and 2 are strongly coupled, their 
modes are hybridized and undistinguishable with non-null cross-correlated energy E12. 

The further required assumption of “weak” coupling between subsystems has been discussed for 
a long time among SEA community and it is only recently that the role of this requirement has 
been clarified: Eq. (4) is always valid as soon as we restrict the calculation of energy to resonant 
modes. But on one hand, in case of more than two coupled subsystems, CLF law coupling related 
oscillators is different from the weak coupling case and on the other hand, all subsystems are 
found cross-coupled together, independently they are connected or not on a physical boundary. 

The degree of physical coupling between thin shells, parts of a complex system, is generally 
decreasing with frequency as any small discontinuity of mass or stiffness in the system will 
generate growing reflection coefficient when frequency increases (i.e. wavelength decreases). It 
leads to progressive confinement of energy in localized subdomains of the dynamical system. 
Confined energy is thus stored in local modes of the subsystems creating energy gaps between 
subdomains and SEA representation given by Eq. (4) and Eq. (5) will start to work and calculated 
CLF can be restricted to near-by coupled subsystems. As a consequence, there is always some 
cut-off frequency under which SEA scheme will be found defective. 

The EDM Power Equilibrium 

When subsystems are strongly coupled, power flow is no more discontinuous as in Eq. (4) as the 
distribution of energy density within the union of subsystems is continuous function of space. 
The Energy Diffusion Method (EDM) demonstrates [4][5][6] that in a continuous uniform system 
of extension Ω  the conservation of energy between subdomains δΩ  is given by the following 
energy-based equation: 

 
2
g

inj

c
e eηω π

ηω
− ∆ + =   (6) 
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where cg is the group velocity of underlying propagating waves and e the energy density in the 
medium. η  is the mean DLF in the medium in which is assumed perfect diffusion of the 
vibrational field. The local intensity is found proportional to the gradient of energy density: 

 
2
gc

I e
ηω

= − ∇
 

  (7) 

The coefficient 
2
gc

ηω
 plays then the same role than the coefficient of thermal transfer in heat 

exchange problems. 

SEA and EDM Power Flows 

A large fluid cavity is now considered containing many acoustic modes and its volume is split 
into smaller cavities. SEA is assuming weak coupling between subsystems. Therefore such an 
SEA model cannot represent actual distribution of energy in the volume as obviously the 
coupling is expected to be very strong between two neighboring sub-volumes as their boundaries 
are not at all reflective. To illustrate it, an acoustic volume (12m x 1m x 1m) is split into two 
different partitions. For comparison of calculated local energies, two SEA models are built from 
the partitions with sub-volumes cross-coupled by the “regular” SEA CLF. 

Partition C6 is made of 6 sub-volumes (2m x 1m x 1m each) while partition C12 is made of 12 
sub-volumes (1m x 1m x 1m) as sketched in Figure 1.  

  
Figure 1. Two SEA partitions of the same acoustic volumes and number of modes per 1/3rd 

octave band in the two related elementary sub-volumes 

 
Figure 2. Pressure levels in first and last acoustic sub-volumes in C6 and C12 partitions for 

unit power injected in resp. C6-1 and C12-1 
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Elementary sub-volumes are all including at least one acoustic resonance from 200 Hz. When 
applying a unit source power in the first left volumes, we expect to find similar pressure level at 
right ends of both partitions. Sub-volumes are numbered C6-1, C6-2… for partition C6 and C12-
1, C12-2… for partition C12. Figure 2 shows pressure levels calculated in both models in first 
and last sub-volumes. For C12 volumes, the two first and the two last are graphed as they are 
half-sized compared to C6 corresponding volumes. By doubling the number of sub-volumes to 
mesh the total volume, predicted pressure in C12 drops down from about 25 to 30 dB at 20 kHz 
and of about 10 dB around 2 kHz. The predicted pressure level is found dependent on mesh size 
(i.e. to the number of subsystems used to describe the volume). 

Same exercise may be done in any SEA software method and will lead to similar result if CLF 
are computed from wave transmission method. 

In this particular example of serial energy transfer within an arbitrary partition of an acoustic 
volume, weak coupling assumption is not verified. Therefore the volume meshing is not 
consistent. 

EDM provides a more representative model to describe the actual energy transfer based on a 
different power flow formulation. For computing CLF, classical SEA method, as originally 
proposed [1] - and still applied in the community of SEA users - relies on wave theory and weak 
coupling. At subsystem boundary, the power flow from an emitter subsystem to a receiver one, is 
then given by: 

 1 2 12 1 incE I
θ

η ω τ→Π = = Σ   (8) 

Where θ
τ  is the mean random-incidence wave transmission coefficient, incI  is the incident 

intensity propagating from 1 to 2 and Σ the junction size (area for 3D acoustic volumes). Because 

4inc
cI e=  in the diffuse acoustic field, e being the energy density, Wave Transmission (WT) CLF 

is found equal to: 

 12 4
c

θ
τ

η
ω

Σ
=

Ω
 (9) 

For two identical coupled sub-volumes, the net power flow is finally expressed in function of WT 
CLF as: 

 ( ) 2 1
12 1 24 4

E Ec cE E
L

π −Σ
= − = − ⋅

Ω
 (10) 

where is L=Ω/Σ is the characteristic length of the sub-volumes and θ
τ =1 as no refection occurs 

at sub-volume interface. 

Comparing Eq. (10) and Eq. (7), both net power flow expressions are found proportional to the 
gradient of energy (or energy density with appropriate scaling). But the coefficients of vibrational 
transfer that relates the gradient of energy to power are following different laws vs. frequency. 

Therefore, in any complex dynamical system, the energy distribution over the domain is expected 
to be continuous over sub-domains with low reflective boundaries between them and submitted to 
step when crossing a reflective boundary. Because the reflectivity of a boundary is frequency-
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dependent when speed of sound slightly varies between two coupled sub-domains, we have a 
better understanding of Figure 2 result: the discretization of an acoustic volume into sub-volumes 
coupled by WT CLF implicitly creates artificial loss of energy at each boundary and leads to a 
larger energy drop in the last cavity. This effect is a consequence of applying WT CLF between 
strongly-coupled regions. Fluid-structure interaction problems are less entailed by this problem as 
fluid and structure, at least for air, are always weakly coupled. 

SEA method based on WT-CLF is not representative of actual dynamical behavior in analyzing 
structure borne noise propagation over the MF range when speed of sound between the various 
parts is not very different as in the case of car body-and-white where the skin is everywhere 
between 0.7 to 1 mm thick with low reflectivity from boundaries. 

Over MF range, for improving robustness of SEA modeling, WT CLF should be only applied for 
coupling regions separated by steep energy gradient while continuous regions with smooth 
gradient should be either considered as a single SEA subsystem or split into smaller scale 
subsystems coupled by EDM modified CLF. Figure 3 shows the prediction with an SEA model 
with a topology similar to Figure 1 but built following previous recommendations (i.e. with 
different CLF expression). Sub-volumes in partitions C6 and C12 are cross-coupled by 
discretized EDM CLF in SEA+ software [15] and again we plot pressure levels in first and last 
acoustic volumes in Figure 3. In that case, the mesh dependence has nearly been cleared. Pressure 
in the two last C12 sub-volumes are now close to C6 related sub-volume as expected in the actual 
physics. 

 
Figure 3. Pressure levels in first and last acoustic sub-volumes in C6 and C12 partitions for 

unit power injected in resp. C6-1 and C12-1 applying EDM CLF between sub-volumes 

Virtual SEA for SEA Prediction over MF Range in Complex Structures 

Creation of a representative SEA model requires discriminating subdomains separated by 
expected energy gap, in function of the vibrational frequency reflectivity of boundaries as 
previously discussed. Partition into subsystems is then a key feature in designing a “physical” 
SEA model but is an unknown of the vibration problem. 

For complex dynamical system such car body, aircraft, spacecraft or any compact structural 
component such an electronic equipment, EDM theory cannot be directly applied as constant 
speed of sound is required among regions of smooth energy distribution. Finding potential energy 
gaps between various zones is also not always intuitive. Based on expertise developed in 
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measuring SEA CLF on built-up structures [8][9][10], VSEA method [11][12][13] was 
introduced for characterizing SEA CLF and weakly coupled regions of car chassis, further 
extended to spacecraft analysis and full car body or components in operating conditions. 

For non-homogeneous systems with complex geometry, VSEA relies on FEM global real modes 
to get a snapshot of the statistical vibrational behavior in the various targeted frequency bands. 
VSEA is derived from experimental SEA analysis or ESEA [7] and identifies SEA parameters of 
the system responses by solving an inverse SEA problem like in ESEA method. Inputs to the 
inverse problem are the synthesized modal responses at a grid of predefined nodes. VSEA may 
be viewed as a kind of virtual test where the system dynamics is reduced to responses at a subset 
of discrete nodes. 

Virtual SEA Numerical Process 

Real modes are extracted using preferred FEM solver (NX-NASTRAN in next example). 
Eigenfrequencies and related modal amplitudes, at a set of restitution nodes, are stored and 
exported to SEA+ VSEA solver. VSEA is synthesizing complex velocity FRF vi/fj = vij at all 
restitution points Mi in global x, y, z directions due to rain-on-the-roof unitary x, y, z forces 
applied at each restitution node Mj. Final FE statistical information is reduced to the transfer 
velocity matrix V made of vij elements  

Global DLF for modal synthesis is taken equal to some frequency band-dependent default value 
for all modes. V matrix is compressed into 1/3rd octave band and projected in the direction ni and 
nj of maximal input/output conductances given for at all nodes by Y =Re{Diag(V)}n. The final 
matrix 2V for SEA-parameter identification is then expressed in band-averaged format at center 
radial frequency cw  and bandwidth B with elements given by:  

 2 21( , ) ( )ij c ij
B

v B v d
B

= ∫w w w  (11) 

2V is finally auto-partitioned by SEA+ peripheral algorithm which groups nodes into a set of weakly 

coupled subsystems Ωk  leading to SEA rectangular transfer matrix 2V  of which elements are given 
by: 

 2 2
' '

1

k

kk i kk ij
jk

v v
N ∈Ω

= ∑  (12) 

SEA parameter identification is performed by solving the SEA inverse problem relating 2V  to 
SEA loss matrix L through the normalized SEA power balanced equations.  

 1*2 2/ /c cY m m Y
−

 ⋅ = ⋅ ⇒ = ⋅ I L V L V Iw w  (13) 

m is the subsystem mass vector and * indicates the pseudo-inverse. In practice with 

 / 4m Y= N  (14) 

previous equation is reshaped for direct solve of modal density vector N . It leads to the local 
modal energy matrix power balanced equations given by: 

 / = =I L ε εw N L  (15) 
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with elements of ε  given by: 
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= ∑  (16) 
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 

− + 
  

∑

∑

h h h

h h h

N N N

L =
N N N

 (17) 

ε  has dimension of modal energy and leads to accurate identification of L  thanks to SEA+ 
algorithm that performs auto-partitioning into weakly coupled regions.  

In practice, with lossless junctions, previous system is solved for identifying separately modal 
density and CLF. Model quality is assessed by comparing 2 1*4 /−= TV Y YL ω  with direct 2V  

FRF input. Difference 2 2−V V  gives the reconstruction error matrix plot as reconstruction 
performance index in SEA+ [15].  

The MS-VSEA patch method is a variant formulation of the inverse SEA problem where the 
auto-partition is applied to pre-defined group of nodes instead of nodes. This method is thus 
providing a partition per frequency band corresponding to a specific grouping of patches into 
subsystems. Main advantage is to accurately reconstruct FE transfers over the whole frequency 
range. Figure 1 shows the flow chart of the VSEA process.  

 
Figure 4. VSEA data flow 

VSEA Modeling of a Car Component 

A car cockpit is analyzed with VSEA and related subsystems are shown in Figure 5. The cockpit 
is made of various imbricated plastic parts embedded in a metallic support with various section 
properties. 500 nodes map the system. Starting from a FEM model of the component, around 
2500 eigenvalues are extracted and modal amplitudes at all reference nodes are stored. SEA+ 
performs the FRF synthesis and numerical MS-VSEA model is generated from it. 
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Figure 5. Left-Cockpit with identified nodal VSEA subsystems at 700 Hz and right-air-

conditioning block identified as a subsystem 

   
Figure 6. Left-V/F transfer velocity for a given excitation node in air-conditioning block 

subsystem and right-related local modal energy transfer as given by (16) 

Effective subsystem domains are varying with frequency. Only 4 effective subsystems are found 
at 100 Hz, 7 at 250 Hz, 11 at 500 Hz and 13 at 1000 Hz. Detection of subsystems is performed on 
the matrix made of elements calculated from (16) that provides much less node-to-node scattering 
of nodal responses that the classical FRF (V/F) as shown in Figure 6. 

In SEA+ GUI, only the finest partition is displayed for easy expansion in HF range as FEM 
modal extraction was limited to 1000 Hz due to FE size. The performance index of the mode 
guaranties the MS-VSEA band-averaged transfers to be within 2 dB from related direct FEM 
calculation. The frequency limit of MS-VSEA model is called the transition frequency, ft. 

Below ft and unlike standard SEA model, the nodal information is preserved in VSEA model, 
making possible to predict response in VSEA nodes and not only as a mean over subsystem 
domain. Correlation with measured data is easier. 

An SEA expander is then allocated to each VSEA subsystems. The expander is a “classical” SEA 
subsystem of which parameters are derived from analytical theory in order to take over the 
calculation of SEA CLF and modal densities above ft. Patches may be conveniently chosen by the 
user for easier modeling of analytical SEA expanders by ascertaining a patch as a group of FE 
with same section property for example.  

Above ft both junction CLF and subsystem modal densities are analytically expanded to HF.  
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VSEA and Analytical Fluid/Structure Coupling 

VSEA or MS-VSEA subsystems are coupled to analytical SEA cavities through a specific 
statistical radiation integral calculated by spatial windowing of an elementary infinite structural 
wave [14]. The related structural VSEA wavenumber is estimated from ratio of rotational over 
translational nodal principal-direction conductances.  

For a subsystem of domain Ωk , 

 k

k

R

T

Y
k

Y
Ω

Ω=  (18) 

Where RY  and TY  are respectively maximal local rotational and translational conductances 
averaged over Ωk . 

Adding Acoustic Trims to the VSEA Bare Model 
All soft parts (internal trim panels, acoustic materials) are modeled as additional analytical 
subsystems or as attenuation spectra that filter the sound radiation. The latter are predicted by 
Transfer Matrix Method (TMM). Given an acoustic trim made of several layers (porous and/or 
elastic materials), related transmission (TL) and insertion (IL) losses are predicted by TMM 
under random incidence and infinite layer dimension. TL and IL are corrected for taking into 
account finite size of the trim. The base panels modeled as SEA subsystem are modified by trim 
presence (added mass and added damping). 

Conclusions 
SEA method provides a general theoretical framework for modeling both airborne and structure 
borne paths in complex industrial systems in the energy domain. We have brought to the fore 
some drawbacks of the method which have over years puzzled mechanical engineers in their 
understanding of SEA limitations. These limitations, mostly related to a priori sub-division of a 
system into regions satisfying SEA basic theoretical assumptions, have been overcome by 
introducing new concepts in the SEA modeling approach: 

• Automated conversion of statistical dynamical information containing in a FEM model 
into SEA subsystems compatible with their analytical counterpart, 

• Merging Energy Diffusion theory and Wave Transmission for improving coupling loss 
factor definition in region of strong coupling, 

• Coupling Transfer Matrix Method which operates on 2D infinite layers with supporting 
SEA structures, 

• Correcting calculation in infinite domain with the Spatial Windowing Technique. 
Connecting all these features in a collaborative Graphical User Interface has helped in going 
further.  Important topics, not covered in previous pages [16] are part of on-going research 
activities. They are progressively introduced in the SEA solver such as the non-resonant energy 
propagation in both structure and cavities which improves prediction of mass-controlled transfers 
of energy under acoustic and turbulent boundary layer loads. 
 Laminated shell damping and indirect mechanical coupling loss factors predictions are also an 
issue. Specific theories have been already stated and validation work is in progress. 
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Abstract 

In this work, we present a computational approach to high cycle fatigue life prediction with 

an efficient solver employing time-discontinuous Galerkin (TDG) based space-time finite 

element method and its enriched version (XTFEM) [1, 2] in three dimensions. While the 

robustness of TDG based space-time FEM has been extensively demonstrated, a critical 

barrier for the extensive application is the large computational effort due to the additional 

temporal dimension and enrichment that are introduced. By formulating a new preconditioner 

and utilizing the properties of Kronecker product, we developed a generic iterative algorithm 

for solving the fully-coupled block-structured matrix equations formulated by space-time 

FEM. This approach reduces the computational cost to the same order of solving the 

corresponding static FE problems. The established numerical framework is further integrated 

with a multiscale damage model for the purpose of capturing failure initiation and 

propagation. The efficiency and robustness of the proposed method are illustrated in 

numerical examples, in which we show much better performance over direct solution of the 

original TDG matrix equations using either sparse direct or iterative solvers 

Keywords: Space-Time FEM, XTFEM, Parallel Computing, GPU, Fatigue 

Introduction 

Past studies have shown that space-time finite element based on the time-discontinuous 

Galerkin (TDG) formulation leads to A-stable, higher-order accurate ODE solvers [3-5]. The 

TDG-based method has been extended to second-order hyperbolic systems such as 

elastodynamics [6-9]. It significantly reduces the artificial oscillations that are commonly 

associated with semi-discrete time integration schemes in capturing sharp gradients. 

Recently, it has been shown that its predicative capabilities in the temporal domain can be 

further improved by enriching the standard shape functions with a function that represents the 

problem physics, such as multi-temporal scale fatigue life prediction problems [2, 10] or 

coupled atomistic/continuum multiscale problems [1, 11, 12]. The enriched method is termed 

the extended space-time FEM (XTFEM). However, due to the additional temporal dimension 

and enrichment that are introduced, space-time FEM and XTFEM lead to systems of coupled 

equation larger than those emanating from regular semi-discrete methods, which becomes a 

critical barrier for practical applications in terms of computational cost. 

By casting the coupled equations to partly decoupled forms, iterative predictor/multi-

corrector algorithms have been developed in past decades [9, 13, 14]. These methods have 

been proved to be unconditionally stable and widely employed for TDG-based two-field 

formulation, as the resulting matrix equations are only weakly coupled. However, the single-

field formulation employed in current implementation leads to fully coupled matrix systems, 

thus the algorithms developed for the two-field formulation are not directly applicable. 

Previously, we proposed a generalized iterative solution approach for both space-time FEM 
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and XTFEM in two dimensions [10], which significantly reduced the computational effort. In 

current work, we further extend this approach to three dimensions by developing a new 

preconditioning technique. Unlike the iterative predictor/multi-corrector algorithms, the new 

approach reduces the computational cost to the same order of solving the corresponding static 

finite element equations without explicitly recasting the original block-structured matrix 

systems. Furthermore, parallel algorithms based on multi-core graphics processing unit 

(GPU) are established in order to accelerate the solution of nonlinear constitutive model 

employed in fatigue damage problems. Finally, numerical examples are given to demonstrate 

the efficiency and robustness of the proposed method. 

Space-Time Finite Element Method 

Regular Space-Time FEM 

The regular space-time FEM in current work follows largely the single-field formulation of 

TDG for elastodynamics [7]. In TDG formulation, the space-time domain  ]0, T[ is first 

divided into multiple segments called space-time slabs and the n-th slab given as Qn =  

]tn-1, tn[, then Qn is further discretized into ( )
el n

n  space-time elements. We further introduce 

the jump operators 

      [[ ]]u u u
n n n

t t t
 

    (1) 

where    
0

lim
n n

t t









 u u . By introducing the trial functions uh(x, t) and test functions 

uh(x, t) to be C0 continuous within each slab, the weak form of TDG formulation can be 

expressed as, 
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  

 
  (2) 

for n = 1, 2, …, N, where  is the mass density,  is the stress, f is the body force and t is the 

prescribed traction on boundary t. Note that the first line of Eq. (2) represents the regular 

weak form of linear elastodynamics in Galerkin formulation, while the second line enforces 

the velocity and displacement continuity in time.  

In current work, a multiplicative form of the space-time shape function is adopted as 

 
1

( , )
i kt t t

t N N N   x x x
N x N N N   (3) 

where Nx and Nt are the spatial and temporal shape functions respectively. This form allows 

us to discretize the spatial and temporal domain independently. Shape functions from the 

regular finite element can be employed for Nx. For temporal shape function, a simple 3-node 

quadratic interpolation scheme has been employed. Three nodes at tn-1, tn-1/2 and tn are equally 

spaced along the time axis for each space-time slab and  

            1/2 1 1 1/22

1
2 4 2

t n n n n n n
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t
   

         
N   (4) 

in which t  is the time step.  
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After substituting the space-time approximation into the weak form, we arrive at the space-

time stiffness equation in the form of Kd = F, in which the fully-coupled, block-structured 

linear system matrix is given as 

 

2 2 2

2 2 2

2 2 2

5 4 2

2 3 6

12 2 16 4 2

3 3

7 12 2 5

6 3 2

t t t

t t t

t t t
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 
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 
    
    

M K M K M K

M K M M K

M K M K M K

K   (5) 

where K and M are regular spatial stiffness and mass matrix respectively. 

Extended Space-Time FEM 

The predicative capability of the space-time FEM can be further improved by introducing an 

enrichment function (x, t) into regular space-time shape function. Choice of such an 

enrichment function depends on the problem physics. The enriched space-time approximation 

is given as 

 
1 1

( , ) ( , ) ( , )
s en n

I I J J

I J

t t t
 

  u x N x d N x a   (6) 

where a represents the enriched degrees of freedom (DOFs), ns and ne are the numbers of 

standard and enriched DOFs respectively. There resulting formulation is then termed as 

XTFEM. For the J-th node the enriched shape function is 

 ( , ) ( , ) ( , )
J J J

t t t N x N x x   (7) 

in which ( , ) ( , ) ( , )
J J J

t t t  x x x . 

Enrichment function adopted in current work has been proposed for high cycle fatigue 

problems [2, 10] and coupled atomistic/continuum simulations [1, 11, 12]. By employing a 

time dependent harmonic function, the enrichment function is given as 

 ( ) ( ) ( ) sin( ) sin( )
J J J

t t t t t        (8) 

Similarly, the linear system matrix of XTFEM is obtained as 

 
 

  
 

ea

e

eb ee

K K
K

K K
  (9) 

where K is the regular space-time system matrix, Kea and Keb reflect the coupling between 

enriched and regular DOFs, Kee reflects the coupling between enriched DOFs. 

An Efficient Iterative Solver 

Mathematical Formulation 

As shown in Eqs. (5) and (9), linear system matrices formulated by either regular space-time 

FEM or XTFEM are block-structured and coupled with both conventional FE stiffness matrix 

K and mass matrix M, which can be expressed as 

 
rs rs r r s s r r s s    

   A K B MK   (10) 
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where A and B are non-symmetric coefficient matrices obtained by temporal integration, 

symbol   denotes the Kronecker product. The size of matrices A (or B) and K (or M) are 

denoted by r and s respectively. The value of r is determined by both the order of temporal 

shape function and the number of enriched DOFs that are introduced to each node, it could be 

neglected when compared with the value of s for practical problems. For example, the 

temporal coefficient matrices formulated by regular space-time FEM in Eq. (5) are given as 

 
2

3 3 3 3

3 4 1 5 4 1
1 1

4 0 4 , 12 16 4
6

1 4 3 7 12 5

r r r r
t

 

 

     
   

    
   
       

A B   (11) 

where r = 3 in this case. 

The proposed linear system solver is based on preconditioned iterative methods. By 

employing the preconditioning techniques, the original linear equation of Kd = F is 

converted to 

 1 1
( )

 
dP K P F   (12) 

in which P is the preconditioner, d and F are unknown and force vectors respectively.  

It is well known that the efficiency and robustness of these methods largely depends on the 

quality of the preconditioners. A good preconditioner P should be close to K, and makes the 

resulting system easier to solve. In order to improve the numerical efficiency of the iterative 

solver, we further exploit and utilize the unique block-structure of the K matrix as shown in 

Eq. (10) to propose a new preconditioner. The new preconditioner is obtained as  A PP , 

where P K  is a preconditioning matrix obtained by approximating the spatial stiffness 

matrix K. The resulting computational effort is then reduced to the same order of solving the 

corresponding static finite element stiffness equations. 

Numerical implementation 

In current work, the Generalized Minimum Residual method (GMRES) [15] is employed as 

the iterative solver since the system matrix K is nonsymmetric. Preconditioning matrix P = 

LU in which L and U matrices are obtained by incomplete lower and upper factorization of 

the spatial K matrix with threshold strategy for dropping small terms and column pivoting 

(ILUTP) [15]. In order to reduce the number of fill-in entries that are introduced to the factor 

matrices during the factorization, which could lead to very expensive computation, a 

permutation of the K matrix is performed first by employing the Reversed Cuthill-McKee 

(RCM) reordering algorithm [16]. To overcome the demanding storage efforts, K and M 

matrices are stored in Compressed Sparse Row (CSR) format. Note that explicit formulation 

of the block-structured matrix K is no longer required in current implementation. 

Numerical Example 

Prismatic rod subject to cyclic fatigue loading 

We consider a prismatic rod as sketched in Figure 1. The rod is fixed at left end and subject 

to a fully-reversed cyclic fatigue loading p(t) = P0sin(2ft)H(t) Pa at right end, where H(t) is 

the Heaviside function. The amplitude and frequency of the cyclic loading are 106 Pa and 10 

Hz respectively. The material properties are given as Young’s modulus E = 211 GPa, 

Poisson’s ratio  = 0.3 and mass density  = 7850 kg/m3.  
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Figure 1. Illustration of the prismatic rod problem 

This problem is simulated by XTFEM with a time step 5t T   where T = 0.1 s is the period 

of loading cycle. The spatial domain is discretized by 8-node linear cubic elements. The 

computing environment is a desktop workstation with Intel Xeon CPU E5-2623v3, 16 

Gigabytes RAM and NVIDIA TESLA GPU K20c. Displacement response is illustrated in 

Figure 1 and compared with solutions obtained from both explicit and implicit FEM using 

ABAQUS. The result obtained by XTFEM agrees well with those from traditional semi-

discrete methods which require much smaller time steps. It shows that XTFEM is stable and 

accurate for the large time steps employed. This advantage of XTFEM would allow fast 

simulations on high-cycle fatigue loading histories. 

 
Figure 2. Displacement response at the free end of the rod subject to cyclic fatigue 

loading 

In order to demonstrate the performance of the proposed iterative solver, a comparison study 

with regarding to both a sparse direct solver (SuiteSparse/UMFPACK) and a regular 

preconditioned iterative solver is conducted here. Note that the regular preconditioned 

iterative solver employed here is almost the same with the one developed in current work, 

except that the preconditioner is obtained directly from the large, block-structured space-time 

stiffness matrix. For these two iterative solvers, the dropping and pivoting tolerances of 

ILUTP preconditioner are set to 1.0e-3 and 1.0e-1 respectively, while the GMRES 

convergence tolerance is 1.0e-8. 

By varying the size of spatial elements, N, the number of unknowns in the resulting linear 

systems formulated by XTFEM, ranges from 5,850 to 3,661,218. The computational 

performances of different solvers on those linear systems are summarized in Table 1. The 

memory usage is obtained from the storage of the L U factors due to their major contribution, 
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while time cost is measured by the CPU time for solving the first time step as the LU 

factorization is only performed at this step. In addition, the number of iterations to converge 

of the two iterative solvers also provided in Table 1. Symbol “/” indicates no results due to 

insufficient memory.  

Table 1. Performance of different solvers in XTFEM simulations 

DOFs 

Sparse direct solver Regular iterative solver Current solver 

Mem 

(MB) 

Time 

(s) 

Mem 

(MB) 

Time 

(s) 
Iters 

Mem 

(MB) 

Time 

(s) 
Iters 

5,850 224 12.5 21.7 4.4 76 1.6 0.04 13 

36,450 7,764 3,254 300.5 160 290 20 1.0 47 

484,218 / / 4,865 8,432 1,332 333 41 151 

3,661,218 / / / / / 2,722 680 309 

 

Table 1 clearly demonstrates the advantages of the current solver over the other two and 

remarkable computational savings are achieved. In terms of computational complexity, the 

sparse direct solver showed an O(N3.0) time cost and O(N1.9) memory cost; The regular 

iterative solver achieved an better performance of O(N1.7) and O(N1.2) for time and memory 

costs respectively; Finally, the current solver further reduced the time cost to O(N1.5) and 

memory cost to O(N). In addition, the proposed solver also significantly reduced the number 

of iterations to converge. Thus, we conclude here that the proposed iterative solver efficiently 

and robustly accelerated the solution of linear systems formulated by XTFEM. 

Conclusion 

In summary, an accelerated multi-temporal scale approach is developed in current work for 

fatigue failure prediction in three dimensions. An efficient iterative solver with a new 

preconditioning technique is established for the fully-coupled, block-structured matrix 

equations that are formulated by TDG-based space-time FEM and XTFEM. This solver 

successfully reduces the computational cost from solving the large space-time matrix 

equations to the same order of solving the smaller corresponding static finite element 

equations without explicit matrix recasting. GPU-based parallel algorithms for the nonlinear 

constitutive fatigue damage model is coupled with XTFEM to predict fatigue failure. 

Numerical examples with unknowns up to ~3.7 million have been efficiently accelerated by 

the proposed method using single CPU process on a desktop workstation. The robustness of 

the solver is also extensively demonstrated. It shows that the computing time and memory of 

the accelerated implementation scale with the number of DOFs N through O(N1.5) and  O(N) 

respectively. 
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Abstract 

Tip clearance loss is a limitation of the improvement of turbomachinery performance. Previous 
studies show the tip clearance loss is generated by the leakage flow through the tip clearance, and is 
roughly in close relation with the gap size. In this study, a pumpjet propulsor with different size of 
tip clearance(  =0.2mm、0.5mm、1mm、2mm、3mm) has been presented to investigate the 
influence of the tip clearance on a pumpjet propulsor. This analysis was carried out by solving 
Reynolds Averaged Navier-Stokes (RANS) method with the commercial Computational Fluid 
Dynamic (CFD) code CFX14.5, and the SST k   turbulence model is applied. In order to verify 
the accuracy of numerical simulation method, calculations were carried out with a worldwide 
employed propeller (the E779A propeller). Simulation results show that the open water efficiency 
decreases gradually in the same advance coefficient (J) with the increasing of tip clearance. 
However, the open water efficiency is basically unchanged after the tip clearance is bigger than 
2mm. The effects of tip clearance on the tip-separation vortex and the tip-leakage vortex are 
discussed. the area affected by the tip-separation vortex and the tip-leakage vortex is becoming 
bigger and bigger as the tip clearance increases. And as the tip clearance increases, the core of tip-
separation vortex and tip-leakage vortex are "contact", they transfer to each other. The position of 
the contact is moved to following edge in the axial direction, and the position is 1/3 of the blade tip 
away from leading edge in the case =3mm . The main effected area of different tip clearance, 
which is the low pressure area, is mainly focus at the area above 0.9 spanwise of the suction side of 
rotor blade. 

Keywords: Pumpjet Propulsor; Tip clearance; Computational fluid dynamic (CFD). The tip vortex 

structure. 

Introduction 

Pumpjet propulsor is a new type of underwater propulsion system, which adopts single-rotor 

propulsion and decelerating duct. The application of decelerating duct improves the cavitation 

performance of the propulsion system at a lower velocity.  

 

At present, the research on the characteristics of pump jet propulsion, domestic and international 

published literature mainly concentrates on the test and numerical calculation of hydrodynamic 

performance. Ch. Suryanarayana et al[1] make experiment on hydrodynamic performance of the 

underwater vehicle equipped with pumpjet propulsor. They verify the advantages of the rear stator 

pumpjet propulsor and indicate that the rear stator can absorb the rotational energy of the rotor and 

reduce the radial component in the wake, and so as to improve the efficiency of the propulsion. 

Stefan Ivanell [2] uses computational fluid dynamics method to calculate the hydrodynamic 

performance of the torpedo with pump jet, and the rationality of the method is verified by 

comparing with the experimental results. The numerical results show that the stator has contributed 

about 20% of the thrust. Song Baowei et al.[3] calculate the hydrodynamic performance of a type of 

pump jet propulsor based on CFD method; using high quality structured grid and using sliding mesh 

technology. The numerical results and the experimental results are in good agreement. Pan Guang et 

al [4] carry numerical calculation to the vehicle equipped with a certain type of water pump jet 

propulsion. The open water performance curve of pump jet propeller is given and it indicates that 
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the pumpjet propulsor has higher efficiency, and ideal balance performance. The pressure of rotor 

blades and stator blades in relative height is analyzed. The morphology and the principle of the 

rotor tip vortex are explained. In the flow of pump jet propulsor gap, Wang Tao et al [5] carry 

numerical simulation for complex viscous flow field of pumpjet propulsor. By analyzing the local 

flow field, the influence of the clearance flow on the flow field (including velocity and pressure 

fields) is revealed. In addition the most of the study about the flow of tip clearance are aimed at the 

duct propeller or axial flow pump. For example, T. Lee Y. et al [6] study the flow of tip clearance of 

the duct propeller by solving the three-dimensional RANS equation method. The calculated results 

are in good agreement with the experimental results. It is shown that the numerical method is 

feasible for the study of the tip clearance flow. Although the duct propeller and axial flow pump are 

different with pumpjet propulsor, the results of the duct propeller and axial flow pump research 

have a good reference to the research of tip clearance flow of pumpjet propulsor. 

 

In this paper, according to the 0.2mm, 0.5mm, 1mm, 2mm, 3mm pumpjet propulsor model, the high 

quality structured grid is generated based on the block grid coupling technique. By means of 

numerical simulation, based on the sliding grid technique, the numerical simulation of three-

dimensional full channel steady turbulent flow is carried out. The open water performance of the 

pumpjet propulsor with different tip clearances, the influence of the rotor tip-separation vortex and 

tip-leakage vortex and the rotor blade surface pressure field is analyzed. 

Numerical simulation method 

Governing equations 

For an incompressible and single phase fluid, the governing equations for Reynolds Averaged 

Navier-Stokes (RANS) can be written as the mass and momentum conservations in the following 

tensor form: 

    0
j

j

U

x





     (1) 

    
( )i j iji

M

j j j j i

U U U P
S

x x x x x

 

   

          

     (2) 

where i = 1, 2, 3 , j = 1, 2, 3 ,   is the fluid density, 
i

x  and 
j

x  are the Cartesian coordinate 

components. MS , iU  and 
jU  are different values depending on different situations. For an inertial 

frame, MS  equals to zero, iU  and jU  represents the absolute velocity component. For a relative 

rotating frame, MS  is the sum of Coriolis ( 2 ω U ) and centrifugal forces ( ( )r ω ω ), iU  and jU  

represent the relative velocity components.   is the dynamic viscosity, t is the time, ij denotes the 

Reynolds stresses, and P  and U  represent the pressure and the time averaged velocity, respectively. 

Turbulence model 

According to the existing study by Ji et al. [7], the k  shear stress transport (SST) turbulence 

model is applied for closing the numerical simulation in this study. The SST k   turbulence 

model combines the advantages of stability of the near-wall k   turbulence model and 

independent of the external boundary k   turbulence model. It can adapt to a variety of physical 

phenomenon caused by the pressure gradient changes, and it can utilize the inner viscous layer 

combined with the wall function to accurately simulate the phenomenon of the boundary layer 

without the use of easier distortion viscous-attenuation function. 
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Verification of numerical simulation method 

In order to verify the accuracy of numerical simulation method, the steady flows over a skewed 

four-bladed marine propeller E779A have been studied. The non-dimensional geometry data of the 

E779A propeller is taken from Subhas et al. [8] and presented in Tables 1. This propeller has been 

widely tested for several years and a large number of reliable experimental data are available (see 

Salvatore et al. [9]). The computational domain and boundary conditions for E779A marine 

propeller is a 1/4 cylinder passage as shown in Figure 1. 

 

Table 1: Parameters of the E779A propeller 

Propeller diameter ( tD ) 227.3 mm 

/ tP D  ratio 1.1 

Skew angle ''4 48  

Rake ''4 3  

Blade area ratio 0.689 

Hub diameter (DH) 45.53 mm 

Velocity

Inlet
Pressure

Outlet

Free Slip Wall

E779A

Propeller

 
Figure 1: Computational domain and boundary conditions for E779A propeller. 

 

The advance ratio J is defined, respectively, as / ( )tJ U nD , where U  denotes the free stream 

velocity, n  is the blade rotating velocity, outp  is the outlet pressure. The thrust coefficient 

2 4/ ( )T f tK Thrust n D  and torque coefficient 
2 5/ ( )Q f tK Torque n D  are defined, respectively. 

The numerical simulations are carried out at three different typical values of advance ratio J =0.71, 

0.77 and 0.83. The numerical results of TK  and QK  at three different advance ratios are compared 

with the experimental data and summarized in Table 2. 

 

Table 2: Comparison of thrust and torque coefficient with experimental data 

J  

Numerical Results Experimental Results Errors (%) 

TK  10 QK  
TK  10 QK  

TK  10 QK  

0.71 0.2485 0.4327 0.2474 0.4449 0.44 2.74 

0.77 0.2206 0.3913 0.2184 0.4031 1.01 2.93 

0.83 0.1913 0.3488 0.1888 0.3590 1.32 2.84 

 

From Table 2 we can see that the numerical prediction results are in good agreement with the 

experimental results, and the errors of TK  and QK  are less than 3%. Consequently, it is indicated 
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that the numerical simulation method with the SST k   turbulence model is applicable and 

reliable for pumpjet propulsor flows. 

Steady numerical simulation for pumpjet propulsor 

Pumpjet propulsor model 

Pumpjet propulsor simulation model in this study is shown in Figure 2: the propeller has 11 rotor 

blades, 9 stator blades. The rotors are in front of the stators, and the rotors rotate clockwise (seen 

from the front of the model). The diameter of pumpjet propulsor is D =0.26 m and the length of 

pumpjet propulsor is L =0.17 m. 

 

 
Figure 2: Pumpjet propulsor model 

 

In order to simulate the flow better and get more precise result, two half ellipsoid type flow-guide 

caps have been added in front and rear of the propulsor model, respectively. In order to study the 

effects of different tip clearance effect on the performance of pumpjet propulsor, different diameter 

of the duct has been selected to get different tip clearance. Five models with 0.2mm , 0.5mm , 1mm , 

2mm  and 3mm  tip clearances have been selected. In order to facilitate the discussion, the   has 

been defined to represent the tip clearance. 

Computational domain and mesh 

The computational domain and boundary conditions are shown as Figure 3 and Figure 4. The 

computational domain is a length of 10L, diameter of 5D  cylinder surrounding the model, whose 

axis coincides with the symmetry axis of Propulsor model. The inlet is located 3L from the front 

face of Propulsor model, and the outlet is situated 7L from the front face of Propulsor model. 

According to the structural characteristics of the pumpjet propulsor, the computational domain is 

divided into three parts: rotor domain, stator domain and external flow field domain. The rotor 

domain is a rotating domain, and the other two domains are stationary domains. The rotor and stator 

domains are embedded in the external flow field domain. The interaction between the rotor domain 

and stator domain and the interaction between the rotor domain and external flow field domain are 

solved by using the sliding mesh method. 

 

Pumpjet Propulsor
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Figure 3 The computational domain and boundary conditions 
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The rotor 

domin

The sliding 

interface

The stator 

domin

 
Figure 4 The sliding interface 

 

The computational grid quality directly affects the results of numerical simulations. The structured 

grid has the advantage of using less memory and is very favorable for the boundary layer 

calculation. Therefore, the three computational domains are filled with structured grids. Multi-block 

grid method are used to generate high-quality structured grid by ANSYS ICEM. The grids around 

PJP adopt H hybrid grids, The PJP surface and propulsor blades are surrounded by O-hexahedral 

girds. Figure 5 shows the rotor and stator blades surface grids. In addition, in order to accurately 

capture the phenomenon of tip vortex, the gap is encrypted and the boundary layer is 0.05mm, 

Figure 6 shows the encrypted mesh between the rotor blades and the duct. The number of entire 

computational domain grids is approximately 
63 10 . 

 

     

Figure 5 the rotor and stator blades surface grids   Figure 6 the encrypted mesh between the 

rotor blades and the duct 

Boundary condition 

Software ANSYS CFX is applied in numerical simulation. For computational domain boundary 

conditions, the inlet boundary is set to normal speed, turbulence intensity is 5%  as the default. The 

no-slip boundary condition is imposed on duct and stator blades. The free-slip wall boundary is 

imposed on the cylinder surface. The averaged static pressure is 0 Pa at the outlet. The interface 

between the rotor domain and stator domain is set to frozen rotor. The finite volume method is used 

to discrete control equations and the turbulence model. The pressure and velocity coupling using the 

SIMPLEC algorithm and the spatial derivatives are calculated using a second-order upwind 

algorithm. 

Results and discussion 

To facilitate the discussion of calculation results, the non-dimensional physical quantities are shown 

in Table 3. 

 

Table 3． Non-dimensional physical quantities 

physical quantities definition 
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advance coefficient 
Dn

v
J


  

thrust 

coefficient of rotor 42Dn

T
K t

Tt 
  

the torque coefficient of rotor 52Dn

M
K t

M t 
  

thrust 

coefficient of stator and duct 42Dn

T
K S

Ts 
  

the torque coefficient of stator 

and duct 52Dn

M
K s

M s 
  

Total thrust 

coefficient st TTT KKK   

Total torque coefficient 
sMM KK   

The open water efficiency 
2

T

M

KJ

K
 


  

 

In the table,   is the far field flow velocity; n is rotor speed (r/s); D is the diameter of the rotor;   

is the fluid density; tT  is the thrust of rotor; sT  is the thrust of stator and duct; tM  is the torque of 

rotor and tM  and sM  is the torque of stator and duct. 

Different tip clearances effect on the open water performance of PJP 

In the case of =3mm , maintain the velocity of inlet equal to 
125.72ms  and change n  from 

2400rps  to 4200rps to obtain different advance ratios. Figure 7 shows the thrust and torque 

coefficient and open water efficiency curves. 

 

 
Figure 7 Thrust and torque coefficient and open water efficiency curves 

 

Maintain the velocity of inlet equal to 
125.72ms  and calculate models with 0.2mm , 0.5mm , 1mm , 

2mm  and 3mm  tip clearance. Figure 10 shows the open water efficiency curve of the five models. 
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Figure 8 the open water efficiency curve of different tip clearance models 

 

It can be seen from Figure 8: The rotor provides the main thrust because the rotor has much more 

thrust than stator and duct system; As J  increases in the calculation range, the thrust and torque of 

rotor and the stator and duct system are gradually reduced; As advance coefficient increases in the 

calculation range, a linear relationship between thrust coefficient of the stator and duct system and 

advance coefficient. As J  increases, the thrust coefficient of the stator and duct system change 

from trust to resistance; The torque coefficient of rotor and the stator and duct system are close to 

each other in the calculation range, and the maximum relative error is only 5.86% when advance 

coefficient is 2.53. It indicates that the PJP used in this study have a ideal balance performance. As 

J  increases in the calculation range, the open water efficiency increased first and then decreased. 

The PJP has a maximum open water efficiency about 71.5% when J is 1.9 In the case =0.2mm . As 

tip clearance increases, the open water efficiency decreases gradually in the same J . The open 

water efficiency is basically unchanged after the tip clearance is bigger than 2mm. 

Different tip clearances effect on the tip vortex structure of PJP 

You et al. [10] found that the tip vortex structure of ducted propeller is formed by three parts: the 

tip-separation vortex, the tip-leakage vortex and the induced vortex. The tip-leakage vortex is 

caused by the pressure different between the pressure and the suction side. The tip-separation vortex 

is formed due to flow separation underneath the blade tip. The induced vortex is generated by the 

tip-leakage vortex. Although the tip vortex structure of ducted propeller may be different with PJP, 

the research conclusion has a great impact on PJP. Because the strength and the influence area of 

induced vortex are small, the effect of different tip clearance on the tip-separation vortex and the 

tip-leakage vortex has been mainly analyzed. Figure 11(a) shows the vortex core of rotor blade in 

the case =3mm  using the 2  vortex-identification (Jeong and Hussain, [11]). Figure 9(b) shows 

the flow streamlines near the rotor blade tip. The pressure contours of pressure side and rotor 

suction side of rotor in the case of =3mm are illustrated in Figure 10 (a) and (b). 
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Tip-separation

vortex

Tip-leakage

vortex
Suction

side

             
 (a) the vortex core of rotor blade      (b) the flow streamlines near the rotor blade tip 

Figure 9 In the case = mm 3  

       
(a) the pressure side                                         (b) the suction side 

Figure 10 the pressure contours of rotor blade in the case = mm 3  

 

It can be seen from figure 9(a) that the rotor tip-separation vortex is caused by the flow separation at 

the leading edge of the rotor blade tip. The rotor tip-separation vortex spreads in the axial direction 

along the intersecting line of the rotor blade tip and pressure side of the rotor blade, leaves the 

trailing edge of rotor blade tip, and spreads to the stator passage finally. The tip-separation vortex 

moves toward to the intersecting line of the rotor blade tip and suction side in the circumferential 

direction with the spread of the vortex in the axial direction. 

 

As shown in Figure 9(a), the rotor tip-leakage vortex is formed at the blade tip of the suction 

surface of the rotor blade. It can be seen from Figure 10 that there is obvious area of low pressure 

on the tip of suction side of the rotor blade near the leading edge. Simultaneously, obvious area of 

high pressure is formed on the tip of pressure side of the rotor blade near the leading edge. The fluid 

flow is sucked to the low pressure area of the suction side due to the pressure difference, which 

causes appearance of the rotor tip-leakage vortex. The tip-separation vortex left the suction side of 

the rotor blade and moved toward to mid-passage with the spread of the vortex in the axial direction. 

By Figure 9(b) can be seen that the rotor tip-separation vortex and tip-leakage vortex are not 

completely independent. A portion of the fluid separates from tip-separation vortex and integrates 

into tip-leakage vortex. Meanwhile, a portion of the fluid separates from tip-leakage vortex and 

integrates into tip-separation vortex. The low pressure center of vortex is also called vortex core. 

Figure 9 shows that the tip-separation vortex core and tip-leakage vortex core are "connected", they 

transfer to each other. 

 

The vortex core of rotor blade in the case =0.2mm ; =1mm and =3mm  when J=1.9 are 

illustrated in Figure 11. 
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              (a) 0.2mm                          (b) 1mm                              (c) 3mm   

Figure 11 the vortex core of rotor blade of different tip clearance 

 

The flow streamlines near the rotor blade tip in the case =0.2mm ; =1mm and =3mm  when 

J=1.9 are illustrated in Figure 12. 

 

    
              (a) 0.2mm                           (b) 1mm                                   (c) 3mm   

Figure 12 the flow streamlines near the rotor blade tip of different tip clearance 

 

As shown in Figure 11 that the tip-separation vortex spreads toward the suction surface as the tip 

clearance increases, and the affected area is becoming more and more large. The tip-separation 

vortex almost covers the whole area of the tip of rotor blade in the case of =3mm . As for tip-

leakage vortex, it can be seen from figure 12 that as the tip clearance increases, the affected area of 

tip-leakage vortex is more and more large too. The affected area is only focus on the area near the 

leading edge of the rotor blade in the case of =0.2mm , but the tip-leakage vortex almost affects 

the entire rotor passage in the case of =3mm . Moreover, the distance between the tip-leakage 

vortex core and the suction side is larger with the increasing of the tip clearance, and the tip-leakage 

vortex core has moved to about 1/2 in the middle of the passage in the case =3mm . Last but not 

least, as the tip clearance increases, the core of tip-separation vortex and tip-leakage vortex are 

"connected ", they transfer to each other. The position of the “connected” is moved to trailing edge 

in the axial direction, and the position is 1/3 of the blade tip away from leading edge. 

Different tip clearance effect on the pressure field of Rotor blade 

Figure 13 and Figure 14 show the pressure contours on the pressure side and suction side of the 

rotor blade with different tip clearance: 
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              (a) 0.2mm                          (b) 1mm                              (c) 3mm   

Figure 13 the pressure contours of suction side of rotor blade 

   
              (a) 0.2mm                          (b) 1mm                              (c) 3mm   

Figure 14 the pressure contours of pressure side of rotor blade 

 

By Figure 14 can be seen that the main effected area of different tip clearance is mainly focus at the 

area above 0.9 spanwise of the suction side of rotor blade, and the effect of the pressure side is not 

very obvious. 

 

The blade tip loading at constant span of 0.98 is illustrated in Figure 15. 

 

 
Figure 15 The blade tip loading at constant span of 0.98. 
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As shown in Figure 15, as the tip clearance increases, the low pressure area appears in the area 

above 0.9 spanwise of the suction side of rotor blade. The low pressure area gradually moved from 

the leading edge to the trailing edge in the axial direction, and the effected area gradually increases. 

The lowest Cp appeares in the axial position at about 30% streamwise, and the low pressure zone 

affects the area from streamwise 10% to streamwise 50% of rotor blade at constant span of 0.98. 

Conclusions 

In this study, a pumpjet propulsor with different size of tip clearance( =0.2mm、0.5mm、1mm、

2mm、3mm) has been presented to investigate the influence of the tip clearance to pumpjet 

propulsor. This analysis was carried out with RANS method, and the SST k   turbulence model 

is applied. In order to verify the accuracy of numerical simulation method, calculations were carried 

out with a worldwide employed propeller (the E779A propeller). It is indicated that the numerical 

simulation method with the SST k   turbulence model is applicable and reliable for PJP 

flows.The influences of the clearance on pumpjet propulsor are reflected in five aspects mainly. 

 

1)As tip clearance increases, the open water efficiency decreases gradually in the same J . The 

open water efficiency is basically unchanged after the tip clearance is bigger than 2mm. 

 

2) The tip-separation vortex spreads toward the suction surface as the tip clearance increases, and 

the affected area is becoming bigger and bigger. The tip-separation vortex almost covers the whole 

area of the tip of rotor blade in the case of =3mm . 

 

3) The rotor tip-leakage vortex is formed at the blade tip of the suction surface of the rotor blade 

and left the suction side of the rotor blade and moved toward to mid-passage with the spread of the 

vortex in the axial direction. Moreover, the distance between the tip-leakage vortex core and the 

suction side is larger with the increasing of the tip clearance, and the tip-leakage vortex core has 

moved to about 1/2 in the middle of the passage in the case =3mm . 

 

4) As the tip clearance increases, the core of tip-separation vortex and tip-leakage vortex are 

"contact", they transfer to each other. The position of the contact is moved to following edge in the 

axial direction, and the position is 1/3 of the blade tip away from leading edge in the case =3mm . 

 

5) The main effected area of different tip clearance, which is the low pressure area, is mainly focus 

at the area above 0.9 spanwise of the suction side of rotor blade, the effect of the pressure side is not 

very obvious.  

 

6)As the tip clearance increases, the low pressure area gradually moved from the leading edge to the 

following edge in the axial direction, and the effected region gradually increases. The lowest point 

appeared in the axial position at about 30% streamwise, and the low pressure zone affects the area 

from streamwise 10% to streamwise 50% of rotor blade. 
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Abstract 
The paper presents principles of a simple method, which in two stages makes possible the 
approximate calculations of statically indeterminate truss systems. The proposed two-stage 
method applies rules of other methods used for calculations of the statically determinate 
trusses. In each of the both stages there are considered the statically determinate trusses, 
patterns of which are obtained as results of suitable taking selected members out from pattern 
of the basic statically indeterminate truss. These intermediate trusses have the same clear span 
and construction depth like the basic indeterminate truss but they are loaded by forces of the 
half values applied to nodes of the same positions like in the basic one. The proposed two-
stage method uses theorems and features of calculus of vectors as well as principle of the 
superposition method. Final values of forces acting in particular members of the basic 
statically indeterminate truss are resultants of forces calculated in each stage in the 
counterpart members of the statically determinate trusses. There are presented results of 
calculations carried out for two cases of loading of a selected type of the plane truss. These 
results are compared with results of forces determined for the same truss by application of 
computer calculations carried out by method appropriate for the statically indeterminate 
systems. 
 
Keywords: Truss system, Calculus of vectors, Cremona’s method, Superposition method, 
Statically indeterminate system, Approximate solution.  

Introduction 
Methods of calculations of statically indeterminate systems have to make possible the exact 
computation of the force values acting in members of such systems. Results obtained by 
application of them are the basis for engineers, who are obliged to design the safe and 
economic structural systems for very various purposes, like for instance roof structures in the 
building industry. There are numerous methods commonly used to calculate the statically 
indeterminate systems starting from e.g. the force method, the displacement method, the 
iterations methods like the method of successive approximations, the finite elements method 
etc., which were invented in the past and they are still modified and adapted to requirements 
of needs of the appropriate computer software [1-4]. The force distribution in area of the 
structural indeterminate trusses depends among others on the ratios of stiffness of members 
joining in particular nodes. That is why methods of precise calculations of the force values 
have to be complex what further implies, that computation procedures and computer 
calculation software have to be equally complex.   

Definition of research problem and proposal of method of its solution 
In preliminary structural analysis of the statically indeterminate truss it is usually enough to 
define only the approximate values of forces acting in its members. For these purposes it is 
not necessary to use a sophisticated method of calculations that is why one can apply some 
simple ways of the approximate computations. The proposed two-stage method has been 
invented during the initial statically analyses of a certain group of the spatial tension-strut 
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structures. It is in detail discussed in papers [5, 6]. These structures consist of cross-braces 
made in form of struts while other components like vertical members and members of the 
outer layers are the tension members. Simplified scheme of vertical cross-section of a basic 
truss system representing this group is shown in Fig. 1a. These types of structural systems 
have to be suitably pre-stressed. If the tension-strut truss is overloaded by forces F, see Fig. 
1b, then certain number of the upper chord members are not able to take the compression 
forces, because of their big slenderness, what implies that they are excluded from process of 
the force transmission.  
 
 

 
 
Figure 1.  Schemes of plane tension-strut truss systems, a) basic configuration, b) 
configuration of overloaded structure 
 
It is assumed that number of nodes is defined by symbol “w”, while symbol “p” defines 
number of members. Condition of the inner statically determinacy of plane truss is determined 
as: 
 

                                                       p = 2 ∙ w – 3                                                       (1) 
 

The truss system presented in Fig.1a consists of number of nodes w = 16 what implies that the 
statically determinate truss created by means of this number of nodes has to be built by means 
of following number of members: 
 
                                                             29 = 2 ∙16 – 3                                                       (2) 
 
Truss of the scheme shown in Fig.1a is created by number of members p = 33 what indicates 
that the structure is the fourfold statically indeterminate system. From analysis of the scheme 
shown in Fig. 1b follows that number of the excluded members equals 4, what exactly is 
equal to the degree of statically indeterminacy of the basic truss system. Thus the overloaded 
basic plane truss can be considered as the statically determinate system, what directly 
indicates that it can be calculated by application of one of the simple methods like e.g. 
Cremona’s method, Ritter’s method or other methods suitable for this purpose.  
 
The observation brings to mind a following questions: is it possible to apply for instance 
Cremona’s method for computation of statically indeterminate plane trusses? If yes, in what 
way it has to be done? One should be aware that values of forces determined by means of the 
sought after method will be of approximate values because stiffness of particular members are 
not taking into account in methods used for calculations of statically determinate trusses. The 
considered problem refers to the coplanar force system therefore the three basic conditions of 
equilibrium have to be fulfilled: 
 

                                                       ∑ 𝐹𝐹𝑛𝑛
𝑖𝑖=1 ix = 0                                                           (3) 

                                                            
                                                       ∑ 𝐹𝐹𝑛𝑛

𝑖𝑖=1 iy = 0                                                           (4) 
 

                                                       ∑ 𝑀𝑀𝑛𝑛
𝑖𝑖=1 i = 0                                                           (5) 

 
Moreover the basic principles of calculus of forces have to be strictly respected. Taking into 
consideration all indicated requirements it is proposed to introduce the two-stage procedure of 
calculations, general scheme of which is shown in Fig. 2. 

a b 
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Figure 2.  General schemes of two-stage method proposed for approximate calculation of 
statically indeterminate trusses 
 
The point of proposed method is to carry out static calculations in two independent stages for 
statically determinate trusses, shapes of which are received through remove the number of 
members equal to statically indeterminacy from space of the basic truss. The calculated 
statically determinate truss has in each stage the same geometric parameters like clear span L 
and construction depth H, but it is loaded by forces of half values applied to the same nodes 
like in area of the basic truss. Values of the final forces computed in the basic truss will be 
resultants of forces obtained in each stage for members having the same position in area of 
considered truss.  

Results of calculations and comparative analysis 
In order to verify correctness of theoretic assumptions of the two-stage method there were 
carried out series of computations of simple form of the plane statically indeterminate truss 
having shape of basic truss shown in Fig. 2, built of steel members, having clear span equals 
5.00 meters and of construction depth equal to 1.00 meter. In the basic case the truss is 
symmetrically loaded in all nodes of the upper chord by concentrated forces, each of value 
1.00 kN. In the first stage four members of the upper chord are removed and concentrated 
forces of value equal to 0.50 kN are applied to all nodes of the upper chord. The own weight 
of truss is not taken into consideration. After this operation the investigated truss become the 
statically determinate system what empowers to apply, for instance, the Cremona’s method 
for computation values of forces acting in component members of the truss. Because the basic 
truss is of symmetric form and it is loaded in the symmetric way that is why the Cremona’s 
method in both the stages can be applied only for half of suitably forms of considered trusses. 
Results of the first stage of calculations are presented in Fig. 3. 

 
 
Figure 3.  Scheme of distribution of values of forces calculated in the first stage in area 
of basic truss together with appropriate Cremona’s polygon of forces 
 
In the second stage four members, like previously, are rejected but this time from the lower 
chord of the basic truss and the statically determinate form of truss is loaded by concentrated 
forces, each of value equal to 0.50 kN and applied to each node of the upper layer. Results of 
the second stage of calculation are shown in Fig. 4. 
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Figure 4. Values of forces defined in the second stage of calculation in area of basic truss 
together with appropriate Cremona’s polygon of forces 
 
Keeping rules of the proposed method the final values of forces acting in particular members 
are determined as resultants of forces calculated in two independent stages in the counterpart 
members of trusses considered in each stage, see Fig. 5a. For instance the final force acting in 
member of the upper chord placed between nodes of numbers 2 and 3 is the resultant of zero 
value for the not existing member between these nodes in the first stage, see Fig. 3, and the 
force value equals -3,00 kN acting in the counterpart member, determined in the second stage, 
see Fig. 4.   
 

 
 
Figure 5.  Values of forces calculated in the same members of basic structure by 
application of, a) proposed two-stage method, b) suitable computer software 
 
The same form of the basic indeterminate truss was calculated under the same conditions by 
application of Autodesk Robot Structural Analysis Professional 2016, which software takes 
into consideration all requested mathematic tools necessary for precise computation of the 
force values in members of the statically indeterminate systems. It was assumed that the 
investigated truss is built of tubular members having diameter of 30.00 mm, thickness of 
section equal to 4.00 mm, while their steel material has the Young’s modulus equal to 210 
GPa. Results received in this way are presented in Fig. 5b. Value of the force in member 
placed between nodes 2 and 3 defined in the computer calculation equals -2.92 kN, so the 

a 

b 
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difference between outcomes received in the two compared methods is only 0.08 kN what is 
really small relatively difference because it constitutes only ca. 2.6 % regarding to the bigger 
force. More differences between particular values one can notice in the force values 
calculated in these two methods carried out in the cross braces. For instance in member placed 
between nodes 3 and 7 the force value calculated in the two-stage method equals -0.35 kN, 
while by application of the suitable computer software it is equal to -0.47 kN, what constitutes 
the differentiation of around 25 % towards the bigger value. In this place one should to point 
out that the biggest differences of the force values are observed in members, where are acting 
the really smallest forces.   More precise answer for question about degree of approximation 
of results obtained in the proposed two-stage method in comparison to results defined in the 
exact method one can receive due to the static calculation of the same basic truss but 
conducted now e.g. for an asymmetric way of its load. The demanded computations were 
carried out for selected case, where two concentrated forces of the same value equal to 1.00 
kN are applied to nodes of the upper chord and having numbers 4 and 5. Results of the both 
intermediate calculations are shown in Fig. 6 and in Fig. 7. 
 

 
 
Figure 6.  First stage of calculation of basic truss under asymmetric load  
 

 
 
Figure 7.  Second stage of calculation of basic truss under asymmetric load 
 
Because of the asymmetric way of application of the load both procedures of computation of 
the intermediate trusses have to be conducted for the whole structures. From analysis of 
information overall presented in Fig. 8 follows, that the biggest differences one can notice 
between the force values calculated by means of both compared methods in certain cross 
braces. For example the force value in the cross brace located between nodes 5 and 9 defined 
in the two-stage method equals +0.42 kN, while by means of the computer software its 
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computed value is equal to +0.28 kN. Then the difference is on level of ca. 33 % towards to 
the bigger value. Significantly smaller differences one can observe between values of forces 
calculated in both methods in the most strained members of the outer chords. For instance the 
force value in member placed between nodes 13 and 14 defined in two-stage method equals 
+1.10 kN but calculated by application of suitable computer software it is equal to +1.20 kN, 
what constitutes only around 8.3 % towards the bigger value.   
 

 

 
 
Figure 8.  Results of static calculations carried out for the same basic truss by 
application of a) proposed two-stage method, b) suitable computer software 

Conclusions 
From comparative analysis of outcomes obtained in the both compared computation ways 
follows that the two-stage method can be applied as an approximate method of calculation of 
the plane statically indeterminate trusses. Its accuracy can be improved in the future by taking 
into consideration the stiffness differences between members connected in particular nodes of 
the considered structural system.   
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Abstract 

 

The effect of chemical reaction on laminar mixed convection flow and heat and mass transfer 

along a vertical unsteady stretching sheet is investigated, in the presence of heat 

generation/absorption with variable viscosity and viscous dissipation. The governing non-

linear partial differential equations are reduced to ordinary differential equations using 

similarity transformation and solved numerically using the fourth order Runge-Kutta method 

along with shooting technique. The effects of various flow parameters on the velocity, 

temperature and concentration distributions are analyzed and presented graphically. Skin-

friction coefficient, Nusselt number and Sherwood number are derived at the sheet. 

 

Introduction 
 

Processes involving magnetohydrodynamics(MHD) heat and mass transfer flow in the 

boundary layer, induced by a moving surface in a fluid with chemical reaction occur 

frequently in nature. It occurs not only due to temperature difference but also due to magnetic 

field or combination of these. In chemical engineering there are many transport processes that 

are governed by the joint action of the buoyancy forces from both thermal and mass diffusion 

in the presence of chemical reaction effects. During a chemical reaction between two species 

heat is also generated. Diffusion and chemical reactions in an isothermal laminar flow along a 

soluble flat plate were studied by Fairbanks and Wike [1]. Chakrabarti and Gupta [2] 

investigated hydromagnetic flow and heat transfer over stretching sheet. Apelblat[3] presented 

mass transfer with a chemical reaction of first order with effects of axial diffusion.The effects 

of mass transfer on flow past an impulsively started infinite vertical plate with constant heat 

flux and chemical reaction were studied by Das et al.[4].  

Anjalidevi and Kandasamy [5] studied the steady laminar flow along a semi-infinite 

horizontal plate in the presence of a species concentration and chemical reaction. Fan et al. [6] 

studied the mixed convective heat and mass transfer over a horizontal moving plate with a 

chemical-reaction effect. Takhar et al. [7] investigated the flow and mass diffusion of a 

chemical species with first-order and higher order reactions over a continuously stretching 

sheet with an applied magnetic field. Muthucumaraswamy [8] studied the effects of a 

chemical reaction on a moving isothermal vertical infinitely long surface with suction. Anjali 

Devi and Kandasamy [9] studied effects of chemical reaction, heat and mass transfer on non-

linear MHD laminar boundary layer flow over a wedge with suction and injection. Chamkha 

[10] presented an analytical solutions for heat and mass transfer by laminar flow of a 

Newtonian, viscous, electrically, conducting and heat generation absorption. The effects of 

radiation and chemical reactions, in the presence of a transverse magnetic field, on free 

convective flow and mass transfer of an optically dense viscous, incompressible, and 

electrically conducting fluid past a vertical isothermal cone surface are investigated by Afify 

[11]. Kandasamy et al. [12] studied the nonlinear MHD flow with heat and mass transfer 

characteristics of an incompressible, viscous, electrically conducting and Boussinesq fluid on 

a vertical stretching surface with chemical reaction and thermal stratification effects. 
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The combined effects of non-uniform heat source/sink and thermal radiation on heat transfer 

over an unsteady stretching permeable surface was discussed by Pal [13]. Unsteady mixed 

convection heat transfer over a vertical stretching surface with variable viscosity and viscous 

dissipation was studied by Aziz [14]. Radiation and Magnetic field Effects on Unsteady 

Mixed Convection Flow over a Vertical Stretching/Shrinking surface with suction/injection 

was discussed by Sandeep et al[15]. 

 

The objective of the paper is to investigate the influence of heat and mass and magnetic field 

on an unsteady flow over a vertical stretching sheet with heat generation/absorption and 

chemical effects in presence of variable viscosity and viscous dissipation. 
 

Formulation of the problem 
 

An unsteady, two-dimensional, boundary-layer convective flow of an incompressible, viscous 

and electrically conducting fluid along a vertical stretching sheet embedded in porous media 

in the presence of heat and mass transfer, chemical reaction is considered. The x-axis is 

considered along the sheet and y-axis is perpendicular to the sheet. The fluid properties are 

assumed to be constant except the viscosity, the density term of in buoyancy terms of the 

momentum equations and the chemical reaction is homogeneous and of first order taking 

place in the flow. The sheet is stretching in its own plan with velocity  

uw=bx/(1-t)                             (1) 

where b(>0) is the stretching parameter and (>0) is the unsteadiness parameter and both 

have dimensions of (time)
-1

. The surface temperature Tw and concentration distribution of the 

sheet Cw, which varies with the distance x along the sheet and time t. The system is influenced 

by an external transverse magnetic field of strength B defined as  

B=B0(1-t)
-1/2

                               (2) 

The volumetric rate of heat generation/absorption is given as  

Q=Q0(1-t)
-1

                                (3) 

Under above assumptions, the governing equations of continuity, momentum, energy and 

concentration are given by 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                 (4)     

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

1

𝜌∞

𝜕

𝜕𝑦
(𝜇

𝜕𝑢

𝜕𝑦
) + 𝑔𝛽(𝑇 − 𝑇∞) + 𝑔𝛽∗(𝐶 − 𝐶∞) −

𝜎𝐵2

𝜌∞
𝑢       (5)  

 
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌∞𝐶𝑝

𝜕2𝑇

𝜕𝑦2
+

𝜇

𝜌∞𝐶𝑝
(
𝜕𝑢

𝜕𝑦
)
2

+
𝑄

𝜌∞𝐶𝑝
(𝑇 − 𝑇∞)              (6) 

 
𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2
− 𝐾1(𝐶 − 𝐶∞)                     (7) 

 

along with the boundary conditions  

 

       at y=0: u=uw, v=0, T=Tw , C=Cw and 

as y : u0, TT , CC                      (8) 

 

where u and v are the velocity components along the x and y directions respectively,  is the 

density of the fluid, g is the gravitational acceleration,  is the thermal expansion coefficient, 

* is the concentration expansion coefficient,  is the electrical conductivity, T is fluid 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

755



 

 

 

temperature inside the thermal boundary layer, C is the species concentration in boundary 

layer, T is the temperature far away from the sheet, C is the species concentration far away 

from the sheet. Cp is the specific heat at constant pressure, k is the thermal conductivity, D is 

the mass diffusion coefficient. Variation of the viscosity with temperature are assumed to be 

of the form[16]  

1/ = [1+(T- T)]/=a(T-Tr),                      (9) 

where a=/ and Tr=T -1/                       (10) 

are constants and their values depend on reference state and the thermal property of the fluid 

. Also Tw=T+[bx
2
/2](1-αt)

-2 
and Cw=C+[bx

2
/2](1-αt)

-2
, where  is the kinematic 

viscosity of the fluid. 

Introducing the similarity variable η and the dimensionless variables f, θ and  as:   

η=(b/)
1/2

(1-αt)
-1/2

y                             (11) 

 

ψ=[ b/(1-αt)]
1/2

x.f(η)                           (12) 

 

T=T+[bx
2
/2](1-αt)

-2
θ(η)                        (13) 

C=C+[bx
2
/2](1-αt)

-2(η)                        (14) 

 

where ψ(x,y,t) is the stream function satisfying the continuity equation (4) with u=∂ψ/∂y and 

v= -∂ψ/∂x. The components of velocity can be readily expressed as: 

  

u= uwf(η), v=-[ b/(1-αt)]
 1/2

f(η)                        (15) 

Making use of Eqs. (11)-(14), Eqs. (5)-(7) reduce to 

 

𝑓′′′ =
𝜃𝑣−𝜃

𝜃𝑣
[𝐴(𝑓′ + 0.5𝜂𝑓′′) + 𝑓′2 − 𝑓𝑓′′ − 𝜆(𝜃 + 𝑁∅) +𝑀𝑓′] −

𝜃′𝑓′′

𝜃𝑣−𝜃
           (16) 

 

𝜃′′ = 𝑃𝑟 [𝐴(2𝜃′ + 0.5𝜂𝜃′) − 𝑓𝜃′ + 2𝑓′𝜃 − 𝑆𝜃 −
𝜃𝑟

𝜃𝑣−𝜃
𝐸𝑐𝑓′′2]             (17) 

 

𝜃′′ = 𝑆𝑐[𝐴(2𝜙 + 0.5𝜂𝜙′) − 𝑓𝜙′ + 2𝑓′𝜙 + 𝛾𝜙]                (18) 

 

The transformed boundary conditions:  

 at =0: f=0, f  =1, =1, =1 and 

at ∞: f 0, 0, 0.                       (19) 

 

where a prime denotes ordinary differentiation with respect to θ = (T-T)/(Tw-T) is the 

non-dimensional temperature, θv= (Tr-T)/(Tw-T)=-1/(Tw-T) is the variable viscosity 

parameter, A= /b is the unsteadiness parameter, Ec=2b/Cp =uw
2
/Cp(Tw-T) is the Eckert 

number, M=2σB0
2 

(1-αt )/b is the Magnetic number, N=β*(Cw-C)/(Tw-T) is the 

Buoyancy ration parameter, Pr=Cp/k is the Prandtl number, S=Q(1-t)/aCp is the heat 

generation/absorption Parameter and =gx/2b=Grx/Rex
2 

is the mixed convection 

parameter with Grx = g(Tw-T)x
3
/

2
 is the Grashof number. The case in which =0 

corresponds to the forced convection regime while that in which  is large corresponds to 

thefree convection regime.  

For practical applications, the physical quantities of major interest are the local friction 

coefficient Cfx 

Cfx = 2(∂u/∂y)y=0 /uw
2
=(2θv/θv-1)Rex

-1/2
f(0)                  (20) 

the local Nusselt number Nux 
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Nux=-x(∂T/∂y)y=0=-Rex
3/2

θ(0)/[2(1-αt)]                   (21) 

and local Sherwood number Shx 

Shx=-x(∂C/∂y)y=0  =-Rex
3/2(0)/[2(1-αt)]                  (22) 

where Rex =uwx/ is the local Reynolds number based on the sheet velocity uw. 
 

Results and discussion 
 

The non-linear coupled differential Eqs. (16)-(18) with boundary condition (19) and 

constitutes a boundary value problem has been solved numerically by fourth order Runge-

Kutta Shooting method for different values of the parameters. Effect due to magnetic field and 

chemical reaction at the wall of the cone over the velocity, temperature and concentration are 

shown through figures 1-3. Fig. 1 depicts the dimensionless velocity profiles for different 

values of magnetic field and chemical reaction parameters. It observes that the velocity 

component of the fluid along the surface of the sheet increase with decrease of the strength of 

the magnetic field, on the contrary, fig. 2  and 3 shows the dimensionless temperature and 

concentration of the fluid increase with increase of the strength of the magnetic field. On the 

other hand the dimensionless velocity and temperature of the fluid reduce with an increase of 

chemical reaction parameter while the dimensionless concentration has the opposite behavior. 

 

Figures 4-6 present the effects of the unsteadiness parameter A on the velocity, temperature 

and concentration profiles, respectively. From these figures it observed that increasing value 

of A results in decreasing the velocity, temperature and concentration keeping other 

parameters fixed. Figures 7-9 illustrate the influence of the chemical reaction parameter γ and 

the Schmidt number Sc on the velocity, temperature and concentration profiles in the 

boundary layer, respectively. Increasing the chemical reaction parameter produces a decrease 

in the species concentration. In turn, this causes the concentration buoyancy effects to 

decrease as γ increases. Consequently, less flow is induced along the sheet resulting in 

decreases in the fluid velocity in the boundary layer. On the other hand, the fluid temperature 

increases as γ increases. In addition, the concentration boundary layer thickness decreases as γ 

increases. Moreover, the Schmidt number is an important parameter in heat and mass transfer 

processes as it characterizes the ratio of thicknesses of the viscous and concentration 

boundary layers. Its effect on the species concentration has similarities to the Prandtl number 

effect on the temperature. That is, increases in the values of Sc cause the species concentration 

and its boundary layer thickness to decrease resulting in less induced flow and higher fluid 

temperatures. This is depicted in the decreases in the velocity and species concentration and 

increases in the fluid temperature as Sc increases. These behaviors are clearly evident in 

Figures 7-9. The influence of heat generation/absorption over velocity, temperature and 

concentration are elucidated with the help of figures 10-12. It is clear that the velocity of the 

fluid increases with increase of heat generation parameter S but the temperature and 

concentration of the fluid increases with increase of S. On the other hand the velocity, 

temperature and concentration of the fluid decrease with the increasing values chemical 

reaction parameter γ. 

 

Conclusions 
 

We conclude the following from above results and discussion: 

1.The influence of chemical reaction, the fluid flow along the sheet accelerate with increase of 

chemical reaction parameter, on the other hand, temperature of the fluid increases with 

increase of chemical reaction parameter but concentration of the fluid reduces with it. 

2. For all values of unsteadiness parameter, increasing values of the chemical reaction 

parameter the boundary layer decreases on the surface of the sheet. 
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3. The increases in the values of Sc cause the species concentration and its boundary layer 

thickness to decrease resulting in less induced flow and higher fluid temperatures. This is 

depicted in the decreases in the velocity and species concentration and increases in the fluid 

temperature as Sc increases. 

4. Due to heat generation, increases of heat generation parameter accelerate the fluid motion 

and decelerate the temperature and concentration of the fluid along the sheet. 

 

 
Fig.1 Velocity profiles for various values of    Fig.2 Temperature profiles for various values of 

chemical reaction and magnetic parameter M. chemical reaction and magnetic parameter M. 

 
 

 
Fig. 3 Concentration profiles for various values of  Fig.4 Velocity profiles for various values of 

chemical reaction and magnetic parameter M.   chemical reaction and unsteady parameter A 
 
 

  
Fig. 5 Temperature profiles for various values of  Fig. 6 Concentration profiles for various values of   

chemical reaction and unsteady parameter A   chemical reaction and unsteady parameter A.  
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Fig.7 Velocity profiles for various values of    Fig.8 Temperature profiles for various values of 

chemical reaction and Schmidt number Sc.   chemical reaction and Schmidt number Sc. 

 
 

 
 

Fig. 9 Concentration profiles for various values  Fig.10 Velocity profiles for various values of 

of chemical reaction and Schmidt number Sc.   chemical reaction and heat generation S. 
 

  
 

Fig.11 Temperature profiles for various values  Fig. 12 Concentration profiles for various values of   

of chemical reaction and heat generation S.   chemical reaction and heat generation S.  
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Abstract

This paper presents the development of a cellular automaton (CA) which could take into ac-
count the neighborhood effect in the context of polycrystal mechanics. This model aims to have
a better estimate of the stress / strain field in polycrystals than conventional analytical models
such as the self-consistent model (SCM). As the first step in the consideration of neighborhood
effect, the model was developed in the case of a uniaxial loading in linear elasticity. A Kelvin
structure is used to represent a polycrystal, considering that all grains have the same size and
shape. The primary focus is the influence of crystallographic orientations on the local behavior
in the microstructure. The model has been developed based on the hypothesis that the Finite
Element Method (FEM) can quantify correctly the influence of a grain’s neighborhood on its
behavior. FEM, SCM, and the analytical model results are finally compared grain by grain after
simulations on 686 grains polycrystalline aggregates in the Kelvin structure. The results show
that the developed CA provides an approximation almost three times better than those of the
SCM and the importance of taking into account the neighborhood effect. This also gives an
opportunity to better understand the parameters that influence the behavior of a grain in a poly-
cristal.

Keywords: Cellular automaton, Homogenization Model, Anisotropy, Eshelby’s inclusion, Poly-
crystal, Neighborhood.

Introduction

The Finite Element Method (FEM) is the most common method used to simulate the microme-
chanical behavior of polycrystals [1, 2]. It requires a heavy amount of computer resources and
the analytic model such as the Self-Consistent Model (SCM) [3] can offer a good approximation
of the micromechanical behavior of polycrystals for a much lower calculation time, allowing
for the possibility to simulate various microstructure configurations. However, the SCM does
not take into account the neighborhood effect as each phase is defined solely by its crystal
orientation and volume fraction, and there is no spatial representation of the polycrystal.

This is quite unfortunate as the neighborhood effect is an important criterion to consider if one
wants to describe the behavior of the material on a local scale [4]: a grain surrounded by soft
grains will not show the same behavior as the same grain surrounded by hard grains. In order
to take this into account, the principles of the cellular automaton model have been considered
by several authors to address this limitation [5, 6, 7]

A cellular automaton (CA) is a discrete mathematical model where the structure is discretized
into several cells. Each cell has a characteristic initial state that characterizes it, and its behavior
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Table 1: Elastic constants of the cubic iron crystal ([11])

Fe C1111 = 226 GPa C1122 = 140 GPa C1212 = 116 GPa

depends on the behavior of its neighboring cells. This is described by a transition rule. Such
CA can describe and predict complex behaviors in many different fields of research [8, 9, 10].

Figure 1: Kevin Structure

In this context, the objective of this research is to develop
a simple model based on the SCM by adding the principles
of CA in order to take into account the neighborhood ef-
fect. As a first step, the structure of Kelvin (Fig.1) has been
used to annihilate the effects of grain shape and size ratio,
and to document only the effect of grain orientation of the
neighboring grains. Non cristallographic texture was intro-
duced in the microstructure. They were tested in uniaxial
loading with linear elasticity properties. In order to have a
better understanding of the influence of the neighborhood
of a grain, a full-field numerical study has been proceeded
using the FEM. From the hypotheses that FEM simulation
gives ”the right” results, a model has been developed and its
results have been compared with the ones obtained by FEM approach.

The material properties used in the results shown in this paper are the properties of the iron
crystal (Tab.1)(Cubic elastic tensor), but the approach was also applied to other materials such
as Aluminium, Nickel or Titanium with similar accuracy.

Comparison of the FEM and the SCM

FEM simulations have been performed on a cube of 686 grain, with 20 different crystallographic
orientation distributions on a Kelvin structure (Fig. 1) to simplify the study of the neighborhood
effect and cancel any size and shape effect (all grains are identical). Periodic boundary condi-
tions have been applied in order to cancel any border effects. Arbitrarily, a uniaxial loading E0

is applied to the cube, where Eij = 0 except for E33 = 0.1%. The resulting effective stress is
Σeff

1st = 274MPa. The crystals are purely elastic, and the elastic tensor of the iron crystal (Tab.1)
has been used for all the simulations that are presented in the rest of the paper.

On Fig.2 are presented the mean first principal stress in each grain obtained with the FEM and
the SCM. For a given grain Young modulus, the FEM shows a dispersion of the stress where
as the SCM shows only one possible stress solution to the problem. The SCM is actually an
average of the stress observed with the FEM. This dispersion is clearly related to some neigh-
borhood effect. With some neighborhood conditions, that could lead to significant increase of
the local stress compared to the SCM. The highest stress observed with the SCM is approxi-
mately 108% of Σeff

1st when the highest stress observed with the FEM is 120% of Σeff
1st .

Study of the neighborhood effect

The SCM showed to have a good first approximation of the stress in the grain but it clearly
needs to be corrected to consider the neighborhood effect and predict more realistic and statis-
tical results. In order to do that, the influence of one or several grains on a given grain has been
studied depending on their spacial and crystal orientation distribution.
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Young modulus of the grain projected on the loading axis (MPa)
120 140 160 180 200 220 240 260 280

σ
grain
1st

Σ
eff
1st

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
FEM
SCM

Figure 2: First principal stress in each grain of the polycrystal normalized by the macro-
scopic first principal stress: Comparison between the FEM and the SCM

Grain interaction

In order to see the influence of one grain on an other grain in the polycrystalline Kelvin structure,
the behavior of two grains A and B immersed in an infinite homogeneous matrix has been
documented as a function of their crystal orientations and their relative position.

Firstly, the macroscopic properties of the material are attributed to the homogeneous matrix and
the central grain A, and crystallographic properties are attributed to grain B.

The first principal stress of grain A (0;0;0) has been observed depending on the position X, Y,
Z and the crystal orientation of grain B. An influence factor αA

B of grain B on grain A is defined
such as αA

B = σA
B/σ

A
0 , where σA

0 is the first principal stress of grain A immersed alone in the
matrix and σA

B is the first principal stress of grain A immersed in the matrix with grain B.

Figure 3: Illustration of the
local base formed by grains
A and B

It was found that if the elastic tensor CB of grain B is expressed
in the local base where the axis Z is parallel to the loading axis
and the axis X points toward the projection of grain B on the
plan perpendicular to the loading direction (Fig. 3), the com-
ponents C3333, C1133 or C3313 of this elastic tensor CB directly
influence the factor αA

B (Eq.1).

αA
B(X, Y, Z) = a

(X,Y,Z)
1 × C3333

+ a
(X,Y,Z)
2 × C1133

+ a
(X,Y,Z)
3 × C3313

+ a
(X,Y,Z)
4

(1)
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Figure 4: Illustration of the first assumption (each color corresponds to a different crys-
tallographic orientation): the influence of grain B on grain A is independent of the orien-
tation of grain A

Figure 5: Illustration of the influence of each individual grain compared to the influence of
several grains (each color corresponds to a different crystallographic orientation): the in-
fluence of several grains is equal to the product of the influence factor of each neighboring
grain

The coefficients a(X,Y,Z)
i are calculated from the FEM results for each different relative position

(X;Y;Z).

The calculations were run with grain A having the effective properties of the material. In order
to generate the equation for any orientation of grain A, the crystal properties are attributed to
grain A and calculations are run. It has been observed that the influence of the crystal orien-
tation of grain A is negligible compared to the influence of the crystal orientation of grain B,
suggesting a first assumption for the model under development: the influence of grain B on
grain A is independent of the orientation of grain A (Fig.4). With that assumption made, equa-
tion 1 can be used to calculate the influence factor αA

B of grain B on grain A for any crystal
orientation of grain A.

Influence of several grains on another grain

The influence of several grains on the central grain A has been studied. Knowing the influence
factor αA

Bi of each neighboring grain Bi on grain A, it has been observed that the influence of
several grains on grain A is equivalent to the product of the influence factor of each neighboring
grain (Fig.5). A second assumption can be made: the influence of several grains is equal to the
product of the influence factor of each neighboring grain (Eq.2)
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Figure 6: Illustration of the influence of several grains with the same set of influence fac-
tors but with different repartitions (the grains in blue correspond to the lowest influence
factor αA

Bmin and the grains in red to the highest influence factor αA
Bmax): the influence of

a neighboring grain on the central grain is not affected by the other neighboring grains.

αA
All =

N∏
n

αA
n (x, y, z, ϕ1,Φ, ϕ2) (2)

A consequence of the latter observation and assumption is that the distribution of the neigh-
borhood doesn’t affect the results as long as the αA

Bi values do not change. In figure 6 are
illustrated 4 neighboring grains with the lowest influence factor αA

Bmin and 4 other neighboring
grains with the highest influence factor αA

Bmax distributed differently. It is observed that no mat-
ter how those grains are distributed, the stress in the central grain is not significantly affected
(Fig.6). A third assumption is made : the influence of a neighboring grain on the central grain
is not affected by the other neighboring grains.

Definition of the Cellular-Automaton

Based on the three assumptions declared in the previous chapter, a cellular-automaton (CA) has
been developed using Self Consistent calculations to evaluate the first principal stress σA

0 of
grain A. The solution σA

SCM of the SCM for a spherical inclusion with the elastic property of
grain A (a Kelvin structure’s cell can be considered as spherical) immersed alone in the matrix
was used as the base for the calculation. The CA solution consists of applying to the SCM
solution the influence factor of each neighboring grain that is considered to have a significant
influence:

σA
AC = σA

SCM ×
N∏
n

αA
n (X, [ϕ1; Φ;ϕ2]) (3)

In Eq.3, N is the number of neighboring grains considered, X is the vector form by grain A
and the neighboring grain n, [ϕ1; Φ;ϕ2] are the Euler angles representing the orientation of the
neighboring grain n, and the influence factor αA

n of grain n on grain A is calculated with the
Eq.1.

Results of CA calculation are shown in Fig.7 and 8, presenting the first principal stress in each
grain obtained with the FEM and the CA. Four types of neighborhood are presented:

• 0 neighboring grain is considered. In other words, this is the SCM results.

• The first layer of neighboring grains are considered (N = 14 grains): all neighboring
grains that have a distance from the central grain d ≤ 2r, where r is the radius of one
grain.

• The second layer of neighboring grains are considered (N = 64 grains): d ≤ 4r.

• The third layer of neighboring grains are considered (N = 258 grains): d ≤ 6r.
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Young modulus of the grain projected on the loading axis (MPa)
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Figure 7: First principal stress in each grain of the polycrystal normalized by the macro-
scopic first principal stress: Comparison between the FEM, SCM, and CA
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Figure 8: Comparison of the FEM results with the CA results
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Table 2: Comparison of the FEM results with the CA results

N = 0 N = 14 N = 64 N = 258
Normalized average difference〈∣∣∣σgrain

EF − σgrain
SC

∣∣∣
Σeff

EF

〉
grain

3.42% 1.59% 1.22% 1.04%

Normalized maximum difference

maxgrain


∣∣∣σgrain

EF − σgrain
SC

∣∣∣
Σeff

EF

 16.93% 8.80% 5.78% 5.41%

In Fig.7 are presented the FEM, SCM and CA (with 258 neighboring grains considered) results.
As we can see, consideration of the neighborhood effect in the model generates a dispersion of
the stress similar to the one observed for the FEM results. If we take a closer look at the local
behavior on Fig.8 and Tab.2, it is observed that the more neighboring grains are considered, the
closer the CA results are to the FEM ones. The accuracy of the CA with N = 258 is three times
better than a simple SCM, and the extreme values are better captured. For information, using
the same computer, the FEM simulation takes approximately 40 minutes to be completed when
the CA with N = 258 takes 40 seconds.

Conclusions

The present work shows the importance of the neighborhood effect in polycrystal fields. From
the observations of the Finite Element simulations, a cellular automaton has been developed tak-
ing into account the neighborhood effect. The model is based on the Self-Consistent model to
which an influence factor is applied depending on the orientation and distribution of the neigh-
borhood of the grain. Taking the FEM results as a reference, the model showed a significant
improvement of the results compared to the original SCM.
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Abstract 
At the mesoscale, plastic deformation is facilitated by the motion of dislocations and is strongly 
dependent on the local crystallographic orientation. In polycrystalline materials, the mismatch 
between adjacent crystals inhibits the inter-granular dislocation mobility, reduces plastic strain 
homogeneity and significantly influences the hardening and softening stress-strain behavior. Studies 
have shown that inter-granular slip transmission is possible at high stresses, involving a complex 
combination of dislocation absorption, junction formation and nucleation interactions with the 
intrinsic grain boundary dislocations. These effects are thought to contribute significantly to the 
behavior of dislocation pile-ups and could explain the predominant mechanisms influencing the 
properties of nanocrystalline materials. Modelling the mesoscale microstructure-property 
relationships, observed in real materials, would be very useful to guide future developments in the 
field of grain boundary engineering.  
 
Dislocation dynamics (DD) simulations are a promising framework for computational modelling to 
provide insights about phenomena that can only be explained from the intermediate scale between 
atomistic and macro scales. However, a robust framework for modelling dislocation interactions 
with internal microstructure such as grain boundaries (GBs) has yet to be achieved for 3D models of 
DD at the meso-scale. Atomistic studies have shown that GBs cannot be assumed to act purely as an 
inertial damper between two regions with identical crystallography [1], or as an impenetrable 
barrier [2, 3]. The primary aim of the present study was to establish a sufficiently ‘generic’ 
framework to enable the modelling of various GB structures, polycrystal geometries and 
crystallographic orientations. The framework described is effective for studying GB-dislocation 
interactions (including inter-granular effects) and the approach for partitioning the DD simulation 
domain also provides an ideal future basis for modelling precipitate-hardened materials. 
 
To achieve a robust method to differentiate between crystal regions, the present framework utilizes 
a mesh-based partitioning system. The simulation domain is meshed and “region IDs” are assigned 
to individual mesh elements. GBs are recognized as internal surfaces separating regions with 
different “IDs”. This flexible construction allows modeling of an arbitrary number of grains and 
grain orientation. Within each grain, slip systems are determined by the grain orientation, and grain 
boundary dislocations are created to accommodate the grain misorientation. These special 
dislocations are either of sessile or glissile character, depending on the grain boundary structure. 
The glissile structure cases allow for grain boundary sliding. An algorithm was developed to re-
position any dislocations which would otherwise cross the mesh-region interface to exactly intersect 
the GB plane. Dislocations in the GB are constrained to glide in the GB plane. Atomistically 
informed criteria for “slip transmission” are implemented. In particular, ‘Slip transmission’ was 
enabled by simulating dislocation nucleation in the adjacent crystal if the local Peach Koehler force 
on the secondary slip system exceeds the threshold value (obtained with atomistic studies). 
 
GBs contain intrinsic dislocations (GBDs) which must be considered carefully, particularly when 
attempting to model inter-granular interactions with mobile lattice dislocations. A dislocation 
extraction algorithm was used to analyze the atomistic structure of a low angle grain boundary and 
identify the appropriate spacing of GBDs within the DD simulation bi-crystal model. This work 
provides a means to study multi-grain deformation processes governed by dislocations that “pile-
up” at grain boundaries, in detail beyond feasible limits of experiments.  
 
Keywords: Dislocation dynamics; Molecular dynamics; Slip transmission; Strain burst; Micro-
pillar; Coincident-site lattice; Hall-Petch; Bi-crystal. 
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Introduction 

Since the proposal of Taylor’s theory of work hardening 1934 [4], the materials research sector has 
aimed to achieve a physics-based multi-scale model to non-empirically predict the non-linear 
(plastic) stress-strain behavior and properties of dislocation-hardened metals. Such models need to 
account for the dynamically evolving dislocation and grain boundary microstructure [5]. 
Dislocations are well-established to facilitate the bulk of irreversible crystal deformation due to 
their high mobility along specific crystallographic slip systems [6]. For this reason, the properties of 
polycrystalline materials are predicated by the orientation of the slip systems with respect to the 
loading direction, and by the microstructure which inhibits the dislocation mobility. Grain 
boundaries (GBs) are an intrinsic microstructural component of all metal (excluding single crystals) 
and contribute both a barrier to dislocation mobility and the transition between different slip-
deformation systems [5]. GBs primarily inhibit dislocation motion; however, trans-granular ‘slip 
transmission’ can occur via a corresponding nucleation of new, re-orientated dislocations in the 
adjacent crystal [7]. The GB structure can facilitate dislocation nucleation, annihilation and/or 
recombination, which may be the rate-limiting effects in nano-crystalline materials [8-10]. For these 
reasons, the impact of dislocation dynamics on the non-linear stress-strain properties of 
polycrystalline materials can only be truly understood when interactions with the 3D network of 
grain boundary microstructures is accounted for. However, GBs remain significantly under-
represented within the computational modelling and simulation research sector for studying defect-
driven plastic deformation, below the empirical ‘macro-scale’ crystal plasticity simulations [11]. 
 
Dislocation dynamics (DD) simulations are widely acknowledged as a breakthrough meso-scale 
technique, with the capacity to establish a phenomenological link between fundamental atomistic 
studies and macro-scale continuum models useful for real-world material design [11-14]. However, 
DD remains in a development stage and has yet to be implemented in a way that can accommodate 
dynamic grain boundary interactions in 3D, which is necessary to understand effects of dislocation 
pile-ups and re-oriented slip transmission [11]. Previous attempts to model polycrystal DD with 
mesoscale simulations are mostly limited to 2D DD with impenetrable GBs [2, 15-17], which 
recently have included more complex interactions such as slip transmission through the GB 
interface [18]. These studies offer valuable insights about the effect of grain boundaries on the 
unimpeded motion along singular slip systems. However, 2D methods are incapable of modelling 
the evolution of dislocation density because dislocations are ‘pseudo point defects’. Furthermore, 
the 2D systems are artificially constrained to only 1, 2 or (at best) 3 slip systems [16]. It is unlikely 
that such models will ever be capable of effectively capturing the complexity of cross-slip, multi-
junction formation or more complex long-range dislocation force-field effects. In terms of 3D DD, 
rudimentary models have been created to evaluate the stress-fields in ‘bi-crystals’ containing of an 
array of impenetrable dislocations, akin to a low-angle GB [15]. However, this model did not 
account for changing crystallography at the interface, and no algorithms were provided to enable 
dislocation intersection with the GB interface. Hence, this dislocation array study is a good first step 
but does not provide a realistic representation of a GB interface. A more sophisticated model was 
established by Kubin et al. in 2009 [2], involving a truly polycrystalline, multi-textured simulation. 
However, the GBs were modelled with as impenetrable interfaces and the model was incapable of 
compensating for dislocation interactions with the intrinsic GB dislocations or reproducing inter-
granular slip transmission. The present study establishes a 3D DD methodology which is robust for 
modelling multiple GB character and polycrystal geometries, and applies this for a rudimentary 
study of a bi-crystal with a ‘penetrable GB’, 
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The equilibrium atomistic structure of the GB core and the spacing and Burgers vectors of the 
intrinsic GB dislocations (GBDs) are entirely dependent on the misorientation angle and interfacial 
plane of the GB intersecting two adjacent crystals. Low angle GBs can be fully described as an 
array of ‘grain boundary dislocations’ (GBDs), and have been observed to occur with 
misorientation angles less than the ‘transition angle’ which is approximately between 10-15° [19]. 
The dislocation structure of higher angle GBs are generally more difficult to classify, however it is 
commonly believed that in this case, the GB core consists of overlapping dislocations. These are 
difficult to classify as dislocations, because the overlapped cores cannot be identified by forming a 
Burgers circuit according to the conventional methodology. Energetically favorable structures of 
GBs involve a repeated ‘structural unit’ of equi-spaced clusters of GBDs [20-22]. In situations with 
high local stress concentration such as near nanoindenters [23] and inside dislocation pile-ups [24], 
mobile lattice dislocations can ‘penetrate’ through the GB by interacting with the GBDs. 
Specifically, lattice dislocations can indirectly ‘transmit’ across the GB by forming junctions with 
GBDs, partially annihilating and re-nucleating a new dislocation with different orientation in the 
adjacent crystal. To establish an initial benchmark for the newly developed simulation 
methodology, the first case will involve a bi-crystal containing two low angle GBs, which were 
chosen because of the low GBD density. The bi-crystal was selected as the most simple benchmark 
geometry for comparison with MD simulations, and to isolate the influence of the GBDs on the 
mechanical properties [25].  
 
The present study describes a novel modification of 3D DD simulation method, utilizing an array of 
co-planar intrinsic dislocations to model GB - dislocation interactions at the meso-scale. This will 
enable future studies of the intrinsically mesoscale effects of dislocation pile-ups and size-strength 
(Hall-Petch) relationships. 

Framework of conventional mesoscale dislocation dynamics simulations 

This study utilizes the Mechanics of Defects Evolution Library (MoDEL) code, based on the 
parametric DD approach described by Ghoniem et al [26] and recently modified to improve the 
description of the dislocation core by Po et al. [27, 28]. The ‘parametric’ DD approach is ideal for 
3D modelling of multi-defect dynamics to achieve efficient modelling of curved dislocations of 
arbitrary shape, orientation and length. Although DD remains a ‘state-of-the-art’ method due to the 
nature of its ongoing development [13], there is a long history of development since the 1990’s [13, 
27-33] [34]. At its core, the procedure of evaluating the Peach-Koehler force interactions, 
discretizing the motion, network configuration and shape is well-established [13, 35]. The present 
study does not go into detail about the fundamental framework (refer to [13, 28]), but rather 
describes the novel implementation of polycrystalline effects and GB-dislocation interactions within 
the established 3D DD framework. However, first it is necessary to describe the elements of the 
present framework that are modified and which enable the description of grain boundaries in a 
constitutive linear elastic framework. 
 
In this implementation, DD simulations are coded with object-oriented C++ programming to model 
the discretized motion of dislocation loops and Frank-Read sources [13]. In its most fundamental 
form, DD is a meshless-continuum method with ‘infinite’ dimensions; however a mesh can be 
utilized for the implementation of fixed surface boundary conditions. This contributes only a 
surface effect; and retains the single crystal orientation and isotropic elastic properties of the 
medium without simulation sub-domains. This ‘conventional framework’ for DD simulations can 
be decomposed into the following four fundamental elements: 
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a) Dislocation nodes (1D)  
Nodes store discrete positions in the dislocation line at each timestep, within the elastic 

continuum. Each node is characterised by a specific ID, mesh tetrahedra and nodal velocity. 

b) Dislocation segments (2D) 

Segments are mathematical splines that connect adjacent dislocation nodes in a dislocation 

loop. The curvature of the spline corresponds with the localised Peach-Koehler force-field at 

the specific timestep. As such, the discretised positions of dislocation segments are not 

stored between timesteps as in the case of dislocation nodes. Segments are defined by the 

Burgers vector, glide plane normal vector, Peach-Koehler forces and external stress tensor. 

c) Dislocation network (3D) 

The network is a container of all the dislocation segments in a 3D ensemble of dislocation 

loops and dislocation sources. The network defines the self-interactions of dislocation 

segments within a single loop and interactions between different dislocations, and asserts 

the consistency of elastic criteria, such as the Burgers vectors and node-balance. 

d) Finite element mesh (optional – required for certain boundary conditions) 

A mesh is not necessary, however must be used to model finite volumes and surface effects. 

Surface forces are implemented by creating artificial image forces, according to the original 

description provided by Van der Giessen et al [31]. The mesh is defined by mesh tetrahedra 

defined by four positional points (nodes) and four triangular faces. Each mesh tetrahedra, 

face and node is assigned a unique ID number. 

Computational procedure for modelling polycrystal sub-regions in DD 

The distinctive element of the present approach for modelling DD is the concept of ‘region IDs’, 
which can be assigned to all mesh tetrahedra within a user-specified geometry. Hence, all the mesh 
tetrahedra within the mesh region geometry (crystal) share the same region ID. The mesh is faceted 
with faces defined by any three of the four mesh nodes in each of the mesh tetrahedra. Each facet 
must always share the region IDs of the two adjoining tetrahedra or be a surface with only one 
region ID, and hence mesh facets must either have one or two region IDs. For the present case with 
a bi-crystal containing only one GB, this is sufficient to describe the interface. However, the method 
is also capable of modelling GB junctions of three or more crystals by identifying points lying on a 
mesh-line adjoining tetrahedra with more than two region IDs. 
 
The mesh is independent of the dynamic behavior of the simulations, and hence within the current 
framework the region ID is an immutable component of the initial-state crystal geometry. While 
this inhibits the implementation of GB migration within the current framework, it is valuable to 
assure efficiency and avoid arbitrary distortion of the interfacial mesh. Hence, this original 
approach to defining the GB structure provides a robust, efficient and ‘generic’ basis for modelling 
polycrystals of complexity within a DD simulation. 
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To establish a polycrystal mesh, a template MATLAB script was developed [36] which could be 
modified to define the size of the mesh, interface orientation, and crystal region IDs for either a 
rectangular prism or a cylinder bi-crystal geometry. The mesh itself was generated with tetgen, 
using a Delauney tetrahedralization constrained by maximum tetrahedron volume to control the 
coarseness of the mesh [37]. All the mesh tetrahedra within the one of the sub-domains defined by 
the matlab script are assigned the same integer (region ID), that is unique to the crystal. It was 
necessary to ensure that dislocation nodes that intersect the mesh faces shared by two region IDs are 
coincidental with the GB interface. This was achieved by identifying any tetrahedra nodes that were 
within a nominal floating point distance tolerance interface plane, and modifying the positions of 
two adjacent mesh nodes so that the mesh faces were correctly aligned. Hence, the mesh-elements 
of the GB were defined so that any nodes incidental with a face sharing two region IDs would align 
correctly with both the GB plane and the internal crystallographic lattice. 

Utilizing a dislocation array based on atomistic calculations to model GB structure 

GBs may be described as a crystallographic structure of repeated atomistic structural units 
containing intrinsic GB dislocations (GBDs). However, characterization of the GBDs in high-angle 
GBs (misorientation > 15°) has been difficult to achieve due to the overlapped nature of the 
dislocation cores within the plane [20, 38]. Low-angle GBs are more readily modelled, due to the 
greater spacing between GBDs and subsequently greater ease for classifying the distinct atomistic 
dislocation cores [15, 39]. Three pure-tilt grain boundaries were simulated in full-atomistic from, 
using bi-crystals obtained with LAMMPs molecular dynamics simulations [40]. The GBD structure 
of the fully atomistic GB plane were analyzed using Stukowski’s dislocation extraction algorithm 
[41]. The results are shown in Figure 1. The dislocation line-direction is parallel to the tilt axis, 
which is the same [0 0 1] direction for all three GB structures (as shown in Figure 1.A). 

 
Figure 1: Structure of high and low angle GBs described in two formats. Atomistic structural GB units [20]: A) 

low angle (8.1°); C) high angle (22.6°); D) high angle (36.9). AND B) low angle GB - array of GBDs 
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Figure 1.b shows that the dislocation extraction algorithm effectively identifies intrinsic dislocations 
spaced at intervals equivalent to the atomistic structural GB units, only for the low angle GB case. 
However, the direct comparison of the atomistic structures of the different GBs provides an 
invaluable insight for modelling with some of the high angle GBs. This is because the spacing of 
atomistic structural units can be evaluated despite being unable to extract the dislocation content. 
For the current crystallographic misorientation, the inter-GBD spacing is 15.7 Å, (i.e., 6b, where b 
is the Burgers vector). The GBDs can be considered ‘perfect’ edge dislocations with full Burgers 
vectors aligned in the direction of the GB normal (the [6 5 0] or the [-6 5 0] directions). This is 
consistent with the symmetric pure-tilt ‘parallel-edge wall’ GBs described in ref. [42]. It is 
noteworthy that the ‘nose-to-tail’ spacing of the ‘C’ atomistic structural units (which are also 
described in detail in ref. [21]) is 6.1 Å for the Σ=13 case. Furthermore, for the case of the Σ=5 GB, 
which has a higher misorientation angle, the nose-to-tail spacing is 0.0 Å (i.e., there is no inter-
GBD gap) between qualitatively identical ‘C’ atomistic structural units. This suggests that high 
angle GBs can be modelled in a similar manner as low-angle GBs, however with a reducing spacing 
between GBDs. The validity of this claim is the subject of future studies.  
 
For the present study, the structure was based on the low-angle atomistic case to provide a first-case 
benchmark for comparison. As shown in Figure 2, intrinsic GBDs were assigned in DD simulations 
of a bi-crystal containing a planar GB with a normal vector in the vertical direction, with an 
equivalent spacing and Burgers vector character as obtained from atomistic analysis. 

 
Figure 2: DD simulation of bi-crystal containing interfacial GBDs with identical spacing as an 8.2° GB 

The description of GBs as dislocation arrays in DD is ideal for modelling dislocation interactions 
such as annihilation, junction formation (i.e., absorption and recombination of lattice dislocations); 
and nucleation that results in slip transmission. The details of modelling dislocation – GB 
interactions are primarily accommodated by well-established junction formation procedures within 
the conventional DD framework [13]. However, the computational procedure to obtain 100% 
confidence that the dislocations would not arbitrarily cross the interface involves extensive 
modifications to the simulation code. It, it was also necessary to establish a new simulation 
procedure to enable dislocation nucleation and, hence, slip transmission. 
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Algorithms to simulate dislocation intersection and absorption into the GB plane 

The procedure to inhibit the arbitrary crossing of dislocations across the GB interface involves a 
necessarily complex and intensive procedure. It was necessary to ensure that a robust system of 
checks was utilized for all dislocation nodes, including pre-existing mobile nodes, nodes from 
network re-distribution (annihilation and generation of new nodes) and ‘special nodes’ in 
dislocation junctions external surface ledges. 
 
To enforce that dislocations do not artificially cross the GB interface, an algorithm was developed 
to check the region ID of the mesh position that the node is projected to move towards along its 
current trajectory at each timestep. When the projected position would lie within a mesh tetrahedron 
that is assigned a different region ID than the current position’s region ID, a complex procedure was 
triggered to implement dislocation-GB intersection. It is noteworthy that a system of projected 
positional checking was already a necessary component of fixed-boundary simulation with finite 
volume. However, the currently described procedure for GB intersection is more complex due to the 
formation of GBD junctions and ongoing mesh re-distribution of internal (not boundary) segments. 
 
To model intersection with the GB, it was necessary to first identify the interfacial mesh facet 
shared by tetrahedrons with two different region IDs along the trajectory of the dislocation node. 
This is achieved by looping over the faces of all tetrahedra in the trajectory between the initial nodal 
point to the final position. Once the tetrahedron on the path within the original region ID is found 
that contains this interfacial facet, the dislocation node is then placed at the point along the original 
dislocation trajectory that intersects this mesh-face. 
 
Once a dislocation node is positioned at the point of intersection on a facet connecting two region 
IDs, the node is designated as a GB node by assigning a fixed unit vector that defines the GB 
normal direction (Vnormal). Vnormal is thereafter used to eliminate the component of the nodal velocity 
projected in the direction normal to the GB plane, so that the motion of GB nodes is accurately 
constrained within the GB plane. In addition to being constrained to glide within the GB plane, GB 
nodes are also constrained to the original glide plane or by the constraints of a dislocation junction 
with any intersecting GBDs. 

Slip transmission and dislocation nucleation from GBs 

Atomistic studies have demonstrated that dislocations rarely penetrate GBs directly at the original 
point of intersection, but rather that the localized stress concentration activates dislocation 
‘nucleation’ from an adjacent GB lattice site on a new slip system. In the present framework, 
‘nucleation’ involves a recombination reaction between the interfacial GBDs and the trapped lattice 
dislocation lying on the interfacial ‘displacement complete shift’ lattice.  
 
Nucleation is only initiated after a check of the resolved Peach-Koehler forces of all segments 
containing two dislocation nodes within the GB interface is identified to exceed a threshold value. 
This involves looping over all aforementioned segments, checking the available slip systems of the 
secondary region ID and computing the forces for all of the 12 FCC slip directions.  
 
When nucleation is triggered, ‘slip transmission’ is implemented by generating a new dislocation 
loop comprised of 3 nodes lying in the second crystal and 2 nodes on the GB interface. The GB 
nodes are placed equidistantly from the midpoint of the lattice dislocation segment lying within the 
GB, however rotated appropriately so that the dislocation loop is normal to the new glide plane. 
Subsequently, recombination occurs between the lattice dislocation and the nucleated segment in 
the GB plane. This segment remains constrained inside the GB normal plane, however the newly 
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nucleated lattice dislocation nodes in the second crystal are free to move along the new slip system. 
Unfortunately, because the threshold nucleation stress and/or Peach-Koehler force is strongly 
dependent on the localized GB structure and/or presence of defects such as GB ledges, there is 
uncertainty about the most-appropriate nucleation thresholds [25]. Probabilistic modelling may 
provide an ideal work-around for this limitation in the future, however will need to be tailored to the 
specific misorientation angle (particularly for high-angle vs low-angle GBs). To avoid unnecessary 
complexity for low-stress interactions without dislocation pile-ups, nucleation and transmission 
may be enabled or disabled very easily by modifying one line of code.  

Stability testing and robustness of mesh-region barrier 

The most-critical requirement of the current computational approach is the assertion that no 
elements within the dislocation network will ever arbitrarily cross the interface between different 
mesh regions. If this were to occur at any point in the simulation procedure, the mesh region ID 
check would fail to correctly identify an intersection event at the subsequent node – motion step. 
After extensive stability testing, a few challenges were identified and subsequently were resolved to 
obtain a robust framework which ensures that the GB is never ‘arbitrarily penetrated’.  
 
The first challenge observed for artificial interface-crossing, involved an inherent numerical 
(rounding) error that occurred after dislocation nodes were made to intersect the GB plane. In this 
case, nodes moving within the GB plane sometimes were incorrectly identified with only one region 
ID due to truncation and rounding errors, so the node was no longer on a shared mesh face (GB). 
No solution was identified to completely eliminate this effect, however fortunately this issue has 
been overcome entirely by asserting that nodes intersecting the GB are constrained to the plane 
defined by the GB normal vector, without requiring a check for the mesh region ID.  
 
The second issue identified provided a more fundamental challenge for the modelling, caused when 
lattice dislocations formed a junction that intersected with the GB plane. In this case, in order to 
assert crystallographic consistency it was necessary that dislocation nodes be placed at the exact 
point intersecting the glide planes of the lattice dislocations and the GB plane. This was further 
complicated, when junctions also were formed with GBDs, requiring a point of intersection 
between four independent planes (mathematically improbable). This meant that in certain cases 
there was no existing direct solution which effectively merged the dislocation segments into a 
junction at a point which was also coincidental with the GB plane. The conventional junction-
formation protocol assertions would result in a junction that artificially crossed into the second 
crystal. A temporary fix has been implemented, which disables dislocation junction formation if the 
projected intersection position that is coincidental with the three (or more) constraining planes does 
not remain in the original region ID. It is a future aim to establish a new approach to more 
rigorously model junction formation at the GB by performing sequential junction formation and re-
alignment. Due to the crystallographic constraints, it is likely that this will involve a complex 
procedure of annihilation, nucleation and recombination to maintain the conservation of Burgers 
vector and glide-plane constraints that are an intrinsic property of dislocation dynamics [43]. 
 
Careful checking and testing with a variety of stress conditions, dislocation densities and geometries 
of the fixed micro-pillar boundaries has demonstrated that the present version of the code is 
empirically an ‘inherently stable’ simulation framework. This has very positive implications for 3D 
DD modelling in the future with dislocation pile-up formations in polycrystals and for modelling 
the accumulation of very high internal dislocation densities. Examples are provided in Figure 3.A 
and in Figure 3.B. to demonstrate the efficacy of the presently described method to model 
arbitrarily complex systems and dislocation pile-ups. It is also noteworthy that this method is also 
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exceptionally well-suited for simulating defects or precipitate hardened alloys that involve 
impenetrable inclusions. 

 
Figure 3: Robust modelling of ‘impenetrable’ mesh-region interface, up to very high dislocation densities: a) 

Examples of dislocation pile-up formations at the GB under a singular slip system; b) Examples of multi-
junction formation and high dislocation density accumulated at the GB interface. 

Dislocation nucleation and slip transmission through the GB 

One of the novel elements of the present framework is the capability to model inter-granular plastic 
deformation, which occurs by slip transmission into the secondary crystal. This has been achieved 
at both a rudimentary level in terms of a singular set of crystal slip systems, and has also been 
recently applied to model nucleation along a user-specified selection of secondary crystal slip 
systems. The definition of crystal-specific slip systems remains in a state of development; however 
the present study demonstrates that the framework has the capacity in the future. An example of 
nucleation from a dislocation pile-up located at the GB is demonstrated in Figure 4. 

 
Figure 4: Demonstration of dislocation nucleation. A) Example of nucleation procedure by generating three 

‘nucleation nodes’ from high-density GBDs; B) nucleation on rotated slip systems with low GBD density 
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Conclusions 

This paper has described the implementation of a novel approach to achieve mesoscale dislocation 
dynamics simulations in polycrystalline materials. The method utilizes a modified mesh, in order to 
assign a unique ‘region ID’ to dislocations contained within different crystals. A series of 
algorithms have been developed to provide a modelling framework that ensures that dislocations do 
not arbitrarily cross the mesh region-interface. The code also asserts that dislocations which would 
otherwise cross the grain boundary (GB) interface will instead will exactly intersect the GB plane. 
An additional modification that remains in a development stage enables slip transmission by 
initiating dislocation nucleation from the GB into the secondary crystal, which is initiated when the 
maximum local Peach-Koehler force exceeds the threshold value. 
 
Molecular dynamics simulations coupled with a post-processing method to extract the dislocation 
content were used to determine the atomistic structure of a low angle GB, and explicitly convert this 
into a dislocation format (i.e., a planar array of GBDs). On the basis of the atomistic analysis of this 
interface, replica GB structures were modelled with the modified DD, using the MoDEL library. It 
has been demonstrated that the code is inherently stable, and will not allow for slip transmission 
across the mesh-region interfaces unless dislocation nucleation is triggered. This has been used to 
demonstrate stress concentration within a dislocation pile-up, dislocation absorption into the GB 
core and the accumulation of high local dislocation density adjacent to the GB. In addition, the 
complex algorithms used to model slip transmission via the nucleation of dislocations along 
secondary crystallographic slip systems has been demonstrated to be an effective approach. The 
future opportunities to discretely evaluate the junction formation; annihilation; recombination and 
nucleation dislocation reactions between lattice dislocations and GBs can be used to provide 
significant insights into the defect mechanics of trans-granular plastic deformation. 
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Abstract 

Phononic crystals are periodic structures known for their abilities to alter the propagation of 

acoustic or elastic waves, and their characteristics are greatly dependent on the topological 

configurations of constituent materials within the unit cell. Thus it is possible to engineer a 

phononic crystal for specific functionality by tailoring its topology. Low manufacturing cost 

as well as light weight gives porous phononic crystals advantages over other kinds of 

phononic structures. This paper presented a bi-directional structural optimization (BESO) 

method in conjunction with homogenization theory for the systematic design of porous 

phononic crystals. On account of sustaining static loads, a bulk or shear modulus constraint is 

considered in the design of porous phononic structures. A multi-objective optimization was 

conducted to simultaneously maximize combined band gap width and bulk or shear modulus 

with a prescribed volume fraction of consisting solid material. The methodology was briefly 

introduced and several optimized porous phononic structures with exceptionally large band 

gaps were presented. 

Keywords: Porous phononic crystals, Band gap, BESO, Homogenization, Multi-objective 

optimization 

Introduction 

Phononic crystals (PnCs) artificially designed to control the propagation of acoustic and 
elastic waves are periodic structures consisting of different materials usually with high 
contrast in their mechanical properties [1]-[5]. The most fundamental feature of PnCs is the 
existence of band gaps, the frequency ranges within which the propagation of mechanical 
waves is strictly forbidden. This special property gives rise to mangy applications such as 
noise and vibration control as well as wave filtering and waveguides, etc. [6][7]. Over the 
past two decades, several classes of PnCs differing in the physical nature of the constituent 
phases have been studied, including solid/solid, solid/fluid, solid/void, fluid/fluid systems, 
etc. [8].Among them, porous phononic crystals with void or air holes embedded in solid 
matrix have exceptional advantages over other systems, for they can be very light-weighted 
while easily fabricated with low manufacturing cost. They hold a promising prospect for 
applications in noise and vibration control of aircraft, automobile and other industries that 
have restricted control over weight.  
 
Porous PnCs can be easily engineered by adjusting the spatial distributions of air/vacuum 
holes in a solid substrate. Initially in analog to studies on composite PnCs, positions, shapes, 
sizes of air/vacuum holes, as well as the layouts of the unit cell have been carefully 
investigated to disclose their relations with the phononic band gaps [9][10]. It is apparent that 
such trial-and-error methods are incapable to get the optimal designs when compared with 
more systematical means such as topology optimization. Systematic design of phononic band 
gap crystals was first conducted by Sigmund and Jensen based on finite element method 
(FEM) in combination with a gradient-based optimization algorithm [11]. Later, genetic 
algorithm (GA) and another gradient-based topology optimization, in conjunction with FEM 
or the fast plane wave expansion method (FPWE), are developed to maximize the band gap 
sizes of phononic band gap crystals [12]-[16]. Most of these works focused on the topological 
design of the composite PnCs while the porous PnCs are less considered [17]. Previous 
research on composite and porous PnCs has revealed that the stiffer and heavier material 
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tends to be isolated by the soft and light counterpart in order to get an optimal band gap size. 
Such characteristic leads to a tricky problem in the optimization of porous PnCs. Since the 
transverse/ shear waves are not supported in the air, the discontinuous solid materials would 
only support the propagation of longitudinal waves, which reduces the problem to sonic 
crystals. However the initial intention is to find the optimal porous phononic structures that 
exhibit large band gaps for elastic waves. Therefore, it is necessary to make sure that the 
optimized phononic band gap structures have continuous distribution of solid material to 
support all components of elastic waves. Dong et al. conducted a multi-objective optimization 
of 2D porous PnCs for maximizing band gap width and minimizing mass of structure 
simultaneously by using non-dominated sorting-based genetic algorithm II (NSGA-II) [18]. 
In this work, an artificial geometrical constraint was adapted to avoid too narrow connections 
and guarantee the resulting structure is self-support. It is apparent that current research in this 
area is insufficient and further systematic investigation into the design of cellular phononic 
band gap crystals is necessary.  
 
Considering the porous PnCs might sustain certain amount of static loads, it is more 
meaningful to add extra stiffness constraint than simply adding a geometrical constraint to the 
optimized structures. To the authors’ best knowledge, no work has been reported yet to 
conduct band gap optimization on the porous phononic crystals with a stiffness constraint and 
volume constraint simultaneously. In the present paper, the focus is the unit cell topology 
optimization of porous PnCs by using a specific bi-directional structural optimization 
algorithm. The objective is to maximize the combined out-of-plane and in-plane band gap 
size for porous phononic crystals subject to bulk or shear modulus constraint with a given 
volume fraction. In next Section we introduce the essential governing equations and related 
theories of topology optimization algorithm used in this paper. This is followed by a number 
of optimization results and conclusions.  
 

Governing Equations and Topology Optimization Algorithm 

Governing Equations 

 
In this paper, we consider two dimensional phononic crystals with square lattice and assume 
the propagation of elastic waves is restricted to the x–y plane only. The governing equation 
for out-of-plane transverse waves is given by: 
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while the couple in-plane longitudinal and transverse waves are governed by: 
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where λ and μ denote the Lame’s coefficients; ρ is the material density; and r = (x, y) denotes 

the position vector;  , ,
T

x y zu u uu  is the displacement vector, and according to Bloch’s 

theorem when waves propagate in periodic structures it should satisfy the form: 

 

      
k

i
e




k r
u r,k u r  (4) 
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where uk(r) is a periodic function of r with the same periodicity as the structure. k = (kx, ky) 
is the Bloch wave vector. With the Bloch boundary conditions, the governing equations can 
be converted to two eigenvalue problems for in-plane and out-of-plane waves, respectively, 
which both can be written as the form:  
 

   2( ) 0 K k k M u  (5) 

 

where eigenvectors u = uk(r). K and M are the stiffness matrix and mass matrix, 

respectively. 
We could easily solve the problem using the finite-element method and plot the band 
structures (k-ω) with eigenvalues obtained from above equations. For a 2D phononic crystal 
with the square lattice shown in Figure 1a, the sweep scope of Bloch wave vector k can be 
reduced to the edges of the irreducible first Brillouin zone, which is the triangle Γ-X-M-Γ 
shown in Figure 1b. A schematic band diagram is given in Fig.1c. The dashed lines represent 
eigenfrequencies for out-of-plane waves while the solid lines denote eigenfrequencies for in-
plane waves. Apparently there is no any complete band gap between the out-of-plane waves 
and in-plane waves in the band diagram.  
 

   
(a) (b) (c) 

Figure 1. (a) Phononic crystals with 3 × 3 unit cells; and (b) irreducible first Brillouin 

zone (Γ-Χ-Μ-Γ); (c) A schematic band diagram without any band gap. 
 
The focus of this paper is to open a complete band gap that exists in both out-of-plane and in-
plane mode and gradually enlarge the gap size to obtain an optimal design. For a complete 
band gap among the n

th
 and (n+1)

th
 dispersion branch of out-of-plane mode and the m

th
 and 

(m+1)
th

 dispersion branch of in-plane mode, the relative band gap size is computed as the 
ratio of absolute band gap width and mid-gap value, 
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   

1 1

1 1
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2
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d
   

   

 

 






k k k k

k k k k
  (6) 

 

where out

n , 1

out

n  , in

m , 1

in

m  are eigenfrequecies at the bottom and top edges of the target band 

gap for out-of-plane and in-plane modes, respectively. As a result, the band gap size is a 

relative value with no length scale.  

 

Objective Function 

 
When the porous PnCs might sustain amount of static loads, ideally we want to design these 
structures as stiffer as possible and the best way is to maximize bulk or shear modulus and 
the band gaps simultaneously. However, the optimal directions for two goals are opposite to 
each other. As mentioned in the introduction, the stiffer and heavier material tends to be 
isolated by the soft and light counterpart to exhibit an optimal band gap size. In the porous 
case, the solid material will be isolated by air. Such structures clearly could not sustain any 
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loads as the solid parts are not connected. Instead of maximizing stiffness and band gaps 
simultaneously, we add an extra bulk or shear modulus constraint to the optimization of the 
phononic band gap. 
 
The static effective elasticity tensor of a porous material with periodic microstructures can be 
found by the homogenization theory [19][20] in terms of the material distribution in the unit 
cell as, 
 

           0 0

1 T
H i i j j

ijE E d
Y

   


       (7) 

 

where H

ijE is homogenized elasticity tensor,  E is the constitutive matrix at a given point, Y  

denotes the area of the unit cell  , , 1,2,3i j   for two dimensional inhomogeneous 

structures,  0

i  are three linear independent test strain fields as    1

0 1,0,0  , 

   2

0 0,1,0  ,    3

0 0,0,1  ,  i  are the introduced strain fields, which are the solutions 

to the standard finite element equation with periodic boundary condition and subjected to the 

test strain fields 0

i . Thus effective bulk or shear modulus of a porous material can be 

expressed as, 

 

  11 12 21 22

1

4

H H H H HE E E E      (8) 

 33

H HG E  (9) 

 
For simplicity, dimensionless stiffness constraints are used instead of effective bulk or shear 
modulus in the following numerical examples. Specifically, κ = κ

H
/κ0 and G = G

H
/G0 are 

used as effective bulk and shear modulus constraints, where κ0 and G0 are the bulk and shear 
moduli, respectively, of the solid material.  
 
On account of potential weight limitation, a volume share of the solid in the whole design 
domain should be restricted. Therefore, the optimization problem under consideration can be 
mathematically formulated with objective and constraint functions as follows: 
 

 Maxmize:  e rf x d   (10) 

 Subject to: *

min

1

or 1
N

f e e e

e

V x V x x


   (11) 

 * *or G G     (12) 

 
where the objective function f(xe) denotes the relative band gap size which is defined by the 
percentage in the following band diagrams; *

fV  is the volume constraint; xe is the artificial 
design variable, which denotes the material type (air or solid material) for each element. κ

*
 

and G
*
 are effective bulk and shear modulus constraints. It should be noted that the bulk or 

shear modulus constraint should be not greater than the upper limit of the porous structure 
with the same volume fraction, otherwise the optimization will tend to purely maximize the 
bulk or shear modulus. The corresponding dimensionless upper limits of bulk or shear 
modulus are given by Hashin–Shtrikman bounds for two-phase materials [21]. In the 
following optimizations, the stiffness constraints are set to κ

*
 = β*κupper or G

*
 = β*Gupper , 

where β is the ratio of stiffness constraint over its upper bound value at a same volume 
fraction and is located in the range between 0 and 1. 
 
Bidirectional Evolutionary Structural Optimization (BESO) 
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Bi-directional evolutionary structural optimization (BESO) method is a gradient-based 
topology optimization algorithm in optimum material distribution problems for continuum 
structures , which is a further developed version of evolutionary structural optimization 
(ESO) [22][23]. The basic concept of BESO is to gradually remove low efficient materials 
from the structure and meanwhile add materials to the most efficient regions so that the rest 
part evolves to an optimum [24]-[26]. BESO method has demonstrated its capability in the 
design of periodic microstructures [27], and already been successfully applied in the design 
of photonic and phononic band gap crystals [28][29]. 
 
To resolve the multi-objective topology optimization problem defined in Eq. (10)-(12), we 
apply a similar material interpolation scheme with penalization to avoid artificial localized 
modes as in the studies on the topology optimization of continuum structures for natural 
frequencies [30]. The interpolation scheme is given as: 

   0e ex x    (13) 

    min min
mi0 n

min

1 1(
1

0 )
p

p p

e e e ep

x x
E x x x E x x

x

 
   


  
 

  (14) 

where ρ0 and E0 represent the density and Young’s modulus of solid material, respectively; p 
is the penalty exponent; xe stands for a design variable, xe = xmin denotes element e is 
composed of air, and xe = 1 means element e is composed of solid material. To avoid 
singularity in finite element analysis, xmin in the calculation is usually set to be a very small 
value that is slightly larger than 0. In the following example, the value is chosen as xmin = 1 × 
10

−6
.  

 
BESO starts from an initial design and then calculates the elemental sensitivities, i.e. 
gradients of objective function with respect to the change of design variable xe. Based on the 
relative rankings of the elemental sensitivity, it will gradually modify the distribution of solid 
material in the following iteration steps by changing the value of the design variable of every 
element until the convergence criterions are satisfied. Details of sensitivity analysis and 
evolutionary procedure can be found in the literature [28][31][32]. 

Results and Discussions 

We consider silicon as the solid material as an illustration example. The physical properties 
of silicon are given as 2330  kg/m3, 85.502  GPa and 72.835  GPa [18]. The 
following optimizations are conducted with a volume constraint * 50%fV   and constraint 
ratio β=0.3. A filter scheme has been applied [30]. The unit cell with dimensionless lattice 
length a=1 is discretised into 64×64 linear four node. The eigenfrequencies (ω) in the band 
structures are normalized by ωa/2πC, where C =340 m/s denotes wave speed in air. By using 
the aforementioned optimization algorithm, the following topologies with complete band gap 
have been obtained with silicon/air system. 
 
As shown in Fig.2 and Fig.3, two optimized structures have been found with bulk modulus 
constraint and shear modulus constraint, respectively. For both cases, the first complete band 
gap is between the first and second dispersion branch of out-of-plane mode as well as 
between the third and fourth dispersion branch of in-plane mode, while the second complete 
band gap is located in the second and third dispersion branch of out-of-plane mode and the 
sixth and seventh dispersion branch of in-plane mode. All the optimization results again 
reveal that the solid material is approaching the limiting case of separate columns in air but 
still keeping connected by slim constructions to support the propagation of shear waves and 
the prescribed bulk or shear modulus as well.  
 
When maximizing the complete band gap with bulk modulus constraint, the main parts in the 
resulting topologies are analogous to square inclusions. In comparison, it is interesting to 
observe that the main parts of the final designs with shear modulus constraint are more like 
round columns. The other difference between two cases is the position of thin connections. 
All the complete band gap sizes we obtained in these porous phononic structures have broken 
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the record value in the literature [17][18]. All designs are amenable to manufacture with 
appropriate size scaling to the frequency range of interest. 
 

 (a) 

(b) 

Figure 2. Optimized topologies and corresponding band structures for complete band 

gap with bulk modulus constraint, (a) between 1

out , 2

out and 3

in , 4

in ; (b)between 2

out , 

3

out and 6

in , 7

in  

(a) 
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(b) 

Figure 3. Optimized topologies and corresponding band structures for complete band 

gap with shear modulus constraint, (a) between 
1

out , 
2

out and 3

in , 4

in ; (b)between 
2

out , 

3

out and 6

in , 7

in  

Conclusions 

This paper has discussed the topology optimization of porous phononic crystals for 
maximizing complete band gap between out-of-plane and in-plane mode with a bulk or shear 
modulus and volume constraint simultaneously. Homogenization theory and BESO algorithm 
have been adopted to resolve the problem. Several optimization results with bulk and shear 
modulus constraint were presented. Numerical results showed that there are many slim 
connections in the optimized topologies of porous phononic crystals. All the presented 
designs have exceptionally large complete band gaps. 
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Abstract 

Starting from semantically parsed text, a program was developed to split up all compound sentences to 

simple sentences. These sentences were converted to expert systems rules and then processed by a 

tailored Expert System program. Successful execution of the Expert System program demonstrated a 

form of Automatic Programming.  

Keywords: Automatic Programming, Expert Systems, Knowledge Base, A. I. 

 

Introduction 

Computer Programming has always been regarded as a labor intensive process. In the early days of 

Artificial Intelligence, it was recognized that there was a duality between data (including text) and 

program and that the two were interchangeable. This was summarized in the mantra, 'Data is Program 

and Program is Data'. There was therefore many attempts to develop systems for automatic 

programming. These systems were largely unsuccessful see for example [1]. So this complex task was 

split up into niche processes. For example programs were written to convert mathematical equations 

into programs, eg. Matlab and Mathematica and open source Sympy. Another approach was to develop 

Domain Specific Languages [1]. The main reason for the failure to develop a general system was the 

computer's inability to understand text. Liu et al. [2] developed a system based on text understanding 

by requiring the text take the form of a story. With this approach [2] was able to develop a top level 

schematic programming system while leaving the details to be filled in by the traditional method.  

It is obvious that in order to convert text to program, we must first understand the text. Marcal[3] 

developed a semantic parser in two steps. First, the text was processed by a context free parse in 

English. The Semantic parse was accomplished by a translation of the text into Simplified Chinese 

(Mandarin). English and Chinese are orthogonal in meaning. One English word has many meanings 

because it is based on phonetics. Whereas one Chinese word (set of characters) has only 1 meaning, 

derived from its ideograph. So there are many Chinese Words with the same meaning. A statistical 

parsing method was developed in [3] that used Design Of Experiments[4] to reduce the search through 

the possible combinations of meaning to provide the optimal translation. The statistic was based on 

ngram of 3 (sequence of 3 words) . This method reduced the computational effort of parsing by two 

orders of magnitude. This method required good Corpora in both English and Chinese. In addition, 

using Wordnet and the two Corporas as a basis, the author constructed a Lexical Dictionary that 

covered most of the English and Chinese Languages. The result of the semantic parse (translation to 

Chinese) was reflected back to English in the form of an unambiguous sentence. This is the starting 

point for the current project. 

In the early 1970s , Expert systems were regarded as a promising approach to Artificial Intelligence[5]. 

The writer took part in a project to explain the principles behind a nonlinear Finite Element Program, 

MARC  to the level that enabled interested Engineers to use the program. To this end, the SACON 

(Stress Analysis Consultant) was developed based on EMYCIN. This project also had important 

ramifications for the Expert System Developers because for the first time the rules encompassed a 
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complete Domain. This emphasized the need for completeness in a system. In addition the Domain 

could be used to develop systems of Computer assisted instructions. In further work, Racz and 

Marcal[6] extended expert Systems to also call functions and external Programs. In the early days of 

nonlinear analysis, it was usual to employ Ph. D.s to perform such analysis. The Nuclear Industry had 

need for a large number of analysis of their components. Two Japanese Companies were able to 

develop  expert systems for the MARC program[7]. It found that Engineering Aides with High School 

Diplomas were able to perform such nonlinear analysis ( I assume under close supervision). The 

problem with the Expert Systems was that it required specialists to elicit the understanding of the 

experts and then codify it in the form of rules. It was in fact another form of programming and twice as 

laborious because the coding was one removed. 

 

Objective 

The objective of the current work is to start with the semantic parse of text and split any compound 

sentences to a sequence of simple sentences which we will call hyper-sentences. These hyper-sentences 

form simple concepts of the Subject,Verb, Object (SVO) type. We will call these concepts hyper-

concepts. It was found that these hyper-concepts are automatically mapped into expert systems rules, 

called hyper-rules. An expert system was developed to process these hyper-rules in the usual way. The 

successful development of an expert system constitutes the form of automatic programming that we 

seek. The hyper-concepts are of interest in their own right and can be classified in the usual hierarchical 

way, similar to the Wordnet scheme with hypo and hyper relations. In order to assist in this, we adopt 

the Conceptual Dependency (CD) of Schank[8-9]. Schank and his colleagues showed that the verbs in 

hyper-concepts could be represented by sixteen hypo-verbs and that these verbs can be classified in 

three states, viz Property , Physical and Mental respectively. In CD theory these verbs designate actions 

that are labeled ATRANS, PTRANS and MTRANS respectively. 

The following are some examples of the hyper-verbs. 

. TRANS transfer (of possession,location, and of ideas) 

. MOVE, PROPEL, GRASP movement and forces 

.INGEST, EXPEL absorb and its opposite 

.ATTEND, SPEAK, RECORD sense, verbal output and write or record 

.BUILD construct. 

.COMPUTE compute 

.STMEM,LTMEM short term remember and long term remember 

.TIME passage of time 

.LIVE biological 

.DO any other verbs that can not be classified above. 

Finally, we adopt Schank's construction of a hyper sentence instead of the traditional SVO, we use PP 

(Picture Painter), ACT (Action), Ppo(Picture Painter Object). The picture Painters are in turn modified 

by Picture Aiders (Adjectives, prepositions). The ACT are in turn modified by ACT Aiders 

(AA,adverbs) 

Since any of these verbs can be classified in the three states above, we have expanded the original CD 

to have a total of 48 possible classification. In the original CD theory Schank did not attempt to classify 

the Subject and Object phrases. In the current work, we expanded CD to also classify these phrases 
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using a Wordnet type generalization. With such an approach it was found that the hyper concepts took 

on their own properties. These hyper-concepts were found to follow Zipf's Law with similar types of 

properties as that found for words which were originally found to obey Zipf's Law. 

 

Theoretical Considerations 

There is little additional theory to consider above that already discussed. The difficulties lay in  its  

algorithmic implementation as a computer code. The following is a computer flow of the program. It is 

conveniently separated into two programs. The first develops the hyper-rules while the second 

processes the rules in an expert system. The programs are written in Python 2.7. Python's string 

processing features has made the coding easier and its dictionary with its seamless in-core and out of 

core storage has proven invaluable. 

Rule development for each sentence in sequence. 

1. Context-free Parse sentence. 

2. Semantic Parse by translation into Chinese. 

3. Chunk the phrases and transfer their lexical meaning back to English. ( for ease of use). 

4. Split the phrases into hyper-sentences with hyper-concepts. 

5. Define the cd hypo concept for each hyper sentence. 

6. Convert each hyper sentence into a hyper rule. 

7. Separate rules into two categories. In the first the verbs are not modified by any adverbial or 

ACT Aiders. These rules are defined once and for all. The second category contains ACT Aiders 

and these form conditions in the hyper-rules. We call these eligible rules ( for expert system 

processing) 

8. Search for rule conclusion in the hyper-concepts belonging to the same original sentence or 

following the original sentence. These are marked by prepositions such as then (PP Aiders). 

We note that each hyper-rule carries its own words and its conceptual dependency. Because each phrae 

may be expressed in a myriad of different word combinations, the CD takes on special significance for 

processing in an expert system. This is in fact the key to converting hyper-concepts into hyper-rules for 

expert systems. Every paragraph exists for a reason. The paragraph usually answers one of the 

following questions viz. what, where, when, how? These are then the objective or in expert system 

parlance the golden rule for each paragraph. In most cases, the first appearance of such a preposition 

(PPA) denotes a golden rule. If a golden rule is not obvious the expert system prompts the user or asks 

the user to accept its best estimate. 

There is a certain amount of pre processing required to prepare the hyper-rules for efficient processing 

by the expert system. Lists such as menu items are collected for convenience. It is important that 

critical eligible rules with multiple conditions be identified, and their transfer locations be identified as 

system switches. Once transferred to a system switch, the eligible rules are processed in sequence until 

another switch is encountered. Then control is transferred back to the original switching rule, for 

execution of the next rule. 

Development of Expert system. 

1. Pre process rules for efficiency. Each eligible hyper rule is assigned an event. Each event 

contains a detailed analysis of the rule as to how it affects the expert system. 
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2. Identify Golden Rules. (noted in event) 

3. Identify switching rules. (as compound rules).(noted in event) 

4. Identify system switches. (noted in event) 

5. Execute rules in sequence. Record each executed rule in a journal. 

6. Contact the user for unresolved rules that cannot be processed further. It is at this stage that the 

dialog is constructed to allow the user to query the actions taken and recorded in the journal. 

Usually, the actions taken to remedy the situation requires a new text and a repeat of the hyper-

rule construction in the first step above. 

7. When all the eligible rules have been satisfied, save the conclusions and the journal and exit the 

program. 

 

Case Study 

In this case study, we repeat the problem used by Liu et al [2] to automatically program the solution. 

The text describes a bar in the following. 

This is a bar with a bartender,  who makes drinks. 

The bar has a menu containing some drinks, which include : a sour apple martini, a margarita, and rum 

and coke. 

When a customer orders a drink, the bartender tries to make it. When the bartender is asked to make a 

drink, he makes it and gives it to the customer only if the drink is in the menu's drinks. 

Otherwise, the bartender says  to the customer,  ' Sorry I don't know how to make that drink '. 

 In [2], the  solution is neatly encased in the following Class using its internal format. 

 class bartender : 

     def make(drink) : 

  if (drink in menu.drinks) : 

      bartender.make(drink) 

      bartender.give(drink, customer) 

  else : 

      bartender.say( \ 

   “Sorry I don't know how to make that drink.”, customer) 

        

The solution here follows the same lines, except that there is less need for collection of concepts that 

relate to each other. This is implied in the rules and is automatically recognized by the expert system. 

The parsed hyper-concepts are listed in Appendix A. These then are turned into hyper-rules which are 

listed in Appendix B. 

The hyper-rules are paraphrased in the following. 

Rule (4000,0) defines bar as a structure 

Rule (4000,1) defines bartender makes drink. 

Rule (4001,0) Defines existence of menu. 
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Rule (4001,1) Defines menu as containing drinks. 

Rule (4001,2) Defines drinks list. 

Rule (4002,0) Customer requests drink, Golden Rule. 

Rule (4002,1) Bartender makes it, but there is a restriction (either option A or B) 

Rule (4003,0) Bartender figures out rule. 

Rule (4003,1) Action if option. 

Rule (4003,2) Action if option. 

Rule (4003,3) Condition for option A, System Switch A.  

Rule (4003,4) Give drink to customer as per option A. 

Rule (4004,0) Condition for Option B, implied System Switch B. 

Rule (4004,1) Bartender speaks an apology. 

Rule (4004,2) Excuse is does not know how to make. 

Rule (4004,3) That drink. 

End of Rules. 

The processing of the rules gave the same results as the automatic coding by Liu et al [ 2]. 

Hence we conclude that we have achieved our objective of automatic programming of rules for an 

expert system. 

 

Discussion and further work 

The ability to convert text to programs is very important. Mainly because most of our complete history 

and culture is recorded as text. In this project we have achieved this in a general way. This process may 

also be extended to obtain summaries from text by systematically asking the questions. What, where, 

how, why? We would then need to extend this to querying the internet to provide related text. The 

important action would be to systematically store the texts processed so that the rules can be retrieved 

as and when they are required. The Watson program[10] does an extensive job in collecting a 

knowledge base. The difference with the current program is that [10] does not do such a detailed job of 

parsing and labeling as it is done here.. 

Another direction that this development can proceed is to set up a mixture of mathematical equations 

sprinkled with text to control the results of the computing. This process is similar to the current coding 

in CAE, but here robotized. 

Finally for this process to act in real time, it must be accelerated by parellization. It currently takes on 

average about 33 secs. to process a sentence on a PC. 

Conclusions 

A program has been developed for generating hyper-rules from text. 

These hyper-rules can be processed in a tailored Expert System to achieve automatic programming. 

We have achieved the first step in our objective to develop an automatic way of converting text to 

programs. 
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Appendix A: details of parsing 

 *** WriteDict *** hyper_concept   

hyper_concept  ('4000', '0')   value 

('4000', '0') 

['cd_concept', 'object', 'is', 'equal', 'bar', 'ACTION', 'PAo', 

'what_alliance', 'human'] 

[['PP', '0'], ['this', 'PP', 'object', 'ATRANS']] 

[['ACT', '1'], ['is', 'ACT', 'equal', 'ATRANS']] 

[['PPo', '2'], ['bar', 'PP', 'structure', 'PTRANS']] 

[['PAo', '3'], ['with', 'P', 'possess', 'MTRANS']] 

[['PAo', '4'], ['bartender', 'PP', 'human', 'PTRANS']] 

['PP', 'this', 'object', 'ATRANS', 'ACT', 'is', 'equal', 'ATRANS', 'PPo', 

'bar', 'structure', 'PTRANS'] 

hyper_concept  ('4000', '1')   value 

('4000', '1') 

['cd_concept', 'human', 'make', 'build', 'material', 'ACTOR'] 

[['PP', '6'], ['who', 'PP', 'human', 'ATRANS']] 

[['ACT', '7'], ['make', 'ACT', 'build', 'PTRANS']] 

[['PPo', '8'], ['drink', 'PP', 'food', 'MTRANS']] 

['PP', 'who', 'human', 'ATRANS', 'ACT', 'make', 'build', 'PTRANS', 'PPo', 

'drink', 'food', 'MTRANS'] 

hyper_concept  ('4001', '0')   value 

('4001', '0') 

['cd_concept', 'bar', 'have', 'ingest', 'signal', 'ACTION'] 

[['PP', '0'], ['bar', 'PP', 'structure', 'PTRANS']] 
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[['ACT', '1'], ['have', 'ACT', 'ingest', 'ATRANS']] 

[['PPo', '2'], ['menu', 'PP', 'record', 'MTRANS']] 

['PP', 'bar', 'structure', 'PTRANS', 'ACT', 'have', 'ingest', 'ATRANS', 

'PPo', 'menu', 'record', 'MTRANS'] 

hyper_concept  ('4001', '1')   value 

('4001', '1') 

['cd_concept', 'signal', 'contain', 'do', 'material', 'ACTION'] 

[['ACT', '3'], ['contain', 'ACT', 'do', 'PTRANS']] 

[['PPo', '4'], ['some', 'PA', 'quantity', 'ATRANS']] 

[['PPo', '4'], ['drink', 'PP', 'food', 'MTRANS']] 

['ACT', 'contain', 'do', 'PTRANS', 'PPo', 'drink', 'food', 'MTRANS'] 

hyper_concept  ('4001', '2')   value 

('4001', '2') 

['cd_concept', 'object', 'include', 'do', 'material', 'ACTION', 'PAo', 

'substance.n.01', 'material'] 

[['PP', '6'], ['which', 'PP', 'object', 'ATRANS']] 

[['ACT', '7'], ['include', 'ACT', 'do', 'PTRANS']] 

[['PPo', '9'], ['sour', 'PA', 'sense', 'ATRANS']] 

[['PPo', '9'], ['apple', 'PP', 'food', 'PTRANS']] 

[['PPo', '9'], ['martini', 'PP', 'food', 'MTRANS']] 

[['PAo', '11'], ['margarita', 'PP', 'food', 'MTRANS']] 

[['PAo', '14'], ['rum_and_coke', 'PP', 'food', 'MTRANS']] 

['PP', 'which', 'object', 'ATRANS', 'ACT', 'include', 'do', 'PTRANS', 

'PPo', 'martini', 'food', 'MTRANS'] 

hyper_concept  ('4002', '0')   value  ### This becomes the golden rule 

('4002', '0') 

['cd_concept', 'human', 'order', 'plan', 'material', 'THINK'] 

[['PP', '1'], ['customer', 'PP', 'money_value', 'PTRANS']] 

[['AA', '0'], ['when', 'AA', 'age_destination', 'PTRANS']]  ### trigger for 

###golden rule. When asked customer replies with A) drink in menu eg. ### 

### Margarita or B) drink not in menu eg vodka martini. 

[['ACT', '2'], ['order', 'ACT', 'plan', 'MTRANS']] 

[['PPo', '3'], ['drink', 'PP', 'food', 'MTRANS']] 

['PP', 'customer', 'money_value', 'PTRANS', 'ACT', 'order', 'plan', 

'MTRANS', 'PPo', 'drink', 'food', 'MTRANS'] 

### at this point we activate a switch with value A or B respectively. 

hyper_concept  ('4002', '1')   value 

('4002', '1') 

['cd_concept', 'human', 'make', 'build', 'knowledge', 'ACTOR'] 

[['PP', '5'], ['bartender', 'PP', 'human', 'PTRANS']] 

[['ACT', '6'], ['try', 'ACT', 'compute', 'MTRANS']] 

[['ACT', '6'], ['make', 'ACT', 'build', 'PTRANS']] 

[['PPo', '7'], ['it', 'PP', 'object', 'MTRANS']] 

['PP', 'bartender', 'human', 'PTRANS', 'ACT', 'make', 'build', 'PTRANS', 

'PPo', 'it', 'object', 'MTRANS'] 

hyper_concept  ('4003', '0')   value 

('4003', '0') 

['cd_concept', 'human', 'ask', 'transmit', 'None', 'ACTOR'] 

[['PP', '1'], ['bartender', 'PP', 'human', 'PTRANS']] 

[['AA', '0'], ['when', 'AA', 'age_destination', 'PTRANS']] 

[['ACT', '2'], ['is', 'ACT', 'equal', 'ATRANS']] 

[['ACT', '2'], ['ask', 'ACT', 'transmit', 'MTRANS']] 

['PP', 'bartender', 'human', 'PTRANS', 'ACT', 'ask', 'transmit', 'MTRANS'] 

hyper_concept  ('4003', '1')   value ### System Switch A 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

795



('4003', '1') 

['cd_concept', 'human', 'make', 'build', 'None', 'ACTOR'] 

[['ACT', '4'], ['make', 'ACT', 'build', 'PTRANS']] 

['ACT', 'make', 'build', 'PTRANS'] 

hyper_concept  ('4003', '2')   value 

('4003', '2') 

['cd_concept', 'human', 'make', 'build', 'knowledge', 'ACTOR'] 

[['PP', '6'], ['he', 'PP', 'human', 'ATRANS']] 

[['ACT', '7'], ['make', 'ACT', 'build', 'PTRANS']] 

[['PPo', '8'], ['it', 'PP', 'object', 'MTRANS']] 

['PP', 'he', 'human', 'ATRANS', 'ACT', 'make', 'build', 'PTRANS', 'PPo', 

'it', 'object', 'MTRANS'] 

hyper_concept  ('4003', '3')   value 

('4003', '3') 

['cd_concept', 'human', 'give', 'trans', 'knowledge', 'UNDEF', 'PAo', 

'source', 'human', 'prepD', '->', 'PAo'] 

[['CNJ', '9'], ['and', 'CNJ', 'coordinating_object', 'MTRANS']] 

[['AA', '14'], ['only', 'AA', 'qualification_value', 'PTRANS']] 

[['ACT', '10'], ['give', 'ACT', 'trans', 'PTRANS']] 

[['PPo', '11'], ['it', 'PP', 'object', 'MTRANS']] 

[['PAo', '12'], ['to', 'P', 'recipient', 'MTRANS']] 

[['PAo', '13'], ['customer', 'PP', 'money_value', 'PTRANS']] 

['ACT', 'give', 'trans', 'PTRANS', 'PPo', 'it', 'object', 'MTRANS'] 

hyper_concept  ('4003', '4')   value 

('4003', '4') 

['cd_concept', 'None', 'is', 'equal', 'signal', 'UNDEF', 'PAo', 

'aspect_what_property', 'material'] 

[['CNJ', '15'], ['if', 'CNJ', 'subordinating_qualification', 'MTRANS']] 

[['ACT', '16'], ['is', 'ACT', 'equal', 'ATRANS']] 

[['PPo', '17'], ['menu', 'PP', 'record', 'MTRANS']] 

[['PAo', '18'], ['of', 'P', 'possess', 'property']] 

[['PAo', '19'], ['drink', 'PP', 'food', 'MTRANS']] 

['ACT', 'is', 'equal', 'ATRANS', 'PPo', 'menu', 'record', 'MTRANS'] 

hyper_concept  ('4004', '0')   value ### Swystem Switch B 

('4004', '0') 

['cd_concept', 'human', 'say', 'speak', 'None', 'ACTOR', 'PAo', 'source', 

'human', 'prepD', '->', 'PAo'] 

[['PP', '2'], ['bartender', 'PP', 'human', 'PTRANS']] 

[['AA', '0'], ['otherwise', 'AA', 'property_lest', 'PTRANS']] 

[['ACT', '3'], ['say', 'ACT', 'speak', 'MTRANS']] 

[['PAo', '4'], ['to', 'P', 'recipient', 'MTRANS']] 

[['PAo', '5'], ['customer', 'PP', 'money_value', 'PTRANS']] 

['PP', 'bartender', 'human', 'PTRANS', 'ACT', 'say', 'speak', 'MTRANS'] 

hyper_concept  ('4004', '1')   value 

('4004', '1') 

['cd_concept', 'language', 'know', 'move', 'None', 'UNDEF'] 

[['PP', '7'], ['sorry', 'PA', 'transmit', 'ATRANS']] 

[['PP', '7'], ['i', 'PP', 'human', 'ATRANS']] 

[['PP', '7'], ['do', 'PP', 'None', 'ATRANS']] 

[['ACT', '8'], ['know', 'ACT', 'move', 'MTRANS']] 

['PP', 'do', 'solfa_syllable.n.01', 'ATRANS', 'ACT', 'know', 'move', 

'MTRANS'] 

hyper_concept  ('4004', '2')   value 

('4004', '2') 
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['cd_concept', 'human', 'make', 'build', 'None', 'ACTOR'] 

[['AA', '9'], ['how', 'AA', 'None', 'PTRANS']] 

[['ACT', '10'], ['make', 'ACT', 'build', 'PTRANS']] 

['ACT', 'make', 'build', 'PTRANS'] 

hyper_concept  ('4004', '3')   value 

('4004', '3') 

['cd_concept', 'money_value', 'drink', 'ingest', 'None', 'ACTION'] 

[['PP', '11'], ['that', 'PP', 'object', 'ATRANS']] 

[['ACT', '12'], ['drink', 'ACT', 'ingest', 'ATRANS']] 

['PP', 'that', 'object', 'ATRANS', 'ACT', 'drink', 'ingest', 'ATRANS'] 

 

Appendix B. hyper-rules used by expert system 

 *** WriteDict *** rule_collector  

Here is a brief explanation of the rules. 

The first label in the rule '<define>' says its a constant rule. The rest 

of the line gives the PP and the PPo phrases. The second line gives the 

hyper-concept. The next lines give the prepositional phrases (PA) 

In the case of an eligible rule the first label is a tag for which Adverb 

influences the processing of the current rule. For example the '<if_age>' 

label (hypo-classification of the word 'when') is first encountered as an 

eligible rule. The components of the rule follow the same order as before. 

It is also labeled as a golden rule. The same label is then used to tag the 

following rules which are executed by the system. This continues until a 

switch changes the control to '<if_only>' (option A of the drink order.) 

Then finally control is switched to '<if_alt>' (option B of the drink 

order.) 

 

rule_collector  ('4000', '0')   value 

['<define>', [['this', 'PP', 'object', 'ATRANS'], ['bar', 'PP', 

'structure', 'PTRANS']]] 

['<define>', ['PP', 'this', 'object', 'ATRANS', 'ACT', 'is', 'equal', 

'ATRANS', 'PPo', 'bar', 'structure', 'PTRANS']] 

['<define>', [['this', 'PP', 'object', 'ATRANS'], ['with', 'P', 'possess', 

'MTRANS'], ['bartender', 'PP', 'human', 'PTRANS']]] 

rule_collector  ('4000', '1')   value 

['<define>', [['who', 'PP', 'human', 'ATRANS'], ['drink', 'PP', 'food', 

'MTRANS']]] 

['<define>', ['PP', 'who', 'human', 'ATRANS', 'ACT', 'make', 'build', 

'PTRANS', 'PPo', 'drink', 'food', 'MTRANS']] 

rule_collector  ('4001', '0')   value 

['<define>', [['bar', 'PP', 'structure', 'PTRANS'], ['menu', 'PP', 

'record', 'MTRANS']]] 

['<define>', ['PP', 'bar', 'structure', 'PTRANS', 'ACT', 'have', 'ingest', 

'ATRANS', 'PPo', 'menu', 'record', 'MTRANS']] 

rule_collector  ('4001', '1')   value 

['<define>', ['ACT', 'contain', 'do', 'PTRANS', 'PPo', 'drink', 'food', 

'MTRANS']] 

['<list>', [['some', 'PA', 'quantity', 'ATRANS'], ['drink', 'PP', 'food', 

'MTRANS']]] 

['<signal_list>', [('4001', '0'), ['PPo', 'menu', 'record', 'MTRANS'], 

[['some', 'PA', 'quantity', 'ATRANS'], ['drink', 'PP', 'food', 'MTRANS']]]] 

rule_collector  ('4001', '2')   value 

['<define>', [['which', 'PP', 'object', 'ATRANS'], ['martini', 'PP', 
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'food', 'MTRANS'], ['margarita', 'PP', 'food', 'MTRANS'], ['rum_and_coke', 

'PP', 'food', 'MTRANS']]] 

['<define>', ['PP', 'which', 'object', 'ATRANS', 'ACT', 'include', 'do', 

'PTRANS', 'PPo', 'martini', 'food', 'MTRANS']] 

['<define>', [['sour', 'PA', 'sense', 'ATRANS'], ['apple', 'PP', 'food', 

'PTRANS']]] 

rule_collector  ('4002', '0')   value 

['<if_age>', [['customer', 'PP', 'money_value', 'PTRANS'], ['drink', 'PP', 

'food', 'MTRANS']]] 

['<if_age>', [['when', 'AA', 'age_destination', 'PTRANS'], ['order', 'ACT', 

'plan', 'MTRANS']]] 

['<if_age>', ['PP', 'customer', 'money_value', 'PTRANS', 'ACT', 'order', 

'plan', 'MTRANS', 'PPo', 'drink', 'food', 'MTRANS']] 

['<system_gold>', ['acquire', 'relate_key', '<if_age>', True, 

'instantiate', False, 'iterate']] 

rule_collector  ('4002', '1')   value 

['<if_age>', [['bartender', 'PP', 'human', 'PTRANS'], ['it', 'PP', 

'object', 'MTRANS']]] 

['<if_age>', ['PP', 'bartender', 'human', 'PTRANS', 'ACT', 'make', 'build', 

'PTRANS', 'PPo', 'it', 'object', 'MTRANS']] 

rule_collector  ('4003', '0')   value 

['<if_age>', [['bartender', 'PP', 'human', 'PTRANS']]] 

['<if_age>', [['when', 'AA', 'age_destination', 'PTRANS'], ['is', 'ACT', 

'equal', 'ATRANS']]] 

['<if_age>', ['PP', 'bartender', 'human', 'PTRANS', 'ACT', 'ask', 

'transmit', 'MTRANS']] 

rule_collector  ('4003', '1')   value 

['<if_age>', ['ACT', 'make', 'build', 'PTRANS']] 

rule_collector  ('4003', '2')   value 

['<if_age>', [['he', 'PP', 'human', 'ATRANS'], ['it', 'PP', 'object', 

'MTRANS']]] 

['<if_age>', ['PP', 'he', 'human', 'ATRANS', 'ACT', 'make', 'build', 

'PTRANS', 'PPo', 'it', 'object', 'MTRANS']] 

rule_collector  ('4003', '3')   value 

['<if_only>', [['and', 'CNJ', 'coordinating_object', 'MTRANS']]] 

['<if_only>', [['only', 'AA', 'qualification_value', 'PTRANS'], ['give', 

'ACT', 'trans', 'PTRANS']]] 

['<system_switch>', ['modify', 'call_all', '<if_only>', True, 'then', 

False, '<if_alt>']] 

['<then>', ['ACT', 'give', 'trans', 'PTRANS', 'PPo', 'it', 'object', 

'MTRANS']] 

['<then>', [['it', 'PP', 'object', 'MTRANS']]] 

['<then>', [['it', 'PP', 'object', 'MTRANS'], ['to', 'P', 'recipient', 

'MTRANS'], ['customer', 'PP', 'money_value', 'PTRANS']]] 

rule_collector  ('4003', '4')   value 

['<if_only>', [['if', 'CNJ', 'subordinating_qualification', 'MTRANS']]] 

['<if_only>', ['ACT', 'is', 'equal', 'ATRANS', 'PPo', 'menu', 'record', 

'MTRANS']] 

['<if_only>', [['menu', 'PP', 'record', 'MTRANS']]] 

['<if_only>', [['menu', 'PP', 'record', 'MTRANS'], ['of', 'P', 'possess', 

'property'], ['drink', 'PP', 'food', 'MTRANS']]] 

rule_collector  ('4004', '0')   value 

['<if_alt>', [['bartender', 'PP', 'human', 'PTRANS']]] 

['<if_alt>', [['otherwise', 'AA', 'property_lest', 'PTRANS'], ['say', 
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'ACT', 'speak', 'MTRANS']]] 

['<if_alt>', ['PP', 'bartender', 'human', 'PTRANS', 'ACT', 'say', 'speak', 

'MTRANS']] 

['<if_alt>', [['bartender', 'PP', 'human', 'PTRANS'], ['to', 'P', 

'recipient', 'MTRANS'], ['customer', 'PP', 'money_value', 'PTRANS']]] 

rule_collector  ('4004', '1')   value 

['<if_alt>', [['sorry', 'PA', 'transmit', 'ATRANS'], ['i', 'PP', 'human', 

'ATRANS'], ['do', 'PP', 'None', 'ATRANS']]] 

['<if_alt>', ['PP', 'do', 'solfa_syllable.n.01', 'ATRANS', 'ACT', 'know', 

'move', 'MTRANS']] 

rule_collector  ('4004', '2')   value 

['<if_alt>', [['how', 'AA', 'None', 'PTRANS'], ['make', 'ACT', 'build', 

'PTRANS']]] 

['<if_alt>', ['ACT', 'make', 'build', 'PTRANS']] 

rule_collector  ('4004', '3')   value 

['<if_alt>', [['that', 'PP', 'object', 'ATRANS']]] 

['<if_alt>', ['PP', 'that', 'object', 'ATRANS', 'ACT', 'drink', 'ingest', 

'ATRANS']] 
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Abstract 

The casting process includes the transportation process and the pouring process. The 
transportation process is to carry the molten metal from the place where it is saved to the mold 
or the injection molding machine, and the pouring process is to pour and fill molten metal in 
the mold. 

In the transportation process, it is undesirable to expose the surface of the molten metal to air 
to suppress the defect (for instance, generation of the oxidizing layer). Therefore, it is 
necessary to move to pour it into the mold as soon as possible after the molten metal is bailed 
out by the ladle. However, it is also necessary to prevent overflow of the molten metal and 
intervention of air or gas. So the liquid vibration by the acceleration and deceleration of the 
transfer machine should be suppressed.  

Then, the development of the technique to control the liquid surface oscillation is needed. 
Computational fluid dynamics is expected to be effective as the means of the verification. The 
phenomenon handled here should treat the wall in the container to be a moving boundary, and 
the liquid surface as a free boundary.  

In the pouring process, the flow of the molten metal in the mold is the target of interest. 
Because the quality of a final article of cast is dependent on how the molten metal flows in 
complex shape of the mold. Also as for this process, the use of numeric fluid analysis on the 
process including the fission and the fusion on a free surface is expected to be effective. 

The particle-based fluid analysis methods are considered as the numerical computation 
technique which is applicable and useful in the treatment of these moving boundary and free 
boundary. However, quantitative comparative studies with the data of actual transportation 
and pouring process are few.  

We have applied the smoothed particle hydrodynamics method to the process of 
transportation and pouring and validated the results with experimental data. We report on the 
technique and the result because we saw the experimental data and our numerical results are a 
good agreement. 

Keywords: Casting, particle-based method, smoothed particle hydrodynamics, transfer 

process, pouring process,  

 

Introduction 

In computer aided engineering (CAE) of the casting process, it is necessary to simulate the 

flow behavior (flow analysis that solves the Navier-Stokes equation), the heat transfer 

phenomenon (coupled analysis of heat conduction equation and the Navier-Stokes equation), 

and solidification phenomena (the phase change of the liquid and the solid is indispensable) 

adequately. Moreover, in some cases, it is necessary to treat casting stress analysis, which is 

an analysis of heat transfer and the thermal stress and strain caused by solidification and is 

solved with the elastoplasticity and the viscoelasticity equation. Casting CAE software of the 
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main current is adopting the numerical method for analysis of the Eulerian (grid-based) 

algorithms. It is not complete in generality and practical use, though these software can 

suitably simulate some of the casting process. There exists casting processes which are 

difficult to be treated by the simulators. 

 

On the other hand, the particle-based methods are numerical analysis method of the 

Lagrangian algorithm, and there is an expectation that it can analyze casting processes which 

the numerical solution technique of Eulerian algorithms are not suitable for (e.g. Cleary (2010) 

[1]). 

 
Then, we have performed the reproduction calculation that used the smoothed particle 

hydrodynamic (SPH) method, which is a particle-based method, simulation about the 

transportation of the molten metal and the experiment on the mold filling processes, compared 

the experimental result and the numerical computation result, and examined the possible 

application to the casting process of the particle method simulation.  

Experiments 

Transportation of liquid container 

The molten metal is frequently transported in the casting process.  

When transportation, because the vibration of the liquid surface generates the oxidization 

layer and causes the defect, it is necessary to execute it promptly with less vibration on the 

liquid surface. In the tilt type pouring process, the ladle is inclined and molten metal is poured 

to the ingate of the mold. Although it is hoped that molten metal is filled in the ingate quickly, 

it is also very important to suppress the vibration of the liquid surface as well as transportation. 

In order to shorten the lead time, the tilt motion is often begun while moving the 

transportation container (ladle). That is, there is a case to do transportation and tilting at the 

same time. 

 

It is thought the numerical analysis of the Eulerian algorithm are not good at this type of 

process, which include moving container (solid wall). Therefore it is profitable if it is shown 

to be able to simulate it by the particle-based method.  

 

Then, we do the numerical analysis with the particle-based method on the same condition as 

the experiment executed by Okatsuka et al. (2011) and Shibuya et al. (2013) [2][3]. A concise 

explanation of this experiment is as follows: Water is put in the liquid container of 10mm in 

thickness that installs the level sensor shown in Figure 1 up to the height of 140mm. The 

container is transported on the x axis and tilted with T shaft center. At this time, the vibration 

of the liquid surface is controlled by controlling the transportation speed and the tilting speed 

so that the wave should not occur. 

Mold filling processes 

Mampaey and Xu (1995) performed experiments of mold filling process in order to directly 

observe the molten metal flow for the model with different runner shape by arranging the 

heat-resistant glass in the one side of the mold[4]. The analysis of this behavior that fills the 

runner and the cavity is an object that cast CAE software of grid-based method analyzes 

enough, and the part that can be called the indispensable function of cast CAE software. 

Therefore, we also analyzed to attempt the utility of the cast analysis by the particle method 

on the same condition as the experiment and it compared it with the result of Mampaey and 
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Xu (1995)[4]. We reports on the results of two models shown in Figure 2 (called curved 

gating system and stair like gating system). 

 
Figure 1.  (a) Experimental equipment; (b) size of the container 

 
Figure 2.  The plane casting systems 

 

Numerical method 

We use a form of the equation of continuity and the momentum equation of SPH method as 

follows (Suwa, Nakagawa, and Murakami (2013)[5]):  
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Here, ρ, t, m, v, p, h, and rab are the density, the time, the mass, the velocity, the pressure, the 

smoothing length, and the relational position vector between the particles a and b, 

respectively. The constant vector g  is the gravitational acceleration. The subscripts a and b 

are indices of the particles, and the sum is over all particles b within a radius 2h from the 

particle a. As a kernel function ),( hW abr , we employ the quintic spline.  
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Where  q=|rab|/h and d , a normalization constant,  is  21/(16πh3) in 3-D. 

 

(a) (b) 
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The fluid in our SPH formalism is treated as weakly compressible. The pressure is given by 

the following equation of state: 











 1

0

2

0



 scp      (4) 

where 0 and cs are initial density and sound speed, respectively. In this study, 0 and cs are 

set to 1 kg m-3 and  50 m s-1, respectively. The sound speed cs is a numerical parameter, and a 

value is chosen to be extent where the density of the SPH particle with a typical kinetic 

energy does not come off from a standard density greatly. 

 

Numerical results 

Transportation of liquid container 

The transportation of liquid container without the control and that with the control were 

analyzed as well as the experiment by Okatsuka et al. (2011) and Shibuya et al. (2013) [2][3]. 

Figure 3 shows transferring input without control. Figure 4(a) shows time series of the level 

of liquid under this transportation condition. The result of the SPH simulation and the result 

of the experiment are indicated as the blue solid line and the red broken line, respectively. The 

measurement point of the water level is a position of level sensor shown in Figure 1. It is 

shown that the shape of the first wave, which is the most important about transportation, 

immediately after the completion of the movement (4.1 second) is corresponding to the 

experiment very well. The wave attenuation occurs in the calculation since the second wave. 

The attenuation shows the tendency to become small when the resolution rises. 

 

 
Figure 3.  Transferring input without control 

 
Figure 4.  (a) Level of the liquid surface without control  

(b) Snapshot of the liquid container without control (4.1 sec.) 

 

(a) 
(b) 
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Figure 5 shows transferring input with control. Figure 6(a) shows time series of the level of 

liquid under this transportation condition. As well as Figure 4(a), the result of the SPH 

simulation and the result of the experiment are indicated as the blue solid line and the red 

broken line, respectively. We can see that the vibration of the liquid surface becomes gentle 

by adding the control while the wave falls into disorder without the control of the 

transportation speed, and the effect is reproduced by the SPH simulation. 

 
 Figure 5.  Transferring input with control 

 
Figure 6.  (a) Level of the liquid surface with control  

(b) Snapshot of the liquid container with control (2.4 sec.) 

 

Figure 7 (a) and (b) show transferring input and tilt input, respectively. The tilt input is 

controlled. Figure 8 is a water level history when tilting motion is input with transportation. In 

the situation in which the energy of the water vibration is supplied as tilting motion, the 

vibration of the liquid surface is kept being corresponding well since the second wave. 

 
Figure 7.  Transferring and tilt input with tilt control 

 

(a) (b) 

(a) (b) 
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Figure 8.  Height of the liquid surface with designed transfer and tilt input 

Mold filling processes 

The mold filling processes were analyzed with the same condition of the experiments by [4]. 

We have compared the results of our SPH simulations with the results of experiments and 

results of a CAE software employing Eulerian algorithm with volume of fluid (VOF) method 

as surface treatment. In SPH simulation, we put the fluid of rectangular shape (with side-

lengths 6cm, 6cm, and 10cm) above the overflow cup, and the fluid has been fallen freely. In 

grid-based simulation, the inflow condition of the constant rate was given to the inlet. The 

inlet velocity was calculated to match the filling time of the experimental result (17.707 cm s-1 

for curved gate model, and 5.646 cm s-1 for stair like gate model). 

 

In Figure 8, mold filling sequences of the casting with a curved gating system are shown. The 

first, second, and third line indicate the results of the experiment, SPH simulation, and grid-

based simulation, respectively. Any of the experiment and two simulations show that the 

velocity of molten metal increase at the time of 0.67s (point that the filling of the runner is 

completed), and we can see that the molten metal get to the top of the container. It is shown 

like this that a qualitative tendency is the corresponding between the simulations and the 

experiment. 

 

In Figure 9, mold filling sequences of the casting with a stair like gating system are shown. 

As well as Figure 8, the first, second, and third line indicate the results of the experiment, 

SPH simulation, and grid-based simulation, respectively. It seems that the appearance to 

which the filling gradually progresses from the lower side is corresponding well by the 

simulation result and the experimental result. 

 

As the tendency between the models, the velocity of fluid into the cavity of the curved gate 

model is faster than that of the stair like gate model, in which the energy loss has happened 

when filling it. This has been achieved by regulating the inlet velocity of the fluid in the grid 

base simulation. In other words, after the experimental results are known, it is necessary to 

adjust the input condition. On the other hand, the difference of the behavior of both models 

appears clearly as a result of analyzing the fluid behavior while giving the same inflow 

condition in the SPH simulation. This mold filling models are known well as a verification of 

molten metal flow analysis that has a free surface, and it is very difficult to adjust both the 

curved gate model and the stair like gate model. The results of the molten metal flow behavior 

show advantage of SPH method to reproduce a free surface behavior. 
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Figure 8.  Mold filling sequences of the casting with a curved gating system 

 

 
Figure 9.  Mold filling sequences of the casting with a stair like gating system 

 

Conclusions 

The SPH method was applied to the casting process (transportation of liquid container and 

mold filling), and we compared them with the experimental results. In the analysis of 

transportation, it was shown that the result of the particle method analysis reproduced the 

experiment well as the liquid surface oscillation are suppressed by the presence of the 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

806



sloshing control. This depends on the treatment of a solid wall, which is difficult to be taken 

in Eulerian analysis technics. The particle method analysis can be expected to be applied to 

the optimization of the carrier control. Moreover, the difference of the tendency to fill the 

cavity slowly in stair like gate model while spouting under  the cavity in great force in curved 

gate model was reproduced well in the analysis of the mold filling process. It is thought that 

the SPH method has an enough analytic performance for the region where the solid wall 

moves and where the dispersion of the molten metal occur. 

 

In the cast field, there are various processes and phenomena, and a lot of objects that should 

be examined of the propriety of the application of simulations exist. The processes with 

moving boundaries such as ladle pouring of die casting, sleeve movement, and local 

pressurizing process are expected to show the advantage to the particle method. We would 

like to examine the application of the particle method simulation to these processes in the 

future. It is also needed to show the applicability to heat flow and the solidification behavior 

that are the indispensable function as cast CAE software. 
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Abstract  

Occasions do arise when researchers and industrialists alike are faced with the decision of 

where to cite new structures (shops, stores, distribution centers etc) in order to benefit the 

consumers and the business entity as well. Such decisions might take the importance of 

vertices and/or edges of a network (e.g. Supply Chain Network) into consideration. In 

particular, the strength of the vertices and those of the edges play an important role in 

arriving at such decisions. In this paper, as against the most common and traditional measures 

of centralities, that is - Degree, Closeness, Betweenness and Eigen-Vector centralities, a new 

centrality measure, Top Eigen-Vector Weighted Centrality (TEVWC) which takes into 

consideration the clique structure of a network and the strengths attached to the 

vertices/edges of the network, was used to predict the location of a distribution center in a 

supply chain management. The accuracy of prediction on a sample dataset of supply chain 

network, using the TEVWC was found to be 94.6%, which is 10.6% higher than the result 

outcome from the method of Newtonian Gravitational Force when driving distances are 

considered, but with the earth distances the accuracy obtained is 99%. 

 

Keywords: Cliques, Centre of Mass, Link-weights, Node-weights, Network Centrality, 

Supply Chain Network 

 

Introduction 

 

Any network consists of nodes and links; the nodes are also severally referred to as vertices, 

actors and points, while the links are also often referred to as edges, arcs, and ties. Different 

meanings have been adduced to the weighted-ness of a network, so many literature have at 

instances made references to link-weights as the weights of the entire network, even though 

any network as described above would at least consist of node(s) and link(s) as the case may 

be. This therefore implies that there has to be node-weights as separated from link-weights 

and the combination of the two would thereby emerge as weights of any typical network. 

In his work on identifying cohesive subgroups [1] laid emphasis on the link of a graph thus 

“Further, the definitions based on path length are restrictive in that they specify the nature of 

the relationship between each pair of actors within a subgroup instead of a general 

relationship between each actor and all others in the subgroup”, thereby leaving out the 

actors/nodes’ strength. According to the definition of the Topological Centrality (TC) of an 
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edge, the weights of edges are the sum of the weights of its two end nodes [2]. Here, the 

definitions of the weights of edges and weights of nodes are somehow fuzzy, as it is not clear 

cut what made up the weights of the end nodes. 

[3] defined a weighted network as that in which ties are not just either present or absent, but 

have some form of weight attached to them, hence the emphasis of his paper on the trade-off 

between the weight on the tie and the number of ties. This was however silent on the 

attributes of the node (which in most cases form the weights on the nodes). This viewpoint 

was partly shared by [8] when he said “Second category of measures (i.e., h-Degree, a-

Degree and g-Degree) takes into account the links’ weights of a node in a weighted network. 

Third category of measures (i.e., Hw-Degree, Aw-Degree and Gw-Degree) combines both 

neighbors’ degree and their links’ weight.” 

[4] [5] [6] have also attempted to generalize the traditional network centrality measures 

(degree, betweenness and closeness) to weighted networks, but they were only able to 

implement their generalisations as the link-weighted network, thus not putting the node-

weights into consideration. 

 

Another emphasis on link-weighted-ness in terms of duration is that by [7] whereby they 

introduced a time-variant approach to the degree centrality measure, that is, the time scale 

degree centrality (TSDC), whereby the presence and duration of links between actors are 

considered while leaving out the node attributes. On hybrid centrality measures, [9] reported 

having considered a network as having the centrality measures of each node as the attribute 

of the node, while [10] in their analysis of results for scholars performance and social capital 

measures also buttressed this view point by submitting that repeated co-authorships are 

merged by increasing more weight(tie strength) to their link(tie) for each relation, so also [11] 

whereby they referred to weight of undirected graph as the link-weight. However, all these 

arguments are again centred on link-weights as against the weights of the network that could 

have considered a combination or mergers of node-weights and link-weights. 

In their new method of constructing co-authorship, [12] used the times of co-authorship to 

calculate the distance between each pair of authors, and to also evaluate the importance of 

their cooperation to each other with the law of gravity. This relies again on the use of link 

weights. 

The mixed-mean centrality measure of [13] took into consideration, the number of links, link-

weights and node-weights in their study of co-authorship network, while [14] used the clique 

structure and node-weighted centrality to predict the distribution centre location in a supply 

chain management, thus clarifying what the link-weights and node-weights actually represent 

in a weighted network. 

It is still largely unknown how newtonian gravitational force of attraction and the top eigen-

vector weighted centrality can be applied to predict location of structures in a network. Thus, 

it is important to still find out whether the attributes of the nodes in any network is of 

importance or not; one might also want to know how accurate the mergers of node-weights 

and link-weights can be in terms of prediction of where to cite structures (for example, where 

to cite a distribution centre); and finally how accurate would the prediction of the location for 

a DC become, given a new centrality measure, which takes into consideration, the clique 

structure of a network combined with the node-weights and link-weights of the network. 

The nodes of the clique for each of the cities considered are ranked in line with their eigen-

vectors, and the representative node (the highest ranking node) for that clique becomes the 

representative node of that city. The centre of mass for the emergent nodes is thereafter taken 

into consideration. This method is important in that it only takes the node-weights and link-

weights into consideration while trying to achieve the results, thereby saving other resources. 
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Section II discusses the link-weighted centrality and node-weighted centrality and the third 

section discusses methods employed in this paper and their implementation, while the fourth 

lays out the output results from the methodology and the last forms the conclusion.  
 

Weighted Centralities 

Link-Weighted Centrality 

The equation (1) below represents the weighted degree centrality with respect to the edges or 

links. 
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Where W

DC represents the weighted degree centrality; p is the focal node ; q= adjacent node ; 

w= weight attached to the edge ; and n= total number of nodes in the graph. This reasoning 

can be extended to the weighted centrality of the Closeness, Betweenness and the 

Eigenvector. As an example, the weighted eigenvector centrality could be seen as  

x = A
w
x     (2) 

where A
w
 is a square matrix of the weights on the edges of A and x is an eigenvector of A .  

 

A tuning parameter α was introduced to determine the relative importance of the number of 

ties compared to the weights on the ties by [3]. Equation (3) below thereby represents the 

product of degree of a focal node and the average weight to these nodes as adjusted by the 

introduced tuning parameter. So, for weighted degree centrality at α we have: 
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where kp = degree of nodes 

Sp =  w

Dc (p)  as defined in (1) above ,  and α is ≥ 0 

 

This argument could also equally be applied to the closeness centrality; betweenness 

centrality and eigenvector centrality. 

 

Node-Weighted Centrality 

As an extension to equation (3), a tuning parameter  was introduced by [13] to include the 

weightedness on the nodes, therefore, for weighted degree centrality at α and  we shall now 

have 

 

cd
wawab (i) = ki ´ (

si

ki
)a = ki

(1-a ) ´ si
a ´ zi

b
 (4) 

 

where ki = degree of nodes 

 si =  w

Dc (s)  as defined in (1) 

zi = weight of nodes, where α ≥ 0 ; {  : -1    1}  

The value  depends on whether the weight is having positive or negative effect on the 

centrality measure, if for instance the weight is having a positive effect (e.g. profit)  is +1 
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else it is -1 (i.e. loss). Values of α ranging from ¼ to 1¾  is used in order to vary the effect of 
α, i.e. values less than 1 and those greater than 1. 

 

Top-Eigen Weighted Vector Centrality and Newtonian Gravitational Force 

The node-weights of the sample used for this study is the sales value while the edges are the 

driving distances between the shops in the sampled area. The sampled shops here are 

maximally connected as all of them have road links. Hence, we take the advantage of the 

clique structure by making the most central node (the one with highest centrality) from each 

clique to be a representative of that clique. By that, we have a representative node each from 

the two cliques considered for the purpose of the prediction of a proposed DC (see figure 1 

below). 

In the county of Scotland, two major cities with higher concentration of shops were chosen 

for our sample, the city of Glasgow and Edinburgh. In each of the cities, the ranking of the 

nodes(i.e. shops) based on eigen-vector centrality were considered, tested for all the four 

centralities (degree, closeness, betweeness and eigen-vector), thereafter, the highest ranking 

node called the top eigen-vector weight was made to be representative of that city (see Table 

I). The driving distances apart of each of the representative cliques for Glasgow and 

Edinburgh were obtained from google MAPI. UCINET , tnet and Excel software are used for 

obtaining the centralities and doing the final calculations (see Figure2).  

 

 

 
Figure.1. Figure showing the two cliques of Scotland shops (Glasgow on the left and 

Edinburgh on the right)  
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Figure 2.  Figure showing the implementation of top-eigen vector weighted centrality 

measure to the cliques of Scotland 

 

The newton gravitational force was later introduced after the implementation of the Top 

eigen-vector weighted centrality, and it is later explained with equation (5). 

 

Top-Eigen Weighted Vector Centrality 

 

Node 22 with postcode EH12 7UQ being the highest ranking always, was chosen as the 

representative of the clique from Edinburgh when the Top eigen-vector weighted centrality is 

used. Similar procedure was carried out for Glasgow clique and Node 5 with postcode G21 

1YL came out being the representative of that clique.(Figure 3 and Figure 4) 

 

 
Figure.3  Figure showing the Existing DC at Livingston(encircled) and the clique 

representative node at Edinburgh marked “2”. 
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Figure 4. Figure showing the representative cliques at Scotland cities of Glasgowand 

Edinburgh 

 

From Figure.4 above, let x be the proportional distance to the predicted Distribution Centre, 

and since the driving distance between node 5 (representing Glasgow clique) and node 22 

(representing Edinburgh clique) is 42.8miles, by proportion 

 

1-x / x  = 72743/41270, 

then x = 0.36 (i.e. 36% of 42.8) which is 15.4miles 

 

If x is some 15.4miles away from the Edinburgh clique representative, and the existing DC is 

13.1 miles away from node 22, the difference of the predicted DC will be 2.3miles away from 

the existing DC, hence, 

the error rate of the predicted DC = (2.3/42.80) x 100 = 5.37% i.e. the percentage accuracy of 

the prediction = 94.63% 

 

Newtonian Gravitational Force 

This method is fashioned after the Newton’s gravitational law which ascerts that every 

object’s mass will ascertain some amount of force on any neighboring object, no matter the 

distance between them. The formula is: 

 

 
2R

Mm
kF


    (5) 

 

where 

F =  Gravitational Force 

k = constant 

m =the mass of the first object 

M=the mass of the second object 

R=Distance between the two objects (it can be driving distance or the earth distance)
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Table 1. Table showing the clique result according to Top Eigen-Vector Weighted Centrality of selection  

from Edinburgh and Glasgow 
 

 NODE-WEIGHTED EIGEN-VECTOR CENTRALITY FOR 

EDINBURGH 

NODE-WEIGHTED EIGEN-VECTOR CENTRALITY FOR GLASGOW 

 N O
D E
 

α
= ¼
 

α
= ½
 

α
= ¾
 

α
=

1
¼

 

α
=

1
½

 

α
=

1
¾

 

N
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D
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α
= ½
 

α
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α
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1
¼

 

α
=

1
½

 

α
=

1
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22 453097.5 510928.4 576140.5 732596.9 826101.5 931540.6 1 51495.5 83776.9 136294.6 360734.7 586870.9 954766.6 

23 33870.3 33585.7 33303.6 32746.4 32471.3 32198.5 3 111193.7 183949.4 304310.2 832822.6 1377750.4 2279232.3 

24 63165.7 70052.7 77690.6 95555.4 105973.8 117528.2 4 73621.3 130901.3 232747.0 735808.2 1308292.6 2326189.8 

25 78587.1 77797.5 77015.8 75475.8 74717.4 73966.6 5 145086.8 264307.3 481493.6 1597913.3 2910948.7 5302930.0 

30 152807.8 154952.0 157126.2 161566.5 163833.5 166132.3 11 41543.2 75860.3 138525.5 461912.0 843478.6 1540241.6 

31 328540.4 360246.8 395013.1 474935.1 520769.5 571027.4 13 4465.1 7280.7 11871.6 31563.2 51465.8 83918.1 

32 297308.6 346383.0 403557.8 547777.5 638195.0 743537.0 15 3662.5 6052.2 10001.1 27309.7 45128.5 74573.5 

33 165476.9 173857.7 182662.9 201633.7 211845.6 222574.7        

35 3412.6 3404.2 3395.9 3379.3 3371.0 3362.7        

36 21128.7 21025.6 20923.1 20719.5 20618.5 20518.0        

37 5285.0 6115.7 7076.9 9476.3 10965.7 12689.2        

38 8971.3 9984.7 11112.6 13764.9 15319.7 17050.2        

39 7943.9 7919.5 7895.2 7846.8 7822.7 7798.7        

40 4531.7 5270.7 6130.4 8293.1 9645.7 11218.9        

41 28334.9 28259.3 28183.9 28033.6 27958.7 27884.1        

42 11302.1 11272.0 11242.1 11182.4 11152.7 11123.0        

43 2201.3 2631.5 3145.8 4495.6 5374.3 6424.6        

44 9406.4 9964.9 10556.6 11847.4 12550.8 13296.0        

45 4698.1 5294.3 5966.3 7576.8 8538.3 9622.0        

46 17504.4 17952.4 18411.8 19366.2 19861.8 20370.1        

47 4229.0 4130.8 4034.8 3849.6 3760.1 3672.8        

48 22823.0 23793.4 24805.0 26959.2 28105.4 29300.4        

49 17663.5 17373.2 17087.6 16530.6 16258.9 15991.7        
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In case of the objects, which in this case are the 30 shops of Scotland (consisting of seven 

shops from Glasgow and 23 shops from Edinburgh) as shown in Figure 3 above. The shops 

have pull effects on the DC at Livingston, as such the vectorial resultant force F of each 

node(shop) is calculated using the earth distances apart and the driving distances apart. 

  

Earth Distance with 30shops/nodes 

When the representative clique (EH12 7UQ i.e. Node 22) was used as origin (leaving 29 

shops for consideration) as shown in Figure 5 below, the total force is 314.53units but when 

the actual DC for Scotland (EH54 8QW) was used as origin (as in Figure 3) for all 30shops 

the total force was 12.28units. 
 

 

 
Figure 5. Figure showing the representative clique of Edinburgh herein marked “1” 

with other shops in Scotland 
 

In the Figure 5. above, the point marked “1” is the representative clique (node 22) EH12 

7UQ. This node is used as the origin for the other 29nodes in the region of Glasgow and 

Edinburgh, which is, excluding the existing DC (EH54 8QW) at Livingston.  

 

To make things clearer, the figure below shows the existing DC – EH54 8QW (at Livingston) 

as “1” while “2” represents the predicted DC – EH12 7UQ (at Edinburgh) 

 
Figure 6.  Figure showing the Existing DC at Livingston and the representative clique at 

Edinburgh 
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Driving Distance with 30shops/nodes 

For the driving distance, the total force for the DC as origin is 1,394,170.15 while the 

representative clique as origin yielded 29,690,905.18 . The table 2 below summarises the 

findings of the resultant forces when each of the driving distances and earth distances is used 

in the calculations. 
 

Table2.  Table showing the total force for Earth and Driving forces for Scotland shops 
S/No TYPE OF DISTANCE EXISTING DC PREDICTED DC 

1 EARTH DISTANCE 1.23 E01 6.0 E01 

2 DRIVING DISTANCE 1.39 E06 4.76 E06 

 

Scotland with 7 shops/nodes at Glasgow,  23shops/nodes at Edinburgh and three additional 

shops 

We consider three additional shops which are outliers , that is, not within Glasgow and 

Edinburgh but within an increased coverage radius of 36miles against the previous 30miles 

radius. This means we now consider 33 shops as our sample instead of the previous 30 shops, 

these newly added shops are at South Queenferry, Hardington and Bathgate. With these 

additional three shops added from within Scotland but outside Glasgow and Edinburgh, we 

have the results in Figure 7 below:  
 

 
Figure 7. Figure showing newly added nodes 32, 33 & 34 outside Glasgow and 

Edinburgh 
 

The details of the new shops/nodes are as shown in the table 3 below: 

Table 3.  Table showing details of the three new nodes added to the existing 30 

nodes/shops 
S/ 

N 

Node Post 

Code 

Dist to Exist- 

ing DC 

City Sales 

Values 

Lat Long 

1 32 EH30 9QZ 11.9 SOUTH 

QUEENSFERRY 

7948 55.9828 3.3990 

2 33 EH41 3LZ 36.4 HADDINGTON 9358 55.9571 2.7777 

3 34 EH48 2ES 3.8 BATHGATE 13746 55.8936 3.6215 

 

With the addition of the three new shops and using each one as the origin to the remaining 32 

shops, the table 4 below compares the results with the existing DC and former representative 

clique node using centrality measures. 
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Table 4. Table showing the total force for Earth and Driving forces for Scotland with 

additional three shops as new origins 
S/No TYPE OF 

DISTANCE 

EXISTING 

DC 

PREDICTED 

DC 

New Shop1 

(EH30 9QZ) 

as Origin 

New Shop2 

(EH41 3LZ) 

as Origin 

New Shop3 

(EH48 2ES) 

as Origin 

1 EARTH 

DISTANCE 

1.98 E01 1.3 E02 2.8 E01 6.6 E01 4.4 E01 

2 DRIVING 

DISTANCE 

6.1 E06 2.3 E07 1.1 E07 1.3 E07 5.9 E06 

 

 

 
Figure 8. Figure shows the newly predicted DC as against the earlier predicted node 

labeled 2 
 

 

Newtonian Gravitational Force with 30 shops of Glasgow and Edinburgh 

Using the Earth distance between the shops and the Existing Distribution Centre (EDC) as 

origin, we have the results in Table 5 below: 

 

Table 5. Table showing the forces exerted by highest/lowest valued nodes while 

considering earth distance 
 Glasgow Edinburgh  

 Node Post 

Code 

Value of 

Force 

Node Post 

Code 

Value of 

Force 

Distance 

Apart of 

Nodes 

Highest Value 
Nodes 

Node5 G21 1YL 1.5890 Node22 EH12 7UQ 1.7703 42.2 

Lowest Value 

Nodes 

Node15 G1 1EJ 0.0447 Node43 EH12 9BH 0.0080 41.3 

 

Using the driving distance between the shops and the Existing Distribution Centre (EDC) as 

origin, we have the results in Table 6 below: 
 

Table 6. Table showing the forces exerted by highest/lowest valued nodes while 

considering driving distance 
 Glasgow Edinburgh  

 Node Post 

Code 

Value of 

Force 

Node Post 

Code 

Value of 

Force 

Distance Apart 

of Nodes 

Highest 

Value Nodes 

Node5 G21 

1YL 

57,189.34 Node8 EH12 

7UQ 

404,474.18 2.2 

Lowest 

Value Nodes 

Node15 G1 

1EJ 

1,549.52 Node45 EH8 

7NG 

1,081.94 53.7 
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Newtonian Centrifugal Force with 33 shops of Glasgow and Edinburgh 

Using the driving distance between the shops and the Existing Distribution Centre (EDC) as 

origin, we have the results in Table 7 below: 
 

Table 7. Table showing the forces exerted by highest/lowest valued nodes while 

considering driving distance 
 Glasgow Edinburgh  

 Node Post 

Code 

Value of 

Force 

Node Post 

Code 

Value of 

Force 

Distance Apart of 

Nodes 

Highest 

Value 
Nodes 

Node 

5 

G21 

1YL 

66,150.20 Node 

52A 

EH48 

2ES 

4,184,638.00 27.7 

Lowest 

Value 

Nodes 

Node 

15 

G1 

1EJ 

1,792.31 Node 

45 

EH8 

7NG 

1,251.47 53.7 

 

Using the earth distance between the shops and the Existing Distribution Centre (EDC) as 

origin, we have the results in Table 8 below: 
 

Table 8. Table showing the forces exerted by highest/lowest valued nodes while 

considering earth distance 
 Glasgow Edinburgh  

 Node Post 
Code 

Value of 
Force 

Node Post 
Code 

Value of 
Force 

Distance Apart of 
Nodes 

Highest 

Value 

Nodes 

Node5 G21 

1YL 

2.0218 Node22 EH12 

7UQ 

2.2525 42.2 

Lowest 

Value 

Nodes 

Node15 G1 1EJ 0.0568 Node43 EH12 

9BH 

0.0102 41.3 

 

SUMMARY OF ACCURACY WITH THE SALES VALUES USED AS NODE-WEIGHTS 

 

Table 9. Accuracy of results obtained for both earth/driving distances for 30 shops and 

33 shops 
 PERCENTAGE ACCURACY OF THE 

HIGHEST FORCE NODES FROM 

GLASGOW TO EDINBURGH 

PERCENTAGE ACCURACY OF THE 

LOWEST FORCE NODES FROM 

GLASGOW TO EDINBURGH 

EARTH 

DISTANCE 

WITH 30 

SHOPS 

64.9% 63.2% 

EARTH 

DISTANCE 
WITH 33 

SHOPS 

99.1% 99% 

DRIVING 

DISTANCE 

WITH 30 

SHOPS 

64.9% 79.9% 

DRIVING 

DISTANCE 

WITH 33 

SHOPS 

63.5% 84% 
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Conclusions 
The Newtonian Gravitational force provides a more accurate percentage of 4.4% more than 

when the TEVW centrality was applied. The set of input resources for this method are the 

node-weights and link-weights, even though there are other factors to consider in the citing of 

a distribution centre, this makes this method a cheaper one with high accuracy of prediction.  

The assumptions in this study is that the driving distances are taken to be a straight line in the 

model figures in this paper, whereas in reality this might not necessarily be so. 

 

In future, the range of values for  α might transcend the range of ¼ and 1¾  as some 

interesting outcomes might surface, also, the domain of application could still be further 

expanded to cover area such as bioinformatics whereby the visualisation and understanding 

of biology networks will make one to be able to predict the reaction of cells to 

pharmaceutical drugs due to their positioning in such a network. Healthcare is another area of 

consideration, as the study of the connections between hospitals, patients, doctors and 

healthworkers can help a lot in the prediction of where to cite new hospitals and even how to 

arrest or prevent epidemics. In terms of network security, a more central node is protected 

and given more attention in order to prevent or repel attacks from any form of intrusion. 

 

It is clear that the node-weights (node attributes) actually count in any network as confirmed 

in this research whereby it forms the basis of prediction of a distribution centre with a higher 

accuracy while making use of the newtonian gravitational force as compared with the 

centrality measure – Top Eigen-Vector Weighted Centrality (TEVWC). 
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Abstract 
Finite element (FE) method is extensively employed to investigate the biomechanical behavior 
of bone structures. Material and morphological information of bone samples are typically 
provided by computed tomography (CT) scanning. Assuming that density and elasticity of bone 
are correlated, many studies have proposed different density-elasticity relationships to 
determine bone elastic constants. Herein, an innovative method for determining a single 
mathematical relationship between bone density and elasticity is proposed. Density distribution 
and morphology of a bovine bone were obtained from CT images, and the natural frequencies 
were measured using experimental modal analysis. The relationship between density and 
elasticity has a standard mathematical form with variable constants. Genetic algorithm (GA) 
was used to obtain the constants by minimizing the discrepancy between experimental and FE 
results. The relationship was then used in material properties assignment process of FE 
modeling and proved to be valid by predicting the natural frequencies of bone in different 
boundary conditions (BCs).  
Keywords: Density-elasticity relationship, Modal analysis, Bone tissue, Computed 
tomography, Finite element method 

1. Introduction 

Accurate subject-specific finite element models of bone are of great importance in many state 
of the art research and clinical applications. FE analysis of bone provides valuable information 
about strain and stress fields within the tissue. Results can be used in fracture risk assessment, 
designing prosthetic implants and other clinical applications. Dynamic behavior and 
characteristics of bone such as natural frequencies, mode shapes and response to dynamic loads 
can also be determined by FE analysis. Obtaining the fundamental frequencies of bone, in 
particular, has numerous practical applications in medicine and bioengineering. It has been 
shown that loads with frequencies close to natural frequencies of bone can enhance bone 
apposition [1]. In fact, patient-specific natural frequencies of targeted bones would help 
physicians to optimize vibration therapies and exercise regimens and find a solution which suits 
the patient best [2]. In addition, resonance frequencies and mode shapes of bone provide 
valuable information about density-elasticity relationships [3] and orthotropic properties of 
long bones [4]. 
To generate a subject-specific model, geometry and material properties of bone are usually 
derived from computed tomography images. The CT images are processed to create three-
dimensional (3D) geometry of bone segments. Mechanical properties of bone can also be 
derived from CT data using mathematical relationships, which relate CT values to material 
properties [5]–[9]. It has been demonstrated that the relationship between CT numbers and 
apparent density of bone tissue is approximately linear [10]–[12]. However, obtaining an 
accurate relationship between density and mechanical properties of bone, particularly elasticity, 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

821



is more challenging. Accurate determination of these relationships is important for developing 
precise FE models. 
The relationship between Young’s modulus and bone density is described by many different 
empirical models in the literature [13]–[22]. This relationship is generally reported in power or 
linear form. The complexity of experimental techniques involved in measuring mechanical 
properties of an anisotropic and porous material can explain the disparity in predicted values of 
Young’s modulus in different studies. To determine the stiffness, commonly a bone specimen 
is loaded in a load frame. During the mechanical test, different types of error can arise which 
makes it difficult to obtain bone stiffness. Methods of measuring bone deformation are widely 
discussed in the literature [8]. 
To overcome the difficulties in traditional mechanical testing and improve the accuracy of the 
density-elasticity relationship, we have developed a new method which determines the model 
parameters in the general form of the density-elasticity relationship based on the results of 
experimental modal analysis using GA and FE methods. Unlike many reported models in the 
literature, this method leads to a single density-elasticity equation which is valid for all ranges 
of bone density.  
 
2. Materials and methods 
2.1 Experimental determination of natural frequencies 
Modal analysis is a successful method to validate FE models of bone and to determine bone 
elastic constants [23] Simple experimental equipment, reasonably short measurement time and 
accuracy of measurements make modal analysis a potentially useful method for obtaining 
material properties.   
Natural frequencies of a fresh-frozen bovine femur bone were obtained using impact hammer 
and shaker tests in free-free and clamped-free boundary conditions. To simulate the free-free 
BCs, soft elastic straps were used to suspend the sample.  
The experimental setup of the shaker test is presented in Fig. 2. Computer generated random 
wave signals containing frequencies from 0 to 5000 Hz were used to excite the bone. Signals 
were amplified by a signal amplifier. Excitation and response signals were detected by 
accelerometers (DJB A/120/VT, DJB Co., France). 
The experimental setup of the hammer test is presented in Fig. 3. The bone is excited by hitting 
an impact hammer equipped with a force transducer to five different points normal to the 
surface to excite different modes of vibration. An accelerometer is used to detect the bone 
response. The tests were then repeated for different positions of accelerometer. Charge 
amplifiers are used to condition the force and acceleration signals. 
Applying a fast Fourier transform (FFT) algorithm, the frequency response of bone was 
analyzed considering the excitation and response signals. The resonance frequencies of 
different vibration modes were obtained using frequency response curves. 
 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

822



     
Figure 1. Shaker test setup; (a) free-free (b) clamped-free BCs 

 

 
Figure 2. Measuring vibration response of bone using shaker 

 

 
Figure 3. Measuring vibration response of bone using modal hammer 

 
2.2 Finite element modeling 
A bovine femur was CT scanned with a slice thickness of 1 mm (16 slice Siemens SOMATON 
emotion), and a three dimensional model of bone was created using Mimics© v17, 
MATERIALISE. Exporting the geometry from MIMICS to 3-Matic® v17, tetrahedral volume 
meshes were generated. A standard procedure (Materialise NV, Leuven, Belgium, 2010) was 
followed to obtain the three dimensional geometry from DICOM images and mesh the model. 
The acquired mesh was exported to a commercial FE software for numerical analysis.  
 

(a) (b) 
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Figure 4. A CT image of the bovine bone 

 
2.3 Material properties assignment 
Based on Hounsfield gray values, Mimics can assign material properties to volumetric meshes. 
After bringing the mesh back to Mimics, an average Hounsfield value is calculated for each 
element, and the range of gray value is divided into equally sized intervals to represent different 
material groups. In this study, five material groups were used to model the bone.  
The effective bone density and CT numbers are assumed to be linearly correlated [7], [20], [25].  
The following equation was used to assign apparent density to the mesh: 
 

 𝜌 = 4.64×10)*×𝐻𝑈 + 1 (1) 
 

where 𝜌 is the apparent density (g/cm3) and HU is the CT number (Hounsfield unit). 
Considering the literature, the relationship between apparent density and Young’s modulus is 
generally reported in the following form: 
 
 𝐸 = 𝑎𝜌0 + 𝑐 (2) 

 
where E is the Young’s modulus, 𝜌 is the apparent density (ash, wet or dry) and a, b and c are 
the model parameters. A Poisson ratio of 0.3 was considered for all finite elements. Here, 
experimental results and numerical methods were used to determine the model coefficients. 
 
2.4 Numerical eigenfrequency analysis 
The first five natural frequencies and mode shapes of the bone model were calculated using 
COMSOL Multyphysics v5 without considering the damping effect. The generated mesh 
together with the material properties were imported to COMSOL. The density-elasticity 
relationship and model parameters a, b and c were defined in COMSOL according to [20], as a 
first approximation. LiveLink ™ for MATLAB was used to apply the genetic algorithm and 
find the optimal coefficients. 
 
2.5 Obtaining coefficients of density-elasticity relationship using GA 
The FE model in Matlab was changed to represent a function with the coefficients a, b and c as 
inputs and the first five natural frequencies as outputs. Assuming that the most exact density-
elasticity relationship can result in the most precise values of natural frequencies, we defined 
an optimization problem to obtain the coefficients in Eq. 2. The following objective function 
was taken to represent the discrepancy between numerical and experimental results: 
 
 𝑂𝐹 = (𝑓67)𝑓87): + (𝑓6:)𝑓8:): + (𝑓6;)𝑓8;): (3) 
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where 𝑓6< is the ith natural frequency obtained from experimental modal analysis, and 𝑓8= is the 
jth natural frequency obtained from numerical eigenfrequency analysis. The genetic algorithm 
toolbar in Matlab® R2014a was used to minimize the objective function. The initial population 
was chosen to be [a, b, c] = [2, 3, 0], and the boundary for searching the optimal answer was 
[0-10] for all parameters. Population size and number of generations were set to 40 and 10 
respectively. 
 
2.6 Validation 
The acquired density-elasticity relationship was used to assign material properties to the FE 
model of bone with clamped-free BCs. The results of eigenfrequency analysis were compared 
with the experimental natural frequencies to assess the validity of the relationship in different 
BCs. Other material assignment strategies were also examined, and the results were compared. 
 
3. Results and discussion 
Both hammer and shaker tests were performed to measure natural frequencies of bovine bone 
in free-free boundary conditions. Accelerometers used in shaker test were only able to measure 
bending vibrations in the x direction.   
 

Table 1. Natural frequencies of bone in free-free BCs; hammer and shaker tests 

mode shape/direction bending torsion bending 
x y - x y 

natural frequency 1st 2nd 3rd 4th 5th 
hammer (Hz) 646 834 1278 1875 2342 
shaker (Hz) 645 - - 1798 - 

 
Table 2 density of different material groups 

Material number 1 2 3 4 5 
Density (g/cm3) 711.9 1010.5 1309.0 1607.5 1906.1 

 
Table 2 represents the apparent densities of five material groups which are calculated using Eq. 
1. Many density-elasticity relationships are proposed in the literature for specific ranges of 
density which result in different values of elasticity. 
In order to obtain more accurate Young’s modulus values, genetic algorithm was applied to 
minimize the objective function defined in Eq. 3. Table 3 represents the results of this 
optimization process. The natural frequencies were determined using different density-
elasticity relationships (initial value, GA and Baca et al), and the results were then compared to 
experimental findings. 
 

Table 3 results of GA optimization 

Study ▶  GA Initial population Baca (2008) experiment 

Natural 
frequency 

1 623.3 549.3 572.7 646 
2 825.7 726.2 757.2 834 
3 1286.5 1132.0 1179.0 1278 
4 1877.5 1640.9 1706.2 1875 
5 2267.9 1981.3 2061.3 2342 
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Objective 
function OF 25.65 205.68 145.16 - 

Density-
elasticity 
equation 

coefficients 

a 1.26986 2 2.065 - 
b 3.81558 3 3.09 - 
c 2.62971 0 0 - 

 
Considering the values of objective function, it is clear that genetic algorithm can be utilized to 
find the coefficients of density-elasticity relationship which lead to an accurate FE model. 
Although the first three natural frequencies were used during the optimization process, results 
are accurate in all modes of vibration. This fact indicates that the resultant equation predicts the 
real values of Young’s modulus and not those which only minimize the objective function 
numerically. 
 

 
Figure 5. The first five natural modes of vibration; free-free BCs 

 
The first five natural frequencies of bone subjected to clamped-free BCs, based on different 
density-elasticity relationships, are presented in Table 4. The values are compared with 
experimental results and the proposed GA method. 
 
Table 4 first five natural frequencies of bone in clamped-free BCs; experimental results 

vs. FE  

 frequency1 frequency2 frequency3 frequency4 frequency5 mean 
%error 

Shaker test 63 - - 556 - - 
GA method 62.3 80.8 472.4 552.4 656.6 0.879 

literature 
 [13] 59.90 77.00 438.95 510.50 605.60 6.196 
[17] 55.68 72.20 387.25 456.60 546.85 14.417 
 [20] 60.40 77.70 448.35 524.70 621.36 4.520 

 
The suggested method results in more accurate natural frequencies not only in free-free BCs 
(which were used to obtain the model coefficients) but also in clamped-free BCs with totally 
different values of resonance frequencies. The predicted values of local Young’s modulus can 
therefore be considered as true and reliable. 
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Figure 6.  The first five natural modes of vibration; clamped-free BCs 

 
A sensitivity analysis was performed to investigate the effect of changing model parameters in 
equation (2) on the the first five natural frequencies of the bone. In Figures 7 through 9, two 
parameters were kept constant while the third parameter changed around a mean value. 
Variation of the Poisson’s ratio did not have a significant effect on the bending natural 
frequencies. Torsional natural frequency, however, slightly decreased with increasing Poisson’s 
ratio values (Fig. 10). 
 

 
Figure 7. sensitivity analysis; parameter a  

 

 
Figure 8. sensitivity analysis; parameter a 

 

 
Figure 9. sensitivity analysis; parameter a 

 

 
Figure 10 sensitivity analysis Poisson’s ratio 
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Local optimal points were avoided in GA, because of mutations and the final result were closer 
to the global minimum. However, Genetic algorithm could be time consuming when the number 
of generations and population increase. To avoid this problem, number of generations and 
population were limited to 10 and 40, respectively.  
There were several limitations associated with the FE model. Five material groups were 
considered to be enough to represent the distribution of the mechanical properties. Additionally, 
the effect of marrow on the bone response was presumed negligible, and the material behavior 
was assumed to be isotropic and linear elastic. A more advanced model may include more 
groups of materials or a continuous distribution of material properties and consider the effects 
of nonlinearity, anisotropy and bone marrow in the model. 
 
4. Conclusion 
In this study, the density-elasticity relationship of a bovine bone was determined by introducing 
and solving an optimization problem. Genetic algorithm was used to minimize the difference 
between natural frequencies obtained from experimental and FE modal analyses. The 
assumption was that the experimental and numerical results agree, if the material distribution 
in model approaches the real distribution. 
Using the density-elasticity relationship obtained by GA, the numerical resonant frequencies 
were in good agreement with the experimental results in all modes of vibration with free-free 
and clamped-free BCs. It can be concluded that the relationship between density and elasticity 
of bone can be determined with a single mechanical test (experimental modal analysis) and 
solving an optimization problem based on FE analysis, where the results are valid for all bone 
density ranges. 
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Abstract 

In this paper, an improved topology optimal model of continuum structures subject to frequency 
constraints is established based on Independent, Continuous, Mapping (ICM) method. Firstly, two 
filter functions- Power Function(PF) and Composite Exponential Function(CEF) are selected to 
recognize the design variables, and  to implement the changing process of design variables from 
“discrete” to “continuous” and back to “discrete”. Explicit formulations of frequency constraints are 
given based on Rayleigh’s quotient, filter functions, first -order Taylor series expansion. Then, an 
improved optimal model is formulated using different filter functions and the explicit frequency 
constraints.  The program based on the dual sequence quadratic programming (DSQP) and global 
convergent method of moving asymptotes algorithm(GCMMA) for solving the optimal model is 
developed on the platform of MSC.Patran & Nastran. Finally, numerical examples are given to 
demonstrate the validity and applicability of the proposed method. By comparison, we find that the 
results from DSQP method equipped with filter function of composite exponential function are a little 
better than other methods for the problem of frequency constraints. 
Key words：Topological optimization·Continuum·Frequency constraint· Independent Continuous 
and Mapping(ICM) method·filter function 
 

Keywords: Topological optimization, Continuum, Frequency constraint, Independent Continuous 
and Mapping(ICM) method, filter function. 

Introduction   

The essence of topology optimization lies in searching for the optimum path of transferring loads, 
therefore the computational results of topology optimization are usually more attractive and more 
challenging than the results of cross-sectional and shape optimization. Although topology 
optimization is only in conceptual design phase in engineering, the design results significantly 
impacts the performance of the final structure. Since the landmark paper of Bendsøe and Kikuchi[1], 
numerical methods for topology optimization of continuum structures have been developed quickly 
in application[2]. The known are homogenization method[5],6], variable density method(including 
SIMP and RAMP interpolation model)[7-10], evolutionary structural optimization (ESO) [11-13], level 
set method [14-16]and so on. 

Compared with static topology optimization, the optimization algorithm on dynamic topology 
optimization is more complicated and the calculation of sensitivity analysis is more enormous. 
Frequency topology optimization is of great importance in dynamic topology optimization and 
engineering fields. Topology Optimization with respect to frequencies of structural vibration was 
first considered by Diaz and Kikuchip[17], who studied the topology optimization of eigenvalues by 
using the homogenization method where reinforcement of a structure is optimized to maximize 
eigenvalues. Subsequently, many researches focus on to expand topology optimization in dynamic 
problems. Ma et al. [18,19], Kosaka and Swan [20]presented different formulations for simultaneous 
maximization a set of frequencies of free vibration of disk and plate structures. Krog and Olhoff [21], 
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Jensen and Pedersen[22] utilize a variable bound formulation that facilitates proper treatment of 
multiple frequencies. Pedersen[23]deals with maximum fundamental frequency design of plates and 
includes a technique to avoid spurious localized modes. Jensen and Pedersen[22] presents a method 
to maximize the separation of two adjacent frequencies in structures with two material components. 
Zhu & Zhang[24] emphasize on layout design which is related to optimization of boundary 
conditions and it is studied to maximize natural frequency of structures. In 2007，Du and Olhoff[25] 

introduced SIMP method for maximization of first eigenvalue and frequency gaps. In 2009, Niu et 
al.[26] proposed a two-scale optimization method and found the optimal figurations of 
macrostructure- microstructure of cellular material with maximum structural fundamental frequency. 
Huang et al.[27] investigated the maximization of fundamental frequency of beam, plane and three-
dimensional block by applying a new bi-directional evolutionary structural optimization (BESO) 
method, and dealt with localized modes by modifying the traditional penalization function of SIMP 
method. Qi et al.[28] presented a level set based shape and topology optimization method for 
maximizing the simple or repeated first eigenvalues of structure vibration. Further development on 
frequency topology optimization see references[29-33]. 

Independent, Continuous and Mapping (ICM) method[34], which is proposed by Sui for skeleton 
and continuum structural topology optimization in 1996. This method generalizes topological 
variables abstractly independence of the design variables such as sectional sizes, geometrical shape, 
density or Young’s modulus of material. Filter functions are used to map the changing process of 
topological design variables from “discrete” to “continuous” and back to “discrete”. The smooth 
model with minimizing structural weight is established and solved by the traditional algorithms in 
mathematical programming. This model is beneficial to maintain the consistency of objective and 
constraint in cross-sectional optimization, shape optimization and topology optimization. 

In this paper, we extend our previous research[34-36] primarily about Independent, Continuous and 
Mapping (ICM) method on static topology optimization issues of continuum structures to dynamic 
topology optimization field. A model of topology optimization for the lightest structures with 
frequency constraints is investigated. An improved model of continuum topology optimization with 
Composite Exponential Function(CEF) as filter function instead of Power function is established. 
Among the methods of mathematic optimization model solving, mathematical programming (MP) 
method is popular. Because of the nonlinearity of mathematic optimization model in topology 
optimization of continuum structure，sequential quadratic programming (SQP) in the MP method 
are widely used. And the dual theory is used to convert the constrained optimization model to one 
with reduced number of design variables, and the solving efficiency is greatly improved. Therefore, 
dual sequential quadratic programming (DSQP) algorithm is employed in this paper, and the results 
is compared with that of the global convergent method of moving asymptotes algorithm 
(GCMMA)[37,38]. 

This paper is organized as follows. In section 2, the optimization formulation and description 
of filter function are introduced. In section 3, an improved frequency topology optimization model 
based on ICM method is built. Optimal algorithms to solve the mathematical optimization problem 
are given in section 4. Numerical simulations are presented in section 5. In section 6, conclusions 
are given. 

1 Problem formulation and description of filter function  

1.1 Optimization problem formulation 

For structural cross-section and shape optimization, natural frequency of structure is often taken 

as constraint. We denote if  as the frequency of i-th order, and ii ff ,  are the low and up bound of i-

th order frequency respectively. They satisfy the following inequality: 
(i) 11 ff  ; 
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(ii) ii ff   and 11   ii ff in non-frequency band constraints. 

For elastic structure, the usual relation between frequency f and eigenvalue is 22 )( f  . 
Therefore, the   frequency constraints can apparently be transformed into eigenvalue constraints 
using the formula. Here we uniformly use   )(g   to generalize (i) and (ii) based on 22 )( f  . 

Thus, the model of continuum topology optimization with frequency constraints can be 
formulated as follows 


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                                                                          (1) 

where t  and W  denote the topological design variable vector and the weight of structure. i  and j  
are the i-th element and the j-th order frequency respectively, J  and N  represent the total number 
of constraints and elements. And t  is the lower bound of design variables, e.g. 001.0t . 

1.2 Description of the filter function  

In  order to develop the model ICM method, we firstly investigate the essential part of ICM—the 
filter function. Its definition and choosing determine the establishment and solving of optimization 
model, and further filter funciton will make great impact on the final performance of topology 
optimization.  In order to map the  topological variables from “discrete” to “continuous”, Sui(1996) 
studied the filter function )( itf . 

Several types of filter function are suggested in ICM method[34]. Among which, Power Function(PF) is used 
frequently  in application[36] and is as follows 

1,)(  
ii ttf                                                              (2)  

Here it  denotes i-th design variable.  is a positive constant. 
 We introduce a new filter function -Composite Exponential Function(CEF) to take the place of 

the old one  and it is as follows: 

1

1
)(

1 


 



e

e
tf

it

i , 0                                                               (3) 

 is a given positive constant and it is  determined by numerical experiments with different problems. In section 5, 

we compared the performance of the two types of filter function. 

Denote )( iw tf , )( ik tf and )( im tf  as filter functions for frequency topology optimization and they are given as  

follows: 
0)( iiwi wtfw  ,

0)( iiki tf kk  , 
0)( iimi tf mm                                       (4) 

Here 0
iw , 0

ik and 0
im are the element weight, element stiffness matrix and element mass matrix of 

original structure before the process of topology optimization, respectively. iw , ik and im are the 
ones in the process of  topology optimization, respectively. 

2 Improved model based on ICM method 

2.1 Determination of eigenvalue 
In the finite element analysis the dynamic behavior of a continuum structure can be represented 

by the following general eigenvalue problem 
( ) 0j j K M u                                                                                  (5) 
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where, K is the global stiffness matrix and M is the global mass matrix. jλ  
is the jth eigenvalue and 

ju is the eigenvector corresponding to jλ . The eigenvalue jλ  and the corresponding eigenvector ju  

are related to each other by Rayleigh quotient 

 
T
i i

j T
i i

 
u Ku

u Mu
                                                                    (6) 

2.2 Sensitivity analysis 
Since eigenvalue λj is implicitly related with topology variable t , we use first-order Taylor series 

expansion for eigenvalue to express their relationship explicitly. At first, the sensitivity of 
eigenvalue with respect to design variables should be derived.  

Take the reciprocal of stiffness filter function as design variables as follows 

 
1

i
k i

x
f t

                                                                                           (7) 

We have  
1( )i k it f x                                                                                          (8) 

Therefore, the stiffness matrix filter function, mass matrix filter function and weight filter function 
are given as follows 

     1 11 1 1
; [ ( )] ; [ ( )]k i m i m k w i w k

i i i

f t f t f f f t f f
x x x

                                                (9) 

In view of (6), we have the derivative of jλ to design variable as follows: 

j T T
j j j j j

i i i

λ
λ

x x x

  
 
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K M

u u u u                                                                 (10) 

Considering Eq.(4) and (9), the global stiffness matrix K and the mass matrix M can be calculated 

by 
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Substituting Eq.(11) to Eq.(10), we have 
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where,
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In (12), T1

2ij j i jU  u k u
 
and T1

2ij j i i jV λ u m u  represent the strain energy and the kinetic energy of ith 

element corresponding to the jth eigenmode, respectively. At this moment, the derivatives of 
eigenvalue with respect to all design variables can be obtained by subtracting the strain energy and 
kinetic energy for element mode from the results of modal analyses. 

2.3 Explicit expression of eigenvalue 
Using the first-order Taylor series expansion, the approximate expression of eigenvalue )(tj  

can be obtained  


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jj xx
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where superscript  is the number at the  -th iteration. 
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 Substitute Eq.(10) into Eq.(13), we get 
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The constraint ( )j j  x  can be rewritten as 
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For constraint ( )j j x , it can be rewritten as 
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Then frequency constraints can be simplified by the following inequality: 
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Thus ends the process of explicitly approximation of the frequency constraints. 

2.4 Improved model of frequency topology optimization  

Based on the above analysis, the model of topology optimization with frequency constraints by 
introducing filter function can be transformed as follows: 
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By using explicitly approximation of the frequency constraints, the model (17) can be written as 
follows: 
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3. Solution of the improved topology optimization model  

3.1 Standardization of objective  
Considering model (18) is a programming with nonlinear objective and linear constraints following 
the explicit process of frequency constraints, the second-order Taylor series expansion is used to 
approximate the objective function and ignore the constant item. The model is transformed into the 
following quadratic programming model: 
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As objective function varies with different filter functions, investigation of the different cases 
following different types of filter functions is necessary. Here we focus on PF and CEF. 

When PF is applied as the filter function, it is given as follows: 
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Therefore the objective function  (19) can be rewritten as: 
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When CEF is applied as the filter function, it is given as follows: 
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                                                                 (25) 

Similarly, the objective function in (20) can be expressed as 
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        

2
1/ 1/0

1/
4 1/

1 1 1
1 1 1 2

2 1

k

k k w
k

w

γ
γ γ γ

vγk i k
i iγ vv

w wii

γ w γe e
a e x

γ e γxx


     

              

 , 

        
2

1/ 1/0
1/

3 1/

1 1
1 2 1 3

1

k

k k w
k

w

γ
γ γ γ

vγk i k
i iγ vv

w wii

γ w γe e
b e x

γ e γxx


     

               
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They are two undetermined parameters. 

3.2 Solving algorithms of optimization model 
With the above analysis and solving of (19), DSQP and GCMMA are employed. The optimal 

topology structure with continuous design variables is obtained. The iterating computation will end 
until following condition is satisfied  









)(

)()(

x

xx 1

 

x* obtained at this moment is just the optimal solution of Eq. (19) however. Then t* can be 

calculated based on Eq. (8). Let 
*tt  )1(k

 and modify the last structure via immediate iteration 
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optimizing, and again enter next iteration. Similarly, iterating in this way until the following 

condition is satisfied 





 



)1(

)()1( )(

W

-WW
W                                                              (20) 

Where )(W  and )1( W  is the structural weight of previous iteration and current iteration, respectively. 
 is a precision of convergence, which is prescribed to be 0.001 herein. 

3.3 Discretization of continuous design variables 

To map design variables from “continuous” to “discrete” back, filter threshold value is needed. We 
denote filter threshold value as 0T  to determine whether the element is deleted or not. In order to 
measure the discreteness degree of topology variables, we use Mnd[39] as a criterion and it is given 
(21).   

 
1

4 1
100%

n

i i
i

nd

T T
M

n



 


                                                      (21) 

where iT  is the topological variable value for the i-th element and n is the total number of the 
elements. Following (21) , if all the topological values are 0 or 1, Mnd  is 0; if the topological values  
are 0.5, Mnd is 1;  the more closer of the topological values  to 0 or 1, the more smaller value of Mnd 
and the better of the optimal result. 

4. Numerical examples 
In this section, we illustrate the proposed method with three examples for the topology 

optimization with frequency constraints. The first one is a rectangular beam with two frequency 
constraints. We address the ability of schemes to obtain discrete solutions and compare the 
solutions obtained using two different filter function. We show how it is possible to formulate and 
solve optimal problems. The second one is a cylindrical shell structure by second frequency 
constraint. We aims to compare with the results by using two algorithms combined with two filter 
functions. For the computation, the initial values of topology variables are all given as unit (t=1), 
the lowest bounds of topology variables and the convergence precision values are 0.01 and 0.001, 
respectively. 
Example 1 Rectangular beam with two frequency constraints 
It is a rectangular beam with two ends clamped and the thickness of beam is assumed as 1mm 
shown as Fig.1. The design domain is 140mm×20mm, and a concentrated mass (Mc = 50g) is 
attached at the center of base structure and it has inertia only in Y direction. The Young’s modulus 
E = 100GPa, Poisson’s ratio μ=0.3 and mass density ρ = 1000kg/m3. The structure is divided into 
140×20 four-node rectangular elements. We set frequency constraints for the design problem is f1≥

8000Hz, f2≥60000Hz. The topology optimization equation was formulated combine PF and CEF 
filter functions, respectively. 

 
Fig.1 Geometry model of clamped beam 
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(a)Optimal topology 
configurations with PF 

(b)Optimal topology 
configurations with CEF 

Fig.3 Optimal topology configurations with PF different filter functions 
The solving topology configuration of the beam with different filter functions is given in Fig.3. 

The iterative curve of computation with different filter functions are described in Fig.5-8. To 
describe the dynamics of optimal structure, the first three modal shapes of optimal structure with 
two filter functions are computed and displayed in Fig.4-6. The frequency and structural weight 
changing with time in the optimization process are presented in Fig.7 and Fig.8 with different filter 
functions. The optimal results with different filter function are shown in Table.1 and the computed 
distribution of topological design variable values is listed in Table 2.       

Order  PF CEF 

1 

2 

3 

Fig.4 Modal shapes of optimal structure with different filter functions 
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Fig.5 Iteration curves of frequency with PF
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Fig.6 Iteration curves of frequency with 

CEF 

Table1 Optimal results with different filter functions 
 
 

 
 
 
 
 

Filter function PF CEF 

Iteration 45 51 

Mass (g) 2.067093018 1.9778114014 

f 1 (Hz) 8003.934082 8003.0073242 

f 2 (Hz) 59968.550781 60027.289063 
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Fig.9 Geometry model of 
cylindrical shell 

Table2 Distribution of topological value with different filter functions 

Distribution of topology value PF CEF 

(0,0.1] 240 472 

(0.1,0.2] 72 60 

(0.2,0.3] 52 56 

(0.3,0.4] 24 64 

(0.4,0.5] 52 48 

(0.5,0.6] 108 44 

(0.6,0.7] 160 28 

(0.7,0.8] 232 84 

(0.8,0.9] 216 188 

(0.9,1] 1644 1756 

Total number of element 2800 2800 

Mnd 26.74% 16.36% 
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Fig.7 Iteration curves of constrainted 
frequencies with different filter functions 
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Fig.8 Iteration curves of mass with 

different filter functions 

Example2 Cylindrical shell with the second frequency constraint 

A cylindrical shell structure with thickness is 1m, bus-bar a= 20m, arc 
b=20m, central angle α =0.25 and radius R=80m was shown in Fig.10. In 
addition, a concentrate mass M=312000kg was attached on the center of 
cylindrical shell. The Young’s modulus E = 100GPa, Poisson’s ratio 
μ=0.3 and mass density ρ = 7800kg/m3. The structure was divided into 
30×30 four-node rectangular elements. The constraint frequency for the 
design problem is f2≥28 Hz. The topology optimization equation was 

formulated combine PF and CEF filter functions, respectively.  
 

 
Optimal topology configurations after optimization are shown in Fig.10. Iteration curves of 

first three frequencies with different algorithms and filter functions are given in Figure11. From 
Fig.12 and Fig.13, we can get  the iteration curves of second frequencies and the iteration curves of 
structural mass for different algorithms and  filter functions. Table3 lists the results of optimization 
for cylinder shell.  
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Table3 Results of optimization for cylinder shell 

 

 
(a) GCMMA& PF (b) GCMMA&CEF (c) DSQP& PF (d) DSQP& CEF 

Fig.1 Optimal topology configuration with different algorithms and filter functions. 
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(c) DSQP& PF (d) DSQP& CEF 
Fig.11 Iteration curves of first three frequencies with different algorithms and filter functions 

Algorithm and filter 
function 

GCMMA& PF GCMMA&CEF DSQP&PF DSQP&CEF 

Iteration 12 29 12 46 

Mass (kg) 2634298.85 2309522.20 2633713.28 2146202.33 

f 2 (Hz) 28.104261398 28.017398834 28.0874 28.0153 

f 3 (Hz) 28.114189148 28.737268448 28.1656 28.7392 
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0 10 20 30 40 50

2x106

2x106

2x106

2x106

3x106

3x106

3x106

3x106

3x106

3x106

3x106

3x106

M
as

s 
(k

g)

Iteration

 GCMMA&PF
 GCMMA&CEF
 DSQP&PF
 DSQP&CEF

Fig.13 Iteration curves of mass  

Conclusion 

In this paper, an improved frequency topology optimization model of continuum structure is 
developed based on ICM method. CEF- a new filter function is selected to recognize the design 
variables, as well as to implement much better the changing process of design variables from 
“discrete” to “continuous” and back to “discrete”. Explicit formulations of frequency constraints are 
given by extracting structural strain and structural kinetic energy from the results of structural 
modal analysis. An improved optimal model is formulated using CEF and the explicit frequency 
constraints.  The program based on DSQP and GCMMA for solving the optimal model is developed 
on the platform of MSC.Patran & Nastran. Finally, two examples of continuum structure are 
computed to demonstrate the feasibility of the proposed method. 
     The performance of the developed program are given in Fig.3,Table1, Table2, Table3, Fig.7, 
Fig.8, Fig.10, Fig.12, Fig.13. The results from Fig.3 and Fig.10 show that clear and stable 
configurations can be obtained using different algorithms and filter functions, and we find that 
configurations computed with DSQP combined PF and DSQP combined CEF, GCMMA combined 
PF and GCMMA  combined CEF are similar  between one and the other in Fig.10. From Table 1, 
we can see that the objective (weight )with CEF  is apparent lower than that of PF. However, the 
iterative step numbers of CEF is larger than that of PF for the convergence. We can also find that 
DSQP combined CEF has the best performance for the optimization example from the point of 
view of optimal objective in Fig.13. From the point of the discrete degree, Table2 for the 
distribution of optimal topological values show that the Mnd with PF and CEF are  26.74% and 
16.36%, the difference is apparent . CEF has the better performance in the process of optimization. 
   Although  the comparison  of  DSQP  with  GCMMA  from the  recent reference are done, and we 
have  better results coupled with two different filter function, we just give compared results based 
on ICM method. To improve continuum structure optimal algorithms , it is necessary to investigate 
the algorithm based on other methods. 
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Abstract 
The discontinuous Galerkin method (DGM) is an important numerical method in 
computational fluid dynamics. The characteristics of DGM include its flexibility to construct 
high order schemes by using high order basis functions, and its compactness regardless of 
basis function orders. In supersonic simulations, the DGM often perform severe oscillations in 
regions where strong discontinuity solutions appear, so the slope limiters become necessary. 
In this study, three slope limiters are considered: TVB limiter, WENO limiter and HWENO 
limiter. The performance of these limiters are compared and analyzed with two dimensional 
supersonic cylinder flows. The results of show that all these limiters are able to stabilize the 
solution procedure, but the solutions show some differences between these limiters. 
Explanations as well as possible improvements are given. 

Keywords: Discontinuous Galerkin Method, Supersonic Flow, Slope Limiter 

Introduction 

The discontinuous Galerkin method was first proposed by Reed and Hill [1] for neutron 
transportation problems, since then, the application of this method is widely extended. The 
applications include fluid simulations, MHD simulations, shallow water simulations and 
many others. In the area of supersonic flow simulations, the traditional methods include finite 
volume method and finite difference method, both of these methods have defects in modern 
supersonic flow simulations, the finite difference method has its weakness of dealing with 
complex geometric shapes, and the finite volume method has its weakness of constructing 
high order scheme on unstructured meshes. The DGM could overcome both of the defects of 
traditional methods. By introducing element-wise polynomial basis functions and inter-cell 
numerical fluxes, the DGM could have compact stencil on complex geometries. These 
characteristics make it an ideal candidate of next generation supersonic flow simulations. 
 
When DGM is utilized in supersonic flow simulations with strong shockwaves, numerical 
instability is a major problem of this scheme, which will cause non-physical oscillations and 
divergent solutions. Many possible solutions have been proposed to overcome this defect, 
artificial viscosity and slope limiters are the two main approaches. In this study, slope limiters 
are utilized to suppress non-physical oscillations. Slope limiters were adopted into DGM by a 
collective effort of many researchers [2]-[6]. Slope limiters will detect severe oscillations of 
solutions and smooth them with smoother polynomials. In this study, the performances of 
TVB limiter [2], WENO limiter [5] and HWENO limiter [6] in shockwave regions are 
compared. 

Governing Equations 

The governing equations of two dimensional inviscid supersonic flows are Euler equations 
are. The conservation forms of these equations are: 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

843



 0U F G
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (1) 

where U, F and G refer to conservative state vector, x-direction inviscid flux and y-direction 
inviscid flux respectively.  
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To enclose the equation system, the equation of state is introduced. 

 p RTρ=  (3) 

Discontinuous Galerkin Method 

The physical domain hΩ  is divided into non-overlapping elements K, where ∪K= hΩ . A 
reference element K' is introduced to simplify numerical integrations, the reference element 
and physical element are connected with coordinates mapping. 

 
1

: : ( )K i i
i

m

F K K x xx χ x
=

′→ =∑:  (4) 

where m, iχ , and ix  refer to number of element interpolation functions, element shape 
functions and shape function coefficients respectively. 
 
At any moment t, the unknowns ( , )hU tξ  on reference element can be expressed in basis 
function space { ( )}; 1,..,ispan i mξψ = . 

 
1

(( ), ) ( )
m

h i i
i

t U tU ξξ ψ
=

=∑  (5) 

In each element, the weak form of governing equations is introduced. 
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with some manipulations, the equations have the following form. 
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where F and G refer to inter-cell fluxes, in DGM, the solution has multiple values on element 
boundaries, in order to determine the value of inter-cell fluxes, numerical flux functions are 
introduced, in this study, the Van Leer flux [7] is adopted to calculate fluxes F and G. 
 
In each time step, a system of ordinary differential equation is formed: 
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where Res( ; )jK i  is residual term. 

 
( )

Res( ; )

+ d d ; ( 1,..., )
j j

j

i i
K K i x y

K i

F G Fn Gn S i m
x y
φ φ φ∂

 
 


=

∂ ∂
Ω + =

∂ ∂ 
∫ − ∫  (9) 

so the equations become: 

 = Res( ; ) ; ( 1,..., )
jK j

dUM K i i m
dt

=  (10) 

or 

 1= Res( ; ) ; ( 1,..., )
jK j

dU M K i i m
dt

− =  (11) 

where jKM  refers to the mass matrix on element Kj. 
 
A third order explicit Runge-Kutta scheme is introduced to solve this ordinary equations 
system. 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( )

1 1

2 1 11

3 2 21

31

( ),
3 1 ( )
4 4
1 2 ( )
3 3

n n

n

n

n

U U tM R U

U U U tM R U

U U U tM R U

U U

−

−

−

+

= + ∆

 = + + ∆ 

 = + + ∆ 

=

 (12) 

where ( )nU U t= , 1 ( )nU U t t+ = + ∆ . 
 
When high order basis functions are introduced, the dissipation of DGM is not enough to 
suppress numerical oscillations near strong discontinuity regions. In order to eliminate non-
physical oscillations in numerical solutions, slope limiters are adopted. The TVB limiter, 
WENO limiter and HWENO limiter are commonly used. 
 
The TVB limiter limits the first order components of solutions. 

 ( ) ( )
2

1 1
1 2 2

1 2 1

,
, , ,

m , , , ,m
m

a a M x
m a a a

a a a a M x
≤ ∆

⋅⋅⋅ =  ⋅⋅⋅ > ∆
 (13) 

where M refers to a problem dependent constant, and m is minmod function. 

 ( ) ( ) ( )1 2
1 2

min , if sign( ) sign sign
m , , ,

0, else
i i m

m
s a s a a a

a a a
 = = = ⋅⋅⋅ =

⋅⋅⋅ = 


 (14) 

In WENO limiter, the average solutions of adjacent elements are used to reconstruct smooth 
solutions. If an element K0 has three adjacent elements K1 K2 and K3, the reconstruction 
stencils of polynomial P1 for this element are K0K1K2, K0K1K3 and K0K2K3. 
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0
0

1
0

1

1

1

1

1 , ( , ) (1, 2), (2,3), (1,3)

m
m

n
n

KK

KK
m

KK
n

Pd q
K

Pd q
K

Pd q m n
K

Ω =

Ω =

Ω = =

∫

∫

∫

 (15) 

The HWENO limiter takes gradients of solutions into consideration, for an element K0 with 
adjacent elements K1, K2 and K3，four additional Hermite polynomials are constructed with 
stencils K0K0, K0K1, K0K2 and K0K3. 

 

0
0

1
0

1 1

1

1 , 0,1,2,3
s

s

KK

K
s i i K

Pd q
K

P Pd s
K x x

Ω =

∂ ∂
Ω = =

∂ ∂

∫

∫
 (16) 

the new solution P is reconstructed based on polynomial P(i) and weight wi. 

 ( )

1

m
i

i
i

P w P
=

=∑  (17) 

The WENO and HWENO limiters get a better performance if they are activated only on 
strong discontinuity regions. In this study, a shock detector [8] is introduced to indicate 
problem elements, on which the WENO or HWENO limiter is activated. 

Numerical Results 

Supersonic cylinder flow is chosen as test case for the performance of limiters. There is a 
strong shockwave in front of the cylinder, which will test the stability of numerical schemes. 
The radius of cylinder is 0.01, inflow Mach number is 3, and the non-dimensional inflow 
parameters are: 1ρ = , 1u = , 0v = , ( )21/p Mγ= , Fig.1 shows the sketch of computational 
mesh, in order to perform large-scale numerical simulations on parallel computers, the mesh 
is partitioned into 40 sub-domains using Metis software package, 40 processers are utilized to 
speed up the solution procedure. In order to increase the converge speed to steady state 
solution, local time stepping method is introduced. 
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Figure 1.  Computational mesh partitions(left) and its details (right) 

  
Figure 2.  Density contour (left) and 3D view (right), with TVB limiter 

  
Figure 3.  Density contour (left) and 3D view (right), with WENO limiter 
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Figure 4.  Density contour (left) and 3D view (right), with HWENO limiter 

 
Figure 5.  Elements on which limiter are activated 

Density distributions and 3D density contours obtained by TVB, WENO and HWENO 
limiters are shown in Fig.2 to Fig.4. The results show that all these three limiters could 
stabilize the solution when strong shockwave appears, and capture the shockwave within few 
elements. In the shockwave regions, the density distribution with TVB limiter shows small 
overshoot, while the density distribution with WENO and HWENO limiter shows no 
overshoot. And the HWENO limiter gives more smooth solution than WENO and TVB 
limiters. Fig.5 shows the shockwave detected by shock detector, the red colored elements 
indicate that there are shockwaves, limiters are activated only on these elements. 

 
Figure 6.  Density distributions along stagnation line. 

The density distributions along stagnation line are shown in Fig.6, the density distributions 
before and after shockwave are identical for all the three limiters. But the shockwave position 
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predicted with WENO limiter is more closer to the cylinder than the other limiters, the cause 
of these differences need more investigations. 

Conclusions 

In this study, the performance of slope limiters in discontinuous Galerkin method are 
compared and analyzed with two dimensional supersonic cylinder flows. The results show 
that all these limiters are able to stabilize the solution procedure, in shockwave regions the 
density fields predicted with WENO and HWENO limiters are smoother than TVB limiter 
and contain no overshoot. In supersonic simulations, the WENO and HWENO limiters show 
better performances in suppressing non-physical oscillations and obtaining smooth solutions. 
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Abstract

A recently developed numerical method, multidomain quasilinearisation method, is applied on
a steady laminar, natural convection boundary layer flow of MHD viscous and incompress-
ible fluid from a vertical permeable flat plate with uniform temperature in this paper. Non-
dimensionless variables are used to transform the governing equations to a system of non-
dimensional nonlinear partial differential equations. Then the resulting equations are solved
numerically by using multidomain quasilinearisation method. The numerical results for tan-
gential velocity, transverse velocity, and temperature, skin friction and Nusselt number are cal-
culated and shown in a table and in various graphs.

Keywords: Natural convection; Magnetohydrodynamics; Multi-domain; Thermal radiation;
Boundary layer.
Nomenclature

B Magnetic induction
Cfx Local skin friction
e Electronic charge
E Intensity of electric field
g Gravitational acceleration
Grx Modified Grashof number
H Magnetic intensity
J Electric current density
m Hall parameter
M Magnetic parameter
Nux Local Nusselt number
p Pressure
Pr Prandtl number
T Temperature of the fluid
T∞ Free stream temperature
x, y, z Co-ordinate directions
u, v, w Velocity components in x, y, z directions
v Velocity component normal to u
V Transpiration velocity
x Axial coordinate
y Coordinate normal to x
qr Thermal radiation
R Thermal radiation parameter
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Greek symbols
α Thermal diffusivity
β Volumetric expansion coefficient for tem-

perature
ψ Stream function
θ Dimensionless temperature function
ρ Density
ν Kinematic viscosity
µ Dynamic viscosity
ξ Transpiration parameter
η Pseudo similarity variable
Subscripts
w Conditions at wall
∞ Conditions far away from wall

Introduction

In many industrial processes, the study of magnetohydrodynamics natural convection flow and
heat transfer has attracted considerable attention during the last decades. This is due to its
applications which are found in MHD generator, flight MHD, Plasma studies, nuclear reactors,
geothermal extractions, Hall accelerators and boundary layer control in the field of aeronautics
and aerodynamics. Another important application of magnetohydrodynamic natural convection
boundary layer flow past a semi-infinite vertical permeable flat plate with uniform mass flux
is in space flight and in nuclear reactor. This applications normally requires a strong magnetic
field and a low density gas and therefore the Hall current and ion slip becomes important.

The natural convection boundary layer flow from a vertical wall with Hall current and heat
flux has been discussed by Sato [1], Yamanishi [2], Sherman and Sutton [3], Sing and Cowling
[4], Sparrow and Cess [5], Gupta [6]. Free convection flow of a conducting fluid permeated
by a transverse magnetic field was studied by Katagiri [7]. It has been observed by Singh and
Cowling [4] that regardless of the strength of the applied magnetic field there will always be
a region in the neighborhood of the leading edge of the plate where electromagnetic force are
unimportant, whilst at large distances from the leading edge this magnetic force dominate. Pop
and Watanabe analyzed the free convection flow of a conducting fluid permeated by a transverse
magnetic field in the presence of Hall effects and uniform magnetic field.

Numerical solutions of MHD convection and mass transfer flow of viscous incompressible fluid
were studied by Wahiduzzaman et al. [9]. They assumed that the induced magnetic field is
negligible compared with the imposed magnetic field. Saha et al also studied the effect of Hall
current on the steady, laminar, natural convection boundary layer flow of MHD viscous and
incompressible fluid from a semi-infinite heated permeable vertical flat plate with an applied
magnetic field transverse to it has been investigated, assuming that the induced magnetic field
is negligible compared to the imposed magnetic field.

In the design of nuclear plants, gas turbines, propulsion devises for aircraft, missiles, satel-
lites, and space vehicles, radiative heat transfer is a very important factor. This is due to the
non-isothermal effects where high temperature is involved. Most studies that involve thermal
radiation have been mostly limited to a stretching sheet. Some of the important investigations
involving thermal radiation effects can be found in, for example, Englang and Emery [10], Gorla
and Pop [11], Raptis [12], Abd El-Aziz [13, 14, 15].
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Most of these studies rely on traditional numerical methods which requires the use of many grid
points for accurate solutions. This is the result of the presence of local variable ξ which does
not give accurate results for, usually, values of ξ > 1 [17]. The present study attempts to obtain
the accurate solution with the use of few grid points.

It has been demonstrated that the finite difference method gives the solutions for all large values
of transpiration parameter ξ. However, nonsimilarity method cannot give solutions for large
values of ξ [16]. The aim of this paper is to give an alternative method that will handle solutions
for large values of ξ when nonsimilarity transformation methods are used.
Problem Formulation

Consider the steady natural convection boundary layer flow of an electrically conducting and
viscous incompressible fluid from a semi-infinite heated permeable vertical flat plate in presence
of magnetic field and thermal radiation with the effect of Hall currents.

Applying the Boussinesq approximation, the boundary layer equations governing the flow under
the assumption that the fluid is quasi-neutral and ion slip and thermoelectric effect results in the
following system of equations:

∂u

∂x
+ ∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2 + gβ(T − T∞)− σB2
0

ρ(1 +m2)(u+mw), (2)

u
∂w

∂x
+ v

∂w

∂y
= ν

∂2w

∂y2 + σB2
0

ρ(1 +m2)(mu− w), (3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2 −
1
ρcp

∂qr

∂y
, (4)

(5)

where u, v and w are the velocities in the x−,y− and z− direction, T is the fluid temperature,
ν(= µ/ρ) is the kinematic coefficient of viscosity, µ is the fluid viscocity and ρ is the fluid
density, α(= κ/ρcp) is the thermal diffusivity with κ being the fluid thermal conductivity and
cp is the heat capacity of the fluid at constant pressure, qr is the thermal radiative heat flux, m(=
ω2τ 2) is the Hall parameter, with ω as the cyclotron frequency of electron and τ as collision
time of electrons with ions.

The radiative heat flux qr under Rosseland approximation takes the form

qr = − 4σ
3k1

∂T 4

∂y
, (6)

where σ is the Stefan-Boltzmann constant and k1 is the mean absorption coefficient. Assuming
that the temperature difference within the flow is sufficiently small, T 4 may be approximated in
Taylor series form, after ignoring higher order terms, as follows:

T 4 = 4T 3
∞T − 3T 4

∞. (7)

Applying (6) and (7) to equation (4) we get

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2 −
16σT 3

∞
3k1ρcp

∂2T

∂y2 . (8)
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The boundary conditions are:

u(x, y) = 0, v(x, y) = −V0, w(x, y) = 0, T (x, y) = Tw at y = 0 (9)
u(x, y) = 0, v(x, y) = 0, w(x, y) = 0, T (x, y) = T∞ at y =∞, (10)

where V0 is the transpiration velocity which is positive for suction and negative for injection.

The set of non-linear partial differential equations are transformed by introduction of dimen-
sionless group of transformations for the dependent and independent variables applicable in
natural convection flow from a vertical surface:

ψ(x, y) = νGr1/4
x [f(ξ, η) + ξ], η = y

x
Gr1/4

x , ξ = V0x

ν
Gr−1/4

x , (11)

w(x, y) = ν

x
Gr1/2

x g(ξ, η), θ = T − T∞
Tw − T∞

(12)

where ψ is the stream function, defined by

u = ∂ψ

∂y
and v = −∂ψ

∂x
(13)

which satisfies the continuity condition (1). In the above equation (12) f is the dimensionless
stream function, g is the dimensionless velocity and θ is the dimensionless temperature of the
fluid. η is the pseudo-similarity variable and ξ is the transpiration parameter depending on the
transpiration velocity V0 and the axial variable x.

Applying these transformations to the system of equations (2) - (4), the resulting governing
non-similarity system of partial differential equations are expressed in dimensionless form as
[17]:

f ′′′ + 3
4ff

′′ − 1
2f
′2 + θ + ξf ′′ − M

(1−m2)(f ′ +mg) = 1
4ξ
(
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

)
, (14)

g′′ + 3
4fg

′ − 1
2f
′g + ξg′ − M

(1−m2)(g −mf ′) = 1
4ξ
(
f ′
∂g

∂ξ
− g′∂f

∂ξ

)
(15)

1
Pr

(
1 + 3

4R
)
θ′′ + 3

4fθ
′ + ξθ′ = 1

4ξ
(
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
(16)

where the local Grashof number, magnetic field number and thermal radiation parameter are,
respectively, given by

Grx = gβδT

ν2 x3, M = σB2
0x

2

ρGr
1
2
x

, R = 4σT 3
∞

kk1
(17)

The primes in the above equations denoted differentiation with respect to η and the correspond-
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ing boundary conditions are given by

f(0, ξ) = f ′(0, η) = 0, g(0, ξ) = θ(0, ξ) = 1, (18)
f ′(∞, ξ) = g(∞, ξ) = θ(∞, ξ) = 0. (19)

The physical quantities of interest in this case are the skin-friction, Nusselt and Sherwood num-
bers which are defined in [23] as

CfxGr
−3/4
x = f ′′(0, ξ), NuxGr

−1/4
x = −θ′(0, ξ), (20)

respectively.
Bivariate Spectral Quasilinearisation Method (BSQLM)

In this section we first describe the standard bivariate spectral quasilinearisation method for
solving coupled non-linear partial differential equations. The quasi-linearisation method is
based on Taylor series expansion of system of equations about some previous approximation
of the solution. The assumption used is that the difference between the current and previous
solution is small. To illustrate the idea of the BSQLM we first write equations as

Ωk[H1, H2, H3] = 0, for k = 1, 2, 3, (21)

where H1, H2 and H3 represents equations (14), (15) and (16) respectively. The quasilinearisa-
tion scheme applied in equations (14) - (16) results in

a0rf
′′′
r+1 + a1rf

′′
r+1 + a2rf

′
r+1 + a3rfr+1 + a4r

∂fr+1

∂ξ
+ a5r

∂f ′r+1
∂ξ

+ a6rgr+1 + a7rθr+1 = R1r,

(22)

b0rf
′
r+1 + b1rfr+1 + b2r

∂fr+1

∂ξ
+ b3rg

′′
r+1 + b4rg

′
r+1 + b5rgr+1 + b6r

∂gr+1

∂ξ
+ b7rθr+1 = R2r,

(23)

c0rf
′
r+1 + c1rfr+1 + c2r

∂fr+1

∂ξ
+ c3rgr+1 + c4rθ

′′
r+1 + c5rθ

′
r+1 + c6rθr+1 + c7r

∂θr+1

∂ξ
= R3r,

(24)

where
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a0r = 1, a1r = 3
4fr + ξ + 1

4ξ
∂fr

∂ξ
, a2r = −f ′r −

M

1−m2 −
1
4ξ
∂f ′r
∂ξ

,

a3r = 3
4f
′′
r , a4r = 1

4ξf
′′
r , a5r = −1

4ξf
′′
r , a6r = − Mm

1 +m2 , a7r = 1,

b0r = −1
2gr + Mm

1 +m2 −
1
4ξ
∂gr

∂ξ
, b1r = 3

4g
′
r, b2r = 1

4ξg
′
r,

b3r = 1, b4r = 3
4fr + ξ + 1

4ξ
∂fr

∂ξ
, b5r = −1

2f
′
r −

M

1 +m2 , b6r = −1
4ξf

′
r, b7r = 0,

c0r = −1
4ξ
∂θr

∂ξ
, c1r = 3

4θ
′
r, c2r = 1

4ξθ
′
r, c3r = 0,

c4r = 1
Pr

(1 + 4
3R), c5r = 3

4fr + ξ + 1
4ξf

′
r.

R1r = a0rf
′′′
r + a1rf

′′
r + a2rf

′
r + a3rfr + a4r

∂fr

∂ξ
+ a5r

∂f ′r
∂ξ

+ a6rgr+1 + a7rθr+1 −H1,

R2r = b0rf
′
r + b1rfr + b2r

∂fr

∂ξ
+ b3rg

′′
r + b4rg

′
r + b5rgr + b6r

∂gr

∂ξ
+ b7rθr −H2,

R3r = c0rf
′
r + c1rfr + c2r

∂fr

∂ξ
+ c3rgr + c4rθ

′′
r + c5rθ

′
r + c6rθr + c7r

∂θr

∂ξ
−H3.

Applying spectral collocation on (14) - (16) gives

A11FFF i + a4r

Nt∑
j=0

dijFFF j + a5r

Nt∑
j=0

dijDDDFFF j + A12GGGi + A13θθθi = RRR1,i, (25)

A21FFF i + b2r

Nt∑
j=0

dijFFF j + A22GGGi + b6r

Nt∑
j=0

dijGGGj + A23θθθi = RRR2,i, (26)

A31FFF i + c2r

Nt∑
j=0

dijFFF j + A32GGGi + A33θθθi + c7r

Nt∑
j=0

dijθθθj = RRR3,i, (27)

where

Ai
11 = aaa0rDDD

3 + aaa1rDDD
2 + aaa2rDDD + aaa3rIII, Ai

12 = aaa6rIII, Ai
13 = aaa7rIII,

Ai
21 = bbb0rDDD + bbb1rIII, A22 = bbb3rDDD

2 + bbb4rDDD + bbb5rIII, A23 = bbb7rIII,

Ai
11 = ccc0rDDD + ccc1rIII, A32 = ccc3rIII, A33 = ccc4rDDD

2 + ccc5rDDD + ccc6rIII.

For convenience, equations (25), (26) and (27) are expanded for i = 0, . . . ,M2 and rearranged
to obtain the following matrix form

BrXr+1 = Rr (28)

where the coefficient matrix Br is defined as

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

855



where
Bii

11 = Ai
11 + aaa4rdiiIII + aaa5rdiiDDD, Bii

12 = Ai
12, B

ii
13 = Ai

13,

Bij
11 = aaa4rdijIII + a5rdijDDD, Bij

12 = 0, Bij
13 = 0,

Bii
21 = Ai

21 + bbb2rdiiIII Bii
22 = Ai

22 + bbb6rdiiIII, B
ii
23 = Ai

23,

Bij
21 = bbb2rdijIII, Bij

22 = 6r6r6rdijIII, Bij
23 = 0,

Bii
31 = Ai

31 + ccc2rdiiIII, Bii
32 = Ai

32, B
ii
33 = Ai

33 + ccc7rdiiIII,

Bij
31 = ccc2rdijIII, Bij

32 = 0, Bij
33 = ccc7rdijIII,

(29)

The vectorsXr+1 and Rr are defined as

Xr+1 =
[
F(0)

1,r+1G(0)
2,r+1 · · ·θθθ

(0)
m,r+1

∣∣∣F(1)
1,r+1G(1)

2,r+1 · · ·θθθ
(1)
m,r+1

∣∣∣ · · · · · · · · · · · · ∣∣∣F(M2)
1,r+1G(M2)

2,r+1 · · ·θθθ
(M2)
m,r+1

]T
Rr =

[
R(0)

1 R(0)
2 R(0)

3 · · ·R(0)
m

∣∣∣R(1)
1 R(1)

2 R(1)
3 · · ·R(1)

m

∣∣∣ · · · · · · · · · · · · ∣∣∣R(M2)
1 R(M2)

2 · · · R(M2)
m

]T
The approximate solutions are obtained by solving (28) iteratively for r = 0, 1, 2, . . .. The
inclusion of boundary conditions and multi-domain solution approach is discussed in the next
section through a specific example.
Multi-domain bivariate spectral collocation method for systems of PDEs

It is well-known that the standard form of the bivariate spectral quasi-linearisation method de-
scribed in [24] works well for problem defined over small domains. Large domains require
proportionally larger number of nodes to yield accurate results. For the BSQLM, increasing
the number of nodes increases the computational effort required to solve the matrix equations
almost exponentially. A simple way of ensuring that accurate solutions are obtained efficiently
over large domains is to seek to limit the size of the matrix equations. As can be noted from
matrix equation (28), the size of the coefficient matrix for a system of m PDEs in m unknowns
ism(M1+1)(M2+1) bym(M1+1)(M2+1), whereM1,M2 give the number of nodes in the x1
and x2 domains, respectively. Below, we introduce a strategy that seeks to reduce the size of the
matrix equations by ensuring that the value of M2 is kept to be as low as possible. For problems
where the largest order of the derivative with respect to x2 is one this can be achieved by evalu-
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ating the solution in a sequence of equal intervals, which are subject to continuity conditions at
the end points of each interval.

To apply the multi-domain bivariate spectral quasi-linearisation method (MD-BSQLM) we di-
vide the interval ξ ∈ [0, ξP ] into P sub-intervals Ωe = [ξe−1, ξe] for e = 1, 2, . . . , P as shown in
the illustration 1 below.

ξ0 ξ1 ξ2 ξ3 ξe−1 ξe ξP−1 ξP

Ω1 Ω2 Ω3 Ωe ΩP

ξe−1 ξe

ξ
(e)
0 ξ

(e)
1 ξ

(e)
2 ξ

(e)
q−1 ξ(e)

q

Figure 1: Multi-domain grid

Each interval Ωe is further divided into q divisions which are not necessarily of equal spacing.
The non-linear equations (25), (26) and (27) are solved in each subinterval [ξe−1, ξe] with the

solution denoted by
e

f(η, ξ) in this interval. In the first interval [ξe−1, ξe], the solution is
1
f(η, ξ)

is obtained subject to the “initial” condition
1
f(η, 0). For each e ≥ 2, at each interval [ξe−1, ξe],

the continuity condition
e

f(η, ξe−1) =
e−1
f (η, ξe−1) (30)

is used to implement the BSQLM over the interval [ξe−1, ξe]. This process is repeated to generate

a sequence of solutions
e

f(η, ξ) for e = 1, 2, . . . , P
In our system, the number of equations and unknowns is m = 3 and the orders of the highest
derivatives that are required as limits in the definition of the coefficient parameters and matrices
are

n1,1 = 3, n1,2 = 0, n1,3 = 0, n2,1 = 1, n2,2 = 2 n3,1 = 1, n3,3 = 2

With these values, the coefficient parameters and matrices are obtained using the formulas given
in the previous section and are defined in the appendix. Applying the spectral collocation gives

A11
e

FFF i,r+1 + a4r

M2∑
j=0

dij

e

FFF j,r+1 + a5r

M2∑
j=0

dij

e

DDDFFF j,r+1 + A12
e

GGGi,r+1 + A13
e

θθθi,r+1 =
e

RRR1,i, (31)

A21
e

FFF i,r+1 + b2r

M2∑
j=0

dij

e

FFF j,r+1 + A22
e

GGGi,r+1 + b6r

M2∑
j=0

dij

e

GGGj,r+1 + A23
e

θθθi,r+1 =
e

RRR2,i, (32)

A31
e

FFF i,r+1 + c2r

M2∑
j=0

dij

e

FFF j,r+1 + A32
e

GGGi,r+1 + A33
e

θθθi,r+1 + c7r

M2∑
j=0

dij

e

θθθj,r+1 =
e

RRR3,i, (33)
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where

Fi,r+1 = [fr+1(ξ̂i, η̂0), fr+1(ξ̂i, η̂1), fr+1(ξ̂i, η̂2), . . . , fr+1(ξ̂i, η̂M1)]T ,
Gi,r+1 = [gr+1(ξ̂i, η̂0), gr+1(ξ̂i, η̂1), gr+1(ξ̂i, η̂2), . . . , gr+1(ξ̂i, η̂M1)]T ,
θθθi,r+1 = [θr+1(ξ̂i, η̂0), θr+1(ξ̂i, η̂1), θr+1(ξ̂i, η̂2), . . . , θr+1(ξ̂i, η̂M1)]T .

The boundary conditions for solving equations (39) - (41) are

e

f(ξi, ηM1) = 0,
M1∑
p=0

D(1,0)
M1,p

e

f(ξi, ηp) = 0, e
g(ξi, ηM1) =

e

θ(ξi, ηM1) = 1, (34)

M1∑
p=0

D(1,0)
0,p

e

f(ξi, ηp) = 0, e
g(ξi, η0) =

e

θ(ξi, η0) = 0. (35)

The “initial” conditions at ξ = 0 (ξ̂ = ξ̂M2 = −1) are obtained by solving the following ODE
set

f ′′′ + 3
4ff

′′ − 1
2f
′2 + θ − M

(1−m2)(f ′ +mg) = 0, (36)

g′′ + 3
4fg

′ − 1
2f
′g − M

(1−m2)(g −mf ′) = 0 (37)

1
Pr

(
1 + 3

4R
)
θ′′ + 3

4fθ
′ = 0 (38)

The solution of equation (36) - (38), in the first interval, are denoted by
1
FM2,r+1,

1
GM2,r+1 and

1
θM2,r+1. In the next intervals we solve the following equations

A11
e

FFF i,r+1 + a4r

M2−1∑
j=0

dij

e

FFF j,r+1 + a5r

M2−1∑
j=0

dijDDD
e

FFF j,r+1 + A12
e

GGGi,r+1 + A13
e

θθθi,r+1 =
e

KKK1,i, (39)

A21
e

FFF i,r+1 + b2r

M2−1∑
j=0

dij

e

FFF j,r+1 + A22
e

GGGi,r+1 + b6r

M2−1∑
j=0

dij

e

GGGj,r+1 + A23
e

θθθi,r+1 =
e

KKK2,i, (40)

A31
e

FFF i,r+1 + c2r

M2−1∑
j=0

dij

e

FFF j,r+1 + A32
e

GGGi,r+1 + A33
e

θθθi,r+1 + c7r

M2−1∑
j=0

dij

e

θθθj,r+1 =
e

KKK3,i, (41)

where

e

K1,i =
e

R1,i − a4rdiM2

e

FFFM2,r+1 − a5rdiM2DDD
e

FFFM2,r+1, (42)
e

K2,i =
e

R2,i − b2rdiM2

e

FFFM2,r+1 − b6rdiM2

e

GGGM2,r+1, (43)
e

K3,i =
e

R3,i − c2rdiM2

e

FFFM2,r+1 − c7rdiM2

e

θθθM2,r+1. (44)

The continuity conditions in this example are given by

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

858



e

f(η, ξe−1) =
e−1
f (η, ξe−1),

e
g(η, ξe−1) = e−1

g (η, ξe−1),
e

θ(η, ξe−1) =
e−1
θ (η, ξe−1),

(45)

Applying the continuity conditions on (42) - (44) gives

e

K1,i =
e

R1,i − a4rdiM2

e−1
FFF M2,r+1 − a5rdiM2DDD

e−1
FFF M2,r+1, (46)

e

K2,i =
e

R2,i − b2rdiM2

e−1
FFF M2,r+1 − b6rdiM2

e−1
GGG M2,r+1, (47)

e

K3,i =
e

R3,i − c2rdiM2

e−1
FFF M2,r+1 − c7rdiM2

e−1
θθθ M2,r+1. (48)

Results and Discussion

The natural convection flow from a vertical permeable equations are derived and solved using
multi-domain bivariate spectral collocation method. This is done taking into account the normal
magnetic field to the surface of the plates. Also, thermal radiation and the Hall current effects
are taken into consideration.

Saha et al. [17] MBQLM
ξ f ′′(0, ξ) θ′(0, ξ) f ′′(0, ξ) θ′(0, ξ)
2 0.706 1.4028 0.7088928 1.4026916

10 – – 0.1428570 7.0000000
20 0.0714 13.9995 0.0714227 14.0000000
40 0.0357 27.9985 0.0340195 27.9997087
50 0.0285 349981 0.0247535 34.9964783
60 0.0238 41.9977 0.0182251 41.9806430
70 0.0204 48.9974 0.0140161 48.9328200
80 0.0178 55.9971 0.0115996 55.8259543

Table 2: Comparison of Multi-domain solution local skin friction and the Nusselt number
against the transpiration parameter ξ while Pr = 0.7, M = 0.5, m = 100 against the Saha
et al results [17]

Table 1 shows the comparison results between the current results and the literature results [17].
The table displays the local skin friction and the Nusselt number with respect to the transpiration
parameter ξ ranging from 0 to 80 while Pr = 0.7,M = 0.5,m = 100. It is observed that for the
increasing value of the transpiration parameter xi the value of the local skin friction coefficient
turn to increase near the leading edge, and then diminished slowly. The local Nusselt number
coefficient increases rapidly. This observation validates that the solutions of large transpiration
number are in agreement with the literature [17].

We also look at the residual error results in order to ensure that our numerical scheme is accu-
rate. The convergence error results are shown in Figures 2, 3 and 4 for velocity, temperature
and temperature profiles.

Figures 5 to 7 shows the tangential velocity, transverse velocity and temperature profiles, re-
spectively, for M = 0.5, m = 2, R = 1 and Pr = 0.01 for different values of ξ. The tangential
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velocity profile, in Figure 5, decreases as the transpiration parameter ξ is increased. This shows
that the local maximum values of the velocity profile occurs at the area of the boundary layer.
The same observation is shown in Figure 6 on the transverse velocity. Figure 7 shows that the
temperature profiles decreases as the transpiration parameter is increased. The momentum and
thermal boundary layer thickness decreases with the increasing values of ξ due to suction effects
of the surface mass transfer.

Magnetic field parameters effects are presented in Figures 8 and 9. Tangential velocity pro-
files decrease with increase in magnetic parameter but the transverse velocity increases with an
increase in the magnetic field parameter.

The effect of thermal radiation parameter is presented in Figures 10 to 12. The thermal radiation
parameter increases both the tangential and transverse velocity profiles. It also increases the
temperature profiles of the fluid. This is due to the decrease in values of R leading to a decrease
in Rosselenda radiation absorptivity k1. Also, an increase in temperature has a direct effect
on the buoyancy force which in turn iniduces more flow causing the tangential and transverse
velocities to increase.
Conclusion

This paper has presented a recently developed multidomain quasilinearisation method for solv-
ing general non-linear differential equations. The multidomain quasilinearisation method is
developed based on bivariate spectral quasilinearisation method (BSQLM). The main goal of
the current study is to apply this method in a natural convection flow from a vertical plate with
uniform surface temperature. The method proves to be efficient especially for large transpira-
tion parameter. Velocity, temperature and temperature profiles are also analysed here. From
these investigations we can conclude:

• MD-SQLM overcomes the similarity transformation barrier of not capturing solutions at
large transpiration parameter values.

• Increase in the transpiration parameter decreases the momentum and thermal boundary
layer

• Thermal radiation parameter increases the tangential velocity, transverse velocity and
temperature profiles.
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Figure 2: Convergence error in the tangential velocity profile at different values of ξ
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Figure 3: Convergence error in the transverse velocity profile at different values of ξ

1 2 3 4 5 6 7 8 9 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

E
θ ξ = 0, 4, 8, 12, 16

Figure 4: Convergence error in the temperature profile at different values of ξ
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Figure 5: Tangential velocity profile at different values of ξ
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Figure 6: Transverse velocity profile at different values of ξ
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Figure 7: Temperature profile at different values of ξ
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Figure 8: Tangential velocity profile for R = 3, m = 2, Pr = 0.7 at M = 0.5, 1, 1.5, 2.5
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Figure 9: Transverse velocity profile for R = 3, m = 2, Pr = 0.7 at M = 0.5, 1, 1.5, 2.5

Figure 10: Tangential velocity profile for M = 1/2, m = 100, Pr = 0.7 at R = 0, 1, 2, 3
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Figure 11: Transverse velocity profile for M = 1/2, m = 100, Pr = 0.7 at R = 0, 1, 2, 3

Figure 12: Concentration profile for R = 3, m = 2, Pr = 0.7 at M = 0.5, 1, 1.5, 2.5
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ABSTRACT

The present contribution is dedicated to a Discrete Element Method (DEM)-based approach aiming at assessing the ther-
momechanical behavior of composite materials. Such an approach presents several advantages in comparison to other
classical methods as the Finite Element (FE) one. This enables a better description of the multi-scale behavior of the
material with the inherent variability related to the microscopic scale. It also gives the possibility to directly access infor-
mation such strain and stress fields and heat flux density at the scale of the discrete element. In the current work, a focus
is done on the thermoelastic properties of a heterogeneous medium composed of a single inclusion. A 2D representative
pattern is generated and discretized using a granular packing composed of cylindrical particles in contact point. This is
generated using a process based on the Lubachevsky-Stillinger Algorithm (LSA) coupled to a DEM approach based on a
smooth formulation. A hybrid-particulate model is considered to model the mechanical behavior of the material. In this
approach, the contact between two particles is described by a beam element which models the cohesive link at the micro-
scopic scale. Heat transfer is simulated using an iterative time-dependent scheme based on the Fourier’s law and Voronoı̈’s
mosaics generated from granular packings. A full range of thermoelastic properties are considered in order to investigate
several configurations of material from an insulative fibre less resilient than the surrounding matrix to a conductive fibre
more resilient than the matrix. Estimated properties are compared to those obtained from other numerical methods such
as FE and Fast Fourier Transform (FFT)-based calculations and analytical models. Results highlight the ability of the pro-
posed approach to estimate effective thermoelastic properties. These first results pave the way of interesting insights since
taking into account non-linear behaviors, interfacial effects and damaging in the proposed approach can be envisaged in a
next future.

Keywords: Discrete element method, Multi-scale approach, Composite material, Thermoelastic properties, Equivalent
continuous domain.

Introduction

Composite materials arouse the interest of many industrial sectors such as aeronautic, aerospace, automotive, building and
marine. These are indeed characterized by excellent stiffness-to-weight and thermal conductivity-to-weight ratios which
make them adaptable to different situations and make them able to serve specific purposes and exhibit desirable thermo-
mechanical properties. Besides, the development of biocomposites composed of natural fibres as flax or hemp show their
ability to respond to current environnement issues as the reduction of gas emissions. Research to increase performance
and safety of composites pieces in many fields requires the development of means of investigation concerning the behavior
in service and durability of materials. Durability characterizes the ability of the material to resist to degradation of the
thermomechanical properties over time under various types of sollicitations. The scientific challenge therefore consists in
developing reliable numerical methods for achieving a better extrapolation of the multi-scale thermomechanical behavior
of the composite as well as a better description of various phenomena arising in the material such as crack initiations,
debonding effects, local variability and heterogeneity.

Considered as an alternative to the classical FE method, the DEM is an ideal tool for solving mechanical problems
in which multiple scales and discontinuities arise. Indeed, DEM is characterized by a good description of microscopic
phenomena, an easy treatment of complex structures and a very fine time scale which enables to describe the local behavior
of a large number of particles. Among the early studies, DEM was used to explore and gain new insights into various
physical applications from geomechanics applications [1, 2] to tribological simulation approaches [3, 4] and heat transfert
simulation in multi-contact systems [5, 6]. More recently, André et al. [7] and Haddad et al. [8] considered a hybrid
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particulate-lattice model in which particles are linked using cohesive beam elements. Thus, the DEM was made able to
quantitatively model the mechanical behavior of homogeneous and heterogeneous materials as well as fracture phenomena
as crack formation and propagation.

The present work is dedicated to an extension of the hybrid particulate-lattice model to the characterization of thermoe-
lastic behavior of composite materials. The main objective is to highlight the ability of a DEM-based approach to the
assessment of thermoelastic properties such as the thermal conductivity and the Young’s modulus. For this purpose, a
focus is done on a heterogeneous medium composed of a single inclusion. A 2D square-shaped representative pattern is
modeled and discretized by a granular packing composed of cylindrical particles in contact point generated with the help
of an efficient process based on the LSA [9] coupled to a DEM approach using a smooth formulation. In order to take into
account in the same time the elastic behavior and the heat transfer within the material, the initial set of contacts is densified
by a Delaunay triangulation process performed from this initial cloud of particle’s centers. It leads to a better description
of the heterogeneous medium and more accurate results by the hybrid-particulate model. Besides, a Voronoı̈ mosaic is as-
sociated to the Delaunay triangulation which provides in the same time a representative volume and transmission contact
surfaces to each particle. Thus, the heat transfer by conduction can be simulated using an iterative time-dependent scheme
based on the Fourier’s law where representative volumes and surfaces come from the Voronoı̈ mosaic.

This paper is organized as follows. First, we describe the heat transfer scheme and the hybrid-particulate approach for
simulating the thermoelastic behavior of the material. Second, the numerical model is validated in the context of a homo-
geneous material. Thermal and boundary conditions are imposed to the 2D square pattern in order to reproduce simple
tests as tensile and shear ones leading to thermoelastic properties. Finally, the DEM-based approach is applied to the case
of a single circular inclusion embedded in a matrix. For validation purposes, a large range of material configurations are
investigated from an insulative fibre less resilient than the surrounding matrix to a conductive fibre more resilient than
the matrix. Comparisons are carried out with several numerical methods, namely FE and FFT-based calculations and
analytical models.

Numerical model

Equivalent Continuous Domain

The first step of the proposed DEM-based approach consists in discretizing the continuous domain at the macroscopic
scale by a granular packing composed of cylindrical particles in 2D. The generation of the granular packing is done
by the efficient LSA coupled to the DEM using a smooth formulation. The idea is that the early stages of the LSA are
dominated by the densification of the system and consequently more efficiently performed than the last steps where the
number of contacts dramatically increases. In the coupled approach, the last steps are performed by the DEM using a
smooth formulation which is more suited to control the multiplicity of contacts than the LSA. Under several assumptions
of polydispersity, orientation and size, the granular domain can be considered as an Equivalent Continuous Domain (ECD)
in that this is enough representative of the continuous medium. First, the compacity of the granular domain has to be closed
to 0.85 which corresponds to the Random Close Packing (RCP) for a random granular packing composed of cylindrical
particles in 2D. Second, the coordination number which represents the average number of particles in contact with one
given particle has to be close to 4.5. Third, a slight polydispersity of particle size must be introduced in order to avoid
undesirable directional effects. Typically, the particle’s radius follows a Gaussian distribution law and the dispersion is
characterized by the coefficient of variation which is the ratio between the standard deviation and the average radius. For
information purposes, this is set to 0.3 in the present work. These three first parameters ensure the randomness of the
granular packing and consequently the isotropy of the ECD. In other words, this ensures that thermoelastic properties
are independent of the direction. At last, the number of particles represents the fineness of the discretized medium in
a similar way to a FE Mesh. As done by previous authors, the network of contacts is finally densified using a Delaunay
triangulation process applied from this initial cloud of particle’s centers. Thus, the coordination number comes from about
4.5 to about 5.9 and about 10% of new contacts are generated. A Voronoı̈ tessellation is finally associated to the Delaunay
triangulation. This provides in the same time an area of representation for each particle and its contacts. Such a process
turns out to be not costly in computational time as long as dynamic effects are not considered since the remeshing process
is then not required.
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Figure 1. Example of a typical 2D Voronoı̈ construction based on a granular packing constituted
of 200 particles: granular packing (a) and corresponding Voronoı̈ tessellation (b)

Heat transfer by conduction

In the present model, each particle i is related to a Voronoı̈ cell considered as its representative element (Fig. 2). This
polygon has a number of sides equal to the number of particles j in contact with the particle i. The heat flux transmitted
by the contact surface between two particles i, j is defined as follows:

Wi j = Hi, j
c (T j − Ti) (1)

where Ti, T j are the temperatures of particles i, j and Hi, j
c is the coefficient of thermal conductance: Hi, j

c =
S t

i jk
di j

, with λ the
conductivity of material, di j the distance between the centers of particles i, j and S t

i j the area of heat transmission surface
related to the corresponding polygon side.

Sij

t

ijd

i

j

W
ij

Figure 2. Definition of the heat transmission surface S t
i j

The corresponding equation of heat transfer is expressed for each particle i by:

Cd
i

dTi

dt
+

ni∑
j=1

Wi j = Qi (2)

where Qi represents the external heat flux associated to the particle i and ni is the number of neighbors of particle i. Cd
i is

the heat capacity of the particle given by:

Cd
i = cpρdVi (3)

with Vi and ρd are the volume and the density of the particle respectively and cp is the specific heat of constitutive material.
For the purpose of conservation mass, the discrete element mass is adjusted to the polygon one. To satisfy this assumption,
we consider ρc as the constitutive material density, ρd is then connected to ρc through the following relationship:

ρd =
Vpoly

Vi
ρc (4)
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where Vpoly is the polygon’s volume. The discretization of equation for heat transfer (2) in time leads to:

T t+∆t
i = T t

i +
∆t

cpρdVi
[Qi +

ni∑
j=1

S t
i jλ

di j
(T t

j − T t
i )]︸                          ︷︷                          ︸

Qtot
i

(5)

Elastic behavior

We consider a hybrid particulate-lattice model in which the interaction between two cylindrical particles in contact is
modeled by a beam of length Lµ, Young’s modulus Eµ, cross-section Aµ and quadratic moment Iµ (Fig.3). Therefore, the
cohesive contacts are maintained by a vector of three-component generalized forces acting as internal forces. The normal
component acts as an attractive force, the tangential component allows to resist to the tangential relative displacement and
the moment component counteracts the bending motion [7].

   E  , I  , r

µ

µ

R

Rj
i

e
µ µ

L

h

i j

Figure 3. Hybrid particulate-lattice model

The cross-section Aµ is rectangular with sides e and h, where e is the thickness of the granular medium and h is the height
of the cross section defined by:

h = rµ
Ri + R j

2
(6)

where rµ ∈]0, 1] is a dimensionless radius. Ri and R j are respectively the radius of particles i and j in contact. The internal
cohesive forces between two particles i and j are given by the following system:


F j→i

n

F j→i
t

M j→i

 =


EµAµ
Lµ

0 0 0

0 12EµIµ
L3
µ

6EµIµ
L2
µ

6EµIµ
L2
µ

0 6EµIµ
L2
µ

4EµIµ
Lµ

2EµIµ
Lµ




ui
n − u j

n

ui
t − u j

t
θi

θ j

 (7)

where θi and θ j are respectively the rotations of particles i and j. ui, j
n and ui, j

t are respectively the normal and tangential
displacements. The linear system of equations shows the micro-macro relations applied to determine the contact forces
between two particles i and j. These relations stem from the classical stiffness matrix of the beam element model. The
translational and rotational equations of motion for a particle i are written as follows:

miüi = Fext
i +

∑
j

F j→i (8)

Iiθ̈i = Mext
i +

∑
j

M j→i (9)

where mi is the elementary mass of the particle i and Ii is the quadratic moment of inertia of the particle i. F j→i et M j→i

are respectively the force and the moment of interaction of the particle j on the particle i. Fext
i et Mext

i are respectively the
external force and moment acting on particle i. The numerical resolution is based on an explicit time integration with a
formulation based on a Verlet scheme.
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Thermoelastic properties

The present section is dedicated to the description of methodologies leading to the assessment of thermoelastic proper-
ties, namely the Effective Thermal Conductivity (ETC), the Effective Young’s Modulus (EYM) and the Effective Shear
Modulus (ESM). For validation purposes, a homogeneous medium with known properties is considered and effective
thermoelastic properties are evaluated and finally compared to the expected values. From now on, the continuous domain
is a square and flat plate of side L=3.5 cm and the corresponding ECD is a granular packing composed of about 5000
polydisperse cylindrical particles.

ETC

The ETC is estimated by the following approach. A temperature difference (∆T ) is imposed between two opposite edges
of the square domain (in the present case y = 0 and y =L). The heat transfer within the homogeneous medium is described
by the time-dependent methodology described in subsection a). The heat flux density (φ) is then numerically estimated at
stationary state and the ETC λ deduced from the following Equation :

λ =
φL
∆T

(10)

In the present test, the plate is subjected to thermal and initial conditions defined as follows :


T1 : T (y = 0) = 25◦C
T2 : T (y = L) = 100◦C
t = 0 : T (y) = T0 = 25◦C 0 < y < L

(11)

Lateral boundaries are under adiabatic conditions and material parameters are listed in Tab. 1 :

Table 1. Thermal properties of the continuous do-
main

Density ρc 2600 kg/m3

Thermal conductivity λ 30 W/mK
Specific heat cp 900 J/kgK

The variation of temperatures obtained by an analytic solution [10] and the DEM-based approach at times 3 s, 30 s and
150 s are graphically shown in Fig. 4a. Both models present identical temperature profiles which exhibits the ability of
the DEM-based approach to model heat transfer in a continuous domain.

Figure 4. Comparison between analytic and discrete model solutions at several times (a) and
field of heat flux density (b)

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

871



The heat flux density is estimated at stationary state at the scale of the particle using the following Equation which is
analogous to the Love-Weber formulation.

φi =
1
Vi

∑
j

Φext, jxi j (12)

where φi is the heat flux density related to the particle i, Vi is the volume of the particle i, xi j is the length of the contact
between particles i and j, and Φext, j is the external flux applied to the particle i by the particle j. The heat flux density
φ is estimated after averaging heat flux densities over the volume of the plate. In the present example, a value of 64303
W/m2 is obtained which leads to an ETC λ=30.008 W/(m.K) which is very close to the expected value of 30 W/(m.K).
This highlights the ability of the present DEM-based approach to estimate ETC of homogeneous materials.

EYM and ESM

X

Y

Figure 5. Quasi-static tensile (a) and shear (b) tests

EYM and ESM are estimated via quasi-static tensile and shear tests performed under a plane stress state using the bound-
ary conditions described in Fig. 5. Symmetry boundary conditions are considered and a displacement e is imposed on
the right edge of the square in the case of the tensile test on the one hand, on the other hand anti-symmetry boundary
conditions are considered and a displacement e is imposed on top and right edges of the plate in the case of the shear test.
The main issue of such an approach is that on the contrary of FE calculations for which local properties at the scale of the
element are identical to the macroscopic properties in the case of a homogeneous material, microscopic properties of the
beam element (Eµ, rµ) can only be correlated to EYM and ESM as previously done in previous works [7, 8].

Figure 6. Influence of the microscopic parameters Eµ and rµ on the EYM (a) and the Poisson’s
ratio (b)

The calibration process consists in determining the relation between microscopic and macroscopic parameters via a full
range of investigated configurations so that the evolution of microscopic properties allows us to choose the desired macro-
scopic ones. In the present work, we consider a microscopic Young’s modulus in the interval [2GPa, 1000GPa], and a rµ
parameter in the interval [0.1, 0.9]. Evolution curves are plotted in Figures 6-a and -b. We notice that the macroscopic
Poisson’s ratio νM does not depend on Eµ but quadractically depends on the dimensionless radius rµ. EYM EM linearly
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depends on rµ and quadratically depends on Eµ. These conclusions are in good agreement with those obtained by André
et al. [7] in the context of spheres in 3D.

Case of a heterogeneous continuous medium with a single inclusion

The section is dedicated to the investigation of the thermoelastic behavior of a heterogeneous continuous medium with a
single inclusion. For this purpose a 2D square-shaped representative pattern of the composite material is generated and
numerical approaches described in the previous section are considered. The representative pattern consists of a centred
circular inclusion which represents the unidirectional fibre and has a radius equal to 0.25 times the length L (Fig. 7). The
square pattern is discretized by the same random granular packing constituted of 5000 polydisperse particles than the
previous one used for a homogeneous material.

Figure 7. Single inclusion problem: continuous (a) and discrete (b) models

Thermal properties

Our objective is to assess the ETC λe of the heterogeneous continuous medium with a single inclusion via the proposed
DEM-based approach. Both inclusion and matrix phases are supposed isotropic with thermal conductivities respectively
denoted by λi and λm where superscripts i and m designate the inclusion and matrix phase respectively. λm is set to 30
W/(m.K) and λi is varied according to the expected contrast of properties cλ = λi

λm which can be chosen greater or lower
than 1. In other words, the inclusion can be considered more conductive or more insulative than the matrix phase. The
specific heat capacity is supposed set to 900 J/(K.kg) for both phases but this is of little importance since we are only
interested by results at stationary state in the present section. The evaluation of the ETC is performed considering the
methodology described in subsection a). Results are compared to two numerical homogenization techniques. The first
technique is the FFT-based method which consists in solving the Lippmann-Schwinger’s equation in Fourier space using
an iterative algorithm [11, 12]. In the present work, calculations are performed using the Eyre-Milton scheme and a
digitized map of the representative pattern consisted of 1048576 (10242) pixels [13]. The second one is the double-scale
homogenization method (2SFEM) [14]. This approach is based on variational considerations and uses the FEM with
periodic boundary conditions. Results are also compared with the classical FEM for which thermal conditions are the
same as those considered in the DEM-based approach, and a theoretical estimate, namely the Hashin’s model (HM) [15].
For information purposes, all FEM calculations are carried out using a structured mesh composed of 980000 (2×7002)
3-node triangular elements.

Table 2. Influence of the contrast on the normalized ETC for several numerical and theoret-
ical approaches

cλ 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100

λ∗ DEM 0.672 0.678 0.694 0.722 0.768 0.877 1.000 1.139 1.300 1.382 1.432 1.466 1.478
FEM 0.677 0.682 0.698 0.723 0.769 0.878 1.000 1.140 1.302 1.384 1.433 1.467 1.478
2SFEM 0.676 0.682 0.698 0.723 0.768 0.877 1.000 1.140 1.301 1.383 1.433 1.466 1.477
FFT 0.677 0.682 0.698 0.723 0.768 0.877 1.000 1.140 1.302 1.384 1.433 1.467 1.472
HM 0.677 0.683 0.698 0.723 0.769 0.877 1.000 1.140 1.301 1.383 1.432 1.465 1.477
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Calculations are carried out for a range of cλ from 0.01 to 100. Thus, two main configurations are considered, namely
the case of an inclusion more insulative than the matrix (cλ < 1) and the reverse case for which the inclusion is more
conductive than the matrix (cλ > 1). Table 2 illustrates the influence of the contrast on the assessed normalized ETC (λ∗)
which is obtained by dividing the ETC λe by the thermal conductivity of the matrix. Results are compared with those
obtained using other numerical and theoretical approaches. Whatever the contrast, less or more than 1, predictions given
by the DEM are very close to other assessments with a maximum relative difference of 0.6%. This highlights the ability
of the DEM to estimate the ETC of a heterogeneous continuous medium with a single inclusion.

Elastic properties

Tensile and shear tests are carried out using the boundary conditions already seen in Fig. 5 in order to assess EYM and
ESM. The macroscopic Young’s modulus Em of the matrix is set to 65 GPa. Different values of macroscopic Young’s
modulus Ei of the inclusion are considered so that the contrast of properties cr =

Ei

Em varied from 0.01 to 100. Poisson’s
ratios of both phases are set to 0.3 and we suppose a plane stress state. DEM-based results are compared to those ob-
tained using the same numerical approaches than previously seen for evaluating the ETC, namely the FFT-based method,
the double-scale homogenization method (2SFEM), the classical FEM for which boundary conditions are identical to
those considered in the DEM approach. Comparisons are also performed with the theoretical estimate given by Mori and
Tanaka (MT) [16]. For information purposes, all FE and FFT-based calculations are carried out considering the same
discretizations than previously used for evaluating the ETC.

Figure 8. Non-dimensional Young’s modulus as a function of the contrast of properties, case
cr ≤ 1 (a) case cr ≥ 1 (b)

Two configurations are investigated. The first problem corresponds to the case of an inclusion less stiff than the matrix
with a Young’s modulus less than that of the matrix. The second one corresponds to the case of an inclusion stiffer than the
matrix with a Young’s modulus higher than that of the matrix. Fig. 8 illustrates the influence of the contrast of properties
cr on the non-dimensional Young’s modulus which is obtained by dividing E by Em. Results exhibit a good agreement
between DEM, FEM, numerical homogenization techniques and the theoretical estimate whatever cr. For example, for a
contrast of 100, the relative differences with respect to the value given by the FEM is 5.39% for the Young’s moduli in
the case where cr < 1, and the relative difference is only 0.06% when cr > 1. Globally, relative differences do not exceed
5% whatever the considered contrast of properties. This highlights the ability of the DEM approach to estimate elastic
properties of a heterogeneous continuous medium with a single inclusion.

Conclusion

The present paper dealt with a DEM-based approach for characterizing the thermoelastic behavior of composite materials.
A focus was done on a 2D plate structure with a single inclusion embedded in a matrix. Comparisons with other numerical
and theoretical approaches highlight the suitability of the proposed approach to estimate ETC, EYM and ESM. These
results are encouraging and pave the way to interesting prospects. In a next future, we expect to extend the present approach
to model the thermomechanical behavior of complex heterogeneous media where fracture phenomena and interfacial
effects arise.
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Abstract

Forests are an integral part of the world’s landscape and are often characterized as regions
with considerable potential on wind power. In order to take into account the existence of the
forest for wind energy assessment, most of previous researches have implemented the drag
force or roughness length approaches. However, the goal of this study is to model the forest
with porous medium approach and investigate the mean wind and turbulence around porous-
like-forest  by  means  of  Large  Eddy  Simulation  (LES).  For  this  purpose,  in  situ wind
measurements, is obtained at Skinnarila forest, near the campus of Lappeenranta University of
Technology, Finland.

Keywords: Wind Energy, LES, Canopy Flows, CFD, Porous Media, Experimental Validation.

Introduction

Predicting turbulence over the wind farms is highly important for wind energy assessment.
Many sites with high wind speeds may not be a good candidate for wind energy production
due  to  their  high degree  of  turbulence.  Forested  terrain  is  an  example  to  be  given  here.
Nowadays,  many  onshore  wind  projects  are  being  planned  in  or  very  close  to  forested
landscapes due to its vast availability of wind and less number of inhabitants. Nevertheless,
these  regions  are  recognized  with  complex  flow  due  to  large  variability  of  vertical  and
horizontal  foliage distribution which induces the amount  of  turbulence  within,  above and
around forested trees. To better understand the behavior of wind flow motions around forested
area, extensive studies from site and laboratory experiments to numerical simulations have
been carried out for many years [1,2,3]. Many researchers have examined how best they can
evaluate and impose the effect of forest into numerical predictions of canopy flows. In Fabian
et al. 2012 [4], the detailed representation of canopy derived from terrestrial laser scanning
was used for LES to observe the aerodynamic influence of small scale plant distribution on
clearing inside forest. The turbulent structures developed by a pine forest was numerically
studied and validated with field data [5]. Here, the authors have utilized the measured mean
vertical distribution of frontal leaf area density (LAD) for LES simulation and detected wakes
behind the trunks. Similarly, LES were carried out using the drag force induced by trees under
three different atmospheric conditions, namely stable, unstable and neutral [6]. In this work,
the canopy model was implemented by considering a homogeneous forest with leaf area Index
(LAI) very close to the measured in situ value.

Nevertheless for wind park simulations, the effect of canopy is often done by specifying a
relationship between frontal LAD, local wind speed and drag coefficient which is added to the
right  hand side of  momentum equations and turbulence  models  to  account  for  turbulence
length within forest [7,8,9]. It is important to note that measuring LAD is very costly in terms
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of technology and time. Also, it  is highly case dependent  and may vary quite much from
different forests. 

In this work, we will model canopy forest with porous medium approach. In order to validate
the porous LES results over forested and non/forested terrain, field measurements have been
conducted at Skinnarila forest, near the campus of Lappeenranta University of Technology,
Finland.

Methodology

Study Site:

The field measurement obtained at Skinnarila (near Lappeenranta University of Technology,
about 7 km north-west of city of Lappeenranta in Finland) recorded wind continuously at 11
different heights from 24th of May till  6th of June, 2013. Part of the forest  in which the
experimental measurement took place was classified as a non-uniform plantation of pine trees.
The average tree height was about 20 m at the forest edge and within. 

Fig.1: Aerial view of Skinnarila forest with the two lidar devices (little diamonds) positioned
at east and west.

Fig.2: Photo of terrain surface utilized for simulation. The black solid frame indicates the
region of interest.

Fig.1 displays the aerial view of the investigated domain together with the two lidar devices
positioned at 6770864N, 559016E (before forest)  and 6770848 N, 558604 E (after forest)
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which are marked as white-red diamond. As seen from the picture, these two devices are
aligned according to the predominant wind direction which flows from Lake Saimaa through
forest (east to west) with much less disturbances. Moreover, the terrain elevation above sea
level is demonstrated in Fig. 2. 

Data Selection:

In order to constrain our study under neutral meteorological conditions, the harmony weather
forecast of every 3 hours data, including temperature and pressure for heights up to 3 km,
provided by Finnish Meteorological Institute (FMI), has been used. Potential temperature, the
most important and frequently used quantity in atmospheric science, together with velocity
profiles limited to wind directions of around 9   have been plotted during the diurnal cycle00
for  the period of  measurement.  As  a  result  of  boundary  evolution presented by harmony
potential  temperature  and  velocity  profiles,  the  dates  satisfying  the  neutral  atmospheric
regime with lowest boundary layer thickness (less than 500 m) are identified and utilized over
the real site measurement data. Again, based on availability of data at all 11 different heights,
the decision has been made for 2nd day of June 2013 between 21:00 to 23:10 o’clock. 

Numerical Descriptions:

In order to represent the forest effect into computational fluid dynamic (CFD) simulation, a
porous media model is used. This is by additional sink/source term added to the right hand

side of the LES equations in the form   




 UUρC+U

k

μ
=S

2

1
. This is the general form of

porous model composed of two parts: viscous and inertial drag loss terms, respectively. Here
the ability of the medium to permit flow is denoted as  k and the canopy inertial resistance
coefficient  as  C.  In the previous work [10] where porous parameterization study on flow
through obstacles representing trees was investigated, we concluded the insignificant effect of
permeability and porosity for high Reynolds number. By following this finding, the above
sink term reduces to inertial drag loss term.

To solve the flow equations, the entire computational domain (6×2×0.5 km3) is discretized
into 11625000 of hexagonal grid cells with resolution of about 8 m in all three directions. The
finite-volume  method  based  un-structured  code  OpenFOAM  is  used  in  this  study.  In
particular,  the simulations are being carried out using our own in-house LES solver called
“rk4ProjectionFoam”  [11]  recently  implemented  into  OpenFOAM.  For  the  numerical
computations, the inflow boundary condition is defined according to the selected 2 hours and
10 minutes averaged horizontal velocity and wind directions recorded at 11 different heights
of in situ measurement before the Skinnarila forest. To fully develop the turbulence structure,
the so-called recycling technique [11] is employed at the inlet. The pressure is fixed to zero at
outflow  boundary  and  periodic  boundary  condition  is  assigned  in  the  lateral  sides.  The
symmetry boundary condition is set at the top surface. The logarithmic wall-function based on
roughness-length is used to account the roughness effect. 

Before employing LES, a series of Reynolds-averaged Navier-Stokes (RANS) simulations are
carried out to parameterize the inertial resistance coefficient of porous-like forest. Afterwards,
the most suitable coefficient is implemented into the porous model for the LES calculations.
However, it is a good practice to perform LES without forest in order to better observe the
turbulence induced by the forest. 
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Results

Field Experiments:

The 10 minutes averaged wind directions during 2 weeks of field measurement are shown in
Fig. 3 for both locations: before (left) and after (right) forest. It can be seen that majority of
wind is blowing into the forest approximately from east (close to east-north-east) at all 11
heights. However, the wind has turned its direction at lower heights (especially at 15 m) right
after forest edge. This is shown more visibly in Fig. 4. Here the 2 weeks averaged data are
plotted with height. Also, it is observed that the forest resistance causes the wind speed to
slow down within forest.

Moreover, the 2 hours and 10 minutes averaged wind data over neutral atmospheric condition
are plotted (see Fig. 5) which indeed depicts the drop of wind speed and a slight change in
wind directions after vegetated area.

Fig. 3: Comparison of 2-weeks measured wind directions before (left) and after (right) forest
at 11 heights.

Fig. 4: Comparison of two-weeks-averaged horizontal wind speed (left) and wind direction
(right) at two positions: before (blue-line) and after (green-dashed line) forest.

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

879



Fig. 5: Comparison of about two hours averaged horizontal wind speed (left) and wind
direction (right) at two positions: before (blue-line) and after (green-dashed line) forest.

Numerical Simulations:

Here, we report the preliminary results obtained from the first LES over the site shown in Fig.
2. In the following Figs. 6 and 7 the instantaneous and the 30-min time-averaged horizontal
flow  fields  on  the  middle  planes  in  stream-wise  and  span-wise  directions  are  shown,
respectively. 

Fig. 6: Instantaneous horizontal flow fields on the stream-wise and span-wise planes.

Fig. 7: 30-min time-averaged horizontal flow fields on the stream-wise and span-wise planes.

Conclusions

Wind flow near and after forest edge was investigated in a field experiment using two light
detection and ranging devices which were capable to record wind up to 150 m height from the
ground.  After  forest,  flow  recirculation  at  lower  heights  was  observed.  Also,  the  wind
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decelerated which indicates the existence of high resistance within forest due to distribution of
vegetation. 

Moreover, this paper has presented a procedure for post-processing a real field wind data in
order to classify the involved atmospheric boundary condition based on harmony forecast
data, during 2 weeks of measurement. As a result, the neutral weather condition was selected
to be on 2nd day of June 2013 between 21:00 to 23:10 useful for our numerical simulations.

Here,  turbulent flow over Skinnarila terrain which has a small hill is studied by means of
LES. Due to high amount of CPU time required to run these simulation, the LES results over
porous-like forest together with smooth-non-forested terrain will be compared with field data
in near future.  
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Abstract 

Strong winds have caused increasing wind damages for fruit trees such as uprooting and fruit 
drop in orchards worldwide. In order to prevent these wind damages, the various prop systems 
or support systems have been introduced for fruit trees. When a prop system is designed 
against strong winds, it is essential to calculate the wind load acting on each tree for accurate 
evaluation of wind resistance of prop system. 
 

It is often to treat the applied wind load acting on a tree as a static load and to use beam theory 
to determine the maximum bending moment at the base of the tree. However, the response of 
a tree is frequency dependent and is affected mostly by wind gusts at frequencies close to its 
resonant frequency. In this situation, the dynamic effects are likely to increase the bending of 
stems and hence the maximum bending moment at the base of the tree. These dynamic effects 
are likely significant and cannot be ignored when the natural sway frequency of a tree is 
relatively small, that is, the tree is flexible. 
 

There are two approaches to quantifying the response of a tree to a given fluctuating wind 
load. First, the wind load and tree response spectra are experimentally measured and a transfer 
function from the wind load to tree response is developed. Alternatively, if the information on 
the dynamic properties such as natural sway frequency and damping ratio of trees are 
available, then it is possible to characterize their response to any fluctuating wind load by 
employing a wind engineering theory. In many design codes or standards, this dynamic effect 
is considered adopting the gust effect factor and empirical formulae for the factor are given as 
functions of the natural sway frequency and damping ratio. The threshold natural sway 
frequency in most design codes that the dynamic effect against fluctuating wind load needs to 
be considered carefully is 1.0 Hz. 
 

This paper presents the system identification method to measure the natural sway frequencies 
and damping ratios of fruit trees for the evaluation of the wind load acting on the trees. Both 
the ambient vibration test and free vibration test are performed and the identified dynamic 
properties are compared. It is found the average natural frequency of fruit trees is less than 1.0 
Hz, and thereby the dynamic effect against fluctuating wind load needs cannot be ignored. 
Further, it is found that the damping ratios of fruit trees are quite larger than those of civil and 
building structures due to the soil-structure interaction. Therefore, a special care is required 
when the prop systems for fruit trees are designed against strong winds. 

Keywords: Tree Supporting system, Wind load, Gust effect factor, Ambient vibration test, 

System identification. 

Introduction 

Typhoon has caused increasing wind damages for fruit trees at the orchard such as uprooting 
and fruit drop in Korea recently. The resistance to uprooting moment of the tree is typically 
the weakest mechanical link for shallow-rooted trees subjected to strong winds (Lundström et 
al. 2007). In order to prevent these wind damages and to enhance the uprooting moment 
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capacities of trees in orchards, the wind break forest and the various prop systems, or 
supporting systems, have been introduced to fruit orchards (He and Hoyano, 2010). Three 
most typical types of apple tree prop system used in Korea are 1) individual prop system, 2) 
steel pipe fence prop system, and 3) concrete column fence prop system.  
 
However, most of these prop systems were originated from the regions where the strong 
tropical storm like a typhoon does not occur (Lespinasse and Delort, 1986). Further, the most 
of studies on the apple tree prop system has focused on the annual yield and profits (Robison 
et al., 2007, Palmer et al., 1992). Therefore, it is required to evaluate the wind resisting 
performance of fruit tree prop systems which are frequently used in Korea. 
 
When a prop system is designed against strong winds, it is essential to calculate the wind load 
acting on each tree for accurate evaluation of wind resistance of the prop system. It is often to 
treat the applied wind load acting on a tree as a static load and to use beam theory to 
determine the maximum bending moment at the base of the tree. However, the response of a 
tree is frequency dependent and is affected mostly by wind gusts at frequencies close to its 
resonant frequency (Hu et al., 2009). In this situation, the dynamic effects are likely to 
increase the bending of stems and hence the maximum bending moment at the base of the tree. 
These dynamic effects are significant and cannot be ignored when the natural frequency of a 
tree is relatively small, that is, the tree is flexible. 
 
There are two approaches to quantifying the response of a tree to a given fluctuating wind 
load (Moore and Maguire, 2004). First, the wind load and tree response spectra are 
experimentally measured and a transfer function from the wind load to tree response is 
developed. Alternatively, if the information on the dynamic properties such as natural 
frequency and damping ratio of trees are available, then it is possible to characterize their 
response to any fluctuating wind load by employing a wind engineering theory. In many 
design codes or standards, this dynamic effect is considered adopting the gust effect factor 
and empirical formulae for the factor are given as functions of the natural frequency and 
damping ratio. The threshold natural frequency in most design codes that the dynamic effect 
against fluctuating wind load needs to be considered carefully is 1.0 Hz (AIJ, 2009, ASCE, 
2010). 
 
This paper presents the system identification to measure the natural frequencies and damping 
ratios of fruit trees for the evaluation of the wind load acting on the trees. Both the ambient 
vibration test and free vibration test are performed and the identified dynamic properties are 
compared. The dynamic properties obtained using the previously reported empirical formulae 
are also compared to experimentally identified ones. Next, the gust effect factors for each tree 
are evaluated using the formula given in Korean Building Code, which is termed as KBC2009 
hereafter (AIK, 2009). 
 

Wind Load on the tree supporting system 

Wind load on a tree 

Figure 1 shows the steel pipe fence type prop system, which is most commonly used for apple 
orchards in Korea. Three or more trees are planted between two vertical pipes that are spaced 
6 m, and the wind load acting on trees are transferred to vertical supports by horizontal wires 
installed at every 80 cm. Since the stiffness in the longitudinal direction is much larger than 
that in the normal direction, uprooting damages generally occurs in the normal direction and 
most trees connected to a fence are damaged simultaneously. 
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Figure 1. Steel pipe fence type prop system 

 
The wind load acting on a tree, P, is calculated as (Simiu and Scanlan, 1996) 
 

AqP w   (1) 

 
where qw is the wind pressure (N/m

2
). The wind pressure qw is given by 

 

25.0 zfDw VGCq 
  (2) 

 
where  is the air density (kg/m

3
), CD is the drag coefficient (dimensionless), Gf is the gust 

effect factor (dimensionless), and Vz is the design wind velocity at height z (m). 
 
The drag coefficients CD of trees in Eq. (2) are generally obtained experimentally using a 
wind tunnel and some typical values are given for various tree types (Mayhead, 1973, 
Vollsinger et al., 2005). On the contrary, only limited studies have been performed on the gust 
effect factor Gf of trees since it is affected by many features such as tree species, age, height, 
stem diameter, and spacing (Gardiner et al., 2000). In this study, the gust effect factor is 
obtained and analyzed applying empirical formulae provided in literatures and design codes 
that are obtained based on a wind engineering theory.  
 

Gust effect factor 

The gust effect factor is defined as a ratio of the maximum response to mean response of a 
structure and is given as (Simiu and Scanlan, 1996) 
 

X
g

X

X
G X

ff


 1max

  (3) 
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where Xmax is the maximum response, X  is the mean response, gf is a peak factor, and x is 
the standard deviation of the response. 
 
Gardiner et al. (2000) proposed the following empirical formula obtained from a wind tunnel 
test using scaled tree models. 
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where s is the tree spacing (m), H is the tree height, and x is the distance from the forest edge 
(m). 
Davenport and Surray (1990) defined the gust effect factor for low rise structures as 
 

211 kkG f  
  (4) 

 
where  is the peak factor (dimensionless),  is the exposure factor (dimensionless), k1 is the 
background turbulence factor (dimensionless), and k2 is the gust resonant factor. 
 
Peak factor  depends on the natural frequency of the structure, that is, it increases as a 
logarithmic function of natural frequency of the structure increases. Further, the gust resonant 
factor k2 also is a function of the natural frequency of the structure. The damping ratio of the 
structure affects the gust resonant factor as well. Consequently, the accurate evaluation of the 
natural frequency and damping ratio is critical for the gust factor calculation. 
 
Eq. (4) is adopted in many design codes including KBC2009. The peak factor  and the 
exposure factor  in KBC2009 are given as 
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where  is the power law exponent of mean wind speed profile for a given terrain roughness 
category, f and Iz are , respectively, the level crossing number and turbulence density at the 
reference height and given as 
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where n0 is the natural frequency of the structure (Hz) and Zg is the nominal height of the 
atmospheric boundary layer. 
The background turbulence factor k1 and the gust resonant factor k2 in KBC2009 are defined 
as 
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where B is the width of the structure, f is the damping ratio, LH is turbulence density at the 
reference height, and Sf and Fs are, respectively, the size reduction factor and the spectral 
energy factor given as 
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where VH is the design wind speed at the top of the structure. 
For the structure with a natural frequency of less than 1.0 Hz, the structures is classified as a 
rigid structure and its gust effect factor is simply given as Eq. (13) omitting the gust resonant 
factor k2 and letting the value of and the exposure factor  to be 4 from Eq. (4) 
 

141 kG f 
  (13) 

 

Natural frequency and damping ratio of trees 

From Eqs. (7), (11), and (13), it can be noticed that the natural frequency is required for the 
gust effect factor calculation. Further, it can be noted from Eq. (10) that the damping ratio 
needs to be known as well. 
 
Moore and Maguire (2004) investigated previously reported natural frequency measurement 
from 602 trees, which belong to eight different species, and showed that natural frequency is 
strongly and linearly related to the ratio of diameter at breast height to total height squared. 
They presented the following empirical formula based on a regression analysis.  
 

20 1219.30766.0
H

D
n bh

  (14) 

 
where Dbh is the diameter at breast height (cm). 
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They proposed another empirical formula to consider the species difference given by Eq. (15) 
where Ip is an indicator variable. 
 

220 7765.04317.30948.0
H

D
I

H

D
n bh

p
bh 

 (15) 

 
The value of Ip is 1.0 if the genus is Pinus and 0.0 otherwise. 
Moore and Maguire also investigated the damping ratio of trees from the previous researches 
and classified it into two categories; 1) internal damping is due to the friction of the root-soil 
connection, structural damping resulting from the movement of branches and the internal 
friction of the wood, and 2) external damping due to the aerodynamic drag of the crown and 
also to collisions between crowns of neighboring trees. They concluded that the internal 
damping ratios are generally less than 0.05 and do not appear to be related to tree size, while 
the external damping is wind velocity dependent and much larger than the internal one. 
 

Field measurement of natural frequencies and damping ratio 

Test specimens and methods 

A field vibration test was performed to measure the natural frequencies and damping ratios of 
orchard trees. The apple trees were used for the test. Both the ambient vibration test and free 
vibration test were performed and the identified dynamic properties were compared.  
 
The trees were supported by the steel pipe fence type prop system and four to five trees were 
planted between two vertical steel pipes. The test was performed when trees were heavy with 
clusters of apples since the typhoon damages occur mostly before and during harvest season. 
Total of 20 trees were used in the test. 
 
In order to analyze the effect of the prop on the dynamic properties of trees, a half of 
specimens were tested after cutting all horizontal wires connected to the trees while the prop 
for the rest of specimens remained intact.  
 
Two piezoelectric accelerometers were installed at 1.5 m high, one in the longitudinal 
direction (x-direction) and another in the normal direction (y-direction) to measure the 
accelerations of trees without a steel pipe prop. On the contrary, only one accelerometer was 
used in the y-direction for trees with a prop because the frequency in the x-direction is 
considerably affected by the prop due to large stiffness. 
 
The ambient vibration test was carried out for 10 minutes with a sampling frequency of 360 
Hz. The free vibration test was performed by simply pushing trees about 30 cm slowly by 
human and letting trees vibrate freely. Five human-induced free vibrations were performed 
continuously for both x- and y-directions for trees without a steel pipe prop, while those were 
performed for the y-direction only for trees with a prop. The only acceleration measured in 
the same direction to the free vibration direction is utilized for the identification of dynamic 
properties for the free vibration test. 
 

Identified natural frequencies and damping ratio 

The power spectrum densities (PSDs) of measured accelerations from two test methods were 
obtained to identify the natural frequencies of trees. Then the half-power band-width method 
was applied to the obtained PSDs for damping ratio estimation (Clough, R. W. and Penzien, J, 
1995, Xiong et al., 2011). 
 
The peaks of PSDs are considerably noticeable at the fundamental natural frequencies in both 
ambient and free vibration tests, while the values of PSDs in the ambient vibration test 
contains the higher modes and DC contents. The distinction of PSDs near the fundamental 
frequency in the free vibration test is mainly due to the fact that trees oscillate at their 
fundamental frequency under a free vibration. 
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The identified natural frequencies of the test specimens are summarized in Tables 1 and 2. 
Note that the only natural frequencies in the y-direction are identified in Table 2 for trees with 
a prop since the acceleration were measured in that direction only.  
 
It can be seen from Table 1 that the natural frequencies of trees in the x- and y-directions are 
almost same except the test specimen T3, T8, and T9. It can be also seen that the identified 
natural frequencies from the free vibration tests are generally smaller than those from the 
ambient vibration tests. This is because the natural frequency of a structure is generally 
inversely proportional to its response amplitude and the amplitudes of measured accelerations 
in the free vibration test are significantly larger than those in the ambient vibration test. In 
average, the natural frequencies obtained from the free vibration test are 3.90 % and 6.06% 
smaller in the x- and y-directions, respectively, than those from the ambient vibration test. 
 
The natural frequencies of the trees with a prop are found to be increased compared to those 
without a prop. Those with a prop are 15.73 % and 13.70 % larger than those without a prop 
in average (Table 2). This concludes that the stiffness of the steel pipe fence prop helps to 
increase the stiffness of trees in the y-direction. That is the overall uprooting moment 
resistance capacities of trees are increased due to the installation of the prop. 
 

Table 1. Identified natural frequencies of trees without a prop 

Specimen 
Ambient vibration test Free vibration test 

x-dir. (Hz) y-dir. (Hz) x-dir. (Hz) y-dir. (Hz) 

T1 0.807  0.807  0.779  0.791  

T2 0.907 0.907  0.908  0.870  

T3 0.807  0.630  0.756  0.655  

T4 0.857  0.882  0.807  0.857  

T5 0.907  0.958  0.907  0.907  

T6 0.958  1.058  0.958  1.008  

T7 1.134  1.046  1.008  1.008  

T8 1.210  1.411  1.159  1.109  

T9 1.084  0.958  1.008  0.907  

T10 1.109  1.159  1.109  1.109  

Average 0.978  0.982  0.922  0.922  
 
 
Table 2. Identified natural frequencies of trees with a prop in the y-direction 

Specimen Ambient vibration test (Hz) Free vibration test (Hz) 

T11 0.958  0.907  

T12 0.857  0.756  

T13 0.807  0.756  

T14 1.512  1.411  

T15 1.445  1.336  

T16 0.907  0.832  

T17 1.498  1.210  

T18 1.033  1.008  

T19 1.159  1.109  

T20 1.184  1.159  

Average 1.136  1.048  
 
In Table 3, the calculated natural frequencies of trees using the empirical formulae provided 
in Eqs. (14) and (15) are presented for comparison with experimentally identified ones. 
Compared with identified natural frequencies provided in Tables 1 and 2, the empirical 
formulae proposed by Moore and Maguire overestimate the natural frequencies up to 234 % 
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in average. Therefore, it can be concluded that the empirical formulae do not cover every 
genus of trees even though they are obtained from more than 600 experimental data.  
 

Table 3. Natural frequencies of trees from empirical formulae 

Specimen 
Eq. (14) 

(Hz) 

Eq. (15) 

(Hz) 
Specimen 

Eq. (14) 

(Hz) 

Eq. (15) 

(Hz) 

T1 4.169 4.593 T11 2.612 2.881 

T2 2.497 2.755 T12 2.375 2.622 

T3 2.358 2.603 T13 2.301 2.540 

T4 2.351 2.595 T14 1.545 1.709 

T5 2.892 3.190 T15 3.046 3.359 

T6 3.193 3.521 T16 2.455 2.709 

T7 2.723 3.048 T17 2.443 2.696 

T8 4.063 4.477 T18 2.825 3.116 

T9 2.618 2.888 T19 2.682 2.959 

T10 2.083 3.092 T20 2.945 3.248 

Average 2.971 3.276 Average 2.523 2.784 
 

Table 4. Identified damping ratios of trees without a prop 

Specimen 
Ambient vibration test Free vibration test 

x-dir. (%) y-dir. (%) x-dir. (%) y-dir. (%) 

T1 6.53 7.68 4.63 3.05 

T2 6.56 7.08 11.10 16.41 

T3 7.35 6.10 7.42 8.90 

T4 7.18 3.79 8.62 7.03 

T5 6.86 7.21 9.73 7.03 

T6 6.48 7.05 7.82 11.10 

T7 3.54 5.60 9.52 9.61 

T8 7.92 6.62 6.98 14.59 

T9 3.49 6.36 9.84 7.78 

T10 4.15 5.74 5.95 5.06 

Average 6.01 6.32 8.16 9.06 
 

 

Table 5. Identified damping ratios of trees with a prop in the y-direction 

Specimen 
Ambient vibration test 

(%) 

Free vibration test 

(%) 

T11 5.31 10.91 

T12 2.64 17.27 

T13 8.97 8.72 

T14 2.48 14.19 

T15 8.30 12.41 

T16 6.30 10.55 

T17 6.73 20.61 

T18 19.43 21.79 

T19 6.98 11.15 

T20 9.29 8.17 

Average 7.64 13.58 
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Tables 4 and 5 present the identified damping ratios of trees with and without a prop from the 
ambient and free vibration test. It can be seen from Table 4 that the identified damping ratios 
of trees without a prop from the free vibration test were significantly larger than those from 
the ambient vibration test. They are 35.88% larger in the x-direction and 43.22 % larger in the 
y-direction in average. This is because the external damping as well as internal damping plays 
a role when the trees are oscillating with large magnitudes as Moore and Maguire reported. 
The average damping values of 6.01 % and 6.32 % obtained from the ambient vibration test 
match well to the internal damping of 5 % reported by Moore and Maguire. 
 
Compared to the damping ratio of trees without a prop, those with a prop in Table 5 are 20.88 % 
and 49.92 % larger in the ambient and free vibration tests, respectively. Consequently, it can 
be concluded that the wires attached to the trees in the steel pipe fence prop increase not only 
stiffness but also damping ratios of trees. 
 

Gust effect factor evaluations 

The gust effect factors are calculated and summarized in Tables 6 and 7. Both formulae for 
non-rigid structures in Eq. (3) and rigid structures in Eq. (4) are utilized since the identified 
natural frequencies of trees are almost 1 Hz. For comparison, the results of the empirical 
formula in Eq. (13) proposed by Gardiner et al. are also presented in Tables 6 and 7. For Eqs. 
(3) and (4), the identified natural frequencies and damping ratio from the ambient vibration 
test were used because the smaller damping ratios produce more conservative wind load 
estimation. For Eq. (13), the tree spacing is set to be 1.5 m, and the distance from the forest 
edge is assumed to be zero for conservative condition. 

 

Table 6. Gust effect factors of trees without a prop 

Specimen Eq. (3) Eq. (4) Eq. (13) 

T1 2.925 2.493 3.992 

T2 2.938 2.494 3.985 

T3 3.101 2.468 3.827 

T4 3.312 2.473 3.859 

T5 2.865 2.469 3.827 

T6 2.922 2.508 4.054 

T7 2.962 2.469 3.840 

T8 2.875 2.514 4.095 

T9 2.963 2.485 3.920 

T10 2.961 2.491 3.955 

Average 2.982 2.486 3.935 

 

Table 7. Gust effect factors of trees with a prop 
 

Specimen Eq. (3) Eq. (4) Eq. (13) 

T11 2.783 2.362 3.330 

T12 3.490 2.422 3.588 

T13 2.746 2.435 3.631 

T14 3.207 2.425 3.565 

T15 2.629 2.433 3.652 

T16 2.910 2.450 3.726 

T17 2.685 2.426 3.597 

T18 2.506 2.467 3.802 

T19 2.740 2.428 3.616 

T20 2.602 2.413 3.547 

Average 2.830 2.426 3.606 
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It can be noticed that the gust effect factors obtained using Eq. (4) are 14.27 % to 16.63 % 
smaller than those obtained using Eq. (3). Therefore, if the flexible nature of trees is neglected, 
the total wind load can be underestimated noticeably.  
 
The empirical formula proposed by Gardiner et al. yields 27.41 % to 31.96 % lager gust effect 
factors compared to those by the formula for non-rigid structures, and 48.62 % to 58.29 % 
lager ones compared to those by the formula for rigid structures Therefore, it can be 
concluded that the empirical formula that does not require the exact values of natural 
frequency and damping ratio overestimates the gust effect factor considerably.  
 

Conclusions 

The gust effect factors of trees are analyzed for the wind load estimation of the tree 

supporting system. Since the value of gust effect factor depends on the natural frequency and 

damping ratio, the field experiment was performed to identify the accurate dynamic properties 

of the trees.  

 

The 20 apple trees were used for the field test, in which a half of them were tested after 

cutting all horizontal wires connected to the trees while the prop for the rest of specimens 

remained intact. Both the ambient vibration test and free vibration test were performed and 

the identified dynamic properties were compared.  

 

It was found that the average natural frequency of fruit trees is about 1.0 Hz, and thereby the 

dynamic effect against fluctuating wind load needs cannot be ignored. Further, it is found that 

the damping ratios of fruit trees are quite larger than those of civil and building structures due 

to the external damping effect. The wires attached to the trees in the steel pipe fence prop 

increase both stiffness and damping ratios of trees. 

 

The gust effect factor analysis results indicate that the total wind load can be underestimated 

noticeably if the flexible nature of trees is neglected. If the empirical formula that does not 

require the exact values of natural frequency and damping ratio is used, the gust effect factor 

was overestimated considerably.  
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Abstract 
In the paper, the grains growth of TC4-DT alloy joint during EBW (electron beam welding) 
process was simulated by using Cellular Automaton method. In order to consider the effects 
of the growth of neighborhood cellular on the centre cells in the model, the solid fraction and 
solute distribution algorithms of classical CA model was improved. The growth of equiaxed 
grains and columnar crystals under uniform and non-uniform temperature field were 
simulated successfully by applying the modified model respectively. The temperature 
distribution near the fusion line of TC4-DT EBW joint was also calculated by using double 
ellipsoid heat source model. Then coupling the CA model with the temperature field, the 
grains growth process of the cross section of the welded zone was simulated. The simulation 
result fits well with experimental ones on the morphology and the size of the columnar 
crystals. 

Keywords: Grain growth, Cellular Automata, Electron Beam Welding, Columnar Crystal, 
Titanium alloy 

1. Introduction 

TC4-DT (Damage Tolerance) alloy is a kind of α β+  dual phase titanium alloy, its chemical 
composition approximate to Ti6Al4V. Compared with other medium strength titanium alloy 
TC4-DT alloy has higher fatigue resistance and damage tolerance properties (lower fatigue 
crack propagation rate and high fatigue crack propagation threshold), P. F. Fu (2014)[1], L. 
Tong (2010)[2].  In addition, with excellent weld-ability, TC4-DT alloy is suitable for EBW 
(Electron Beam Welding) process well. Recently, this alloy has been widely used in industry 
of  aviation and aerospace for its superior mechanical properties.  
 
The final mechanical properties of welded joints primary controlled by physical behavior and 
microstructure of weld fusion zone during solidification. Therefore, more and more 
investigations on microstructure simulation of weld pool during the solidification process 
have been performed to predict the properties of  weld joints, T. Zacharial and J. M. Goldakt 
(1995)[3]. 
 
Rapid development in computer technology in recent decades have allowed the use of 
numerical simulation as powerful tools for developing our understanding of  grain growth 
during  solidification. Numerous investigations have been performed to develop various 
computation models, such as Monte Carlo (MC) models, D. J. Srolovitz (1983)[4], P. P. Zhu 
(1992)[5], Cellular Automata (CA) models, M. A. Zaeem (2012)[6], A. Choudhury (2012)[7], 
Phase Field (PF) models, G. J. Fix (1983) [8], R. Kobayashi (1993) [9], C. Beckermann 
(2001)[10], and so on. Among of these, CA models are the most promising methods for 
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description the growth of  equiaxed and columnar grains in two or three dimensions. 
S.Wolfarm (1983)[11] firstly discussed the self-organizing behavior in cellular automata as a 
computational process. In this investigation, formal language is used to extend dynamical 
systems theory descriptions of cellular automata.J. D. Hunt (1984)[12] presented a CA model 
for the growth of equiaxed grains ahead of the columnar front during directional 
solidification. The model considers both single-phase and eutectic equiaxed growth. A simple 
expression is obtained which can predicts when fully equiaxed structures should occur. M. 
Rappaz , Thevoz and J. L. Desbiolles(1989)[13] proposed a FEM coupling with CA approach 
to model equiaxed microstructure formation in casting. In this CA model takes into account 
nucleation of new grains within the undercooled melt, and the kinetics of the dendrite tips of 
the eutectic front in the case of dendritic alloys. Subsequently, lots of intensively research on 
the CA method had been  conducted by M. Rappz and C. A. Gandin (1993-1997)[14]-[16], 
they established the overall framework of this approach, and the application range of the 
model was developed from two-dimensional to three-dimensional, from the uniform 
temperature field to the non uniform temperature field. Later,  some advanced and modified 
model have been proposed based on M. Rappaz's work. O. Zinovieva (2015)[17] proposed a 
improvement two-dimensional CA by introducing two new corrections to eliminate the 
artificial anisotropy , which based on a combination of the CA and FD methods developed by 
Rappaz and Gandin. The improvement CA model can be applied to simulate the complex 
grain morphologies during solidification. Baichen Liu and Q. Y. Xu (2015)[18] presented a 
three-dimensional CA model to prediction of single dendrite and polycrystalline dendrite 
growth of ternary alloys. In their model, introduces a modified decentered octahedron 
algorithm for neighborhood tracking to eliminate the effects of mesh dependency on dendrite 
growth. 
 
In this paper, considering the TC4-DT alloy EBW process the microstructural evolution of  
weld pool during solidification was simulated by using a improved CA model. The 
morphology and size of columnar grains in weld pool were predicted. 

2. Model theory  

A modified CA model coupled with finite element (FE) method was developed to simulate 
the grains growth of EBW molten pool during solidification. The nodes temperature 
calculated with software MSC. Marc were conversion into cells of CA model by applying 
linear interpolation method. 

2.1 Heat Source Model 

In order to accurately calculate the temperature distribution of weld zone, the most important 
is to establish a reasonable heat source model. Taking into account that the EBW has the 
characteristics of energy input intensively, small heating area, fast moving speed, non-
uniform energy density distribution and so on, a double ellipsoid heat source model was 
employed to simulate the temperature field of the welding process. The double ellipsoid heat 
source mode, as shown in Fig.1, composed of two quarter ellipsoid of front and rear with 
different parameter. 
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Figure 1. Schematic drawing of double ellipsoid heat source model 

The heat flux within any xy sectional plane fits Gaussian distribution. Moreover, the total 
energy density reduced gradually along the depth direction of the weld pool. The heat flux 
q(x,y,z) can be expressed as the following, P. Lacki (2011)[19]: 
 

2 2 2
1

1 2 2 2
1 1

6 3( , , ) exp( 3 )exp( 3 )exp( 3 )f Q x y zq x y z
ab c a b cp

= − − −        (front model) （1） 

2 2 2
2

2 2 2 2
2 2

6 3( , , ) exp( 3 )exp( 3 )exp( 3 )f Q x y zq x y z
ab c a b cp

= − − −       (rear model) （2） 

 
Where Q is the overall input power given by 0 0Q U Iη= , η  is thermal efficiency,  η  and η  
are welding voltage and current, respectively, a, b1, b2, c the ellipsoid semi-axes, f1 and f2 are 
the fraction power assigned to ellipsoid quarter, and 1 2 2f f+ = . 

2.2 Description of CA Model 

In CA models, the simulated area is discretized to be finite cells and time is discretized as 
time steps. Each time step is called 1CAS, which is defined as the time interval for all cells to 
undergo a variable calculation. The CA model includes four important parts, such as cellular 
state, cellular space, cellular neighborhood and transition rule. During the simulation, the state 
of each cell is determined by the  states of its nearest neighbors through a transition rule. The 
solidification process can be simulated by the transition of the microcosmic cells from liquid 
to solid, i.e. the change of the solid fraction in each cell from 0 to 1. 
 
The mesh of two dimension CA can be regular triangle or square in most cases. Two types of 
neighborhood, Von Neumann and Moore, are mostly used in square mesh. The Moore 
neighborhood model, as shown in Fig.2 , was  employed in this paper. There are eight 
neighbors to the central cell. The traditional CA model thought that all eight neighbors around 
the central have the same possibility of being capture to transit its stage during solidification, 
it ignore the difference of distance to different neighborhood. In this paper, the neighborhood 
cells were divided into two types depend on the location to the central cell. The cells 
orthogonal to the central cells called type I neighborhood, such as (i, j-1), (i, j+1), (i-1, j), (i+1, 
j) show in Fig.3 and the cells located on the diagonal of the central cells called type II 
neighborhood, such as (i-1, j-1), (i-1, j+1), (i+1, j-1), (i+1, j-1). The probability that type I 
cells were captured is 2  times as much as that of  type II cells. 
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i-1, j-1
(II)

i+1, j+1
(II)

i, ji, j-1
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i+1, j-1
(II)

i-1, j
(I)

i-1, j+1
(II)

i, j+1
(I)

i+1, j
(I)

 
Figure 2. Moore neighborhood model Figure 3. illustration of the type I & type II 

neighborhood 

2.3  Nucleation Model 

According to the solidification feature of  weld pool, the paper  considers only the 
heterogeneous nucleation. A continuous nucleation distribution, dn/d(ΔT), can be used to 
describe the grains density increase dn with the increase in undercooling by d(ΔT). The total 
density of nuclei for a given ΔT  is determined by: 
 

0
( ) ( )

( )
T dnn T d T

d T
∆

∆ = ∆
∆∫  （3） 

 
The change rate of nucleation density varies with degree of undercooling can be expressed by 
a Gaussian function,  then the formula is as follows: 
 

2

maxd 1exp
d( ) 22 ( )

Nn T Tn
T TT σσp

  ∆ −∆
 = −  ∆ ∆∆    

 （4） 

 
Where maxn  is the maximum nucleation density, Tσ∆ is the standard deviation of undercooling 
and NT∆  is the mean nucleation undercooling. 

2.4  Grain growth 

KGT (Kurz, Giovanola and Trivedi, 1986) [20] model was applied to calculate the growth 
process of dendrite tip. The total undercooling at the dendrite tip can be expressed as the sum 
of four contributions accounting for the solute CT∆ , curvature rT∆ , thermal TT∆ , and 
kinetic KT∆  effects.  Thus:  
 

C r T KT T T T T∆ = ∆ + ∆ + ∆ + ∆  （5） 

 
In this paper, the last two terms are neglected for their minor contributions to the total 
undercooling. Then the remaining terms can be expressed as follows. 
 

0( )C L LT C C m∆ = −  （6） 

rT K∆ = −Γ  （7） 
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Where  Lm  is liquidus slope, LC  and 0C  are the liquid concentration in interface cells and 
initial liquid concentration, respectively. Γ is the Gibbs-Thomson coefficient, and K is 
curvature. 
 
At a certain time, the liquid concentration in interface cells  0

LC  can be expressed by the 
previous step concentration  0

LC  and solid fraction 0
Sf , solid fraction increment Sf∆ , 

equilibrium partition coefficient 0k , as follow. 
 

0 0 0
0

0

(1 )
1

L S L S
L

S

C f k C fC
f f

− − ∆
=

− −∆
 （8） 

 
The interface cell is not only the solute absorption, there will be the rejection of solute at the 
same time.  The solute concentration at interface cell will keep constant when the solute 
absorption equal  to rejection. Then the equilibrium solute concentrations ( *

LC  and *
SC )  are 

given by: 
 

*
0

1 [ ]L
L

C C T K
m

= − ∆ −Γ                                      （9） 

                                       and          * *
0S LC k C=  (10) 

 
It is assumed that the solute is distributed evenly to the neighbor cell in most current model, 
which ignore the difference of solute concentration in cells and the distance to cells. A 
improved solute partition algorithm was proposed in the paper.  A weighting coefficient 

iΦ  ,considering the cells concentration difference and distance to central cells by division 
type I and II neighborhood mention above (section 2.2) , was introduced to the solute partition 
equation. The formula can be expressed as follows. 
 

1 1

n m

i iC C C∆ = ∆ + ∆∑ ∑                                      (11) 

i iC C∆ = Φ ∆�  (12) 

*

* *

1 1

*

* *

1 1

2( ) (type I cells)
2( ) ( )

(type II cells)
2( ) ( )

L i
n m

L i L k
j k

i
L i

n m

L i L k
j k

C C

C C C C

C C

C C C C

= =

= =

 − ∆

 −∆ + −∆


Φ = 
−∆


−∆ + −∆



∑ ∑

∑ ∑

 (13) 

 
Where n and m are the number of type I cells and type II cells, respectively. 
 
The state of a cell depends on its solid fraction during solidification. The cells are allowed to 
be one of three states: all liquid, all solid, or a mixture (an interface cell). The solid fractions 
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in liquid and solid cells are zero and unity, respectively, while interface cells have  0 1Sf< <  . 
The solid fraction increment can be obtained by the following formula. 
 

( )S x y x y
t tf V V V V
x x
∆ ∆

∆ = + −
∆ ∆

 (14) 

 
Where xV  and xV  are the moving velocity of solid-liquid interface on x and y direction, 
respectively. The t∆  is time step and x∆ is grid size. 
The solid fraction of a captured cell is usually increased uniformly with interface moving 
velocity, ignoring the increment direction and the influence of neighbor cell around it, which 
is disadvantage for square cell. An improved calculation method of  solid fraction increment 
was proposed in this paper. 
 
Three cases of solid fraction increased way were discussed according to the relative position 
of the captured cell (i.e. interface cell) and solidified neighborhood cells, as shown in Fig.4 
(a1) (b1) (c1). The interface growth angle, ϕ  , was employed, which has three candidate 
values,  0°, 45°, 63.4°(arctan(2)), as shown in Fig.4 (a2)(b2) (c2).  
Three solid fraction incremental models with different growth angles are illustrated in Fig.4 
(a)~(c) respectively.  

• =0ϕ o  
Traditional approach with interface moving from 0 to Vt1. 

• =45ϕ o  
Two-stage model: (1) interface moving from 0 to Vt'1; (2) interface moving from Vt'1 
to (Vt'1+ Vt'2). 

• =63.4ϕ o  
            Three-stage model:  (1) interface moving from 0 to Vt1; (2) interface moving from    
            Vt"1 to (Vt"1+ Vt"2); (3) interface moving from (Vt"1+ Vt"2) to (Vt"1+ Vt"2+ (Vt"3). 

Captured cell
Solidified cells

(a1)

     

Captured cell
Solidified cells

(b1)

          

Captured cell
Solidified cells

(c1)

 

Vt
1

(a2)

 

Vt' 1 Vt' 2

45°

(b2)

 

Vt''1 Vt"2 Vt"3

63.4°

(c2)

 
Figure 4. Different relative position of the captured cell and solidified neighborhood 

cells with (a1) 0ϕ =  ; (b1) 45ϕ =  ; (c1) 63.4ϕ =  , and interface moving way in a 
captured cell of (a2) 0ϕ =  ; (b2) 45ϕ =  ; (c2) 63.4ϕ =   
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3. Results and discussion 

Considering a titanium alloy, TC4-DT, numerical simulations of grains growth during 
solidification were conducted. The material property parameters used in this paper were listed 
in table 1.  

Table 1. Material properties parameters used in the simulation 

Property Variable Value 
Liquidus temperature LT  1703℃ 
Solidus temperature ST  1678℃ 
Partition coefficient 0k  0.95 

Diffusion coefficient in liquid LD  9 25 10 m / s−×  
Diffusion coefficient in solid SD  13 25 10 m / s−×  

Liquidus slope Lm  -1.4 
Maximum nucleation density maxn  9 34 10 / m×  

Standard deviation of undercooling Tσ∆  0.5℃ 
Maximum undercooling maxT∆  2℃ 

Gibbs-Thomson coefficient Γ  73.66 10 m K−× ⋅  
Initial concentration 0C  10.26 wt% 

3.1 Growth of equiaxed grains under  isothermal conditions 

In order to test the validity of the model and program, the numerical simulation of equiaxed 
grains growth under hypothetical isothermal conditions were performed. The simulation 
region was divided into  100 ×100 square cells with the size of  0.01mm, and constant 
cooling rate was applied.  
 
The simulation results was shown in Fig. 5. It can be observed that at the beginning of the 
solidification process, a large number of nuclei appeared randomly from liquid due to the 
undercooling. As the time step increases, the grains grow up gradually with relatively normal 
shape. And the grains which have the same characteristic value will merge into large one 
when they contact with each other. At the end of the solidification, the whole region filled 
with comparatively uniform grains distinguished by different colors as Fig5(c). 

   

(a) t=200CAs (b) t=240CAs (c) t=300CAs 
Figure 5. Growth of equiaxed grains during solidification  
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Fig. 6 shows the solute distribution in solidified grains at 300CAs. The results revealed that 
the solute concentration of the grain boundary is higher than that of the grain interior, closer 
to the center of grains the lower concentration is. During solidification process, the solidified 
cells will reject solute to the liquid phase due to solute redistribution which will lead to the 
solute enrichment at the grain boundary, namely grain boundary segregation. Where the 
multiple grain boundary segregation is more significant. 
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(a)  (b) 

Figure 6. The solute distribution at 300CAs during solidification: (a) the whole 
simulation region; (b) magnification of the local solute concentration region 

3.2 Growth of columnar crystals of  TC4-DT alloy EBW molten pools 

The actual TC4-DT alloy EBW process was simulated by employed CA method mention 
above. Only the width of  4mm simulation region was selected from  the cross section, as 
shown in Fig. 7, considering the narrow of  EBW heat affected zone, usually less than 3mm. 
The simulation region was divided into  80 ×400 square cells with the size of 0.05mm. 

10mm

20mm

W
eld

 

dir
ect

ion

10mm

4mm

Section

Simulation region

x

y

 

Figure 7. Schematic of TC4-DT EBW joints and selected simulation region 
Fig. 8 shows the simulation results of grains nucleation and growth process in the weld pool 
at different CA time steps. Because of the symmetrical of the weld poor, only half of the 
model was considered. It can be found that at the beginning of the solidification, the 
nucleation firstly happened at the lower part of the weld pool near to the fusion line, due to 
the higher cooling rate and greater undercooling of these area, as shown in Fig. 8(a). As the 
solidification process, the nucleus at lower part grew gradually towards weld pool center for 
temperature gradient. In addition, the large number of new nucleus appeared along fusion line 
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from lower to upper, due to the temperature decrease, as shown in Fig. 8(b). At the time of 
6000CAs, as Fig.8 (c), the early nucleus grew over and formed slender columnar grans, while 
the columnar at top area was just beginning to grow. It is mainly due to the great depth to 
width ratio of EBW pool and non-uniform temperature distribution from lower to upper of the 
cross section. Fig. 8(d) shows the final morphologies of grains with different colors. When the 
weld pool solidification completely, the columnar grains can be seen with irregular shape and 
size. General speaking, the size of the lower part among firstly solidified grains is evidently 
less than that the upper part among later solidified grains. What’s more, due to the 
competitive growth among the neighborhood grains only several nucleus can grow up and 
form complete columnar crystal finally.     
 

Top 

 
bottom 

Top 

 
bottom 

Top 

 
bottom 

Top 

 
bottom 

(a) t=500CAs (b) t=2000CAs (c) t=6000CAs (d) t=9700CAs 
Figure 8.  Simulation the growth process of columnar grains of TC4-DT alloy 

EBW weld pool (1/2 model) 
Fig. 9 revealed the comparison of simulation results with experimental results. It can be 
observed that the morphology of  simulated columnar crystal  is very close to actual EBW 
results. The number and size of columnar crystals obtained from experiments and simulations 
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were measured respectively, as listed in the table 2.   It is evidently that simulated result 
shows good agreement with experimental. 

 

  
(a)  (b) 

Figure 9. The comparison of experimental and simulation: (a) The metallograph of 
TC4-DT EBW fusion zone; (b) The Topology morphology of simulation result 

 
Table 2. The columnar crystal number and size of simulation and experimental  

 
Number of 

columnar 

Maximum length 

/mm 

Minimum length 

/mm 

Average length 

/mm 

Simulation results 27 1.475 0.202 0.712 

Experimental results 28 1.550 0.250 0.714 

4. conclusions 

In this paper, a CA model was developed which can be used for the numerical simulation of 
grain growth during weld process. Considering the influence of the neighborhood on interface 
cell, the algorithm of solid fraction and solute redistribution was improvement. According to 
the state of neighborhood, the calculation of solid fraction was distinguished into three cases, 
i.e. the interface growth angle ϕ taken 0 , 45 , 63.4  respectively. In each case, the solid 
fraction increment is represented by different piecewise function. In addition,  the calculation 
of  solute redistribution was modified more reasonably by taking into account the distance and 
the concentration difference between the interface cell and its neighborhood.  
 
The proposed model was applied to simulate the equiaxed grains growth under isothermal 
condition successfully. Finally, the developed model was employed to simulation the 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

902



solidification process of TC4-DT alloy EBW weld pool and predict the microstructure of the 
weld zone. The prediction of columnar crystal showed good agreement with experimental 
results on grain morphology and size. 
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Abstract

An evaluation for a parallel Particle-In-Cell code leveraging heterogeneous hardware is pre-
sented. Hybrid parallelization is implemented to support optional workload offloading to 40
Intel R© Xeon PhiTMcoprocessors. A performance model is applied to load balance the parti-
cle data for this heterogeneous setup. Performance measurements of a benchmark show the
speedups for the balanced and unbalanced cases and the execution without the coprocessor.
The code computes particle-field interactions in the time domain, typically used in plasma or
particle physics. A multi beam gun is chosen as a benchmark. The gun uses an electrostatic field
to accelerate the particles and a magnetostatic field, generated by a current driven coil to focus
the particle beam. Calculated results are compared with CST Particle Studio [11]. For solving
the electrodynamic and electrostatic fields, described by the coupled MAXWELL equations, a
3D solver has been implemented, facilitating the Finite Integration Technique (FIT) [1].
Keywords: High Performance Computing, Intel Xeon Phi, Particle-In-Cell

Introduction

Modern HPC systems provide diverse processor architectures, making efficient parallel com-
puting a difficult task. Keeping the physical limitations with high clock speed rates and energy
consumptions of processors in mind, the attractiveness of modern multicore processors be-
comes obvious. To leverage their benefits, hybrid parallelization strategies become necessary.
As the variety of heterogeneous computing systems will increase in the future, this motivates
investigations for realistic performance and scalability models to explore potentials for code
optimizations and load balancing strategies. Typically used in computational accelerator and
plasma physics, Particle-In-Cell (PIC) simulations calculate the movement of free charges in
electromagnetic fields. Solving those physics requires a solution of the coupled MAXWELL

equations

∇× ~E = −∂
~B

∂t
, ∇· ~B = 0,

∇× ~H = ∂ ~D

∂t
+ ~J, ∇· ~D = ρ,

(1)

and the relativistic NEWTON-LORENTZ equation

∂~u

∂t
= q

m0c

(
~E + ~v × ~B

)
,

∂~r

∂t
= ~v,

~u = γ
~v

c
,

(2)
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where ~u is the normalized momentum and q,m0, ~r, ~v represent charge, rest mass, position and
velocity of particles. As equations 1 and 2 lead to separate computations within this approach
those are referred as computational kernels.

3D Particle-In-Cell Simulation

As moving charges describe a current in eq. (1), a cyclic dependency needs to be solved for
every time step. This is shown in figure 1. To solve the fields numerically, the Finite Integration
Technique (FIT) [1] is implemented. For further information about FIT the reader is referred
to [1] for the general theory and to [4] for a setting with PIC. For the time integration of the
fields a leap-frog scheme is chosen. For the integration of eq. (2) the well known Boris scheme
is used. Charge conservation is ensured by using an algorithm described in [5]. The following
subchapters will provide a coarse overview. The basic kernels of the PIC method are: (1) Calcu-
lating the dynamic electromagnetic fields in time domain with eq. 1 (”field” kernel). (2) Gather
all static and dynamic field values at particle positions (”gather fields” kernel). (3) Integrate
particle trajectories for one time step (”push” kernel). (4) Calculate currents introduced by the
charge movement and scatter those (”scatter current” kernel). The costs of these kernels depend
on the problem setting in terms of particles per cell, particle distribution and the sizes of the
computational mesh.

Figure 1: The left figure shows the sequential steps of the Particle-In-Cell algorithm. Each
loop calculates one physical time step. The right figure explains the offloading to the
Intel R© Xeon PhiTMaccelerator card. Only the particle trajectory and current calculations
are offloaded to the card.

Field Solver

The field solver facilitates FIT. The FI discretization scheme is related to the well known Yee
scheme and based on a dual grid-doublet {G, G̃}, which decomposes the computation domain
into two sets of dual cells. Integral quantities _q, _e and

__

b are defined on the grid G, correspond-
ing to the total charge in the cell volumes, to the electric voltage along the cell edges and to the
magnetic induction flux on the cell facets, respectively. Electric voltage _e is defined by∫

Lv(i,j,k)
~E(~r, t) · ~ev dv = _ev(i, j, k). v ∈ {x, y, z} (3)
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The integral quantities
__j ,

__

d and
_

h are the vectors of charge current, electric displacement flux
and magnetic voltage defined on the facets and edges of the dual grid G̃. Fig. 3 illustrates
the allocation of the electric voltage in the case of rectangular dual grids G and G̃. Using these
integral quantities, Maxwell’s equations in discrete form, the so-called Maxwell-Grid-Equations
are obtained:

C _e = − d

dt

__

b, (4a)

C̃
_

h =
__j + d

dt

__

b, (4b)

S̃
__

d = q. (4c)

The support matrix operators {C, S} and {C̃, S̃} defined on G and G̃ are discrete mappings
of the differential ”curl” and ”div”. The operators C, S, C̃ and S fulfill the identities SC =
CS̃T = 0 and S̃C̃ = C̃ST . This corresponds to the continuum relations div curl = 0 and
curl grad = 0. The discretization approximation enters FIT through the constitutive material
equations

__

d = Mε
_e ,

_

h = Mµ−1
__

b and
__j = Mσ

_e. (5)

Particle Solver

The particle solver models groups of particles ”macroparticles” using a ballistic approach by
solving eq. (2). Solving it requires a three step process: 1. interpolating E and B fields in the
center of the macroparticle within one cell by choosing an interpolation with at least order one.
2. Solving eq. (2) with the a method proposed by Boris [5] using the interpolated field values of
step (1). Note that solving this equation is not trivial as of the term ~v× ~B. 3. Calculating current
densities induces by the particle movement, with the equations 6 for the 2D case as shown in
figure 2. Bunemann et. al. [2] describe how to solve this with rigorous charge conservation.

Q (ϑ, η)

0
0 1

1

ϑ

η

~ra

~rb

~v
__

j η1

__

j η2

__

jϑ2

__

jϑ1

Figure 2: Macroparticle moving in a 2D cell.
As the particle is moving it creates currents
on the edges of the cell.

G̃

G

Q

__ex

Figure 3: Illustrates the allocation of fluxes
and voltages in the case of rectangular dual
grids G and G̃.
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The currents in figure 2 for the 2D case are calculated by:

__

jϑ1 = Q · ϑ2 − ϑ1

4t
·
(

1− η1 + η2

2

)
__

jϑ2 = Q · ϑ2 − ϑ1

4t
· η1 + η2

2 (6a)

__

j η1 = Q · η2 − η1

4t
·
(

1− ϑ1 + ϑ2

2

)
__

j η2 = Q · η2 − η1

4t
· ϑ1 + ϑ2

2 (6b)

Integration in the Time-Domain

The time domain equivalent to the FI Method is the well known FDTD scheme of leapfrog
integration. Applied to the time dependent equations (4) this procedure is restricted by the
Courant–Friedrichs–Lewy stability criterion on the time step length

4t ≤ 4tmaxCFL. (7)

For the time integration an explicit forward time difference scheme is used. The corresponding
update relation is

_

h (m+1) = _

h (m) − 4t Mµ−1 C̃ _e (m+ 1
2 ) + O(4t2) , (8a)

_e (m+ 3
2 ) = _e (m+ 1

2 ) + 4t Mε
−1

(
C̃

_

h (m+1) −
__j (m+1)

)
+ O(4t2). (8b)

Integrating the particle trajectories is straight forward. Replacing the differential operator in eq.
(2) with a central differential quotient will lead to a numeric representation. Again a leapfrog
scheme for the integration of ~r and ~u is used.

un+1/2 = un−1/2 + 4t · Q

m0 · c
· (En + vn ×Bn) , (9a)

rn+1 = rn + 4t · c

γn+1/2 · u
n+1/2 (9b)

Eq. (9a) cannot be solved explicit as of ~v. Changes in the velocity ~v will also effect the normal-
ized momentum ~u. For this reason eq. (9a) is split into three steps as suggested by Boris [5].
First the momentum gets calculated over half a time step by

u− = un + 4t
2 · Q

m0 · c
· En, (10)

second a rotation is calculated according to the LORENTZ force over a full time step

u∗ = u− + u− ×T, (11a)

u+ = u− + u∗ × 2 ·T
1 + |T|2

, (11b)

T = 4t · Q ·Bn

2 ·m0 ·
√

1 + |u−|2
. (11c)

Finally the momentum gets calculated over the lasting half time step

un+1 = u+ + 4t
2 · Q

m0 · c
· En. (12)
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Parallel Particle-In-Cell

In this work Intel R© Xeon PhiTMcoprocessors are evaluated for the parallelization of the PIC
method. The existing parallel PIC code facilitates distributed and shared memory parallelization
using MPI and OpenMP. The code is build on top oh the PETSC framework [10] supporting
sophisticated MPI data structures to be used. The Intel R© Xeon PhiTMcard has been chosen
instead of a GPU card, as the the existing OpenMP code may be easy to offload.

Strategies for Parallelization

To minimize the overall runtime, a suitable parallelization strategy needs to be chosen. Such
a strategy may be influenced by application specific properties, e.g. different particle distri-
butions or geometry resolutions and by hardware specific properties such as vectorization in
CPU’s, multicore systems and coprocessors. Two strategies for distributed memory PIC paral-
lelization have been investigated in the context of accelerator physics (e.g. beam simulation)
[6], [7], [8] and [9]:
1.) The whole computational domain is decomposed by the number of computing nodes avail-
able. Every node calculates the DOF’s for the fields and the trajectories for the particles, that
are moving within the domain assigned to the node. Hence only uniform particle distributions,
where every node calculates an equal number of particles, benefit from this strategy.
2.) Only the field DOF’s are spatially distributed to the nodes, whereas the particle calculations
are equally distributed independent from their position. This guarantees an equal workload for
every node, with the drawback of additional communication costs. This strategy is characterized
by a satisfying weak scaling behaviour, but may not be the fastest solution.

Shared Memory Parallelization / Offloading to Coprocessors

Using one Intel R© Xeon PhiTMcoprocessor with 60 effective cores, each with four hardware
threads, the ”field” kernel can make use of the (theoretical) high memory bandwidth and the
”push” and ”current” kernels can leverage the highly concurrent SIMD nature of the particle
calculations using up to 240 hardware threads available on the card. The coprocessor can be
used in two different modes. A ”native mode” where the executable gets compiled to run on the
coprocessor as a standalone MPI process and a ”offload mode” that enables offloading selected
kernels that benefit from the multicore architecture. Due to the memory limitation of 8 GB main
memory for the smaller Intel R© Xeon PhiTM5110P card and the fact that not every computational
kernel can benefit from the shared memory scalability of the coprocessor (e.g field solver), the
”native mode” is not evaluated in this work. In the benchmark used for evaluation, the computa-
tions of the particle solver takes up to 80% of the overall time to compute one physical time step,
suggesting that particle integrations and current density calculations are offloaded to the Xeon
PhiTM coprocessor, whereas the field computations and all MPI communications are exclusively
performed on the host. As the communication to the coprocessor over PCIe is one bottleneck,
this work evaluates only the second parallelization strategy mentioned above making benefit
of the fact that particle data will stay on the coprocessor across all time step calculations, thus
PCIe traffic is reduced. In order to calculate on the coprocessor in parallel with the host, an
asynchronous offload with OpenMP 4.0 LEO is implemented. This way only one thread of the
host executes the offloading procedure to the coprocessor, whereas the remaining n− 1 threads
of the host are facilitated to compute the particle movement and current calculations.

Performance

In this work performance is defined as ”time-to-solution”. From a performance bottleneck
perspective computational kernels can be classified as memory bounded and CPU bounded.
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Evaluating the code showed, that both the ”field” kernel and the ”push” kernel tend to be to
memory (bandwidth) bounded.

Performance Modeling

In some cases it might be inefficient to offload computations to a coprocessor, as the time for
sending and receiving data from the coprocessor makes the speedup for calculation neglectable.
Therefore a performance model, on the basis of a model proposed by Kredel et.al. [3], is
introduced predicting performance achieved by the PIC code. Further performance prediction
creates space for robust load balance strategies. By counting all floating point operations #opj
as well as the number of network bytes exchanged #xj by kernel j, taking the communication
bandwidth bk into account and measuring floating point operation per second lkj for each node
k the performance is estimated by

tk ≤
Kernel∑
j=0

#opj
lkj

+
Kernel∑
j=0

#xj
bk

. (13)

The parameters #opj and #xj describe the software performance where as bk and lkj are hard-
ware representatives. Software parameters can be derived from the code by hand or with mea-
surements by sweeping all parameters (e.g. mesh and particle size). As it is intended to model
a system with one host and one Intel R© Xeon PhiTMcoprocessor the effective bandwidth for the
communication between those needs to be measured as shown in figure 7. For large data sizes
(> 30MB) the bandwidth for sending and receiving may differ by up to one dimension. As the
offloaded kernels are running in parallel on the host and on the coprocessor, the performance is
estimated by

tk ≤ max
[
w1op1

l11
,
w2 ∗ op1

l21
+ w2 ∗ xsend

b2
send

+ w2 ∗ xrecv
b2
recv

]
(14)

where the max operator describes the parallel execution, as the slower system will degrade the
performance. The sum of the performance of the ”push” and ”current” kernels, executed by
the host, is denoted by l11,2 and the operation count by op1,2. For the coprocessor those are
denoted by l21,2 and op1,2, respectively. As the bandwidth for sending and receiving data from
the coprocessor differs, two terms modeling the data transfer are added. As it is intended to
perform load balancing, two scalar weights are added, w1 and w2. The sum of both weights
must be equal to one.

Optimization for Accelerator

In order to get the code running efficiently on the coprocessor some optimizations are carried
out. When calculating current density values by the ”current scatter” kernel after the movement
of the particles, those values are stored in a hash map where the key is the face index in the com-
putational mesh, of the face the particle has crossed. This is done by every thread for all particles
those threads are responsible for and merged in the end. Reading and writing to 240 hash maps
on the coprocessor, each controlled by one thread, is decreasing the performance in an order
of one dimension compared to the performance of the host with 16 threads. Using the concur-
rent unordered map provided by Intel Thread Building Blocks library [13] the performance is
improved to be competitive with the host’s performance. The data of particles and fields trans-
mitted from the host to the coprocessor and current data transmitted from the coprocessor to the
host is communicated over PCIe 2, having a peak bandwidth of 6 GB/s as shown in figure 7. To
achieve high communication speeds the environment variable MIC USE 2M BUFFERS of the
coprocessor is set to 2 MB.
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Architectural Testbed

The Lichtenberg cluster [12] located at Technische Universität Darmstadt, has 647 computing
nodes available for various applications and provides an accelerator section that with 24 nodes,
configured to be used with 48 Intel R© Xeon PhiTMcoprocessors (two cards each node). Every
host node has two sockets with one Intel R© Xeon R© Processor E5-2670 having 8 cores, hy-
perthreading disabled and 32 GByte main memory. Each core runs on 2.6 GHz. Nodes in this
section are connected with 1x FDR-10 InfiniBand. Two nodes provide Intel R© Xeon PhiTM7120P
coprocessors whereas the remaining 22 nodes provide Intel R© Xeon PhiTM5110P coprocessors.
The Intel R© Xeon PhiTMcoprocessor 5110P has 8GB main memory, 59 effective cores each with
four hardware threads, 1.05 GHz clock speed and a theoretical peak memory bandwidth of 320
GB/s. This system is used to evaluate the speedup achieved by PIC code when incorporating
Intel R© Xeon PhiTMcoprocessors.

Results
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Figure 4: Execution times to compute one
physical time step. The overall problem
size is fixed (106 DOF and 107 particle),
whereas the number of MPI processes is
increased. Each computing node executes
two MPI processes, as each MPI process
has one Intel R© Xeon PhiTMcard. The blue
line shows measured times without the
support of coprocessors. Green line shows
measured times with support of the copro-
cessors. Red and black line show execution
times with particle load balancing, using
the ratios of 1:2 and 1:3 between the host
and the coprocessor.

Figure 5: Execution times to compute one
time step. The problem size per MPI pro-
cess is constant (106 DOF and 107 parti-
cle), whereas the number of MPI processes
is increased. Each computing node exe-
cutes two MPI processes. The blue line
shows measured times without the support
of coprocessors. Green line shows mea-
sured times with support of the coproces-
sors. Red and black line show execution
times with particle load balancing, using
the ratios of 1:2 and 1:3 between the host
and the coprocessor.

As a benchmark problem, a multi beam particle source of a particle accelerator is chosen. The
benchmark is provided by CST [11]. It simulates multiple electron beams with free movement
in a constant electric and magnetic field and perfect electric conducting boundaries. The mag-
netic field is generated by a current driven coil to focus the beam. The problem size is designed
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to meet the main memory limitations of one computing node in the accelerator supported section
of the Lichtenberg cluster, calculating 10 million DOF for the mesh and 100 million particles
on one node. Scaling up to 20 nodes a problem with 200 million DOF and 2 billion particles is
solved.
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Figure 6: Execution time for ”push” and
”current” kernels calculating 5 ∗ 106 par-
ticles with a varying number of threads.
Red line shows the execution times of
the offloaded kernels on Intel R© Xeon
PhiTM5110P. A speedup of 2-3 against the
hosts execution is measured. Blue line
shows the execution on the host with one
MPI process and varying threads. Green
line shows the execution on the host with
two MPI processes and varying threads.

Figure 7: Showing measured bandwidth
values when communicating with an Intel R©

Xeon PhiTM5110P coprocessor. The blue
line shows performance for received data,
whereas the green line shows the band-
width measured when data was sent. Both
measurements can be fittet with spline
functions.

Speedup and Execution Time

Three studies are carried out to evaluate the speedup achieved with the coprocessors. A study
evaluating strong scalability shown in figure 4, where the problem size is constant and the num-
ber of parallel units is increased, a weak scalability study, where the problem size increases
linearly with the number of parallel units, shown in figure 5 and a study measuring the shared
memory scalability shown in figure 6. All measurements shown are executed with two MPI
processes per node, each running 8 threads in parallel. This way each MPI process makes use
of one Intel R© Xeon PhiTMcoprocessor, as one node holds two cards. Also the performance for
one MPI process running on one node with 16 threads is measured, but only for the setup where
no coprocessors were used. Each figure shows time values in seconds measured when execut-
ing one physical time step. This physical time step is calculated by the sequential execution
of each computational kernel in parallel by all MPI processes. The values are mean values of
ten physical time steps measured. Four setups are configured and shown in both figures 4 and
5. The blue line (”w/o MIC”) shows measurements were the code is executed without a co-
processor, whereas the green line (”w MIC”) incorporates the coprocessors. The red and black
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lines are setups, where the number of particles calculated by the host and the ones calculated
by the coprocessor are load balanced by the ratio 1:2 and 1:3, respectively. From figure 4 one
can infer that using two coprocessors reduces the time to compute one physical time step by
up to 56% compared to a host only execution with one MPI process, and a reduction of 23% is
achieved compared to a host only execution with two MPI processes. One can also derive that
the support of the coprocessor gets insignificant as the number of particles per MPI process gets
to small, as measured with 16 and 40 MPI processes in figure 4. Having a constant problem
size on each node, as shown in figure 5, the benefit of the coprocessors becomes noticeable, as
a mean runtime reduction of 39% for the load balanced setup is measured. Figure 6 shows the
scalability of the ”push” and ”current” kernels, when increasing the number of threads, having
the problem size kept fixed. The blue line plots a setup where the code is executed without the
coprocessor using one MPI process and a varying number of threads, whereas the green line
shows measurements for a setup with two MPI processes executed in parallel on one node. The
red line plots the time the coprocessor (Intel R© Xeon PhiTM5110P) needs to execute both kernels.
Calculating the same number of particles on both accelerator cards, the performance difference
between the smaller and the bigger accelerator card is negligible. In figure 6 it is also shown that
calculating the same number of particles with the same number of threads on the host and on
the coprocessor, the host system exceeds the coprocessors. This may be caused by the different
core cache architectures, bigger caches sizes and the existence of L3 caches on the host. As the
coprocessor can scale up to 240 threads (the Intel R© Xeon PhiTM5110P only to 236 threads) a
speedup between 2 and 3 can be measured compared to the host with 16 threads running. The
speedup of the host saturates at 8 threads.
According to Intel, the pinning of threads onto the cores can have a major performance impact.
Table 1 shows measurements for various thread affinity setups. Scatter, balanced and compact
affinity settings are evaluated when 59, 118, 177 and 236 threads are used. Balanced and scat-
tered thread distributions lead to similar execution times, whereas compact distribution tends to
be slower. Using 236 threads all affinity settings show similar results.

Figure 8: CAD model of the multibeam
particle source created in CST Particle
Studio [11]. The red structure is a cur-
rent driven coil generating a magnetostatic
field. The ring structure has 8 particle
sources.

Figure 9: Particle-In-Cell multi beam
benchmark simulating electron beams with
free movement in a constant magnetic field
and perfect electric conducting bound-
aries. The benchmark is calculating 10 mil-
lion DOF for the mesh and 100 million par-
ticles on one node.
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Table 1: Thread affinity on xeon Phi 5110P

KMPAFFINITY 59 118 177 236

granularity=fine, scatter 22.74s 12.75s 9.85s 8.29 s

granularity=fine, balanced 22.82s 12.81s 9.89s 8.16s

granularity=fine, compact 29.40s 15.06s 10.39s 8.16s

Conclusion

Performance measurements are presented evaluating ”time-to-solution” with 40 Intel R© Xeon
PhiTMcoprocessors incorporated executing a parallel Particle-In-Cell code. It is shown that the
on-node performance is improved by 56% for realistic problem sizes, when controlling the
balance of data that is computed on the host and on the coprocessor with a load balancing
strategy. Therefore an analytical performance model is used and evaluated for the host and the
coprocessor.
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Abstract

In this paper we introduce a mesh–free computational model for the simulation of high-speed
impact phenomena. Within the framework of particle dynamics simulations we model a macro-
scopic solid ceramic tile as a network of overlapping discrete particles of microscopic size.
Using potentials of the Lennard-Jones type we integrate the classical Newtonian equations of
motion and perform uni-axial, quasi-static load simulations to customize our three model pa-
rameters to the typical tensile strength, Young’s modulus and the compressive strength of a
ceramic. Subsequently we perform shock load simulations in a standard experimental set-up,
the edge-on impact (EOI) configuration. Our obtained results concerning crack initiation and
propagation through the material agree well with corresponding high-speed EOI experiments
with Aluminum Oxinitride (AlON), Aluminum Oxide (Al2O3) and Silicon Carbide (SiC), per-
formed at the Fraunhofer Ernst-Mach-Institute (EMI). Additionally, we present initial simula-
tion results where we use our particle–based model to simulate a second type of high-speed
impact experiments where an accelerated sphere strikes a thin aluminum plate. Such experi-
ments are done at our institute to investigate the debris clouds arising from such impacts, which
constitute a miniature model version of a generic satellite structure that is hit by debris in the
earth’s orbit. Our findings are that a discrete particle based method leads to very stable, energy–
conserving simulations of high–speed impact scenarios. Our chosen interaction model seems
to work particularly well in the velocity range where the local stresses caused by impact shock
waves markedly exceed the ultimate material strength.

Keywords: Computer Simulation, Discrete particle model, Multiscale modeling, High-speed
impact, Molecular Dynamics, Hypervelocity.
Introduction

Understanding the mechanisms of failure in materials on various length- and time scales is
a prerequisite for the design of new materials with desired superior properties such as high
toughness or strength. On the macroscopic scale, many materials such as concrete or ceramics
may be viewed as being homogeneous; however, on the scale of a few microns these materi-
als often exhibit an inhomogeneous polyhedral granular structure which is known to influence
its macroscopic mechanical and/or optical properties [1]. Whether a material under load dis-
plays a ductile, metal-like behavior or ultimately breaks irreversibly, in essence depends on the
atomic crystal structure and on the propagation of defects in the material. Broken atomic bonds
(cracks) and dislocations are the two major defects determining mechanical properties on an
atomic scale. Due to the ever increasing computing power of modern hardware, many-particle
molecular dynamics (MD) simulations taking into account the degrees of freedom of several
billion atoms are nowadays feasible [2][3]. Molecular dynamics investigations of this type us-
ing generic models of the solid state have lead to a basic understanding of the processes that
govern failure and crack behavior, such as the dynamical instability of crack tips [4][5], the
limiting speed of crack propagation[6]-[8], the dynamics of dislocations [9][10], or the univer-
sal features of energy dissipation in fracture [11]. However, investigations of materials which
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Figure 1: Left: Photomicrograph of an Al2O3 ceramic tile. Right: 3D view of the polyhe-
dral granular surface structure of Al2O3.

involve multiple structure levels, such as polycrystalline solids, require very large ensembles of
atoms to accurately reflect the structures on the microscopic and mesoscopic levels [12]. For
systems of reasonable size, atomistic simulations are still limited to following the dynamics of
the considered systems only on time scales of nanoseconds. Such scales are much shorter than
what is needed to follow many dynamic phenomena that are of experimental interest [13][14].
On the microscale, the typical structure of many brittle materials is composed of convex poly-
hedra, as seen in two-dimensional (2D) photomicrographs of polycrystalline ceramics (Fig. 1).

High-Performance Ceramics (HPC)s

With ceramics, the specific shape and size of their polycrystalline grain structures is formed in
a sintering process where atomic diffusion plays a dominant role. Usually the sintering process
results in a porous microstructure with grain sizes of several hundred micrometers. Using a
nano-sized fine-grained granulate as a green body along with an adequate process control, it
is possible to minimize both, the porosity (which is smaller than 0.05% in volume), as well as
the generated average grain size (smaller than 1 m). It is known that both leads to a dramatic
increase in hardness which outperforms most metal alloys at considerably lower weight and thus
yields a HPC such as AlON, Al2O3, SiC or Boron Carbide (B4C). Characteristic for HPCs are
an extremely low porosity (less than 0.1% in volume), high purity, and high hardness of the final
macroscopic structure. An additional beneficial property of HPCs is the fact that, depending on
the final grain size, the ceramics exhibit translucency or even complete transparency which
renders these materials the prime source for future engineering applications [15][16]. Typical
applications of HPCs that benefit from high hardness at low weight are e.g. wear resistant brake
discs, protection shields in the automobile industry or bone substitutes in medical devices.

The use of extremely small grain sizes below 100 nm in the making of HPCs results again
in decreasing hardness [16]. Hence, there is no simple connection between grain size and
hardness of a polycrystalline material. As a consequence, today, one is compelled to search for
the optimal micro structure for a specific application by intricate and expensive experimental
trial-and-error studies. Some of the mechanical properties of HPCs are measured at EMI by
means of ballistic high-speed impact experiments in the experimental standard set-up of the
EOI configuration, where a fast impactor hits the edge of a ceramic tile of typical dimension
(10× 10× 2) cm3, cf. Fig. 2.

Here, the ceramic specimens are placed at a distance of 1cm in front of the muzzle of a gas gun
in order to achieve reproducible impact conditions. In this set-up the rear of the projectile is
still guided by the barrel gun when the front hits the target.
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Figure 2: (a) The edge-on impact (EOI) configuration for the reflected light set-up. (b)
Sample high-speed photograph of an EOI experiment with SiC impacted at striking ve-
locity 1040 m/s displaying the propagating shock wave through the material.

Modeling and Simulation of Granular Microstructures

With numerical investigations taking explicitly into account the microstructural details, one can
expect to achieve a considerably enhanced understanding of the structure-property relationships
of such materials [17][18]. For simulations of macroscopic material behavior, techniques based
on a continuum approximation, such as the Finite Element Method (FEM) or Smooth Particle
Hydrodynamics (SPH), are almost exclusively used. In a continuum approach the considered
grain structure of the material is typically subdivided into smaller (finite) elements, e.g. tri-
angles in 2D or tetrahedra in 3D. Upon failure, the elements are separated according to some
predefined failure modes, often including a heuristic Weibull distribution [19], which is artifi-
cially imposed upon the system. Results using these methods are usually strongly influenced by
mesh resolution and mesh quality [20]. On the other hand, classical molecular dynamics (MD)
simulations based on Newtonian dynamics of particles have been shown to capture the occurring
physical phenomena of shock waves in solids correctly, but are usually limited to the nanoscale
and to timescales which are too small to allow for a direct comparison with experiments.
Particle Simulations of Failure in Polycrystalline Materials

In our approach to modeling impact failure of polycrystalline, brittle materials such as ceramics,
we use the framework of classical particle dynamics simulations.
Particle Model

Using Occams Razor, instead of trying to directly reproduce the geometrical shape of grains
of ceramics as seen in photomicrographs, cf. Fig. 1, we model the solid state as an unordered
network of monodisperse soft particles with radii , connected by non-linear elements (springs)
which are allowed to overlap in the initial random configuration, see Fig. 3.

The initial random degree of overlap between each particle pair and determines the force needed
to detach these particles from each other. The force is imposed on the particles by elastic
springs. This simple model can easily be extended to incorporate irreversible changes of state
such as plastic flow. However, for brittle materials, where catastrophic failure occurs after a
short elastic strain, plastic flow behavior can be neglected. The initial disc overlap and thus the
overall density of the model solid can be adjusted by a compactness parameter as dimensionless
input parameter of the simulation model. In the example in Fig. 3, . The same overall system
configuration can then be visualized as a network of links that connects the centers of overlap-
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Figure 3: (a) Scheme of overlapping soft particles. (b) Realization of an initial particle
configuration in the simulation with N = 2500 and Θ = 0.9. The color code displays the
structure in terms of nearest next neighbors (coordination number): blue: 0, green: 2,
and yellow: 4. (c) The corresponding illustration of the system as unordered network of
links.

ping particles. This way of modeling a solid composed of particles was originally used for the
simulation of granular flow problems in geophysical models by Cundall and Strack [21], often
referred to as the Discrete Element Method (DEM). Though DEM is very closely related to the
MD method, it is generally distinguished by its inclusion of rotational degrees-of-freedom, of
complicated contact forces and often complicated geometries (including polyhedra).
Potentials and Scaling Properties

As a fundamental requirement for our particle model we demand to have very few parameters
which model the basic material properties of a brittle ceramic material; in essence, these are
first, the resistance to pressure, second, the cohesive forces that keep the material constituents
together, and then the microscopic failure. A material resistance against pressure is introduced
by a Lennard-Jones-type repulsive potential

VR
ij(dij) = αR0

3

(d0
ij

dij

)12

− 2
(
d0

ij

dij

)6

+ 1
 (1)

which acts on every pair {ij} of particles for 0 < dij ≤ d0
ij and which vanishes for dij > d0

ij ,
i. e. for particle pairs which do not overlap. Factor α (which relates to the compressive strength)
in Eqn. (1) scales the energy density and the pre-factor R0

3 ensures the correct scaling behavior
of the calculated total stress σijσ

ij = ∑
ij
F ij/A in the system (with A being the area where

the force F ij is applied), independent of the number of particles N . The cohesive potential
is modeled by a harmonic function VC

ij(dij), given that there are no irreversible changes of
state when the material is submitted to small external forces. Each pair of particles {ij} can
be visualized as being connected by a spring, the equilibrium length of which equals the initial
distance d0

ij , cf. Fig. 3. Thus, for dij > 0 we have:

VC
ij(dij) = βR0

(
dij − d0

ij
)2
. (2)

In Eqn. (2) parameter β (which has the dimension [energy/length] and relates to the tensile
strength of the material) determines the strength of the potential and the pre-factor R0 again
ensures proper scaling behavior of the macroscopic physical material response, e.g. the stress-
strain curve upon external load, for details, see Steinhauser [12]. We demonstrate this model
property in Fig. 4 which displays the stress-strain relation obtained for different realizations of
solids with a different number of particles. The idea of this particular scaling of the potential
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Figure 4: (a) Illustration of the scaling property of our particle model. A number of
particles of a small subset QA ⊂MA of the original model MA are enlarged, until they are
of the same size as the original system. The resulting system MB contains fewer particles
than MA, but the macroscopic physical properties, e.g. Youngs modulus stay the same
upon external load. (b) Averaged stress-strain curves obtained from simulations of systems
with different number of particles. N = 625, 2500, 104, α = 20, β = 350. The slope of the
different realizations is in essence independent of N .

is that one should always obtain the same macroscopic physical properties of a system, e.g.
the same stress-strain relation, independent of the arbitrarily chosen number of particles which
represent the solid. As a result of this, when up- or downscaling our system, i.e. when changing
the number of particles, it is not necessary to re-adjust the pre-factors α and β in the potentials
of Eqn. (1) and (2).

Finally we consider failure in our model by introducing two breaking thresholds for the springs
with respect to compressive and to tensile failure. If either of these thresholds is exceeded,
the respective spring is defined as broken and is removed from the system. A simple tensile
criterion is reached when the overlap between two particles vanishes, i.e. when the distance
between two particle centers exceeds the sum of their constant radii:

dij > 2R0 . (3)

Failure under pressure load occurs when the actual mutual particle distance is less by a factor γ
than the initial mutual distance, i.e. when

dij < γ/, d0
ij , (4)

where (0 < γ < 1). Parameter γ is later fitted to reproduce Young’s modulus of the real
material. We note that the repulsive potential is independent from the failure criteria of Eqn.
(3) and (4), i.e. even if bonds described by Eqn. (2) are broken in the system due to pressure
or tensile failure, the involved particles still interact via the repulsive potential of Eqn. (1) and
cannot artificially move through each other.
Initial Configurations

For our numerical analysis, we simulate directly the experimental geometry of the edge-on
impact configuration (EOI) as shown in Fig. 2. We use as initial configuration a random distri-
bution of particles in a cubic simulation box. Generally, we observe an increase in the number
of pronounced peaks in the distribution of initial particle distances d0

ij when parameter Θ is
increased, as shown in Fig. 5. This clearly indicates a change of the initial structure, i.e. of the
arrangement and packing density of particles in the system. In Fig. 5 we display the coordi-
nation numbers for two initial realization of a brittle, granular solid at two different densities.
Thus, by fine-tuning parameter Θ, one can fix the density ρ of the model material according to
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Figure 5: (a) Distribution of mutual initial distances for different values of in a system with
particles. (b) Sample initial configurations with and with a preferred hexagonal arrange-
ment of soft particles. The color code displays the coordination number within the range
4-6 (yellow to green). (c) Another realization with the same and , coordination numbers
6-8 (green to red) and with a predominantly quadratic packing.

the one obtained in sintered ceramics of interest, e.g. in the case of Al2O3, the experimental
density ρ is typically is larger than 98% in volume.
High-Speed Impact Simulations

By adjusting the three free model parameters α, β, γ to experimental values typical for HPC
materials, one is able to obtain the correct stress–strain relationship of a specific material as ob-
served in (macroscopic) biaxial loading experiments. After this fixing of parameters the model
is applied to other types of external loading, e.g. ballistic high–speed impact in the EOI config-
uration or a direct impact which can be used as a model system for investigating the situation of
a satellite being hit by space debris. This is done with no further model adjustments, and the re-
sults are compared with experimental findings. In Fig. 6 we present non–equilibrium molecular
dynamics simulation (NEMD) results for a SiC system with impact velocity v = 150m/s using
N = 105 particles in a direct comparison with corresponding high-speed experimental results.
In general, one can conclude that the physics of shock wave propagation is captured rather well
in the simulations, opening a route to a detailed quantitative investigation of observed shock
wave and failure phenomena in brittle materials, for example by investigating the number of
broken bonds in the system as displayed in the bottom row of part (a) in Fig. 6. Part (b) of
Fig. 6 analyzes the ratio of broken bonds to the total number of initial bonds for SiC and Al2O3
for different impact velocities and system sizes. The percentage of failed bonds which can be
considered as a simple measure for the degree of failure in the material, is consistently larger
for SiC, which agrees well with experimental findings.

Finally, in Fig. 7 we show a 3D series of simulation snapshots of the developing debris cloud
resulting from a direct ballistic impact of a spherical particle onto a plate, directly after the
impact occurred. Debris from the impactor is colored in red and gray particles represent the
target. The long–term purpose of this type of impact simulations is to develop a computational
model that reproduces the debris cloud distribution which is observed in corresponding high-
speed ballistic experiments. This is important for evaluating satellite safety in the earth’s orbit,
where a continuously increasing number of debris particles increase the risk of collisions with
satellites.

Figure 8 displays a typical experimental high-speed photograph of a ballistic impact experiment,
shortly after the impact occurred. One can clearly see the debris cloud forming. For comparison
we have displayed the debris cloud obtained from a simulation snapshot.
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Figure 6: (a) Top row: Simulation results of a SiC EOI simulation at v = 150m/s. The
material is hit at the left edge. A shock wave (color-coded in blue) propagates through
the system. The time interval between the individual snapshots from left to right is 2µs.
Middle row: The same experiment with a real SiC specimen. The time interval between
the photomicrographs is comparable with the ones in the top row. Arrows indicate the
location of the shock wave front. Bottom row: The same computer simulation, this time
displaying the occurring damage in the material with respect to broken bonds. (b) Degree
of damage at 3µs after impact for SiC and Al2O3 for differentN and impact velocities. The
insets show high-speed camera snapshots indicating the corresponding degree of damage
in the materials at striking velocity v = 85m/s.

Figure 7: A series of 3D simulation snapshots showing a sphere impacting a plate at very
high speed (v = 6.7km/s) in a ballistic impact simulation. Red indicates impactor particles
and gray indicates target plate particles.
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Figure 8: Left: Experimental snapshot of the debris cloud. Right: Realization of this
ballistic impact experiment in our particle–based computer simulation.

Conclusions

The proposed simulation scheme in this paper, which uses discrete particles to model the basic
properties of a solid, has proven to be stable and convergent. It allows for studying in de-
tail the fracture and failure mechanisms of brittle materials. The simulated failure dynamics,
shock wave propagation and the degree of damage with the proposed three-parameter model
are in good agreement with experimental findings, albeit in the presented study for the edge-on-
impact configuration, only moderate velocities are used to impact the material, as here, we want
to demonstrate the principal usefulness of the proposed model by fitting its parameters to a spe-
cific, brittle ceramic material. In a first attempt to go to very high impact velocities (larger than
6km/s, which is sometimes called hypervelocity impact) we have presented a ballistic impact
simulation which results in the formation of a debris cloud. Here, we also find good numerical
stability of the proposed particle model and reasonable agreement with corresponding ballistic
impact experiments.

In future investigations, it is planned to extend the proposed modeling approach to the simula-
tion of yet larger impact velocities and to other, more complex materials, such as compounds,
e.g. fiber-reinforced SMCs (Sheet Moulding Compounds) or to structures typically encoun-
tered in soft matter, e.g. biological bilayer membranes, which exhibit much more complex
microstructural features.
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Abstract 

In previous works [1], reduced models have been used for solving inverse problems, characterized by 
a complex geometry requiring a large number of nodes and / or an objective of online identification. 
The treated application was a brake disc in two-dimensional representation, in rotation at variable 
speed. The dissipated heat flux at the pad-disk interface had been identified by Beck's method. We 
present here a similar application using the adjoint method. The modal reduction is done by using 
special bases (called branch bases) that offer the advantage of dealing with nonlinear problems and / or 
unsteady parameters. Adjoint method provides particularly accurate results in this configuration. 

Keywords : Reduced model, Modal method, Inverse problem, Advection-diffusion equation, 
Adjoint method 

Nomenclature  
c Heat capacity [J.m-3.K-1] 
e Disk thickness [m] 
k Thermal conductivity [W.m-1.K1] 
h Heat exchange coefficient [W.m-2.K-1] 
U Disk velocity [m.s-1] 
T Temperature [°C] 
zi Eigenvalue [s-1] 
x Modal temporal amplitude 
V Eigenvector [K] 
Nt Number of measurement steps 
 

Greek symbols 
φ  Heat flux [W] 
ω  Rotation velocity [rad.s-1] 
ζ  Steklov number [kg.s-2.K-1] 
 
subscript 
u dimensionless quantity 
m Maximum Value 
~ Reduced quantity 
^ Estimate  

Introduction 

In the domain of heat conduction, inverse problems are generally ill-posed in the sense of 
Hadamard and then require complex procedures to obtain satisfactory results. Two techniques 
are used, the future time step method (Beck) [2] which has the particularity of being a 
sequential method, and the adjoint method [3] which is an iterative method based on 
successive computation of descent directions to minimize a criterion taking into account all 
the data. 
In these inverse problems, mathematical complexity of the technique limits the size of the 
characteristic matrices of the thermal problem and the different studied geometries are often 
reduced to a simple, two-dimensional appearance. This problem is even more blatant when it 
comes to conduct an online identification, which involves fast calculations [4]. Under these 
conditions, the use of modal models [5], which allows a significant decrease in the number of 
unknowns while maintaining a satisfactory accuracy over the entire domain, allows the 
extension of the inverse techniques to geometries characterized by mesh of large size. Already 
developed to a diffusion-transport problem, this identification technique using low order 
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models involved the identification by Beck's method of the heat flux dissipated by friction 
during braking phases of a brake disk [1]. A similar configuration is studied in order to extend 
the use of reduced models to the adjoint method. A comparison between the two techniques is 
then presented. 

Position of the problem 

A brake disk (Fig. 1) rotating at variable speed is considered. It receives during the braking 
phase a time dependant heat flux on the friction zone with the brake pads (domain Ω1). In the 
studied case, the surrounding temperature is set to Text = 0°C and the uniform initial 
temperature field is T0 = 0°C. The different time dependant parameters, the radial velocity 
ω(t), the heat exchange coefficient h(t) and flux dissipated by friction φ(t) are expressed in 
terms of their maximum values and are therefore dimensionless: 
 

     ( ) ( )= u mt tω ω ω ,     (1) 

     ( ) ( )= u mh t h t h ,     (2) 

    
( ) ( ) ( )= = ∫

1

u m u mt t t ( r )d
Ω

φ φ φ φ ϕ Ω     (3) 

The heat flux dissipated by friction ϕm is not uniform on Ω1 but varies linearly with velocity, 
so with the radius. The temporal evolution of ωu(t), hu(t), and φu(t) are shown in Figure 2, and 
their maximum values are ωm = 2π rad/s, hm = 110W.m-2.K-1, and φm = 600 W. 

  
Figure 1 : Computational domain. Figure 2 :Temporal evolution of thermal loads 

Numerical solution : the detailed model 

Given the characteristic dimensions of the disk (k = 50W.m-1.K-1, c = 3.66.106J.m-3.K-1, e = 8 
mm), the Biot number corresponding to the worst case (hm = 110W.m-2.K-1) has a value Bi = 
0.018 << 1. It is then possible to neglect the thermal gradient in the thickness e of the disc. By 
setting (η, ζ)  local coordinates Ω in the plane perpendicular to this thickness, temperature is 
expressed as T(x, y, z) = T (η, ζ). This produces a thermal problem of shell type whose 
variational formulation is : 

( )

( ) ( )

∂
= − ∇ ⋅∇ − ∇

∂

 
 − + +
 
 

∫ ∫ ∫

∫ ∫ ∫
1 1 2

u m

u m m u m

Tec g d e k T g d t ecU . T g d
t

h t h T g d h T g d t g d

Ω Ω Ω

Ω Γ Ω

Ω Ω ω Ω

Ω Γ φ ϕ Ω

  

             (4) 

with ( )1g H Ω∈  a test function, and 1 2Ω Ω Ω= ∪ . 
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The discretization of this problem by linear finite element reveals a matrix system of 
dimension N (number of nodes) which is written in the order of previous terms: 

 ( ) ( ) ( ) = + + + CT K U H T Πu u ut h t tω φ  (5) 
After a sensitivity analysis, the mesh consists of 9,860 nodes forming 19,362 triangle 
elements. For a direct problem, the temporal heat flux evolution is known and the evolution of 
the discrete temperature field T is done by solving Eq. (5). Figure 3 represents the evolution 
of temperature at point A, placed 10mm downstream from the friction area (see Fig. 1). The 
analysis of the temperature field shows that the local friction on the Ω1 area leads to the 
appearance of a sharp temperature front conveyed at the rotational speed. A fixed sensor 
detects a very rapid temperature variation, which as will be seen later makes the inverse 
problem difficult to solve. 

 
Figure 3 :Temperature evolution at point A 

Modal reduction 

The branch problem 

The modal decomposition supposes the existence of a base such that the following 
decomposition is unique: 
 

    
( ) ( ) ( )

N

i i
i 1

T M ,t x t V M
=

= ∑          (6) 

where Vi(M) are eigenvectors (or modes), and xi(t) are the unknown coefficients named 
hereafter modal amplitudes. The modes can be seen as elementary thermal fields. 
 
The branch problem associates to the previous physical problem an eigenvalue problem 
defined by equations (7) and (8): 

∀ ∈Ω ∪ Ω ∇ =2
1 2 i i iM , k V z cV      (7) 

∀ ∈ ∪ ∇ ⋅ = −1 2 i i iM , k V n z VΓ Γ ζ
           (8) 

 
where zi is the eigenvalue associated with the eigenvector Vi.  
 
The boundary condition (Eq. (8)) is a non physical condition that involves the eigenvalue of 
the mode. The number of Steklov ζ ensures dimensional homogeneity of the boundary 
condition and prevents degeneration of the modal problem, i.e. to balance Eqs. (7) and (8). 
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This special boundary condition reveals two types of modes. The first type is constituted of 
modes quasi null on the boundary but not on the domain (domain modes), and the second one 
formed of modes quasi null on the domain but not on the boundary (boundary modes). This 
second type of modes allows to link the temperature fields on the interface. Examples of such 
modes are given in Fig. 4. The existence of boundary modes allows one to rebuild 
temperature and thermal flux density for all convective coefficient. This basis is then adapted 
to nonstationary and nonlinear thermal problems. 

 
Figures 4 : Examples of branch modes : boundary modes ((a) and (b)) and domain 

modes ((c) and (d)) 

Reduction method 

The modal formulation only shifts the problem : instead of being temperature values at the 
nodes of a mesh, the unknowns are the amplitudes of the modes xi(t). The number of modes 
needed to approach correctly the solution needs to be reduced. This is done by the amalgam 
method [5] [6]. In this method, the most influential eigenmodes are kept (they are called 
major eigenmodes), and the remaining eigenmodes (called minor) are added to them, 
weighted by a factor αi,p. This results in new amalgamated eigenmodes iV , which are a linear 
combination of eigenvectors of the original branch basis. 

     

rn

i i ,p i ,p
p 0

V Vα
=

= ∑          (9) 

The determination of factors 𝛼𝛼𝑖𝑖 ,𝑝𝑝  is performed by minimizing the deviation of energy between 
a reference model and the reduced model. Note that in our case the reference problem used is 
constructed independently of the temporal evolution φu(t) to be identified. With these 
amalgamated modes, the modal decomposition of temperature is given by : 

 

( ) ( ) ( )
N

i i
i 1

T M ,t x t V M
=

≅ ∑



  

   (10) 

The amplitude equation is obtained by replacing the temperature by its modal decomposition 
(Eq. (10)) in the physical problem (Eq. (4)), while the test functions are the modes. It replaces 

(a) (d)

(c) (d)
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the problem on temperatures at the nodes of the mesh size by a problem on the temporal 
amplitudes of the modes. In discrete form, Eq. (4) becomes: 
 

( ) ( ) ( )
( ) ( )

u u u

u

t h t t

t t

ω φ

φ

 = + + + 
= +

K U HLX M M M X N

M X N

 


   (11) 

 
where = tL V CV  , = t

KM V KV  , t
UM = V UV  , = t

HM V HV  et = tN V Π , V  being the 
matrix containing the N  amalgamated eigenvectors, and vector X  contains the N temporal 
amplitude ( )x t . 

 
Figure 5 :Temperature evolution at point A obtained with different models for the first 3 

seconds of the simulation 

A reduced base with 50 modes is used. In the case of the direct problem (Eq. (11)), the modal 
model recovers the evolution of the thermal field with an average error compared to the 
detailed model of 0.046°C and a maximum error of 6.18°C, the temperature range being of 
139°C, showing the good agreement between reduced and detailed models. At point A, the 
error averaged over time is 0.105°C. Figure 5 shows the temperature difference between these 
two models at the measurement point for the first seconds of the simulation. 

Inverse problem 

The temporal evolution of the heat flux received by friction by the rotating disc is identified 
from an observable vector Y, consisting here of a single measurement point located at A. 
Given the size of the discrete problem, modal formulation is used to reduce the size of the 
inverse problem. The relationship between the output vector Y and the modal amplitude X 
has to be added to the direct problem defined by equation (11) : 
 

 = =Y ET E VX   (12) 
Two inversion techniques are used, Beck and adjoint method. 
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Beck's method 

Beck's method consists in determining the amplitude of flux at each time step so that the 
temperature difference between the measurement and the simulation is the smallest possible. 
An implicit time discretization (at a fixed time-step ∆t = 0.02 s) of Eq. (11) yields the 
amplitude of each mode: 

 ( ) 1k 1 k k 1
ut t t∆ ∆ φ

−+ +  = − +    
X L M LX Π   (13) 

A least squares minimization between measurement and temperature computed from the 
estimate at the previous time-step brings the estimation of the searched solicitation : 

 
1 t k 1

uφ
− + =   

tΘ Θ Θ Z  (14) 

with Θ  and Z  defined by : 

 [ ] [ ]1t t∆ ∆−= −Θ E L M Π  (15) 

 [ ]k 1 k 1 k1 ˆt∆+ + −  = − −   
Z Y E L M L X  (16) 

This technique is first used in an ideal case, wherein the temperature variation at point A used 
for identification comes directly from the simulation performed by the reduced model. There 
is then no error in this situation between the measurement and the direct model. The accuracy 
of the identification carried out is characterized by global error on the flux (

uφσ ) and the 

temperature ( Tσ ), which are defined by equations (17) and (18) 

 

( )
i Nt 2

i 1
T

ˆY( i ) Y( i )

Nt
σ

=

=
−

=
∑

 (17) 

 

( )
u

i Nt 2
u u

i 1

ˆ( i ) ( i )

Ntφ

φ φ
σ

=

=
−

=
∑

 (18) 

These simulations were performed for a time-step equal to 0.02s. The choice of this reduced 
time-step is explained by the influence of the transport term that creates sudden temperature 
changes that need to be taken into account for identification. The choice of the time-step then 
does not depend on the simple diffusion time between the source and the sensor, but also on 
the time of transport and the ability of the model to detect sudden changes in temperature. In 
an ideal case, results are satisfying as

uφσ =0.039 and Tσ =0.962°C. 
 
In a real case, the temperature of a probe is simulated by the full thermal model (Eq. (5)), to 
which is added a Gaussian white noise characterized by a quadratic error σb= 0.3 °C. In this 
case the identification results are directly unusable: the error on the identified flux is 

uφσ
=1.59. Indeed, as shown in Fig. 5, the bias to both the use of reduced model in the inverse 
procedure and measurement error strongly modifies the rapid changes in temperature. The 
various regularization attempts (increasing the number of measurement points, using a 
growing number of future time-steps) do not improve significantly the results. This problem 
had already been shown in previous work [1], and the recommended solution was the use of a 
low-frequency filter on the identified flux by Fourier transform, assuming that any variation 
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frequency greater than the frequency rotation could only be a numerical distortion. The 
application of this technique to our configuration is shown in Figure 6. The results are 
satisfactory since the use of a 0.4 Hz cutoff frequency results in an error on the identified flow 
equal to 

uφσ = 0.038 and an error on the temperature Tσ = 0.832 ° C. 

 
Figure 6 :Heat flux identification obtained with Beck's method after filtering 

Adjoint method 

The second inversion technique is the adjoint method. It is a global method in which a 
quadratic functional built on the differences between the measured temperatures and those 
computed with the identified heat flux is minimized. This function can also be penalized by a 
regularization term ε  : 

 ( )
 

= − + 
  
∫ Y Y

2 2
u u

0

1 ˆJ ( t ) ( t ) dt ( t )
2

τ

φ ε φ  (19) 

The identification process consists in finding optimum solicitations uφ such that J is minimum. 

u uarg[min J( )]φ φ=      (20) 
This problem is solved using a descent method. These methods require the estimation of the 
functional gradient with respect to the solicitations. The amplitude equation of the model can 
be seen as a constraint between the thermal loads and temperatures. It involves the Lagrangian 
La associated with the minimization problem under the constraint of the state equation. This 
term is constructed by summing the functional and the state equation weighted by a Lagrange 
multiplier (λ): 

 a u u u
0

dL ( ,T , ) J( ) ( t ) dt
dt

τ

φ λ φ φ
 

= + − + + 
 

∫
Xλ L MX N


  (21) 

At the point where the functional is minimal, the derivatives of the Lagrangian with respect to 
these three variables are null : 

 aL 0
λ

∂
=

∂
 (22) 

 
a

u

L 0
φ

∂
=

∂
 (23) 

 
aL 0

T
∂

=
∂

 (24) 
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The computation of derivative defined by Eq. (22) retrieves the amplitude equation (Eq. (11)). 
The two last derivatives (Eqs. (23) and (24)) bring two new relations, called gradient equation 
and adjoint equation: 

 ε∇ = − tJ U Π Vλ  (25) 

 ( )ˆ( t ) ( t )− = + −* tLλ M λ V E Y Y  (26) 

where M* is the adjoint matrix of M. 
 
Thus the interest of this formulation is to compute the gradient J∇  (Eq. (25)) from the 
resolution of the single equation (26). The iterative calculation of the thermal load k

uϕ  is done 
using this gradient J∇ . Many descent patterns exist. We present here the conjugate gradient 
method, which combines the flux value at a previous iteration with a descent direction (noted 

kw here): 

 + = + wk 1 k k k
u uφ φ ρ  (27) 

This iterative calculation is finished when one of the following criteria is met. The first is 
based on the evolution of the functional J (Eq. (28)). The second compares the difference 
between the estimated temperature and the measurements, which should be of the same order 
of magnitude as the level of uncertainty of the measurement (principle of Morozov Eq. (29)). 

 
( ) ( )

( )
−−

<

k k 50
u u

k
u

J J
1%

J

φ φ

φ
 (28) 

 bT σσ ≈  (29) 
The direction of descent kw  is a combination between the current and previous descent 
directions weighted by a coefficient kγ  called Fletcher-Reeves conjugation parameter: 

 kkγ Jww 1kk ∇−= −  (30) 

 21k

2k

J

J
−∇

∇
=kγ  (31) 

and kρ  is the optimal descent step, computed by the secant method (α is a small non null 
random number) 

 
∇

= −
∇ + − ∇

J w

J w w J w

k k
uk

k k k k k
u u

( ),

( ), ( ),

φ
ρ α

φ α φ
 (32) 

The treated case corresponds to noisy temperatures (σb = 0.3 °C) issued from the detailed 
model. In the inverse procedure, the penalization term is null (ε = 0). The above presented 
algorithm converges to the imposed flux in 379 iterations. As shown in Figure 7, this method 
does not need additional filtering to recover properly the temporal flux variations. Flux 
deviation is 

uφσ = 0.051, which is very slightly greater than the deviations obtained by Beck's 

method with low frequency filtering, and in terms of temperatures Tσ = 0.389 ° C, which is 
less than the error obtained by Beck's method with filtering. 
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Figure 7 : Heat flux identification with adjoint method 

Obtaining such satisfying results without filtering can be explained by the fact that the 
estimated flux is issued from a minimization including the entire temperature variation. In 
contrast, in Beck's method only the next time step is used to estimate the flux at a given time, 
which makes this technique much more sensitive to sudden changes and noise measurements. 

Conclusion 

The study first of all showed the interest of using low order models in inverse problems, as 
the loss of information generated by the reduction remains below the noise measurements. 
Regarding the comparison of the two inverse techniques used in this paper, results showed the 
difficulty in obtaining correct results with Beck's method. In fact, the sequential aspect of this 
method does not filter the errors directly obtained from the measurement which are amplified 
significantly during the flux identification process. A solution is possible, however, but at the 
cost of additional low frequency filtering, which eliminates the sequential aspect of this 
technique. The effectiveness of the adjoint method was shown, since very satisfactory results 
were obtained, with no obligation to use any additional filtering or penalty term functional. 
This method, more comprehensive, naturally filters the noise during the functional 
minimization process. The price to pay is that the adjoint method requires more computation 
time (750s) that Beck's method (115s). These are very encouraging results, paving the way for 
online identification, both by a search for the minimum acceptable reduction of the modal 
model, and by the development of a more appropriate adjoint technique (order 2 descent 
method, temporal sliding window). 
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ABSTRACT

Two inverse problems arising in the context of isothermal elastoplasticity with small strains are dealt with in this paper.
Both of them use as input data fullfield displacement measurements on a stress-free part of the boundary at various time
increments during the loading and unloading steps of a structure. In the first one, the recovery of the plastic strain fields
(and then of the plastic zones) during the process of loading is addressed, whereas in the second one the residual stress
field after complete unloading is looked for. The computational method derived here is grounded on the minimization of
an error in constitutive equations. An illustration of the performance and accuracy of the fields recovery is given for each
type of inverse problem on a L-shaped structure.

Keywords: Inverse problem, plasticity, residual stress, identification, computational method.

Introduction

The problem of exploiting (measured) boundary data on a part of a solid (displacement and stress vector fields) in order
to extend the mechanical fields within the solid, or to identify missing or unknown boundary conditions is still partially
open but potential applications are extremely numerous in mechanical and material sciences and in industry as well. One
promising approach dealing with this problem is first to reformulate it within the continuous framework, taking advantage
of the fact that the amount and spatial density of information gained allows to consider that the complete displacement
field is available on a part of the boundary. And secondly to reformulate it then as a Cauchy problem taking into account
the fact that an overspecified data pair is given on a part of the boundary. Cauchy problems belong to the class of inverse
problems and are usually ill-posed in the sense of [1].

In this paper, advantage is taken of the information available on a part of the boundary of a structure in order to set up two
inverse or identification problems. Both of them use as input data full-field displacement measurements on a stress-free
part of the boundary at various time increments during the loading and unloading steps of a structure. In the first one, the
recovery of the plastic strain fields (and then of the plastic zones) during the process of loading is addressed, whereas in
the second one the residual stress field after complete unloading is looked for. The computational method derived here is
grounded on the minimization of an error in constitutive equations, and extends previous methods dedicated to linear and
non linear elasticity ([7][5]).

The identification problems

Let be given a regular domain Ω, the boundary of which is decomposed into three non overlapping parts Γm, Γb, and Γu.
On Γb the stress vector b is prescribed. Γm (the subscript m stands for ”measurements”) is the part where, thanks to DIC’s
acquisition for example, both displacements Um and stress vectors Fm (usually zero for the latest) are available, and make
up an overspecified boundary data pair. The remaining part Γu of the boundary where not any boundary data is known is
generally non connected and can possibly contain internal surfaces such as cracks or boundaries of cavities and inclusions.

∂Ω = Γb ∪ Γm ∪ Γu Γi ∩ Γ j = ∅ i, j = m, b, u (1)
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If the material is elastoplastic and can be described within the framework of isothermal small strains and Generalized
Standard Materials [9], the constitutive equation is written in the following incremental format, when choosing the Euler
implicit scheme for the time discretization:


σ + ∆σ = ∂W

∂ε
(ε + ∆ε − εp − ∆εp, α + ∆α),

σ + ∆σ ∈ ∂ε̇pΨ(∆εp,∆α; εp + ∆ε p, α + ∆α)
A + ∆A = − ∂W

∂α
(ε + ∆ε − εp − ∆εp, α + ∆α),

A + ∆A ∈ ∂α̇Ψ(∆εp,∆α; εp + ∆εp, α + ∆α)

(2)

where σ, ε, εp, α are respectively the Cauchy stress tensor, the strain tensor, the plastic strain, and the supplementary
internal variables associated with thermodynamic forces A. The potential W is the free energy and Ψ is the positively
1-homogeneous pseudo-potential of dissipation, both are convex functions. ∂xΨ stands for the sub-differential of Ψ with
respect to x. For the sake of simplicity we shall drop the arguments of the potentials.The two inverse or identification
problems can be formulated as follows :

(IP1) Provided the data (Um, Fm) on Γm, and b on Γb at various time instants during the loading and unloading of the
solid (t ∈ [0,D]) are given, to determine the plastic strain field εp(x, t) within the solid along the process.

(IP2) Provided the data (Um, Fm) on Γm, and b on Γb at various time instants during the loading and unloading of the solid
(t ∈ [0,D]) are given, to determine the residual stress field σres(x) = σ(x,D) within the solid at the end of the process.

Reformulation as a Cauchy problem

In order to solve problems (IP1) and (IP2), a formulation can be done to recast them into the framework of a Cauchy
problem just by considering the conditions that the time increments (∆u,∆σ,∆εp,∆A) have to fullfil,namely the the
incremental evolution equations within the solid. The Cauchy problem is in looking directly for these increments. Then
the plastic strain fields at various time instants and the residual stress field can be simply recovered. The Cauchy Problem
for incremental plasticity is the following :

(CP) Provided the data (Um, Fm) on Γm, and b on Γb at various time instants during the loading and unloading of the
solid (t ∈ [0,D]) are given, to determine the incremental fields (∆u,∆σ,∆εp,∆α,∆A) fulfilling

div [σ + ∆σ] = 0 , ε(u + ∆u) = [∇ (u + ∆u)]sym

σ + ∆σ = ∂W
∂ε

, A + ∆A = − ∂W
∂α

σ + ∆σ ∈ ∂ε̇pΨ(∆εp,∆α) , A + ∆A ∈ ∂α̇Ψ(∆εp,∆α)
∆u = ∆Um, ∆σ.n = ∆Fm on Γm, ∆σ.n = ∆b on Γb

(3)

Cauchy Problems solution is extensively studied in the literature but mainly for linear operators (Lamé operator for linear
elasticity, Laplace equation for conductivity problems,Stokes equation for fluids etc.). Existence of solution for non linear
Cauchy problem have been studied also by Leitao et al. ([2] [3]) by a constructive method using a fixed point algorithm
similar to the one designed by Kozlov et al. [4]. Here an extension of the variational method previously designed by
the authors for linear and nonlinear elasticity is developed for dissipative solids governed by an elastoplastic constitutive
relation described in the Generalized Standard Materials format.

A computational method for solving the Cauchy problem in plasticity

The general method for solving this problems relies on two steps. First, two families of auxiliary usual incremental
problems ∆P1 and ∆P2 are defined, each one using one only of the overspecified boundary data on Γm and a given normal
stress vector field η over [0,D] on Γu :

div [σ + ∆σi] = 0 , ε(u + ∆ui) = [∇ (u + ∆ui)]sym

σ + ∆σi = ∂W
∂ε

, A + ∆Ai = − ∂W
∂α

σ + ∆σi ∈ ∂ε̇pΨ(∆εp
i ,∆αi)

∆σi.n = ∆b on Γb

f or i = 1, 2 (4)

and respectively for ∆P1 and ∆P2 :

(∆P1)
{

∆u1 = ∆Um on Γm

∆σ1.n = ∆η on Γu
(∆P2)

{
∆σ2.n = ∆Fm on Γm

∆σ2. n = ∆η on Γu
(5)
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If a an incremental surface traction field ∆ηopt on Γu is such that ∆u1 = ∆u2 + Rigid Body Motion, the two problems ∆P1

and ∆P2 will have the same solution (∆σ,∆εp,∆α). Therefore the Cauchy Problem is solved with (∆u1,∆σ,∆ε
p,∆α,∆A).

A general variational solution method can thus be derived by a second step consisting in building an error function E
between the state increments ∆e1 = (∆u1,∆σ1,∆ε

p
1 ,∆A1) and ∆e2 = ∆u2,∆σ2,∆ε

p
2 ,∆A2) as a functional of ∆η and by

minimizing it over all the possible surface traction fields increments defined on Γu.

Owing to the general form of the constitutive equation and taking advantage of the convexity of the functions W and Ψ,
two errors can be derived with suitable properties ([6][7][8]). They are positive quantities and whenever they vanish then
the distance between the two state variable increments vanishes together with the distance of their dual counterparts.{

EW (∆σ1,∆ε1; ∆σ2,∆ε2) = (∆σ1 − ∆σ2) : (∆εe
1 − ∆εe

2) − (A1 − A2).(∆α1 − ∆α2)
EΨ(∆σ1,∆ε

p
1 ; ∆σ2,∆ε

p
2 ) = (∆σ1 − ∆σ2) : (∆εp

1 − ∆ε
p
2 ) + (A1 − A2).(∆α1 − ∆α2)

(6)

A parametrization enables to put different weights on the errors in stored energy and dissipated one, but outstandingly the
value of the parameter, that balances exactly between free energy error and dissipated one, leads to what can be called the
Drücker error [? ]. It involves only the stress and strain tensors, and is then an error in mechanical energy.

E =
1
2

(∆σ1 − ∆σ2) : (∆ε1 − ∆ε2). (7)

We can then define the general error functional to be minimized in order to get the solution of the Cauchy problem, and
then to design the solution method for (IP1) and (IP2):

∆ηopt = ArgMin
[
Jχ(∆η)

]
with Jχ(∆η) =

∫
Ω

Eχ(∆e1(∆η)),∆e2(∆η)))dΩ (8)

The Drücker error can be computed by boundary integration on the whole external surface of the body, thanks to the
virtual power principle. This feature has been largely exploited previously to improve the global performance of the
solution algorithm for linear Cauchy problems, see [5].

Illustration

The computational method was implemented for both problems on a L-shaped structure submitted to an increasing then a
decreasing loading. The overspecified Cauchy data were taken on a part of the right side boundary, whereas the unknown
data are located on the top boundary and the left side one. The identification of plastic strain field (IP1) was carried
out at various steps of the loading. Figure 1 shows the identified equivalent plastic strain compared to reference values.
The identification of the residual stress field (IP2) is carried out at the unloading step. Figure 2 show the identified Von
Mises Stress compared to reference one. Let us point out that this result derives from the very good identification of the
plastic strain field at the onset of unloading (IP1). Indeed, the residual stress field results directly from the geometric
incompatibility of the residual plastic strains within the solid. Because the unloading phase is totally elastic, the residual
plastic strain field is exactly the same than at the onset of unloading.

Conclusion

We presented in this paper a computational method for the identification of plastic strains fields and plastic zones during
the loading process of a structure, and residual stress field after unolading. The method relies on the solution of a nonlinear
Cauchy Problem solved by using a specially designed error in constitutive equation between the solutions of two well-
posed problems and minimizing it.

Some improvements have still to be made in the computation of the gradient of the error functional for the case of non
twice differentiable potentials for which the general adjoint method can not be directly applied. It is generically the case
in elastoplasticity (for the pseudo-potential of dissipation).
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(a) Reference value. (b) Identified value.

Figure 1: Equivalent plastic strain at the end of loading step.
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Abstract 

A multi-model global-local approach to study free edge effects in laminated composites 
subjected to uniaxial in-plane loads is presented in this paper. Mixed layer-wise (LW) finite 
element (FE) model is used in critical free edge zone. Remaining part of plate is modelled by 
using higher order equivalent single layer (ESL) theory. A transition element is developed to 
ensure a compatibility between differently modelled subdomains. This combined model 
possesses traits of both ESL and LW mixed models. Higher order ESL predicts global 
parameters efficiently, on the other hand, mixed LW model captures the interlaminar stresses 
at local zones. Mixed LW model includes the transverse stresses as nodal degrees of freedom 
(DOF) ensuring continuity of the transverse stresses over layer interfaces without using any 
additional stress functions. Both, ESL and LW mixed models are developed by using three 
dimensional (3D) elasticity relationships and principle of minimum potential energy. The 
present combined model is a good blend of computational efficiency and accuracy in prediction 
of local transverse stresses. Plates with different stacking sequences are investigated for free 
edge stresses developed in the transverse direction under uniaxial in-plane load conditions.  

Key Words: Mixed Finite Element; Free edge stresses; Higher order theory; Principle of 

minimum potential energy; transition element; global-local analysis. 

1.0 Introduction 

Laminated composites having several layers with uni-directional fibres are utilized as structural 

members for variety of applications. Advantageously, these exhibit good strength, stiffness, 

environmental resistance and are light in weight as compared to homogeneous materials. 

Depending on configuration of loading, strength parameters can be altered by using appropriate 

stacking sequence of layers. Evaluation of laminate response to applied load becomes complex 

due to heterogeneous properties of different layers in a laminate. 

 

Apart from elasticity approach, various displacement based and hybrid models have been 

proposed for analysis of laminates. These models are implemented using analytical or FE 

formulations. A three-dimensional (3D) elasticity solution by Pipes and Pagano (1970) [1] has 

shown that in a laminate under simple uniaxial loading there is a "boundary layer" region along 

the free edges where a three-dimensional state of stress exists, and that the boundary layer 

thickness is roughly equal to laminate thickness. Wang and Crossman (1977) [2] presented a 

displacement based FE model to study edge effects for symmetrically stacked laminates. It has 

been shown that steep stress gradients of the transverse normal and shear stresses prevail near 

free edges. These high magnitudes of multi-axial stresses in vicinity of free edges may lead to 

delamination of a laminate. A state of plane stress is seen to prevail towards the interior of 

plate. Moreover, delamination failure is most common mode of failure in laminated 

composites, which initiates at geometrical discontinuities like free edges, notches and holes. 
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Evidently, a correct evaluation of complete 3D state of stress at free edges is important for 

assessment of strength and durability of a laminate under a certain load configuration. Effect 

of stacking sequence on laminate strength was investigated by Pagano and Pipes (1971) [3].  

Rybicki (1971) [4], Wu and Hsu (1993) [5], Flesher and Herakovich (2006) [6] presented 

different approaches for evaluation of the transverse stresses and prediction of onset of 

delamination. Shi and Chen (1992) [7]presented a mixed FE model by using a hybrid stress 

element at free edges and conventional displacement based FE’s at other locations. Chorng-

Fuh and Horng-Shian (1993) [8] also presented a mixed FE model to predict the transverse 

stresses developed at free edges of a laminate subjected to uniform in-plane strain 

 

A displacement model depicting the kinematics of a particle in a laminate must encompass 

rigid body, extension, bending and warping modes of deformation to correctly predict response 

in a realistic manner. Many ESL models are seen in literature for analysis of laminated 

composites. Kant and Swaminathan (2002) [9] presented a comprehensive ESL higher order 

theory which incorporates all these deformation modes and predicts all global responses 

effectively. Laminate is considered as a single smeared plate with the properties averaged over 

thickness. However, evaluation of interlaminar transverse stresses is done by using 3D stress 

equilibrium equations. On the other hand, a better mathematical representation of laminate 

behaviour is portrayed by LW models which incorporate discrete individual properties of all 

layers in a laminate. Displacement based LW models also need either some additional stress 

function or integration of stress equilibrium equations to estimate magnitudes and through 

thickness variation of the transverse stresses in a laminate. Ramtekkar, Desai (2002) [10] 

presented a FE mixed LW formulation having the transverse stresses invoked as nodal DOF 

along with displacements. Continuity of the transverse stresses over layer interfaces is 

inherently satisfied. ESL’s demand less computational effort as compared to LW models as 

they map the domain involving less DOF. Computational efficiency is achieved by using ESL 

but accuracy of solution is sacrificed. LW models exhibit accuracy of solution but demand high 

computational effort. Application of LW models on a laminate domain involve high DOF in 

the solution and face restrictions due to limitation of computational resources in cases where 

fine discretization of domain becomes essential for accuracy of solution. 

 

In this paper a multi-model meshing methodology is presented which advantageously uses both 

higher order ESL and mixed LW models simultaneously over the domain of a laminate. A 

transition element is developed to establish compatibility between two models. Presence of 

ESL in non-critical zones in a laminate ensures accurate assessment of global parameters and 

reduction of computational cost. At the same time, mixed LW model used in critical free edge 

region accurately predicts the transverse stresses. Efficacy of present multi-model approach is 

illustrated by using it on examples of laminates subjected to uniaxial in-plane loading.  

2.0 Theoretical formulation 

Three models have been formulated for analysis of laminated composite plates consisting of 

several orthotropic laminae. 

(a) Model 1: This model adopts a cubic displacement field in the thickness direction for 

displacements (U,V,W)  and has 12 DOF. The theory has been identified as HOST12. 

The model is based on the three dimensional state of stresses and strains. 

(b) Model  2: In this model, mixed finite element LWT, which has three displacements  

(U,V,W) and the transverse stresses ( , ,xz yz z   )  as the nodal DOF, is used. The theory 
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is based on elasticity relationships. Therefore, introduction of any additional 

parameters/stress variation functions are advantageously avoided. 

(c) Model 3: This model is based on a global-local finite element procedure to take 

advantage of computational efficiency of the higher order ESL theory and accuracy of 

the 3D mixed model. 

2.1 Model 1 : Development of ESL theory based model (HOST 12) 

Displacements in three principal directions of the laminate as a fully cubic function of the 

thickness co-ordinate are 

),(),(),(),(),,(

),(),(),(),(),,(

),(),(),(),(),,(
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0

2

0
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0
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yxzyxvzyxzyxvzyxv

yxzyxuzyxzyxuzyxu
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











    (1)

 

The above displacement field eliminates any requirement of shear correction factor and 

chances of shear locking. Here 0 0 0,  and u v w
 
are the deformations in the x,y,z (laminate co-

ordinate) directions respectively at the mid-plane. ,  and x y z   , on the other hand, are the 

rotations at mid-plane about the principal directions of laminate. 
* * * * * *

0 0 0, , , ,  and x y zu v w    are higher 

order terms stemming from the Taylor’s series. By using material property, the strain 

displacement relationship and the principle of minimum potential energy, the stiffness matrix 

for laminate is developed. By using shape functions similar to the stiffness evaluation, the mass 

matrix is also developed. Detailed formulation can be seen in the work presented by Kant and 

Swaminathan (2002) [9]. A nine node Lagrangian isoparametric element has been used to 

discretize a laminate.  

 

Numerical integration is performed by employing 3 X 3 Gauss quadrature rule for the 

extension, bending, mass component, whereas,  2 X 2 Gauss rule for the shear part. 

2.2  Model 2: Development of mixed LW model 

An 18-node three-dimensional element based on mixed formulation is used by considering 

displacement fields u(x,y,z), v(x,y,z) and w(x,y,z) having quadratic variation along the plane of 

plate and cubic variation in the transverse direction. The cubic variation of field has been 

adopted to invoke the transverse stresses as the nodal parameters in addition to the nodal 

deformations. The displacement field is expressed as 

3 3 3 3 3 3 3 3
2 3

k i j 0ijk i j 1ijk i j 2ijk i j 3ijk

i 1 j 1 i 1 j 1 i 1 J 1 i 1 j 1

u ( x, y,z ) g h a z g h a z g h a z g h a
       

            (2) 

where 

   2

1 2 3g 1 , g 1 , g 1
2 2

 
        ,     = x/Lx 

   2

1 2 3h 1 , h 1 , h 1
2 2

 
        ,     = y/Ly 

k = 1, 2, 3 and u1 = u;     u2 = v;      u3 = w; 

Further, amijk (m = 0, 1, 2, 3; i, j, k = 1, 2, 3) are the generalized coordinates. 

 

Variation of displacement fields has been assumed to be cubic through the thickness of element, 

although there are only two nodes along ‘z’ axis of an element. Derivative of displacement with 
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respect to the thickness coordinate has also been included in the displacement field. Such a 

variation is required for invoking transverse stress components z , xz  and yz  as nodal DOF 

in the present formulation. Further, it also ensures quadratic variation of the transverse stresses 

through the thickness of an element.  

 

By making use of the elasticity relationship and introducing derivative of displacements, 

displacement field uk(x,y,z)) in Eq. (2) becomes 
18

1

( , , ) ( )k i j q kn p kn

n

u x y z g h f u f u


       (3) 

Here, i = 1, 2, 3 for the nodes with  = -1,  = 0 and  = 1, respectively; 

j = 1, 2, 3 for the nodes with  = -1,  = 0 and  = 1, respectively; 

q =1,2 and p =3,4 for the nodes with  =-1 and  =1, respectively for node numbers 1 to 18 

and 

3 3 2 3 2 3

1 2 3 4

1 1
(2 3 ) (2 3 ); (1 ) ( 1 )

4 4 4 4

z zL L
f ; f f ;  f                        .

 

Here, f3 and f4 correspond to derivative of displacements with respect to thickness co-ordinate 

whereas f1 and f2 correspond to displacement DOF , knu  (k = 1, 2, 3 and n =1,2,3,...18) are 

nodal displacement variables, whereas knu  ( knu

z





) contains the nodal transverse stress 

variables. Principle of minimum potential energy is used to develop the element property 

matrix. Detailed formulation can be seen in the work presented by Ramtekkar, Desai (2002) 

[10]. 

 

Numerical integration of system matrices has been performed by using Gauss quadrature rule 

with 3 X 3 integration scheme in plane of plate and a 5 X 5 integration scheme in the thickness 

direction. 

2.3  Model 3 - Development of transition element between 2D ESL (HOST12) and 3D mixed 

LW model 

Compatibility between two differently modelled sub-domains (by using Model 1 and Model 2) 

is enforced by degenerating a continuum 3D element through kinematic constraints compatible 

with deformations predicted by 2D element. 

 

A 3D-to-2D transition element has one or two faces of a 3D element that are kinematically 

restrained to enforce compatibility with adjacent 2D elements. Such a face is denoted as a 

transition face in the sequel. The 3D element on the transition face needs to be conditioned for 

compatibility with DOF of the ESL (HOST12) element to ensure continuity of the combined 

model. Such an element acts as a transition element to connect two independently modelled 

sub-domains. Transition is achieved by placing a stack of such transition elements used in 

different layers of a laminate at the transition face. 
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Fig. 1 (a) Configuration of connection between 3D elements and HOST12 elements, 

and  (b) Illustration of degenerated face of the 3D element 

A pair of incompatible mesh formulations is shown in Fig. 1(a) wherein a nine node ESL 

element with twelve DOF per node (node numbers denoted with a prime) is connected to a 

stack of 3D mixed elements with six DOF per node (three translations and three transverse 

stresses). Fig. 1(b) shows diagrammatic representation of the transition element with the 

degenerated transition face. Differently modelled meshes meeting at the transition face 

represent the same laminate configuration and thickness. 

 
(a)     (b) 

Fig. 2 An indicative impression of unidirectional transition (a) before implementation of 

restraint; and (b) after implementation of restraint 

 

Kinematics of any point at a distance ‘dkj’ from the reference plane of the laminate on the 

transition face is completely described by displacement field for the ESL. Because 2D elements 

and stack of 3D elements represent the same laminate, motion of the corner 3D node (node 1) 

(refer Fig. 1(a)) is entirely prescribed by the three translations, three rotations and the higher 

order terms of its corresponding ESL node (node 7’). Consequently, the DOF associated with 

nodes 1,2,3,10,11 and 12 are followers to the DOF associated with ESL leader nodes 7’, 8’ and 

9’, and hence must be restrained. A transition element is shown in Fig.1(b), where kinematic 

restraint is imposed on the hatched surface. Three nodes of the ESL on the transition face form 

3D elements' transition edge. This edge represents transition face of 3D element stack. An 

indicative impression of the change in configuration of the 3D element on imposition of the 

restraint is shown in Fig. 2. 

 

3D Mixed 

ESL ESL 

Transition 

Elements 
3D Mixed 
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By using displacement field of HOST12 in Eq. (1), kinematics  
3

ˆ
D

k
q  of any ‘kth’ node of 3D 

element on the transition face and corresponding to the ESL leader ‘jth’ node can be completely 

prescribed as 

 

   

 

2 3

2 3

3 2
2 3

3

* * * * * *

0 0 0 0 0 02

1 0 0 0 0 0 0 0 0

ˆ 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

 

k

kj kj kj
k j

kj kj kjD D

kj kj kj
D

T

x y z x y zD

u d d d

q v d d d q

d d dw

where q u v w u v w     

   
    

    
   

   

       (4)

 

or 

         
3 2

ˆ
k j

D kj D
q R q                          (5) 

By developing the restraint sub-matrices 
kj

R for all pairs of 2D and 3D nodes, the 

transformation matrix [R] for the entire element can be formulated by appropriately populating 

sub-matrices  
kj

R  corresponding to every pair. Finite element stiffness property, mass/inertia 

property matrices and internal force/influence vector for the transition element are obtained by 

matrix transformations using the constructed corresponding matrices of 3D element and 

associated transformation matrix as follows, 

       

     

       

3

3

3
               

T

e eTr D

T

e Tr D

T

e eTr D

K R K R

F R F

M R M R





 


 

                                                   (6) 

The transformation in Eq. (6) degenerates the transition face of the 3D element which becomes 

follower to the corresponding HOST12 leader nodes. All elements in the interior of the local 

transition face are 18 node elements with all nodes modelled using mixed formulation. Stress 

DOF at the 3D nodes on the transition face are condensed prior to imposition of the restraint. 

By considering stiffness and mass matrices of the ESL elements, transition elements and the 

interior LW mixed elements, the global matrices are obtained in the following form after 

assembly. 

 

 

       

1 1 1

1 1 1

1 1 1

i
m n k

G j l

e e e

i j lTr

m n k
G i j l

e e e

i j lTr

m n k
G i j l

e e e

i j lTr

K K K K

M M M M

F F F F

  

  

  

           

            

  

  

  

        (7)
 

Here  

 
     ,  and 

G G G
K M F  are the global stiffness property matrix, inertia property matrix and 

nodal influence vector, respectively; 

 ,   and 
i i i

e e eK M F       
are the element property matrix, inertia property matrix and the element 

influence vector of ith element, respectively, formed by using mixed LWT; 
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 ,   and j j j

e e eTr Tr Tr
K M F        are the element property matrix, inertia property matrix and 

element influence vector of jth transition element, respectively; and 

 ,   and l l l

e e eK M F        are the element stiffness matrix, mass matrix and element nodal load 

vector of lth ESL element, respectively. 

m, n and k in Eq. (7) represent number of mixed LW, transition and ESL elements. 

 

The displacement vector  ˆ
Tr

q of a transition element is composed of DOF of ESL nodes on 

the transition edge, and DOF of 3D nodes on the other faces. 

 

 

The transition element developed by the application of the restraints consists of 108 DOF and 

15 nodes for unidirectional transition and a corner element with two adjacent transition edges 

has 13 nodes and 108 DOF. Such a corner element is developed by applying the kinematic 

restraint on two adjacent faces. 

3.0 Numerical examples  

To study 3D state of stresses in the free edge regions, a laminate is modelled by using 3D mixed 

LW elements at free edge and higher order ESL in remaining part to reduce computational 

effort. Both models are implemented simultaneously and compatibility between subdomains is 

established by introducing transition elements. Examples of symmetrical cross ply laminates 

under in-plane unidirectional strain and transverse doubly sinusoidal load are considered for 

illustration. Plate under transverse load is considered to be simply supported on all four edges. 

Substantial reduction in computational effort is achieved as compared to a complete LW mixed 

FE solution.  

3.1 Example 1: Free edge stress analysis of a symmetric cross ply laminate 

A symmetric (0/90/90/0) cross ply laminate is considered for free edge stress analysis under 

action of uniform uniaxial in-plane strain. Width of laminate ‘2b’ is considered as ‘4h’ and 

length of laminate ‘l’ is taken as ‘10h’, where ‘h’ is thickness of laminate. Material of laminae 

is assumed to possess following properties. 

E1 = 138.00GPa; E2 = E3 = 9.66 GPa; G12 = G13 = 5.52 GPa; 

G23 = 4.14 GPa; 12= 13 = 23= 0.21; 

 
Fig 3  Typical laminate and coordinate axes 

X 

X 

Z 
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Uniform in-plane strain 6( 1 10 )x X   is introduced along the length of laminate. 

Implementation of this novel multi-model finite element mesh is done on a quarter part of the 

laminate. Advantage of symmetry in configuration is taken in implementation of the multi-

model FE scheme for a finer discretization. A typical laminate with coordinate axes is shown 

in Fig 3. Laminate is restrained against deformations along X axis at X=l/2. A uniform strain 

is introduced at X=0.  

 

Zone in vicinity of X=0 over entire half width is modelled using a stack of 3D mixed LW 

elements and in remaining part, higher order ESL (HOST12) is used. Length of local zone (3D 

mixed LW zone) is taken equal to thickness of laminate. This amounts to about 10% of entire 

domain of plate. Laminate is discretized using 7 elements along the length and 8 elements along 

width. A strip of 1 element at free edge along the width is modelled by 3D mixed LW elements. 

Each layer of laminate is subdivided in 4 sub-layers to accommodate 16 LW mixed 3D 

elements over the thickness at local free zone.  Hence, a total of 176 elements are employed 

over the domain of laminate. Composition of these elements comprises of 56 ESL and 128 3D 

mixed LW elements. 

 

Variation of the transverse normal stress at free edge ( X=0), along the half width of plate is 

obtained by present multi-model approach. Variation of the transverse normal stress at mid-

plane (90-90 interface) and at (90-0) interface are presented in Fig 4 and Fig 5, respectively. 

Variation of the transverse shear stress ( )yz  at (90-0) interface along the width at free edge is 

shown in Fig 6. 

                             
Fig 4 Width wise variation of  

z on free edge at X=0 at mid-

plane 

  Fig 5  Width wise variation of yz  

at free edge at X=0 at mid-plane 

 

It is observed that the transverse stresses at the free edge are correctly estimated by the present 

multi-model approach. Steep stress gradient is predicted at free edge. At the same time, a 

substantial reduction in computational effort is also achieved. Saving in computational effort 

as compared to complete 3D mixed LW model can be appreciated. For a complete 3D solution 

with same mesh discretization, a total of 896 elements would have been required. Reduction in 

number of elements required to map the domain leads to reduction of DOF and therefore, the 

computational effort. 

3.2  Example 2: Complete stress analysis of a square simply supported sandwich plate under 

bi-directional sinusoidal transverse load (Core=0.8h) 

A (0o/core/0o) square sandwich plate (l=2b) under bi-directional sinusoidal transverse load is 

considered for in-plane as well as inter-laminar stresses. The plate is simply supported on all 
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four edges. The thickness of each face sheet is one tenth of total thickness of sandwich plate. 

Determination of in-plane and the transverse stresses is accomplished using present combined 

model. To capture ( )yz , a stack of 3D mixed LW elements are placed at and in vicinity of 

( ,0)
2

l
 and remaining laminate is modelled using HOST12 elements. To capture ( )xz , a stack 

of 3D mixed LW elements are placed at and in vicinity of (0, )b  and remaining laminate is 

modelled using HOST12 elements. For obtaining ( )z , a stack of 3D mixed LW elements are 

placed at and in vicinity of ( , )
2

l
b  and remaining laminate is modelled using HOST12 elements. 

Material properties and normalization factors used for the analysis are mentioned alongside 

Table 1. Results for aspect ratios S=l/h= 2, 4, 10, and 20 have been compared in Table 1 with 

elasticity solution given by Pagano (1970) [11], FE solution by Ramtekkar, Desai (2003) [12] 

as well as the analytical and finite element solutions presented by various authors. Through 

thickness variations of the normalized transverse shear stress components and transverse 

normal stress for the plate with aspect ratio S = 4 have been presented in Fig. 7(a-c).  Results 

are in close proximity of exact elasticity solution obtained by Pagano (1970) [11], FE solution 

by Ramtekkar, Desai (2003) [12]. The agreement of the results with the elasticity solution and 

3D fully mixed formulation clearly suggests that such problems can be analyzed with good 

accuracy by using the present formulation. A substantial reduction in DOF and effort as 

compared to complete mixed LW solution is observed. 

 
(a)                                                                     (b) 

 
                           (c) 

Fig 7 Through thickness variation of a) yz ,  b) xz   and   c) z  
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Table 1 Maximum stresses in square sandwich plate under bi-directional sinusoidal transverse load (Core=0.8h) 

1 2 3 12 13 23 12 13 23

1 2 3 12 13 23 12 31 32

( : 172.4 , 6.89 , 3.45 , 1.378 , 0.25;

 : 0.276 , 3.45 , 0.1104 , 0.414 , 0.25)

FaceSheet E GPa E E GPa G G GPa G GPa

Core E E GPa E GPa G GPa G G GPa

  

  

        

        
 

 
 

 
 23

2

4 2

0 0 0

, , ,100
 ,  , , ,  ,

X Y XY XZ YZ

X Y XY XZ YZ

h hE h
W w

q a q a q a

    
        

S Source ( , , )
2 2 2

X

a b h
   ( , , )

2 2 2
Y

a b h
   (0, ,0)

2
XZ

b
  ( ,0,0)

2
YZ

a
  (0,0, )

2
XY

h
   

2 
i. Pagano (1970b) [11] 3.278 -2.653 0.452 0.392 0.185 0.142 -0.240 0.234 

ii. Present 3.1225 -2.516 0.468 -0.417 0.183 0.136 -0.2328 0.2295 

4 

i. Pagano (1970b) [11] 1.556 -1.512 0.259 -0.253 0.239 0.107 -0.144 0.148 

ii. Present 1.501 -1.460 0.267 -0.263 0.2388 0.1055 -0.1424 0.1474 

iii. Pandya and Kant (1988) [13] 1.523 - 0.241 - 0.275 - -0.142 - 

iv. Reddy and Chao (1981) [14] 0.865 - 0.151 - 0.099 - -0.088 - 

v. Wu and Lin (1993) [15] 1.548 - 0.241 - 0.249 - -0.134 - 

vi. Ramtekkar, Desai (2003) [12] 1.570 -1.524 0.260 -0.255 0.240 0.108 -0.145 0.149 

10 

i. Pagano (1970b) [11] 1.153 -1.152 0.110 -0.110 0.300 0.053 -0.071 0.072 

ii. Present 1.146 -1.145 0.113 -0.113 0.306 0.058 -.0707 0.0718 

iii. Pandya and Kant (1988) [13] 1.166 - 0.105 - 0.340 - -0.069 - 

iv. Reddy and Chao (1981) [14] 1.015 - 0.077 - 0.111 - -0.053 - 

v. Wu and Lin (1993) [15] 1.210 - 0.111 - 0.324 - -0.071 - 

vi. Ramtekkar, Desai (2003) [12] 1.159 -1.158 0.111 -0.110 0.303 0.055 -0.071 0.072 

20 

i. Pagano (1970b) [11] 1.110 0.070 0.317 0.036 0.051 

ii. Present 1.115 0.0729 0.335 0.048 -0.0512 0.0515 

iii. Present (8X8)/(2X2X16) 1.106 0.0713 0.3216 0.0393 -0.0506 0.0503 

iv. Wu and Lin (1993) [15] 1.173 0.072 0.353 - 0.052 

v. Ramtekkar, Desai (2003) [12] 1.115 0.070 0.317 0.036 0.051 
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4.0 Conclusions  

A multi-model FE approach is developed for stress analysis of composite laminates. An unique 

transition element is developed for appropriate compatibility between higher order ESL and 3D 

mixed LW formulation. The present multi-model approach has been tested over a laminate 

under uniaxial strain. Results for a transversely loaded simply supported sandwich are also 

presented. Results obtained through This approach enables mapping of the domain of a laminate 

with reduced numbers of DOF as compared to any 3D solution. At the same time, accuracy in 

prediction of inter-laminar stresses at critical zones is also achieved. Reduction in number of 

DOF renders the methodology a computationally economical. 
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Abstract 

Pulverized Coal Injection (PCI)/ Natural Gas (NG) co-injection has a significant impact on the 

size and shape of the raceway inside a Blast Furnace. Consequently, this affects the gas 

distributions, as well as iron ore reduction, and the furnace pressure drop. The raceway size and 

shape are influenced by incoming gas momentum entering the raceway envelope from the tuyere 

jet, the combustion of coke and injected fuels, coke particle size, fuel injection rates, slag volume, 

and other complex factors. A 3-D CFD mathematical model has been established for estimating 

the raceway geometry and combustion inside the blast furnace. This model considers the effects 

of coke combustion and injection fuels on the raceway geometry and the raceway gas flow patterns. 

The combustion effects are treated as additional source terms of mass and momentum in the gas 

phase because the combustion converts solid fuels into the gaseous phase and releases heat. In this 

paper, the raceway geometry and raceway combustion models are presented, along with the 

methodologies for raceway simulation, and some selected model applications (including 

parametric study analyses of blast furnace operation under a variety of fuel injection conditions).  

 

Keywords: Ironmaking, blast furnace, Raceway, PCI, CFD 

 

Introduction  

 

The injection of pulverized coal into the blast furnace is a crucial technology for lowering hot 

metal production costs and reducing coke consumption. In order to achieve high injection rates 

and coke replacement ratios, the combustion process of injection fuel and the fluid dynamics inside 

the raceway must be well understood and documented. 

The thermodynamics and kinetics of coal and coke combustions under laboratory conditions are 

well published, and, based on this fundamental knowledge, mathematical modeling can be 

conducted to simulate injected fuel and coke combustion inside the blast furnace raceway. 

Additionally, numerical modeling can be utilized to optimize furnace operation conditions in an 

effort to achieve higher fuel injection rates and optimal coke replacement ratios. Early in published 

model development, some simulations of the raceway regions assumed one-dimensional plug flow 

for the tuyere and the raceway. However, these early models, in many cases, failed to properly 

predict the de-volatilization process and combustion of released volatiles [1, 2]. In certain two-
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dimensional models [3], the combustion of coal and coke in the raceway were considered, however 

the turbulent features of the gas phase were either ignored or simplified [4]. Additionally, these 

two-dimensional models were mostly applied to simplified raceway shapes, such as cylinders or 

spheres. For more realistic scenarios, three-dimensional modeling is needed to simulate the full 

raceway geometry, the combustion of injected fuels and coke, and the fluid flow phenomena inside 

the raceway envelope.  

Accurate modeling of the raceway is important, because it contains the critical parameters that 

control gas distribution in the blast furnace. Kawabata et al [5] developed a one-dimensional 

raceway mathematical model designed to predict the gas temperature and composition 

distributions inside the raceway region. In this model, coke particles inside the raceway were 

treated as a continuous phase. Additionally, the raceway depth and the void fraction inside raceway 

were assumed to be constant. Hatano[6] and Nogami [7] developed a two-dimensional model with 

a similar approach. However, it was also reported that raceway sizes obtained in pseudo two-

dimensional and real two-dimensional apparatuses could be different. In the pseudo two-

dimensional model, a jet of air is injected through a tuyere placed in the longitudinal central plane 

of the model domain. The jet can expand in all directions after leaving the tuyere tip, however, it 

is assumed that any impacts on flow due to jet expansion in the perpendicular direction to the 

tuyere axis are negligible. Moreover, the combustion of injection fuel has significant effects on the 

size and shape of raceway of a blast furnace, a phenomena which has not been well examined by 

any of the aforementioned modeling techniques. 

In this paper, an established three dimensional (3-D) computation fluid dynamics (CFD) 

mathematical model for simulating the raceway shape and combustion in a blast furnace is 

examined. This model was developed through the efforts from the Global R&D-East Chicago of 

ArcelorMittal and Purdue University Calumet. In this model, the effects of coke and injected fuel 

combustion on the raceway geometry and the raceway gas flows are considered. The combustion 

of injected fuels and coke convert solid mass into a gaseous phase and generate heat in the raceway. 

The increase in the gaseous mass will increase the gas volume, and the increase in the temperature 

will expand the gas volume and/or increase the pressure. Therefore, in the modified 3-D CFD 

raceway model, source terms are added accordingly to present the effects due to these increases. 

 

Mathematical Model 

 

The simulation is divided into two major portions: (a) simulation of NG/PC combustion inside the 

tuyere, and (b) simulation raceway formation and combustion.  The simulation starts with the 

NG/PCI combustion simulation.  The flow profiles at the tuyere outlet obtained from this 

simulation are used as inlet boundary conditions in the raceway model.  The commercial CFD 

solver ANSYS Fluent is used to model flow inside the blowpipe/tuyere geometry, as well as the 

initial stages of NG/PC combustion inside the tuyere region as shown in Figure 1.   
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Figure 1. Schematic of CFD models of the tuyere and the raceway  

 

The raceway model is divided into two sub-models, (a) the raceway formation model and (b) the 

raceway combustion model.  A methodology has been developed to predict the effects of the 

combustion on the raceway geometry (sizes and shapes). 

The raceway model estimates the raceway geometry and the distributions of coke injection fuels 

in the raceway. The model determines the raceway size and shape based on the porosities of the 

active coke zone at the front of a tuyere.  The outputs of the raceway formation model are then 

used as boundary conditions for the raceway combustion model to prescribe a flow domain and 

porosity map. 

The raceway combustion model employs a Eulerian approach to describe the gas-particle flow and 

combustion of the injected fuel and coke inside the raceway envelope.  Conservation equations are 

utilized to describe mass transfer, heat transfer, and the motion of gas and particles. 

The combustion of injected fuels and coke have an impact on the raceway geometry in two ways, 

(a) mass transfer from solid to gas, and (b) gas volume expansion due the temperature increase.  

To account for these phenomena and their effects on the raceway shape and size, mass and volume 

are added to each local cell accordingly.  The mass and gas volume increments determined by the 

combustion are fed cell by cell to the formation model.  The formation model will then determine 

a new raceway shape and size with the increments taken into account.  Table 1 lists the detailed 

procedure of this methodology. The commercial CFD solver ANSYS Fluent and a proprietary 

CFD code are used in this study. 

 

Table 1. Iteration between raceway formation and combustion models 
Step Model Simulator Raceway geometry and combustion simulating status 

1  Raceway Formation  ANSYS Fluent®  To predict raceway without combustion 

2 Raceway Combustion  Proprietary Code Combustion simulating with raceway geometry from 

Step 1 

3 Raceway Formation  ANSYS Fluent®  To predict raceway with combustion source term from 

Step 2 

Repeat Steps 2 and 3 till the shape and size converges.  
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Raceway Formation Model 

A transient 3D Eulerian approach was employed to predict the raceway geometry.  In the Eulerian 

approach, the different phases are treated as interpenetrating continua. The Eulerian approach uses 

the concept of phasic volume fraction,.  The volume fractions are assumed to be the continuous 

functions of space and time, and the sum of the fractions is equal to one. The conservation equation 

for each phase is given below,  

 





Sgraddivu
ii

div
t

ii 



)()(

)(
 (1) 

where S is the mass transfer between the two phases due to chemical reactions of coal and coke.  

The flow behavior of the fluid-solid mixture is described using a multi-fluid granular flow model.  

The granular multi-fluid model consists of granular phase conservation equations and fluid phase 

conservation equations. The inter-phase momentum exchange is modeled using the Syamlal-

O’Brien model [8], where the fluid-solid interaction coefficient is defined using an empirical 

relationship based on terminal velocity measurements in fluidized beds and settling beds. The 

coefficient is a function of volume fraction and Reynolds number.  The solid-solid interaction is 

based on the assumption that there is instantaneous binary collisions between particles and that the 

energy dissipation is due to inelasticity of collisions.   

 

Raceway Combustion Model 
The proprietary in-house model uses an Eulerian system to describe the gas-particle flow and coal 

combustion. Conservation equations of mass, energy, and momentum are used to describe the mass 

transfer, heat transfer, and the motion of gas-particle, respectively. The k- two-phase turbulence 

model is used to simulate gas and particle turbulence. The eddy break-up-Arrhenius combustion 

model is used for gas combustion. Two-competing reaction model is used for the coal 

devolatilization rate [9]; and the diffusion-kinetic model is used for the overall reaction rate of char 

reaction. 

 

Governing equations 
Gas-particle phase continuity, momentum, species mass fraction, and energy equations, as well as 

the equations of the turbulence momentum and its dissipation rate at steady state are described 

below.  
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 (3) 

 

where  and P are the general independent variable,  and P are the effective transport 

coefficient; S, SP and SPg are source terms.   

 

Interphase momentum exchange 
The particle exchanges momentum with the gas through the drag force. When the void fraction is 

greater than or equal to 0.8, the momentum exchange coefficient is expressed as, 
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f(k) accounts for the effect of the presence of other particles and is a correction to the Stokes law 

for free fall of a single particle.  The following equation is used in this work. 
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The drag coefficient is estimated as a function of the Reynolds number and is described as follows. 
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where the Reynolds number is given by 
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When the void fraction is less than 0.8, the momentum exchange coefficient is calculated by the 

Ergun’s equation below. 
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Gas combustion 
The eddy break-up turbulent combustion model is used to quantify the effect of turbulence on the 

combustion rates of volatiles, carbon monoxide, and hydrogen.  The reaction rate is determined as 

 
 Ws =min (Ws, EBU, Ws,Arr) (9) 

where 
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Interphase heat transfer 
The heat transfer between a single reacting particle and the gas phase is calculated based on the 

stagnant film theory. 
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where the so-called 1/3 Law is used to calculate the thermal conductivity and around the coal 

particles.  

 

Moisture evaporation rate 
A diffusion model is used to calculate the moisture evaporation rate.  The moisture in a coal particle 

is assumed to diffuse to the surface of the particle to form a liquid film. This film is treated as a 

surface layer of a water droplet with the same diameter.  The moisture evaporation rate is 

calculated as follows. 
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where YH2O is mass fraction of vapor at the surface of the particle.  The Nusselt number, Nuk, is 

calculated as  

 
5.0Re5.02 kkNu   (17) 

 

Coal devolatilization rate 
Coal is assumed to decompose to form char and combustible volatiles.  The combustible volatile 

is assumed to consist of hydrocarbons (CdHd) and carbon monoxide.   

 

 Coal = [Volatiles] + Char (18) 

 CaHbOc = [CdHb+cCO] + eC (Volatiles = CdHb+cCO) (19) 

 

The constants a to e are determined from the coal ultimate analysis. 

 

The coal devolatilization rate is proportional to the mass of the dry ash free (daf) coal.  The 

devolatilization is modeled by two simultaneous competing first-order irreversible reactions. 
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The devolatilization rate is calculated as 
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where 1 is obtained from the volatiles matter percentage in coal proximate analysis, and 2 is 

equal to 22. 

 

The reduction rate of the daf coal mass due to the devolatilization is calculated as 
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The volatile matters released into the gas phase undergo the following homogeneous combustion.   

 

 22bd  H
2

b
 = d CO +  O

2

d
 + HC  (23) 

 22 2COO2CO   (24) 

 O2HO2H 222   (25) 

 

Char reaction rate 
The following heterogeneous char reactions are included in the model. 

 

 C + O2  CO2 (26) 

 2C + O2  2CO (27) 

 C + CO2  2CO (28) 

 C + H2O  CO + H2 (30) 

 

All the char reactions are assumed to be of first-order with respect to O2, CO2, and H2O. The 

reaction rates for char reactions in equations (26) to (30) in terms of the gas consumption rates are 

given below. 
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Applications 

The existing raceway models have been applied to analyze a variety of blast furnaces in a broad 

range of operating conditions. In this paper, two recent analysis projects utilizing the 

computational raceway simulation model are examined. Both simulation projects detailed herein 

were previously published and presented at AISTech 2015 [10][11]. The first furnace examined 

was the No. 1 blast furnace at United States Steel Canada Lake Erie Works. The project was 
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undertaken to study injected natural gas (NG) combustion performance and the impact of various 

lance designs on blast furnace operation and stability. 

Research was conducted on three lance designs. The first, referred to as the ‘fast lance’ had a large 

number of small holes for gas egress. The design of this lance was expected to improve gas 

dispersion and enhance combustion inside the tuyere region. The second lance was a simple 

straight pipe, and the third design was a modification of the fast lance, created by boring out the 

lance tip. The three lances can be observed in Figure 2. 

 

(a)  (b)  (c)  

Figure 2. (a) Fast Lance, (b) Straight Lance and (c) Bored Lance 

 

Identical operating conditions were maintained in all three lance design simulations so that 

combustion characteristics could be accurately compared. After calibrating the kinetics of natural 

gas combustion (to accurately model flame liftoff and blowout), combustion of injected natural 

gas inside the tuyere was modeled [12]. Combustion characteristics and temperature profiles inside 

the tuyere were examined to compare combustion speed between the three lance designs. A 

comparison between temperature profiles inside the tuyere is shown in Figure 3. 

 

  
Figure 3. Temperature distributions in the tuyere 

 

It is obvious from an examination of the temperature profiles that the additional holes in the lance 

tip in bored lance and fast lance designs contribute to the enhancement of combustion inside the 
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tuyere. The increased mixing and combustion inside the tuyere also leads to the release of 

additional CO and CO2 in the gas flow that enters the raceway. The fast lance leads significantly 

more reactions than the other two designs, with the difference between the bored and straight 

lances being relatively minor. Figure 4 details the CO2 distribution inside the tuyere for each lance 

design. 

 

 
Figure 1. CO2 mass fraction distribution inside the tuyere 

 

The additional combustion observed in the fast lance case results in higher pressure drops over the 

tuyere region. Plant operators observed that higher NG injection rates also resulted in increased 

pressure drops, which can lead to limitation on furnace wind and production rates. Due to this, the 

increased pressure drop in the fast lance case, when utilized at high production rates, can result in 

poor stability due inability to supply enough wind to the furnace. 

The raceway shape is not significantly impacted by the lance design, however gas species and 

temperature distributions are heavily altered. As visible in Figure 5, high gas temperatures are 

present on the side of the raceway, due to the angle at which NG is injected into the tuyere and the 

resulting consumption of oxygen. With more oxygen available on one side of the raceway, the gas 

temperatures increase due to coke combustion. 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

956



 
Figure 5. Temperature distribution in the raceway, side view (top) and top view (bottom) 

 

Based on the raceway model outlet temperatures and gas distributions, data was then exported to 

a second in-house CFD code known as the blast furnace shaft simulator. This additional model 

allowed for the examination of blast furnace operation in the stack. Minor variations in gas and 

temperature distribution, as well as overall gas utilization in the furnace provided the basis for 

selecting improved operating conditions for the Lake Erie Works blast furnace. 

The second furnace examined was located at AK Steel Dearborn Works in Dearborn, MI. This 

project was performed to examine the impact of co-injecting pulverized coal (PC) and NG in a 

variety of operating conditions on combustion and furnace performance [11]. One of the key 

factors examined in this project was the use of NG as a carrier gas for PC. The hope was that the 

replacement of nitrogen with NG could possibly improve combustion performance, in an effort to 

avoid some of the difficulties in the use of high rate pulverized coal injection, such as reduced 

permeability. Initially, a baseline case was modeled at standard operating conditions provided by 

AK Steel Dearborn Works. It was quickly discovered that the baseline design of the tuyere region 

resulted in poor heat transfer between NG combustion and the PC particles. Additionally, as can 

be observed in Figure 6, the method of NG injection (a tuyere port) leads to increased thermal 

wear on the tuyere surface. 
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Figure 6. Temperature contours located on planes through the tuyere (left) and sectioned 

nose piece of tuyere from AK Steel Dearborn Works with wear/ablation zones visible 

(right) 

The gas flow from the tuyere produces a standard jet into the raceway, with gas velocities lower 

at the center due to the momentum required to accelerate the pulverized coal. Areas of recirculation 

are easily visible in the raceway envelope, with regions of high temperature present in the 

recirculation areas as shown in Figure 7. 

 

     

   

Figure 7. Contours of gas velocity (left) and gas temperature with streamlines (right) in the 

raceway region.  Upper contours are located on section A-A, lower contours located on 

section B-B. 
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A key finding of this study was the discovery of incomplete PC burnout in the raceway. As seen 

in Figure 8, in some regions, the burnout reaches only 60% before passing out of the raceway 

envelope and into the coke bed. This phenomena can also result in performance and stability issues 

in furnace operation to unburnt coal buildup in the blast furnace coke bed. 
 

                   

Figure 8. Contours of pulverized coal burnout fraction through the raceway viewed from 

the side (left) and top (right).   

A variety of simulation cases were modeled in the study, utilizing two different gas injection 

designs, as well as the modification of the PCI carrier gas from nitrogen to natural gas. It was 

determined that the total burnout rate was improved for all cases that utilized NG to convey PC 

into the furnace. With the addition of a secondary lance for NGI, the thermal wear problem could 

be easily resolved. Additionally, when utilizing both the secondary NGI lance and NG for the 

conveyance of PC, the total fuel burnout neared 96%, a significant increase over standard operating 

condition values. 

These two projects provide a representative examination of the broad applications of the blast 

furnace raceway modeling capabilities developed. Ranging from design modification and 

troubleshooting, to operational capabilities and combustion performance analysis, the existing 

model has been well validated and applied across a number of analyses for a variety of steel 

producers and their blast furnaces. 

 

Conclusions  

A 3-D CFD mathematical model has been established for estimating the raceway geometry and 

combustion in the raceway, in which the effects of coke and injected fuel combustion on the 

raceway geometry and gas flow/species distribution through the raceway envelope are considered. 

The combustion effects are treated as additional source terms of mass and momentum in the gas 

phase, because combustion serves to convert solid mass into gaseous mass and contribute to the 

generation of heat, resulting in additional momentum. The simulation results indicate that 

combustion has significant effects on the raceway shape and size.  

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

959



The raceway model can be utilized to complete parametric studies analyzing natural gas and coal 

combustion in the raceway, raceway geometry, raceway gas flow, raceway temperature, raceway 

gas compositions, and other parameters. The parametric studies examined using this model thus 

far have helped to optimize to tuyere operation, coal and coke properties to achieve high fuel 

injection rates, improve fuel replacement ratios, and enhance PCI performance in a variety of 

ironmaking facilities and operating conditions. 
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Abstract 

A Topological Domain Language has been developed to aid the TrueGrid® beginning user to 
model a restricted set of problems by simplifying the formation of the hexa block topology. A 
computer program has been developed to convert scripts in this language to the journal format of 
TrueGrid®. 

Keywords : topology, hexa mesh generation, domain language 

Introduction 

The element type has always been important in determining the accuracy of the results in a Finite 
Element Analysis. Recent results, Marcal et al[1], Fong et al  [2]and Marcal et al [ 3] have 
demonstrated the superiority of the hexa 27 fully quadratic element[4]. In order to exploit such 
an element, we need to be able to generate hexa meshes over a wide spectrum of shapes and 
sizes. Ideally it would be preferable to generate the hexa meshes automatically. The only such 
method known to the authors is to generate the mesh via a subdivision of a tetra mesh. Such a 
procedure results in hexa meshes with poor element quality and an unnecessarily large number of 
degrees of freedom. The TrueGrid® Pre-processor [5] has been developed for hexa mesh 
generation. This program has many advanced features for the generation of complex meshes. It is 
not our intention to exercise such advanced features. Instead, we wish to explain the basis of this 
mesh generator and explore the possibility of developing an expert system which could help a 
new user generate some useful meshes. The TrueGrid® program uses a surface projection 
method. This method in its simplest form defines a block in 3D space and in a unit topological 
space, respectively. The block in 3D space is in turn mapped to an enclosing surface. Here we 
restrict the enclosing surface to those resulting from simple geometric solids. This allows us to 
develop a simple Domain Language. 

We introduce the projection method by creating the simplest 3 X 3 X 3 unit topology and using 
this to create a mesh for a cylinder. The result is shown in Fig. 1. The TrueGrid® Journal for 
these problems is given in Appendix A. 
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Fig. 1, Hexa mesh for cylinder, simple topology 

The problem with such a mesh is that the quality of the elements at the edges of the topological 
blocks is poor. 

We can improve this by introducing a cross pattern for the topology and requiring that the 
adjacent faces of the cross be joined for the projected model as shown in Fig. 2. 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

962



Fig. 2 a , Hexa mesh with cross topology 

Frig. 2 b, Cross pattern in topological space 

We can now see that the problem with the element quality has disappeared. 

Finally we generalize this concept by introducing the cruciform topology in three directions. This 
is used to project to sphere and sphere like geometries. 

This is shown in Fig. 3 
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Fig. 3 a, Hexa Mesh for sphere with Cruciform topology 
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Fig. 3 b , Projection of the corner with three adjoining elements (two hidden) 

Fig 3 c, Cruciform topology 
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We have now established the basic requirements for the creation of a topology that can be used 
to project to the boundary surfaces to create hexa meshes via the projection method. 

 

Theoretical Considerations 

In the projection method, we first develop the topology in a three dimensional integer space. Our 
topology is then described here as a sequence of blocks. The blocks are joined together in a 
topologically constructive process. Because blocks are the only basic topology admitted in our 
process, the constructive topology may be restricted to a few simple operations. Here we adopt 
the concepts and the procedures used by TrueGrid®. However, to simplify our task, we will 
create a simple Topological Domain Language (TDL).  

Naturally, in order to take advantage of the existing TrueGrid® software, we must also define a 
method to map the defined TDL operations to a language that the TrueGrid® can understand. 
This we achieve by mapping our operations into the parametric journal language currently used 
by TrueGrid®. The TDL is defined so that it can be easily translated from the TDL to the 
TrueGrid® Scripting Language.  

In order to create a general purpose TDL, we have identified the following functions for the 
language. The functions that are preceded by a required name are the functions that will perform 
the translation to equivalent terms in the TrueGrid® journal. 

Finite Element Format 

name=FemFormat(mpact) 

FemOutput(mpact) 

or 

Mesh 

Coordinate System 

Crd( 3D||TP,(list i),(list j),(list k)) 

Crdr(3D||TP, (range i),(range j),(range k)) 

Crdf(3D,(min i,min j,min k),(max i,max j,max k))  

Crdfi(3D,(min i,max i),(min j,max j),(min k,max k))  # see directions below in art. Translation to 
TrueGrid® Script. 

CrdfPos(3D,( pos min i,pos max i),(pos min j,pos max j),(pos min k,pos max k)) # the values 
corresponds to count in the coordinates of the block definition list 

SubPos(i or j or k,(min0,max0),(min1,max1)) # use node numbers 
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CrdfsPerm(SubPos0,SubPos1,SubPos2) # up to three SubPos can be included, permute the 
subpos between the two of i j k directions. This allows us to change the number of nodes in a 
block. 

CrdfhPerm(SubPos) #  is used as an Insert Sub Block (insprt) to add subdivisions to a direction 
of a block in preparation for creating a part. A negative value indicates insertion to the left of the 
min index. The max units are in elements (ie nodes+1) 

CrdfPermute(TP,(i-min,i-max),(j-min,j-max),(k-min,k_max)) # when more pairs are used in a 
dir. Add 0 as a separator. Use (:) to indicate the full range in a particular direction. 

Block Creation 

The basic building block is created by defining a rectangular block in 3D space and its equivalent 
in topological space. 

name=Block(Crd in 3D,Crd in TP) 

name=SubBlock( Block, Crd of Sub_block) 

name=Cross(Block start, CrdfPermute)    

name=Cruciform(Block start,CrdfPermute,CrdfPermute) #  two orthogonal CrdfPermutes 

name=TieFace(Crdf, tie-#) 

name=MapBlock(Sub_block , Block) 

name=EndBlock(Block) # end operations for the named Block 

Utilities and other useful quantities 

Vec((i0,j0,k0),(i1,j1,k1)) 

VecAdd(vec1,vec2) 

VecSub(vec1,vec2) 

Dir(0 or 1, 0 or 1,0 or 1) 

Pos(i, j,k) 

DisplayWindow(x,y) 

Block Editing 

BlockTranslate(Block,Vec) 

BlockRotate(Block,VecDir, num rt angles) 

Block Boolean Operations 

Union(Block 1, Block 2) 

Subtract(Block 1, Block 2) 
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Intersection(Block 1, Block 2) 

InsertSubBlock(SubBlock) 

Slice(Block,VecPos,normal to VecDir) # result is two blocks _p and _m added to block name 

DeleteBlock(Block) 

 

Topological Properties for Surface Projection 

Faces(Crdf) # list corresponds to position on list of block definition 

name=Project(Faces,Geom) 

Geometric Surfaces For Blocks 

Sph(center,rad) 

Cyl(center,dir vector) 

Tor(center,torus rad, Center,Major rad) 

Con(center,dir vector,end rad, other end radius) 

Projection Operations to Surfaces 

name=BlockSurface(Crd,geometric surfaces) # from block to surface 

Insertion of a Sub-Block 

The operation of inserting a block into a current block is about the most complex process that we 
will address with our TDL. Because of the number of operations involved, we have to be 
systematic about the procedure. We assume that the current block has been defined in the usual 
way. Because we need to increase the number of elements around our point of insertion, we need 
to do so consistently because of the block nature of our elements. To be specific, we will use the 
example of a cylinder joined to a hemisphere and insert another cylinder with its axis in the y 
direction. This is actually the example we use in our case 2 discussions. 

It is listed here before the insertion 

prog=FemFormat(mpact) 

coord_1=Crdl(3D,(1 6 11 16),(1 6 11 16),(1 6 11 16)) 

coordt=Crd(TP,(0 12 18 18),(-6 -6 6 6),(-6 -6 6 6)) 

blk1=Block(coord_1,coordt) 

# create holes in topology for better elements about spheres and cylinders. 

crdfp5=CrdfPermute(TP,(3 ,4),(1, 2 ,0 ,3, 4),(2,3)) 

crdfp6=CrdfPermute(TP,( : ),(1, 2 ,0 ,3, 4),(1 ,2, 0 ,3 ,4)) 
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crdfp7=CrdfPermute(TP,( 3,4 ),(2,3),(1 ,2, 0 ,3 ,4)) 

cruci=Cruciform(blk1,crdfp6,crdfp5,crdfp7) 

crdfp8=CrdfPermute(TP,(1,3),(2,3),(2,3)) 

cross5=Cross(blk1,crdfp8) 

# Projection of block face to geometry faces. 

orig9=Pos(12,0,0) 

rad9=Rad(5) 

sph1=Sph(orig9,rad9) 

faces8=Crdfi(3D,(2,-3),(-2,-3),(-2,-3)) 

proj1=Project(faces8,sph1) 

orig6=Pos(12,0,0) 

rad6=Rad(6) 

sph2=Sph(orig6,rad6) 

faces7=Crdfi(3D,(2,-4),(-1,-4),(-1,-4)) 

proj2=Project(faces7,sph2) 

orig=Pos(0,0,0) 

dir=Dir(1,0,0) 

rad=Rad(5) 

cyl1=Cyl(orig,dir,rad) 

faces1=Crdfi(3D,(1,2),(-2,-3),(-2,-3)) 

proj=Project(faces1,cyl1) 

orig1=Pos(0,0,0) 

dir1=Dir(1,0,0) 

rad1=Rad(6) 

cyl2=Cyl(orig1,dir1,rad1) 

faces=Crdfi(3D,(1,2),(-1,-4),(-1,-4)) 

proj3=Project(faces,cyl2) 
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# insert Crdfh here 

sub5=SubPos(k,(2,4)) 

crdfh1=CrdfhPerm(sub5) 

sub6=SubPos(k,(3,7)) 

crdfh2=CrdfhPerm(sub6) 

sub7=SubPos(i,(1,5)) 

crdfh3=CrdfhPerm(sub7) 

sub8=SubPos(i,(2,5)) 

crdfh4=CrdfhPerm(sub8) 

crdfp9=CrdfPermute(TP,(2,3),(3,4),(3,4)) 

cross6=Cross(blk1,crdfp9) 

# insert Cfrds here 

orig3=Pos(6,0,0) 

dir3=Dir(0,1,0) 

rad3=Rad(2) 

cyl3=Cyl(orig3,dir3,rad3) 

faces3=Crdfi(3D,(-2,-3)(3,4),(-3,-4)) 

proj5=Project(faces3,cyl3) 

# insert hole and map 4 faces to the defined surface 

crdf1=Crdf(3D,(2, 3, 3),( 2, 4, 4 )) 

crdf2=Crdf(3D,(3, 3, 3),( 3, 4, 4 )) 

crdf3=Crdf(3D,(2, 3,3),( 3, 4, 3 )) 

crdf4=Crdf(3D,(2, 3, 4),( 3, 4, 4 )) 

# insert tie definitions 

tie1=TieFace(crdf1,1) 

tie2=TieFace(crdf3,2) 

tie3=TieFace(crdf2,3) 

tie4=TieFace(crdf4,4) 

Pause 
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endb1=EndBlock(blk1) 

     1. We now discuss the coding in the original block that implements the hole that  
 allows the insert to be joined. 

  We now expand the number of elements. We make use of the CrdfsPerm  function. This allows 
us to change the number of nodes in a block. We insert the  following after the Block definition. 

sub1=SubPos(i,(1,5)) 

crdfs=CrdfsPerm(sub1) 

sub2=SubPos(j,(2,10)) 

sub3=SubPos(k,(2,10)) 

sub4=SubPos(i,(1,5)) 

crdfs1=CrdfsPerm(sub2,sub3,sub4) 
 

2. Create nodes and topology for new elements created above. Use function 
CrdfhPerm. The new nodes and topology are updated and printed to the screen, so 
that they can help in defining the insert block later. These appear as shown below, 
respectively. 

*** PrintList *** new_block_3d   

   [1, 6, 11, 16, 21, 26]   [1, 6, 21, 26]   [1, 6, 10, 17, 21, 26] 

 *** PrintList *** new_block_tp   

  [0, 1, 2, 12, 18, 18]   [-6, -6, 6, 6]   [-6, -6, -5, -4, 6, 6] 

 

sub5=SubPos(k,(2,4)) 
crdfh1=CrdfhPerm(sub5) 
sub6=SubPos(k,(3,7)) 
crdfh2=CrdfhPerm(sub6) 
sub7=SubPos(i,(1,5)) 
crdfh3=CrdfhPerm(sub7) 
sub8=SubPos(i,(2,5)) 
crdfh4=CrdfhPerm(sub8) 
 

3. Make a hole to allow the new block to be inserted. The following creates a hole 
and maps it to the surface of the shape of the insert. We note from the cylindrical 
surface being used that its origin is (6,0,0) and its radius is 2. 

crdfp9=CrdfPermute(TP,(2,3),(3,4),(3,4)) 

cross6=Cross(blk1,crdfp9) 
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orig3=Pos(6,0,0) 

dir3=Dir(0,1,0) 

rad3=Rad(2) 

cyl3=Cyl(orig3,dir3,rad3) 

faces3=Crdfi(3D,(-2,-3)(3,4),(-3,-4)) 

proj5=Project(faces3,cyl3) 

4. Label the 4 surfaces to be tied to the corresponding surfaces in the Sub-Block to 
be created. 

crdf1=Crdf(3D,(2, 3, 3),( 2, 4, 4 )) 

crdf2=Crdf(3D,(3, 3, 3),( 3, 4, 4 )) 

crdf3=Crdf(3D,(2, 3,3),( 3, 4, 3 )) 

crdf4=Crdf(3D,(2, 3, 4),( 3, 4, 4 )) 

tie1=TieFace(crdf1,1) 

tie2=TieFace(crdf3,2) 

tie3=TieFace(crdf2,3) 

tie4=TieFace(crdf4,4) 

5. Now we are in a position to create the Sub-Block. We first terminate the 
specification for the first block. Then we define the block that will become the 
cylindrical insert. This block must have its nodal coordinates coincide with those 
of the cylindrical hole. (TrueGrid® only requires this to be close. It has eight 
different ways of making the hole and insert equal exactly.) The nodes 
(4,9),(1,6),(4,11) are chosen to coincide exactly with the nodes 
(6,11),(21,26),(10,17) of the first block respectively. With reference to the 
topology of the insert, we are free to choose a new reference system as long as its 
core coordinates are consistent with its nodal coordinates and its positioning on 
the original block, blk1. For the x direction we choose (5,5,7,7) as required by the 
symmetry for the cylinder and with the cylinder origin at 6. For the y direction we 
choose (5,6,10) because the first two indices coincide with the topology of the 
hole and cylinder in the first block. Finally in the z direction we choose (-1,-1,1,1) 
to give the required symmetry for the cylinder. Note that TrueGrid® looks for key 
points in the insert to match the two blocks. When it does not find it, it defaults to 
using the nodal coordinates. That is why only the symmetry is defined here since 
the hole origin and depth to be filled are already defined by the x and y topology, 
respectively. 

endb1=EndBlock(blk1) 
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coord_2=Crdl(3D,(1 4 9 12),(1 6 16),( 1 4 11 14 )) 

coordt2=Crd(TP,(5 5 7 7) ,(5 6 10),(-1 -1 1 1)) 

blk2=Block(coord_2,coordt2) 

6. Now we define the topology holes and the surfaces to be tied. 

crdfp10=CrdfPermute(TP,(1, 2 ,0 ,3, 4),( : ),(1 ,2, 0 ,3 ,4)) 

cross7=Cross(blk2,crdfp10) 

crdfp11=CrdfPermute(TP,(2,3),( : ),(2,3)) 

cross8=Cross(blk2,crdfp11) 

crdf5=Crdf(3D,( 1, 1, 2),( 1, 2, 3)) 

crdf6=Crdf(3D,(2, 1, 1),( 3, 2, 1)) 

crdf7=Crdf(3D,( 4, 1, 2),( 4, 2, 3)) 

crdf8=Crdf(3D,( 2, 1, 4),( 3, 2, 4)) 

tie5=TieFace(crdf5,1) 

tie7=TieFace(crdf7,3) 

tie6=TieFace(crdf6,2) 

tie8=TieFace(crdf8,4) 

orig4=Pos(6,0,0) 

dir4=Dir(0,1,0) 

rad4=Rad(2) 

cyl4=Cyl(orig4,dir4,rad4) 

faces4=Crdfi(3D,(-1,-4),(2, 3),(-1,-4)) 

proj6=Project(faces4,cyl4) 

7. Finally we create the internal surface of the insert, namely another cylinder. Then 
end the part and merge the two blocks, concluding the project to insert a sub-
block. The diagram for the insert block is shown as Fig. 6, when we discuss the 
case study for the cylinder with insert. 

orig5=Pos(6,0,0) 

dir5=Dir(0,1,0) 

rad5=Rad(1) 

cyl5=Cyl(orig5,dir5,rad5) 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

973



faces5=Crdfi(3D,(-2,-3),( : ),(-2,-3)) 

proj7=Project(faces5,cyl5) 

DisplayWindow(10,20) 

Pause 

endb1=EndBlock(blk2) 

Merge 

Mesh 

Translation to TrueGrid® Script 

The objective of the project was to develop a Domain Language with simple concepts that may 
subsequently be used in an expert system. In the above we have used the concept of Constructive 
Solid Geometry as our guide in defining a constructive Topological model for the Projection 
method in TrueGrid®. In the process we have simplified our model to first define a mapping 
from the Unit Topological Space to a Block indexed cube in 3D space. This block indexed cube 
is in turn projected to an enclosing surface space defined by simple engineering solids. By this 
process we have restricted the full capabilities of the TrueGrid® program. However, we are of 
the opinion that the domain covers a significant spectrum of mesh generation problems that it 
may be of interest to most analysts wanting to generate hexa meshes. A python program ( 
TDL2TG.py ) was written to translate the TDL script to the TrueGrid® journal script. 

This program was first used to translate scripts used to generate the basic cases discussed for 
cylinders and spheres with simple topology and also with cross and cruciform topology 
respectively. These examples are listed in Appendix A. 

The surfaces or faces of each block are defined by six faces which in our case are projected to 
the geometric figure specified by the sf index. 

Each face is specified by sf defined by the indices 
sf = i-min j-min k-min; i-max j-max k-max; sd* # =Crdf in our notation 
Instead of specifying 6 faces, we introduce a short-hand indicial notation. We note that the back 
and front face is specified by -ve and  +ve prefixes respectively. However we will visit each axis 
direction in turn and allow two index values *_min *_max. A - in front of both indices mean a 
range with either a back or front face. A single negative index selects only that face. Meanwhile 
the negative signs are ignored in the other two axis directions. The values there define the range 
to be combined with the active axis direction being processed. 
We have the face indicial notation, 
 sfi = -//+ i-min -//+ i-max, -//+ j-min -//+ j-max, -//+ k-min -//+ k-max; sd *  # Crdfi our notation 
As an example of the sphere in SC2i.tg we have 
 block 1 6 16 21; 1 6 16 21; 1 6 16 21; -1 -1 1 1; -1 -1 1 1; -1 -1 1 1; 
 sfi = -1 -4; -1 -4; -1 -4; sd 1 
To deal with a hemisphere, we only specify 5 faces, and to have same size mesh along the 3 axis, 
 block 1 6 16 21; 1 6 11; 1 6 16 21; -1 -1 1 1; 0 1 1; -1 -1 1 1; 
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 sfi = -1 -4; 1 -3; -1 -4; sd 1 
The top face in the j direction is selected by the -3 in the j-direction. 
 
 
 

Case Studies 

1. Case Study: Hexa mesh for Cylindrical Pressure Vessel with Hemispherical Closure 

Fig. 4 a, Hexa Mesh for Pressure vessel 
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Fig. 4 b, Combined Topology for Cylinder and Sphere (half) 

2. Case Study: Insertion of a Cylindrical Nozzle into Pressure Vessel. 

Fig. 5 a, Topology for Cylindrical Part before Insert 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

976



Fig. 5 b , Hexa Mesh for Pressure Vessel With Nozzle Insert 
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Fig. 6a Topology for insert. Same as fig. 5A but with different axis orientation. 
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Fig. 6b Mesh for cylindrical insert. 

 

 

Conclusions 

A topological Domain Language has been developed to assist in the use of the TrueGrid® Hexa 
mesh generator. A Python program has been developed to convert scripts in the Domain 
Language to the journal format in TrueGrid®. The Language is useful in cases where the CAD 
model is created with Constructive Solid Modeling. 
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APPENDIX A:  EXAMPLE SCRIPTS 

SC1.tdl 

prog=FemFormat(mpact) 

coord_1=Crdr(3D,11,11,11) 

coordt=Crd(TP,(-1,1),(-1,1),(-1,1)) 

blk1=Block(coord_1,coordt) 

orig=Pos(0,0,0) 

dir=Dir(1,0,0) 

cyl=Cyl(orig,dir) 

faces=Crdf(3D,(1,2),(-1,-2),(-1,-2)) 

proj=Project(faces,cyl) 

Pause 

DisplayWindow(10,20) 

Pause 

endb1=EndBlock(blk1) 

Merge 

Mesh 

SC1.tg, output from TDL2TG.py, see Fig. 1 

mpact 

block 1 11; 1 11; 1 11;-1 1 -1 1 -1 1 

sd 1 cy 0 0 0 1 0 0 3 

sfi 1 2; -1 -2; -1 -2; sd 1 

interrupt 

ry 20 rx 10 
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 center 

 disp 

 interrupt 

endpart 

merge 

write  

 

spcy.tdl for Case Study of Cylindrical Pressure Vessel with Hemispherical Closure 

prog=FemFormat(mpact) 

coord_1=Crdl(3D,(1 6 16 21),(1 6 16 21),(1 6 16 21)) 

coordt=Crd(TP,(-1 -1 1 1),(-2 0 1 1),(-1 -1 1 1)) 

blk1=Block(coord_1,coordt) 

crdfp5=CrdfPermute(TP,(1, 2 ,0 ,3, 4),(3,4),( : )) 

crdfp6=CrdfPermute(TP,(1, 2 ,0 ,3, 4),( : ),(1 ,2, 0 ,3 ,4)) 

crdfp7=CrdfPermute(TP,( : ),(3,4),(1 ,2, 0 ,3 ,4)) 

cruci=Cruciform(blk1,crdfp5,crdfp6,crdfp7) 

crdfp8=CrdfPermute(TP,(2,3),(1,3),(2,3)) 

cross5=Cross(blk1,crdfp8) 

orig5=Pos(0,0,0) 

rad5=Rad(3) 

sph1=Sph(orig5,rad5) 

faces5=Crdfi(3D,(-1,-4),(2,-4),(-1,-4)) 

proj1=Project(faces5,sph1) 

orig6=Pos(0,0,0) 

rad6=Rad(2) 

sph2=Sph(orig6,rad6) 

faces6=Crdfi(3D,(-2,-3),(2,-3),(-2,-3)) 

proj2=Project(faces6,sph2) 

orig=Pos(0,0,0) 

dir=Dir(0,1,0) 

rad=Rad(3) 
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cyl1=Cyl(orig,dir,rad) 

faces=Crdfi(3D,(-1,-4),(1,2),(-1,-4)) 

proj=Project(faces,cyl1) 

orig1=Pos(0,0,0) 

dir1=Dir(0,1,0) 

rad1=Rad(2) 

cyl2=Cyl(orig1,dir1,rad1) 

faces1=Crdfi(3D,(-2,-3),(1,2),(-2,-3)) 

proj3=Project(faces1,cyl2) 

Pause 

DisplayWindow(10,20) 

Pause 

endb1=EndBlock(blk1) 

Merge 

Mesh 

spcy_td.tg output for Case Study of Pressure Vessel, see Fig. 4 

mpact 

block 1 6 16 21 ; 1 6 16 21 ; 1 6 16 21 ; -1 -1 1 1 ;-2 0 1 1 ;-1 -1 1 1 ; 

dei 1 2 0 3 4 ;3 4 ; ; 

dei 1 2 0 3 4 ; ;1 2 0 3 4 ; 

dei  ;3 4 ;1 2 0 3 4 ; 

dei 2 3 ;1 3 ;2 3 ; 

sd 1 sp 0 0 0 3  

sfi -1 -4; 2 -4; -1 -4;  sd 1 

sd 2 sp 0 0 0 2  

sfi -2 -3; 2 -3; -2 -3;  sd 2 

sd 3 cy 0 0 0 0 1 0 3  

sfi -1 -4; 1 2; -1 -4;  sd 3 

sd 4 cy 0 0 0 0 1 0 2  

sfi -2 -3; 1 2; -2 -3;  sd 4 

interrupt 
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ry 20 rx 10 

center 

disp 

interrupt 

endpart 

merge 

write 

 

spcys2.tdl for Case Study with insert. 

prog=FemFormat(mpact) 

coord_1=Crdl(3D,(1 6 11 16),(1 6 11 16),(1 6 11 16)) 

coordt=Crd(TP,(0 12 18 18),(-6 -6 6 6),(-6 -6 6 6)) 

blk1=Block(coord_1,coordt) 

sub1=SubPos(i,(1,5)) 

crdfs=CrdfsPerm(sub1) 

sub2=SubPos(j,(2,10)) 

sub3=SubPos(k,(2,10)) 

sub4=SubPos(i,(1,5)) 

crdfs1=CrdfsPerm(sub2,sub3,sub4) 

crdfp5=CrdfPermute(TP,(3 ,4),(1, 2 ,0 ,3, 4),(2,3)) 

crdfp6=CrdfPermute(TP,( : ),(1, 2 ,0 ,3, 4),(1 ,2, 0 ,3 ,4)) 

crdfp7=CrdfPermute(TP,( 3,4 ),(2,3),(1 ,2, 0 ,3 ,4)) 

cruci=Cruciform(blk1,crdfp6,crdfp5,crdfp7) 

crdfp8=CrdfPermute(TP,(1,3),(2,3),(2,3)) 

cross5=Cross(blk1,crdfp8) 

orig9=Pos(12,0,0) 

rad9=Rad(5) 

sph1=Sph(orig9,rad9) 

faces8=Crdfi(3D,(2,-3),(-2,-3),(-2,-3)) 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

983



proj1=Project(faces8,sph1) 

orig6=Pos(12,0,0) 

rad6=Rad(6) 

sph2=Sph(orig6,rad6) 

faces7=Crdfi(3D,(2,-4),(-1,-4),(-1,-4)) 

proj2=Project(faces7,sph2) 

orig=Pos(0,0,0) 

dir=Dir(1,0,0) 

rad=Rad(5) 

cyl1=Cyl(orig,dir,rad) 

faces1=Crdfi(3D,(1,2),(-2,-3),(-2,-3)) 

proj=Project(faces1,cyl1) 

orig1=Pos(0,0,0) 

dir1=Dir(1,0,0) 

rad1=Rad(6) 

cyl2=Cyl(orig1,dir1,rad1) 

faces=Crdfi(3D,(1,2),(-1,-4),(-1,-4)) 

proj3=Project(faces,cyl2) 

sub5=SubPos(k,(2,4)) 

crdfh1=CrdfhPerm(sub5) 

sub6=SubPos(k,(3,7)) 

crdfh2=CrdfhPerm(sub6) 

sub7=SubPos(i,(1,5)) 

crdfh3=CrdfhPerm(sub7) 

sub8=SubPos(i,(2,5)) 

crdfh4=CrdfhPerm(sub8) 

crdfp9=CrdfPermute(TP,(2,3),(3,4),(3,4)) 

cross6=Cross(blk1,crdfp9) 

orig3=Pos(6,0,0) 
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dir3=Dir(0,1,0) 

rad3=Rad(2) 

cyl3=Cyl(orig3,dir3,rad3) 

faces3=Crdfi(3D,(-2,-3)(3,4),(-3,-4)) 

proj5=Project(faces3,cyl3) 

crdf1=Crdf(3D,(2, 3, 3),( 2, 4, 4 )) 

crdf2=Crdf(3D,(3, 3, 3),( 3, 4, 4 )) 

crdf3=Crdf(3D,(2, 3,3),( 3, 4, 3 )) 

crdf4=Crdf(3D,(2, 3, 4),( 3, 4, 4 )) 

tie1=TieFace(crdf1,1) 

tie2=TieFace(crdf3,2) 

tie3=TieFace(crdf2,3) 

tie4=TieFace(crdf4,4) 

Pause 

endb1=EndBlock(blk1) 

coord_2=Crdl(3D,(1 4 9 12),(1 6 16),( 1 4 11 14 )) 

coordt2=Crd(TP,(5 5 7 7) ,(5 6 10),(-1 -1 1 1)) 

blk2=Block(coord_2,coordt2) 

crdfp10=CrdfPermute(TP,(1, 2 ,0 ,3, 4),( : ),(1 ,2, 0 ,3 ,4)) 

cross7=Cross(blk2,crdfp10) 

crdfp11=CrdfPermute(TP,(2,3),( : ),(2,3)) 

cross8=Cross(blk2,crdfp11) 

crdf5=Crdf(3D,( 1, 1, 2),( 1, 2, 3)) 

crdf6=Crdf(3D,(2, 1, 1),( 3, 2, 1)) 

crdf7=Crdf(3D,( 4, 1, 2),( 4, 2, 3)) 

crdf8=Crdf(3D,( 2, 1, 4),( 3, 2, 4)) 

tie5=TieFace(crdf5,1) 

tie7=TieFace(crdf7,3) 

tie6=TieFace(crdf6,2) 
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tie8=TieFace(crdf8,4) 

orig4=Pos(6,0,0) 

dir4=Dir(0,1,0) 

rad4=Rad(2) 

cyl4=Cyl(orig4,dir4,rad4) 

faces4=Crdfi(3D,(-1,-4),(2, 3),(-1,-4)) 

proj6=Project(faces4,cyl4) 

orig5=Pos(6,0,0) 

dir5=Dir(0,1,0) 

rad5=Rad(1) 

cyl5=Cyl(orig5,dir5,rad5) 

faces5=Crdfi(3D,(-2,-3),( : ),(-2,-3)) 

proj7=Project(faces5,cyl5) 

DisplayWindow(10,20) 

Pause 

endb1=EndBlock(blk2) 

Merge 

Mesh 

spcys2_td.tg output from Case Study, see figs. 5-6. 

mpact 

block 1 6 11 16 ; 1 6 11 16 ; 1 6 11 16 ; 0 12 18 18 ;-6 -6 6 6 ;-6 -6 6 6 ; 

lmseq i  1 5   

lmseq j  2 10  lmseq k  2 10  lmseq i  1 5   

dei  ;1 2 0 3 4 ;1 2 0 3 4 ; 

dei 3 4 ;1 2 0 3 4 ;2 3 ; 

dei 3 4 ;2 3 ;1 2 0 3 4 ; 

dei 1 3 ;2 3 ;2 3 ; 

sd 1 sp 12 0 0 5  

sfi 2 -3; -2 -3; -2 -3;  sd 1 
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sd 2 sp 12 0 0 6  

sfi 2 -4; -1 -4; -1 -4;  sd 2 

sd 3 cy 0 0 0 1 0 0 5  

sfi 1 2; -2 -3; -2 -3;  sd 3 

sd 4 cy 0 0 0 1 0 0 6  

sfi 1 2; -1 -4; -1 -4;  sd 4 

insprt 1  6 2 4   

insprt 1  6 3 7   

insprt 1  2 1 5   

insprt 1  2 2 5   

dei 2 3 ;3 4 ;3 4 ; 

sd 5 cy 6 0 0 0 1 0 2  

sfi -2 -3; 3 4; -3 -4;  sd 5 

bb 2 3 3  2 4 4  1; 

bb 2 3 3  3 4 3  2; 

bb 3 3 3  3 4 4  3; 

bb 2 3 4  3 4 4  4; 

interrupt 

endpart 

block 1 4 9 12 ; 1 6 16 ; 1 4 11 14 ; 5 5 7 7 ;5 6 10 ;-1 -1 1 1 ; 

dei 1 2 0 3 4 ; ;1 2 0 3 4 ; 

dei 2 3 ; ;2 3 ; 

bb 1 1 2  1 2 3  1; 

bb 4 1 2  4 2 3  3; 

bb 2 1 1  3 2 1  2; 

bb 2 1 4  3 2 4  4; 

sd 6 cy 6 0 0 0 1 0 2  

sfi -1 -4; 2 3; -1 -4;  sd 6 

sd 7 cy 6 0 0 0 1 0 1  
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sfi -2 -3; ; -2 -3;  sd 7 

ry 20 rx 10 

center 

disp 

interrupt 

endpart 

merge 

write 
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Abstract 
The installation of torpedo anchors at high impact velocities imposes high strain rates in the 
surrounding soil.  The high strain rates enhance the mobilised undrained shear strength 
compared to that measured statically by laboratory or in situ tests.  To illustrate the 
implications of such high strain rates for the behaviour of dynamic anchors, large deformation 
Finite Element (FE) analyses were carried out.  The numerical FE scheme is based on a 
dynamic coupled effective stress framework with the Modified Cam Clay constitutive model.  
The soil constitutive model is adapted to incorporate the dependence of clay behaviour on 
strain rata.  In order to assess the validity of the numerical scheme, some laboratory tests on 
model free falling penetrometers have been simulated.  The results indicate that overall the 
agreement between computations and measurements is good.  It is seen that the generation of 
excess pore pressure around dynamically installed anchors and the frictional resistance at the 
soil-anchor interface are significantly affected by the strain rate.  Moreover, increased strain 
rate dependency of the soil leads to a marked reduction in the embedment depth, reflecting a 
noticeable increase in the soil penetration resistance. 
  
Keywords: Torpedo anchors, Strain rate dependency, Dynamic coupled analysis, Large 
deformations. 

Introduction 

Deepwater oil and gas reserves have become an important component of global energy 
supply, and the recovery of hydrocarbons from these regions has resulted in a broad range of 
relatively new engineering practices.  The scale of the foundation and anchoring elements, 
along with their novel construction and installation techniques, are key aspects of offshore 
geotechnical engineering.  Depending on the depth of the seabed, offshore structures may be 
divided into two main types: fixed and floating structures.  All floating systems used in deep 
waters require moorings and ultimately some form of anchor on the seabed, which typically 
include surface (gravity) and embedded anchors.  Dynamically installed anchors (i.e., torpedo 
anchors and deep penetrating anchors) are promising embedment systems used in ultra-deep 
waters, mainly due to their installation cost advantage compared to other systems such as drag 
embedment anchors and suction embedded plate anchors.  A torpedo anchor is embedded 
using the kinetic energy attained by gravity free fall through the water column, so that its 
installation cost is largely independent of water depth.  This anchoring system also has a 
relatively lower fabrication cost which often makes it more attractive than suction caissons. 
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Despite the economic advantages afforded by dynamically installed anchors, there remain 
significant uncertainties in the prediction of the embedment depth and the anchor holding 
capacity. The prediction of the embedment depth is complicated by the very high strain rate 
adjacent to the soil-anchor interface (resulting from high penetration velocities) and 
hydrodynamic aspects which can involve inertial and viscous drag forces. 
   
It is well known that the mechanical behaviour of clayey soil is affected by the rate of induced 
strains.  Typically, the undrained strength increases with increasing shear strain rate (e.g., [1]-
[5]).  Therefore, for high velocity penetrations, the soil resistance under fully undrained 
conditions might be expected to vary as a function of the strain rate.  Numerical studies have 
actually shown that the effect of the strain rate on the shear strength of the soil should not 
necessarily be ignored in problems involving the fast penetration of objects into soil layers 
(e.g., [6][7]).  However, there is a lack of knowledge on how the excess pore pressures and 
frictional forces at the anchor-soil interface might be affected by strain rate effects. 
   
Sabetamal et al. [9][10] presented rigorous coupled analyses for a few free falling torpedo 
anchors.  These initial studies reported successful simulations of the installation process and 
reconsolidation stage of torpedo anchors, and revealed the pattern in which excess pore 
pressures are generated and dissipated.  In this paper, we extend our earlier study to capture 
the effects of strain rate on the behaviour of torpedo anchors.  Accordingly, some numerical 
findings are reported on the performance of this anchoring system during the installation 
phase, taking both the strain rate and inertial drag forces into account. 

Numerical Scheme 

Problems in offshore geomechanics are typically characterized by the existence of 
hydrodynamic and cyclic loadings, large deformations, extreme soil-structure interactions and 
soil disturbance typically due to installation effects.  The installation of offshore structures, 
such as a dynamically embedded anchor, is usually an undrained process during which excess 
pore pressures are generated.  The time scale of consolidation is also important for predicting 
the holding capacity of these anchors under different loading events.  A fully coupled analysis 
is then required to incorporate pore-fluid pressure development and its subsequent dissipation. 

Governing equations 

A continuum approach based on the theory of mixtures [11] and the concept of volume 
fractions [12] is employed to derive the governing equations.  Sabetamal [13] provided a 
detailed account of the governing differential equations and the corresponding weak 
statements that form the basis of our finite element (FE) modelling.  A mixed formulation 
were selected to describe both incompressible and compressible fluids, in which the resulting 
formulation predicts all field variables, including the solid matrix displacements U, pore-fluid 
pressure P, and Darcy velocity of the pore fluid Vr.  The resulting equation system governing 
the behaviour of the soil-water mixture may be written in matrix form as 

 

 
0 0 0 0

0 0 0 0 0
0 0 0 0 0

s
ss sr s sp

p
ps pr pp rp

r
rs rr r rr r pp

σ           
           + − + =           
                      

M M U C U K K U F
P C C C P K P F

M M V C V K 0 F

 
 


            (1) 
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where ssM , rrM , rsM = T
srM  and αβC  are the solid mass, fluid mass, coupled fluid mass and 

damping matrices, respectively.  σK and ppK are, respectively, the stiffness and 

compressibility matrices while αβK represent coupling matrices and sF , pF and rF are the 
vectors of external nodal forces. 

Large deformation and mesh refinement 

To consider large deformation phenomena and avoid possible mesh distortions, the traditional 
numerical methods established within a Lagrangian framework are typically replaced by those 
based on the framework of the Arbitrary Lagrangian Eulerian (ALE) method.  ALE 
approaches for geotechnical applications can be divided into two groups: mesh based 
methods [14]-[17] and particle based schemes such as the material point method [18][19]. The 
mesh based ALE schemes used in geotechnical engineering may be divided into three 
categories: the Remeshing and Interpolation Technique involving Small Strains (RITSS) [15], 
the ALE scheme [20], and the Coupled Eulerian-Lagrangian (CEL) approach.  Wang et 
al. [21] compared the performances of the three approaches for some benchmark problems 
covering static, consolidation and dynamic geotechnical applications.  It was concluded that 
the RITTS and ALE schemes predict close results whereas, for dynamic problems, the results 
obtained from the CEL approach differ from those predicted with the RITTS and ALE 
methods.  The ALE scheme [17] is incorporated in this study to handle large deformations.  In 
this approach, some special care should be taken for the solution of the advection equations, 
where transport of the material and the current solution state through the mesh is considered 
along the streamlines of the advective flow, provided by the convective velocity.  In an ALE 
framework, this corresponds to a relocation of the FE nodes by the mesh motion scheme, 
while the material is held fixed in space.  Most advection schemes, especially the classical 
first-order methods, show highly numerical diffusive properties.  This appears to be crucial 
for the cases that hardening/softening is involved in the solution by some constitutive models 
such as the Modified Cam Clay (MCC) model.  The transport step has to be then split into 
multiple advection steps, based on intermediate mesh configurations, and an advection 
scheme with only a small amount of diffusion is necessary to retain the special shape of the 
solution variables properly [22].  

Interface modelling 

The so called one pass node-to-segment (NTS) discretisation method is commonly used to 
analyse large sliding and large deformation problems of contact mechanics [23][24].  
Sabetamal et al. [10] applied the NTS scheme to analyse some coupled dynamic problems and 
observed that smooth discretisation of the contact interface between soil and structure is a 
crucial factor to avoid severe oscillations in the predicted dynamic forces and pore fluid 
pressures.  It is also noted that a consistent coupling of the NTS contact with elements of a 
higher order is not possible because contact constraints are only fulfilled locally at a number 
of finite connection points.  In contrast, the mortar segment-to-segment approach [24][25] 
considers the enforcement of contact constraints in a weak integral form so that high-order 
approximation functions can be used to interpolate different field variables.  The use of high 
order elements also provides the possibility to explicitly incorporate smooth continuous 
geometries in the FE model, thus avoiding the numerical oscillations encountered in NTS 
approach.  Sabetamal et al. [26] developed and applied a frictionless mortar scheme to model 
some dynamic problems of two phase saturated problems.  In this paper, we use an extended 
form of the scheme which can also model frictional interfaces embedded within two phase 
saturated porous media [13]. 
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Strain rate effect 

The dependence of undrained shear strength of soil on applied rate of strain has long been 
recognized [27] and studied extensively both in triaxial compression tests (e.g., [28][3]) and 
vane shear tests (e.g., [29][4]).  The dependence of shear strength us  on strain rate γ  maybe 
characterised in terms of a semi-logarithmic relation [1] 
 

                                                  1 log
refu u

ref

s s γη
γ

  
= +      




                                                      (2) 

 
where 

refus is the reference undrained shear strength measured at the reference strain rate  

andη denotes the rate of increase per decade with a suggested range of 0.05 to 0.20.  In this 
study, the nonlinear behaviour of the solid constituent in the two phase saturated mixture is 
captured by the MCC soil model.  Typical undrained strain rates in standard laboratory tests 
measure around 0.01/h (3×10-6 s-1).  Assuming this rate as the reference strain rate, the initial 
undrained shear strength predicted by the constitutive model parameters will correspond 
to

refus .  Fig. 1 depicts the locus of normal consolidation line (NCL) and overconsolidation line 

in v-ln(p′) space for an overconsolidated soil (vi, ip′ ), where vi denotes specific volume, p′ is 
mean effective stress, N is the value of specific volume at unit pressure, λ is the slope of the 
NCL, κ represents the slope of unloading-reloading line and q is deivatoric stress. 
 

 
        

Figure 1.  (a) Locus of NCL line; and (b) q-p’ plot 
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It should be noted that the critical state friction angle is expected to be unaffected by the strain 
rate, as suggested by numerous experimental studies (e.g., [30]), whereas the normal 
consolidation line (NCL) of clays in the v-ln (pʹ) space moves upward with an increase in 
strain rate (NCL*).  This shift of the NCL with increasing strain rate has been observed by 
many researchers (e.g., [31]-[33]).  For undrained conditions, no volume change is allowed so 
that the specific volume vi should be constant and must lie on the same unloading-reloading 
line.  Therefore, the updated preconsolidation pressure *

cp′  due to strain rate increase must be 
at the intersection of NCL* and the overconsolidation line.  Consequently, the upward shift of 
the NCL as a function of strain rate corresponds to an increase in the preconsolidation 
pressure [34] or overconsolidation ratio (OCR) [35], and implies that the soil becomes more 
dilatant and exhibits larger stiffness and peak undrained shear strength, as observed in reality.  
The increase in OCR adds to the increase in stiffness through the constitutive equations for the 
plastic modulus and elastic moduli.   
 
To relate the increase in OCR and the corresponding preconsolidation pressure to the strain 
rate increase, Eq. (2) is utilised in this study, along with the theoretical formula that predicts 
the undrained shear strength based on the MCC model parameters [36].  Consequently, rate-
independent plasticity theory is employed to simulate the rate dependent behaviour, avoiding 
the need to adopt numerically expensive viscoplastic stress-strain integration schemes.  
Therefore, the adopted model assumes that soil elements at the same initial stress conditions 
will show different responses if subjected to different strain rates.  This is reflected by OCR 
changes and the corresponding enlargements of the yield surface. 

Inertial drag force 

It seems rational to assume that an inertial drag force exists during penetration of objects into 
very soft viscous clay, analogous to the hydrodynamic drag experienced by an object passing 
through water.  To show the effect of the drag force on the velocity profile, an inertial drag 
force is incorporated in the analysis using the following relation 
 

                                                     21
2d d s pF C A Vρ=                                                            (3) 

 
where Cd is the drag coefficient, ρs is the density of the soil, Ap is the projected frontal area of 
the anchor, and V is the current anchor velocity.   An approximation of the average drag 
coefficient equal to 0.7 was suggested by True [37] for a variety of penetrometer geometries 
and velocities.  However, hydrodynamic studies have indicated considerably smaller drag 
coefficients.  Numerical analysis presented by Richardson [38] showed that the drag 
coefficient Cd decreases with increasing aspect ratio of the penetrometer and ultimately 
approaches a constant value, which for finless torpedo anchors decreases from 0.35 to a 
constant value of 0.23 for / 4L D ≥ , where L and D denote anchor length and diameter, 
respectively. 

Numerical Examples 

The numerical framework described previously has been implemented into an in-house FE 
code, SNAC.  This code is employed here to carry out some coupled simulation of dynamic 
anchors.  First, simulation of a model penetrometer is conducted and the analysis results are 
compared with the corresponding centrifuge data.  Then, a series of analyses are performed to 
study the effect of strain rate on the behaviour of torpedo anchors. 
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Validation against centrifuge test data 

Chow et al. [39] reported data from a centrifuge test carried out on a model penetrometer free 
falling into kaolin clay.  The penetrometer had a 60° cone tip and a prototype shaft diameter 
and length of 1.0 m and 12 m, respectively, and a mass of 28130 kg.  The penetrometer 
achieved impact velocities ranging between 4.7 and 15.6 m/s with corresponding final 
embedment depths in the range 10.2-16.7 m at prototype scale.  The undrained shear strength 
of the soil su = 1.13z kPa was deduced from T-bar penetration tests where z denotes the soil 
depth in metres.  The soil properties are listed in Table 1. 
 

Table 1. Soil parameters 
Parameter Value 
Friction angle φ′ = 23° 
Slope of normally consolidated line in e-ln(p') space λ = 0.205 
Slope of unloading-reloading line in e-ln(p') space κ = 0.044 
Initial void ratio e0 = 2.14 
Over consolidation ratio OCR = 1 
Poisson’s ratio υ ʹ= 0.3 
Saturated bulk unit weight γsat = 17 kN/m3 

Unit weight of water γw = 10 kN/m3 
Permeability of soil k = 5×10-9 m/s 
Note: p′ is the mean effective stress  

 
Fig. 2 depicts the axisymmetric FE mesh and the corresponding boundary conditions adopted 
for the numerical simulation.  The mesh comprises 3,416 triangular elements and 7,028 
nodes.   

                                                      
                                      (a)                                                                             (b) 

Figure 2. (a) FE model mesh; (b) anchor geometry  
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The radial thickness of the soil elements underneath the penetrometer is equal to one-third of 
its shaft radius.  Discretisation of the geometry of the penetrometer with quadratic mortar 
elements facilitates curved surfaces at the cone and top of the anchor (Fig. 2b).  Two impact 
velocities of 4.7 m/s and 6.1m/s were considered in the numerical simulations.  The strain rate 
parameter, the drag coefficient and the friction coefficient at the interface were assumed to 
be η = 0.2, Cd = 0.23 and µ = 0.25, respectively. 
 
Fig. 3 shows the penetration profile predicted by the numerical analyses and the ultimate 
penetration depths as measured in the centrifuge test.  Good agreement of the ultimate 
penetration can be observed for the two analyses.   The computed anchor tip embedment 
depths for the impact velocities 4.7m/s and 6.1m/s are, respectively, 10.45m and 12.23m 
which are only 2.1% and 3% greater than the measured values, providing some experimental 
validation of the proposed numerical approach and its predictions. 
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Figure 3. Comparison between numerical prediction and centrifuge test data 

Strain rate effect on the behaviour of torpedo anchor 

A rigid finless torpedo anchor falling freely into a normally consolidated kaolin clay is 
analysed in this section.  The effect of strain rate on the behaviour of torpedo anchor is then 
studied in terms of penetration depth, pore pressure generation and frictional resistance.  The 
boundary conditions and geometry of the mesh and torpedo anchor are similar to those 
adopted in the previous section (Fig. 2), except that the buoyant weight of the anchor is now 
150 kN.  In order to provide a rather detailed overview of anchor behaviour, two sets of 
analyses are presented.  The first set of simulations assumes a frictionless interface between 
the soil and anchor so as to study the effects of strain rate only.  The second set of analyses 
incorporates a frictional interface and reveals some practical and important aspects of 
dynamic anchor behaviour. 

Frictionless interface 

Fig. 4 depicts the change in the equivalent (apparent) OCR value at a penetration depth of 5D 
for rate parameters of η = 0.15, and 0.20.  The apparent OCR value generally increases during 
penetration and for the rate parameter of η = 0.15 it reaches a maximum value of 2.7 at some 
Gauss points, noting that the initial value of OCR was 1.0 (Table. 1).  The soil elements 
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within a zone around the cone of the advancing torpedo undergo very high strain rates so that 
the equivalent value of OCR is noticeably increased for that zone.  During anchor penetration 
the shear strain rate varies throughout the soil body in which for soil elements displaced from 
the tip zone to the anchor shaft the strain rate is alleviated, resulting in decreased magnitudes 
of the apparent OCR along the shaft.  However, the final value is still larger than the initial 
OCR.  Increasing the strain rate parameter to 0.20, increases the maximum value of apparent 
OCR to 4.1 (Fig. 4b). 
 

                                   
                                            (a)                                                  (b) 

Figure 4. Apparent OCR value evaluated based on the strain rate within the soil body at 
a penetration depth of 5.0D: (a) η = 0.15; (b) η = 0.20 

The soil resistance profile is depicted in Fig. 5 for two values of the rate parameter.  It is 
observed that the total penetration resistance increases for the rate dependent case and the 
embedment depth is decreased, accordingly.  The soil resistance at the end of installation is 
about 65% larger for the rate dependent case (η = 0.2) compared with the rate-independent 
one at the same penetration depth. 
 
The embedment depth for the rate independent case is 13.9D whereas it decreases to 8.7D 
when the rate parameters is 0.20.  Therefore, it can be seen that the increases in soil resistance 
due to strain rate effect is a key factor in the analysis of dynamically penetrating anchors.  
Although the most of experimental results on free falling anchors have identified the strain 
rate effect on the ultimate embedment depth, they have not described how strain rate may 
influence the generation of excess pore pressures and sleeve frictional force.  These are 
explained as follows. 
 
      

max: 2.7 max: 4.1 
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Figure 5. Total dynamic soil resistance profile for different values of rate parameter (η ) 

 
Fig. 6 depicts two excess pore pressure contour plots with rate parameters of η = 0.0 and η = 
0.20.  It is seen that, for the rate independent normally consolidated clay (Fig. 6a), a 
compressive excess pore pressure bulb is typically formed around the anchor tip and shaft.  
This bulb extends a distance of approximately 4D in the radial direction and about 1D in the 
vertical direction, as measured from the anchor tip.  The maximum compressive values are 
developed at the anchor tip (~210 kPa) and extend to its shoulder (~160 kPa).  Moreover, a 
tensile region (~-40kPa) is located at a distance of about 2D vertically underneath the anchor 
tip.  This is due to development of plastic expansion (softening) region beneath the pile tip 
after the compression zone. 
 
A similar plot for the rate dependent case is presented in Fig. 6b.  It is observed that a region 
of suction has been locally created around the cone and also within a thin layer of soil along 
and adjacent to the anchor shaft.  The creation of this suction zone (due to elasto-plastic 
expansion of soil) is merely a consequence of the high strain rate and the corresponding 
increase of the apparent OCR value.  As observed in Fig. 4, soil elements around the conical 
section experience the highest strain rates and correspondingly much larger values of suction 
pore pressures (~ -600 kPa) are detected (Fig. 6b).  This situation of high strain rates is also 
combined with the vertical stress relief that happens near the cone shoulder and leads to a 
more pronounced dilative behaviour of the soil.  The normal stress relief may occur at a 
specific location depending on the geometry of anchor tip implying that the geometry of 
anchor tip may considerably influence the generation of excess pore pressures.  It is also 
emphasised that the developed suction pore pressures can cause desaturation of the pore 
pressure measuring systems in experimental tests, and that reliable pore pressure data may not 
be consistently obtained.  Therefore, the finding of a thin zone of suction around the anchor 
may have important consequences for pore pressure measurements made and interpreted 
using a conventional cone penetrometer (CPT).  
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                                   (a)                                                                     (b) 

Figure 6. Excess pore pressure (kPa) contour plots: (a) η = 0 and (b) η = 0.2 
 

Frictional interface 

It might reasonably be deduced that the tangential frictional force developed at the anchor-soil 
interface would not be significant because of the undrained behaviour of the soil (i.e., due to 
the expected lower effective stresses at the interface).  However, the numerical results from 
the previous section revealed that a thin layer of tensile excess pore pressure is actually 
created along almost the entire length of the torpedo shaft during the installation process.  
This will increase the effective stresses at the soil-anchor interface and lead to higher 
frictional forces.   
 
Fig. 7 depicts the soil resistance profile for a rate parameter η = 0.2 with friction coefficients 
µ = 0 and 0.2.  The embedment depth decreases when the friction coefficient is 0.2, as 
expected.  For the frictionless case, the penetration depth is around 9.4D, while it decreases to 
~ 7.2D for the frictional case.  It is also seen that the frictional soil resistance starts to diverge 
from the frictionless case at the embedment depth of ~2.7D which is due to the separation of 
soil and anchor at shallower depths. 
 
Therefore, it is observed that frictional resistance is generated during the fast penetration of 
dynamic anchors and its effects cannot be ignored. 
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Conclusions 

Numerical analyses have been conducted to evaluate the effect of strain rate on the behaviour 
of dynamically penetrating anchors.  The implications of the strain rate effects on the 
generation of excess pore pressure and the frictional resistance were specifically studied.  It 
was shown that when the effect of strain rate is taken into account, a zone of suction is 
typically created around the anchor tip and also within a thin layer of soil along and adjacent 
to the anchor shaft. 
 
Despite the undrained conditions in the soil, frictional resistance is generated during the fast 
penetration of dynamically installed anchors.  This is largely because of the generation of 
suction pore pressures and the corresponding increase of the effective stress at the interface 
between the soil and the anchor.  Therefore, it can now be concluded that the strain-rate 
effects not only increase the bearing resistance, but considerably increase the frictional 
resistance.     
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Figure 7. Total dynamic soil resistance profile: µ = 0 & 0.2                                  
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Abstract 
In structural dynamics, direct explicit and implicit integration algorithms are commonly used to 
solve the temporally discretized differential equations of motion for linear and nonlinear structures. 
The stability of different integration algorithms for linear elastic structures has been extensively 
studied for several decades. However, investigations of the stability applied to nonlinear structures 
are relatively limited and rather challenging. Recently, the authors proposed two systematic 
approaches using Lyapunov stability theory to investigate the stability property of direct integration 
algorithms of nonlinear dynamical systems. The first approach is a numerical one that transforms 
the stability analysis to a problem of convex optimization. The second approach investigates the 
Lyapunov stability of explicit algorithms considering the strictly positive real lemma. This paper 
reviews and compares these two Lyapunov-based approaches in terms of their merits and 
limitations. 

Keywords: Convex optimization, Direct integration algorithm, Lyapunov stability, Nonlinear, 
Strictly positive real lemma, Structural dynamics. 

Introduction 

In structural dynamics, direct integration algorithms are commonly used to solve the differential 
equations of motion after they are temporally discretized to estimate dynamic responses of 
structures, e.g., seismic responses of bridges [1]. Integration algorithms are categorized into either 
implicit or explicit. An integration algorithm is explicit when the responses of the next time step 
depend on the responses of previous and current time steps only. Otherwise, it is implicit. 
Numerous implicit and explicit direct integration methods have been developed, including the 
Newmark family of algorithms [2], the TRBDF2 algorithm [3], and the Operator-Splitting (OS) 
algorithms [4]. Liang et al. [5,6] investigated the suitability of the OS algorithms for efficient 
nonlinear seismic response of multi-degree of freedom (MDOF) reinforced concrete highway 
bridge systems and promising results in terms of accuracy and numerical stability were obtained. 
The stability of different integration algorithms for linear elastic structures has been studied 
extensively for several decades, e.g., [7]. Studies related to the stability properties of these 
integration algorithms applied to nonlinear dynamic analysis are relatively limited and, unlike linear 
ones, are rather complicated and challenging. This is attributed to specific properties of the 
nonlinear systems. For example, initial conditions affect the stability of nonlinear systems and the 
principle of superposition does not hold. 
 
Lyapunov stability theory [8,9], developed by the Russian mathematician Aleksandr Lyapunov in 
[10], is the most complete framework of stability analysis for dynamical systems. It is based on 
constructing a function of the system state coordinates that serves as a generalized norm of the 
solution of the dynamical system. The most important property of Lyapunov stability theory is the 
fact that conclusions about the stability behavior of the dynamical system can be obtained without 
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actually computing the system solution trajectories. As such, Lyapunov stability theory has become 
one of the most fundamental and standard tools of dynamical systems and control theory. 
Generally speaking, constructing the above-mentioned energy function for the nonlinear system is 
not readily available. To address this difficulty, the authors proposed two approaches. In the first, a 
numerical approach is proposed to transform the problem of seeking a Lyapunov function to a 
convex optimization problem [11,12], which can solve the problem in a simple and clear manner. 
Convex optimization minimizes convex functions over convex sets, in which a wide range of 
problems can be formulated in this way. In this optimization, any local minimum must be a global 
one, which is an important property leading to reliable and efficient solutions using, e.g., interior-
point methods, which are suitable for computer-aided design or analysis tools [13]. The second 
approach proposed by the authors is based on formulating a generic explicit integration algorithm 
into a nonlinear system governed by a nonlinear function of the basic forces. This enables 
investigating the Lyapunov stability of explicit algorithms by means of the strictly positive real 
lemma [11,14]. The study for nonlinear single degree of freedom (SDOF) systems in [14] was 
extended to MDOF ones in [15]. This approach transforms the stability analysis of the formulated 
nonlinear system to investigating the strictly positive realness of its corresponding transfer function 
matrix. This is further equivalent to a problem of convex optimization that can be solved 
numerically. 
 
This paper reviews and compares these previously discussed two Lyapunov-based approaches in 
terms of their merits and limitations. The first numerical approach is shown to be generally 
applicable to implicit and explicit direct integration algorithms for various nonlinear force-
deformation relationships. Moreover, this approach can potentially be extended to nonlinear MDOF 
systems but may involve extensive computations. The second approach is applicable to explicit 
algorithms without adopting any approximation and is computationally efficient even for MDOF 
systems. 

Integration Algorithm 

The discretized equations of motion of a MDOF system under an external dynamic force excitation 
is expressed as follows: 

    1111 )( ++++ =++ iiii pufucum       (1) 

where m  and c  are the mass and damping matrices, and 1+iu , 1+iu , 1+if , and 1+ip  are respectively 
the acceleration, velocity, restoring force, and external force vectors at time step 1+i . The restoring 
force ( )uf  is generally defined as a function of the displacement vector u . It is to be noted that 
bold-faced symbols indicate arrays, either vectors or matrices. 
 
A single-step direct integration algorithms (explicit or implicit) are collectively defined in this paper 
using the following difference equations: 

    ( ) ( ) ( ) 1
2

2
2

11 +∆+∆+∆+=+ iii tηtηtii uuuuu       (2) 

    ( ) ( ) 1431 Δ ++ +∆+= iiii tηtη uuuu       (3) 

In general, Eqs. (1)–(3) require an iterative solution, which forms the basis of the implicit 
algorithms. On the other hand, these algorithms become explicit when 02 =η . For example, 

]21,21,41,41[],,,[ 4321 =ηηηη  leads to implicit Newmark with constant average acceleration, 
]21,21,0,21[],,,[ 4321 =ηηηη  transforms the integration to the explicit Newmark algorithm [2]. 
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Lyapunov-Based Numerical Approach 

For each direct integration algorithm of SDOF systems, the relationship between the kinematic 
quantities at time steps 1+i  and i  can be established as follows: 

    iiii LA +=+ xx 1      (4) 

where ( ) ( )[ ]Tiiii uutut  ∆∆= 2x . It is noted that iA  and iL  are the approximation operator and the 
loading vector at the time step i , respectively. The loading vector, L , is generally bounded and 
independent of the vector of kinematic quantities, x , and does not affect the Lyapunov stability of 
the direct integration algorithms. Therefore, L  can be set to zero in the sequel of this paper. 
 
For linear structures, the approximation operator, A , remains constant. The stability criterion of 
linear systems is obvious and well-known, namely the spectral radius of the approximation operator 
( )Aρ  must be less than or equal to 1.0. In contrast, for nonlinear structures, methods that are 

applicable to linear ones generally do not work. For example, the spectral radius and frequency 
domain methods basically convey nothing about the stability properties of algorithms. Instead, we 
turned to Lyapunov stability theory, based on which a numerical approach was proposed. This 
approach transforms the stability analysis to a problem of convex optimization, which is applicable 
to direct integration algorithms used to solve nonlinear problems. 
 
As discussed above, we are investigating the system in Eq. (4) with the loading vector 0L = , i.e., 

    iii xx A=+1      (5) 

where iA  is a function of 1+iδ  which is the tangent stiffness at time step 1+i  normalized by the 
initial stiffness. Detailed derivations of iA  for different algorithms are given in [11,12].  
 
One standard Lyapunov function 1+iv  at the time step 1+i  is defined in [16] as follows:  

    1111 ++++ = ii
T
iiv xx M      (6) 

where the positive definite matrix T
ii 11 ++ = MM  is a function of 1+iδ . A sufficient condition for the 

system and thus the direct integration algorithm to be stable is as follows: 

    ( )

1 1

1 1 1

1

1 0

i i t i
T T
i i i t i i i

T T
i i i i t i i

T
i i i

v v rv
r

r

+ +

+ + +

+

+

∆ = −

= −

= −

= ≤

M M

A M A M

P

x x x x

x x

x x

     (7) 

where 10 ≤< tr  controls the rate of convergence, i.e., the smaller the tr , the faster the convergence. 
Eq. (7) lead to the negative semi-definiteness of 1+iP , i.e., 0P =+ 1i . For a direct integration 
algorithm, 1+iM  can be expressed as: 

    1 1
1

( )
B

i j j i
j
α δ+ +

=

=∑M Φ      (8) 

where jα  and 1( )j iδ +Φ  are the j–th constant coefficient and base function, respectively, and B  is 
the total number of base functions. One example set of base functions is given in [11] where the set 
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of base functions of 1Φ  to 6Φ  represent constant 1+iM , 7Φ  to 12Φ  constitute the base functions 
that treat 1+iM  as a linear function of 1+iδ , and nonlinear relationship between 1+iM  and 1+iδ  are 
considered by base functions 13Φ  to 18Φ . 

 
Figure 1.  Schematic illustration of discretization process 

With the range of iδ  and 1+iδ  given, e.g., [ ]baii ,, 1 ∈+δδ , points can be discretized within this range 
(Figure 1), e.g., sampling 1+p  points in [ ]ba,  with interval ( ) pab −=∆δ . This yields ( )21+p  
possible pairs of ( )1, +ii δδ . Accordingly, the stability analysis becomes a problem of convex 
optimization that seeks the determination of the coefficients jα  by minimizing their norm for the 
selected base functions 1( )j iδ +Φ  where Bj →1: , subjected to the following conditions on the 

( )21+p  possible pairs of ( )1, +ii δδ : 

    

[ ] ( )1

1 1 1 1
1 1

1 1
1 1

, ,

( ) ( ) ( ) ( )

( ) , ( )

i i

B B
T T
i i i t i i i j j i i i t j j i

j j

B B

i j j i i j j i
j j

a b b a p

r r

δ δ δ

δ a δ δ a δ

a δ a δ

+

+ + + +
= =

+ +
= =

∈ ∆ = −

 
− = − = 

 

= =

∑ ∑

∑ ∑

A M A M A Φ A Φ 0

M Φ 0 M Φ 0

B

= =

,

     (9) 

Moreover, with prior knowledge about the variation of 1+iδ , the range of ii δδ −+1  can be specified, 

e.g., εδδ <−+ ii 1 , where ε  is an optional parameter that is not necessarily small. For example, 
suppose we are interested in investigating the stability of a certain algorithm in the range of  

[ ]2,1, 1 ∈+ii δδ , and 5.1=iδ  at the i-th time step. If prior knowledge is known such that 3.0=ε , i.e., 
( )8.1,2.11 ∈+iδ , fewer possible pairs of ( )1, +ii δδ  that require less computational effort can be 

considered. The problem of convex optimization can be solved numerically by CVX, a software 
package for specifying and solving convex programs [17].  
 
Two examples of the softening and the stiffening cases for the implicit Newmark algorithm with 
constant average acceleration are presented to illustrate this approach. The following conditions are 
considered in these examples: 

    ( ) 0.105.020205.005.0 ===== trn επµζ      (10) 

where ( ) InnnInn kmTTtmkmc πωπmωωζ 22,,,2 2 ==∆=== . The set of base functions 1Φ  
to 12Φ  in [12] is used. 
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Softening Example 
Suppose we are interested in investigating the stability of the implicit Newmark algorithm in the 
range of [ ]0.1,9.0, 1 ∈+ii δδ , therefore ( ) 005.0=−=∆ pabδ . The coefficients jα , 121: →j , are: 

    
10

12
10

11
9

10
11

9

9
8

8
7

10
6

10
5

9
4

10
3

9
2

8
1

1000.2,1030.4,1035.3,1000.6

,1005.1,1076.1,1060.4,1070.2

,1025.2,1070.1,1046.2,1090.1

−−−−

−−−−

−−−−

×−=×=×−=×=

×=×=×−=×−=

×−=×=×=×=

αααα

αααα

αααα

     (11) 

Stiffening Example 
Analogous to the procedure of the previous softening example, suppose the range of interest for the 
stiffening case is [ ]1.1,0.1, 1 ∈+ii δδ , the obtained coefficients jα , 121: →j , are: 

    
10

12
9

11
8

10
9

9

11
8

6
7

9
6

9
5

8
4

8
3

10
2

7
1

1001.5,1020.7,1094.8,1003.7

,1039.3,1001.1,1053.1,1030.2

,1025.2,1093.1,1028.2,1081.9

−−−−

−−−−

−−−−

×−=×=×−=×=

×=×=×−=×−=

×−=×=×=×=

αααα

αααα

αααα

     (12) 

The set of jα  in Eqs. (11) and (12) from many determined sets has the minimum 2-norm α , i.e. 
12

2

1
min j

j
α

=
∑ , explaining the listed small values of jα . The existence of such set of jα  implies the 

existence of 1+iM  in Eq. (8) that satisfies the inequality in Eq. (7), which signifies that the implicit 
Newmark algorithm is stable for the conditions in Eq. (10) in the range of  [ ]0.1,9.0, 1 ∈+ii δδ  based 
on Eq. (11) or in the range of [ ]1.1,0.1, 1 ∈+ii δδ  based on Eq. (12). Several other examples are 
provided in [9,10]. 
 
The approach discussed above can be applied to investigate the stability of different direct 
integration algorithms considering various nonlinear effects, e.g., stiffening ( 11 >+iδ ) and softening 
( 11 <+iδ ) force-deformation relationships. Thus, this approach is generally applicable to direct 
integration algorithms as long as they can be expressed as given by Eq. (5). Moreover, this 
approach can potentially be extended to MDOF systems. For m  DOF systems, the m3 × m3  
approximation operator is a function of j

i 1+δ , where mj →1:  denotes the j-th DOF, and thus 
( )( ) 2391 2 mmm ++  selected base functions and corresponding coefficients are needed if 1+iM  is 

expressed as an affine function of j
i 1+δ , mj →1: . Thus, this approach involves extensive 

computations for MDOF systems. 

Lyapunov-Based Approach Considering Strictly Positive Real Lemma 

This approach was proposed to deal with stability issues of explicit direct integration algorithms, 
i.e., 02 =η  in Eq. (2). As mentioned previously in the introduction, it transforms the stability 
analysis of the formulated MDOF nonlinear system to investigating the strictly positive realness of 
its corresponding transfer function matrix. 
 
For a MDOF system with n  DOFs, the j–th term of the restoring force vector, [ ]njf j ,1, ∈ , can be 
expressed as a linear combination of N  basic resisting forces of the system, [ ]Nlql ,1, ∈ , i.e., 
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    qα j
N

l

lj
l

j qf ==∑
=1
α      (13) 

where [ ]NT qqq ,,, 21 2=q  and [ ]j
N

jjj ααα ,,, 21 2=α . Therefore, 

    [ ] αqf ==
Tnfff ,,, 21 2      (14) 

where [ ]Tnαααα ,,, 21 2=  is an n × N  matrix. In general, N  is the summation of the number of the 
basic resisting forces from each element that contribute to the n  DOFs of the system. For the 
special case of a shear building, nN =  because of its assumed shear mode behavior. The l–th basic 
resisting force, lq , is here defined as a function of lu , which is in itself a linear combination of the 
displacement of each DOF, [ ]nju j ,1, ∈ , i.e., 

    uβl
n

j

jl
j

l uu ==∑
=1
β      (15) 

where ],,,[ 21 nuuu 2=u  and ],,,[ 21
l
n

lll βββ 2=β . Therefore, 

    [ ] βuu ==
TNuuu ,,, 21 2      (16) 

where [ ]TNββββ ,,, 21 2=  is an N × n  matrix. Detailed explanation of N  defining the number of 
columns and rows of the matrices α  and β , respectively, are available in [15]. Moreover, the l–th 
basic resisting force, lq , is a sector-bounded nonlinearity and is restricted to the following range: 

    ( ) ( )22 ll
Max

llll
Min ukuquk ≤≤      (17) 

where l l
Mink u  and l l

Maxk u  are the minimum and maximum bounds of lq , respectively. Define 

    [ ]N
MinMinMinMin kkk ,,,diag 21 2=k      (18a) 

    [ ]N
MaxMaxMaxMax kkk ,,,diag 21 2=k      (18b) 

    ]diag[ 21 N
MinMax k,,k,k 2=−= kkk      (18c) 

After some manipulation [15], both stiffening and softening systems can be expressed in Eq. (19) 
with coefficients ee BA ,  and eq  summarized in Table 1. 

    eeiei qBA −=+ xx 1      (19) 

 
Table 1. Coefficients of MDOF stiffening and softening systems 

Matrix Stiffening Systems Softening Systems 

eA  CkαBAA Mine 11 −=  CkαBAA Maxe 22 +=  

eB  αB1  αB2  

eq  iMinie xCkqq −= +11  12 +−= iiMaxe qCkq x  
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where the terms in Table 1 are expressed as follows: 

    ( ) ( )[ ] ( )cmm0mmBB ttt eff

T

effeff ∆+=∆∆=−= −−
3

12
3

12
21 , ηη      (20a) 

    [ ]1 0, , Identity matrixη η= = =C βC C I I I I       (20b) 

Similar to the first numerical approach, the Lyapunov function 1+iv  at the time step 1+i  is chosen 
as: 

    111 +++ = i
T
iiv xx M      (21) 

The constraints that the basic forces are sector-bounded lead to 

    ( ) ( ) 011 ≤−−−≤−=∆ ++ ie
T

ieiii vvv xx LqWLqW      (22) 

where there exist matrices M , L and W  such that 

    LLMAAM T
e

T
e +=      (23a) 

    LWCkλMAB0 T
e

T
e +−=      (23b) 

    WWMBBλλ0 T
e

T
e

T −−+=      (23c) 

where λ  is a constant diagonal matrix of arbitrary positive coefficients. Derivations from Eq. (21) 
to Eqs. (23) can be found in [15]. Based on the generalized strictly positive real lemma [18], the 
stability analysis reduces to seeking k  such that the transfer function matrix ( )zG  in Eq. (24) is 
strictly positive real. 

    ( ) ( ) eezz BAΙCkλλG 1−−+=      (24) 

For SDOF systems, the matrices α  and β  become 1, based on [11,14], Eq. (24) reduces to  

    ( ) ( ) eezkzG BAΙC 11 −−+=      (25) 

The strictly positive realness of ( )zG  can be guaranteed by the asymptotical stability of eA  and 

    ( )[ ] 0Re >zG      (26) 

which leads to 

    ( )[ ] kzH 1Re −>      (27) 

where 

    ( ) ( ) eezzH BAΙC 1−−=      (28) 

The Nyquist plot [16] can be used to plot ( )θjeH  ∀ [ ]πθ 2,0∈ . From this plot, the minimum value 
of ( )[ ]zHRe  that is corresponding to the k1−  can be obtained. 
 
For MDOF systems, based on [19], the strictly positive realness of ( )zG  in Eq. (24) becomes 
equivalent to Eq. (29) with 0PP T : 

    
( )

( )[ ] ( )
0

PBBλλCkλPBA

CkλPBAPPAA
B













++−−

−−

e
T
e

TTT
e

T
e

T
e

T
ee

T
e      (29) 
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Eq. (29) is a linear matrix inequality (LMI) over variables P  and k  [20]. This problem of convex 
optimization, which seeks k  and the corresponding P  by minimizing certain convex cost function, 
subjected to the constraints of 0PP T  and 0k  , can be solved numerically by CVX [17]. 
 
Multi-story shear buildings with stiffening and softening structural behaviors are used as examples 
to illustrate this approach. A general multi-story shear building structure is depicted in Figure 2. 
The detailed derivation of q  and u  as well as the corresponding matrices α  and β  for this shear 
building is given in [15]. Accordingly, the maximum, j

Maxk , and minimum, j
Mink , stiffness values of 

the j–th story, where nj →1:  and the number of stories is n , for stable (in the sense of Lyapunov) 
stiffening and softening multi-story shear building systems, respectively, are to be determined. 

 
Figure 2. A general multi-story shear building structure 

The stability analysis is conducted for the following numerical values: 

    01000,05.0,5.0 .km j
Ij === ζ      (30a) 

    ( ) 01.0,2,
1

22 =∆==







= ∑

=
njj

n

j
jjj TtT µπωωωλ      (30b) 

where jT  is the period of the j–th mode of vibration of the analyzed structure. The initial bound 

matrix is 1 2diag[ , , , ]n
I I I Ik k k=k 2 , i.e., Mink  and Maxk  for stiffening and softening systems, 

respectively. A 20-story (Figure 2 with 20n = ) shear building is used to investigate the Lyapunov 
stability analysis of the explicit Newmark algorithm, i.e. 1 2 3 4[ , , , ] [1 2,0,1 2,1 2]η η η η = . Lyapunov 
stability analysis following the approach previously discussed in this section is conducted for the 
analyzed this 20-story shear building with stiffening or softening behavior. The cost function for 
this building structure is selected as )min( 20

1∑ =
−

j
jk , which is equivalent to )max( 20

1∑ =j
jk . In this 

cost function, j j j
Max Mink k k= −  is the difference of the upper and lower bounds of the basic resisting 

force jq  associated with the j–th story, where :1j n→ . Table 2 shows that the difference of the 
upper and lower bounds, Max Mink k k= − , of each resisting force for the explicit Newmark algorithm 
to be stable (in the sense of Lyapunov) for both stiffening, ( )[ , ]T T T

I I∈ +u q u k u u k k u , and 

softening, ( )[ , ]T T T
I I∈ −u q u k k u u k u , systems. 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1009



Table 2. The k  of each basic resisting force for the 20-story shear building 

Story 
Number 

Stiffening  
systems 

Softening  
systems 

Story 
Number 

Stiffening  
systems 

Softening  
systems 

1 716.1 203.7 11 31.3 35.9 
2 125.1 149.6 12 25.3 30.8 
3 98.8 150.4 13 21.8 28.5 
4 133.0 166.5 14 19.6 26.7 
5 163.4 140.0 15 17.3 24.0 
6 119.7 97.7 16 15.0 21.2 
7 76.9 74.8 17 14.2 20.4 
8 56.5 64.1 18 16.9 23.7 
9 46.7 55.3 19 29.6 37.3 
10 39.0 44.8 20 116.1 106.7 

 
More Examples are given in [10,14,15] to illustrate this approach for different direct explicit 
integration algorithms applied to different structures (buildings and bridges) with stiffening and 
softening force-deformation relationships. 

Summary and Concluding Remarks 

This paper reviewed and compared two recently proposed Lyapunov-based approaches of stability 
analysis in terms of their merits and limitations. Interested readers should consult references 
[11,12,14,15] for detailed derivations and examples.  
 
The first approach transforms the stability analysis to a problem of existence, that can be solved via 
convex optimization, over the discretized domain of interest of the restoring force. As such, this 
approach is a numerical one with certain approximations. It is shown to be generally applicable to 
both implicit and explicit direct integration algorithms for various nonlinear force-deformation 
relationships, including stiffening and softening ones. References [11,12] considered nonlinear 
SDOF systems. This approach can potentially be extended to nonlinear MDOF systems but 
extensive computations are involved and can be overcome by some methods, e.g., parallel 
computing [21]. 
 
The second approach is specifically applicable to explicit algorithms for nonlinear SDOF and 
MDOF systems considering strictly positive real lemma. In this approach, a generic explicit 
algorithm was formulated for a nonlinear system governed by a nonlinear function of the basic 
force without adopting any approximations. Starting from this formulation and based on Lyapunov 
stability theory, the stability analysis of the formulated nonlinear system is transformed to 
investigating the strictly positive realness of its corresponding transfer function matrix. 
Furthermore, this is equivalent to a problem of convex optimization that can be solved numerically. 
The basic force in this study was limited to the sector-bounded nonlinearity, including stiffening, 
softening and even hysteretic force-deformation relationships as long as they are within the sector 
bounds. Moreover, this approach is more computationally efficient than the first numerical one, 
especially for MDOF systems. Comparisons between these two approaches are listed in Table 3. It 
should be emphasized that Eqs. (7) and (22) are sufficient conditions for dynamical systems to be 
stable. Therefore, both approaches provide a sufficient condition for the direct integration algorithm 
to be stable. In other words, neither of these two approaches can indicate the condition of instability 
of the investigated algorithms. For example, having some basic resisting force vector q  that may 
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fall outside the range in Table 2 does not indicate the instability of the explicit Newmark algorithm 
for the analyzed 20-story shear building. 
 

Table 3. Comparisons between the two approaches 

Property First approach Second approach 

Algorithm Implicit & Explicit Explicit 

Nonlinearity No restriction Sector-bounded 

Condition Sufficient Sufficient 

Approximation Yes No 

MDOF Potentially Yes 

Computational effort Extensive Efficient 
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Abstract

There exist a wide range of applications for solutions to multiphase flow problems with moving interfacial dynamics.
These include engineering, fluid mechanics, melting metals, geophysical, medical, computer graphics and image process-
ing. Over the years there have been a large effort in the numerical method community to solve these types of problems.
Capturing topological changes with physical accuracy remains a challenge. The two main computational approaches for
simulating moving interfaces can be categorized as interface capturing (most notably volume of fluid (VOF) and the
level set method) and interface tracking methods. The advantages of both kinds of methods can be combined using hy-
brid methods, such as the particle level set method [1]. In this paper we propose a new particle level set method which
uses an interpolation scheme to update the radii of the interface particles. Preliminary results show that this method can
outperform the original particle level set method using fewer particles.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administra-
tion under contract DE-AC04-94AL85000.

Keywords: Particle methods, level set method, interface methods, multiphase modeling

INTRODUCTION

Advantages of the level set method include natural merging and pinch-off behavior as well as straightforward calculation
for the interface normal vector and the radius of curvature. However, mass conservation due to numerical diffusion is a
problem that plagues this approach. Reinitialization of the signed distance function is typically necessary for the level
set to retain its signed distance property and to limit mass loss. Reinitialization procedures are also prone to numerical
diffusion and without careful implementation have the tendency to move the zero level set interface, which is not desired.
Another downside of the level set method is that it is limited by the grid size - finer features of the interface or regions of
high curvature cannot be resolved if they are thinner than the local grid width.

Lagrangian particle methods conserve mass by nature and are excellent at resolving fine scales and curvatures of the
interface in flow regimes that do not cause major deformation or stretching of the interface. The downside is that a large
number of points are needed to create the interface and a special approach must be in place to back out the surface
geometry (e.g. the surface normal and curvature) since there is no connectivity between particles. These methods fail
the shrinking square test [5] and cases with merging fronts, but this is due to how the velocity gets interpolated from a
background mesh [2]. Reseeding is also necessary as the interface gets stretched, since the particles can get spread out and
fine scale resolution gets lost. A self organizing particle method [6] has been developed, where particles move to adapt to
local resolution requirements. As holes and particle clustering form, particles get essentially remeshed using pseudo-forces
and dynamic insertion and removal. In addition, it is worth noting that topological changes must be specially handled in
Lagrangian particle methods, again since there is no measure of connectivity between particles. A Lagrangian particle
level set method was developed by Hieber et al. [4] using techniques from vortex methods and particles as essentially
quadrature points. This paper develops an approach to cutting and reconnecting the interface.

The hybrid particle level set method was developed by Enright et al. [1]. Lagrangian particles are placed near the interface
and are used to correct the level set function for mass loss (in addition to a traditional reinitialization approach) when
“escaped” particles are detected. Adjacent to both sides of the interface defined by the level set equation, massless marker
particles of randomly varying size are initially placed. They are given a sign (positive or negative) and move with same
velocity field used for advection of the signed distance function. When these particles end up on the wrong side of the
interface due to numerical error, the particles are used to correct the signed distance field using the radius of the marker
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particle as a measure of the local level set. In this method, a 5th order WENO scheme for the computation of the spatial
term ∇φ is combined with a 3rd order TVD Runge Kutta procedure for time integration [3]. In a following paper [2], they
show that this correction procedure makes high order integration schemes for the level set function unnecessary. Instead,
a semi-Lagrangian method [8] coupled with a first order fast marching method [7] for reinitialization is used as a faster
alternative (and the resulting numerical diffusion is effectively mitigated with the incorporation of the particle correction
procedure.

Most particle-level set hybrid methods methods use a large number of particles to preform their calculations (64 per cell in
2D in [1]), and most of these particles do not even contribute to the correction procedure since only the escaped particles
contribute to updating the level set function. In this work we suggest a different approach, using all particles adjacent to
the level set and within one grid spacing, and are able to get a smooth and accurate method with only 12 particles per cell
close to the interface. We are able to accomplish this by instead using an interpolation scheme to update grid points near
the interface using the distances of nearby particles (escaped or not). Using this approach we do not have to check the
escaped status of a particle or calculate the projection of the distance between particle and grid point to see if it is normal
or tangent to the interface. In our approach, the radius of an interface particle is the signed distance from the zero level
set and we use bilinear interpolation at each grid point to up date the “coarse” grid level set function with the information
from the “finer” set of particles near the interface. Our Lagrangian particles do not get reinitialized since they reside near
the zero level set (which, within ∆x, remains fixed during a reininitialization event).

Results

In order to compare methods, we test this method against the original particle level set method [1]. We look at a pseudo
one dimensional test case in which the particles and the level set defined on the (2D) grid were given a linear profile
(φ(x) = x − 0.5). Then the level set field was given a constant error by shifting it by ∆x/2, so the particles and the level
set field differ by ∆x/2. We assume that the particles are “correct” and that there is error in the level set field, and use
each of the three methods to attempt to correct the zero level set. The results are shown in Figures 1 and 2. Other particle
correction methods require a large number of particles per cell since only the escaped particles get used to update the level
set. This new approach alternatively uses all neighboring interfacial particle information.
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Figure 1: Illustrating particle correction for a psuedo 1D problem in which the level set field is off by ∆x/2 and
there is no error in the particle positions and radii. In the original method [1] the location of the zero level set does
not get updated.
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Figure 2: Illustrating particle correction for a psuedo 1D problem in which the level set field is off by ∆x/2 and
there is no error in the particle positions and radii for the new interpolation method proposed in this paper.
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Abstract 

In this paper, a new single interface integral equation method is presented for solving 
transient heat conduction problems consisting of multi-medium materials with variable 
thermal properties. Firstly, adopting the fundamental solution for the Laplace equation, the 
boundary-domain integral equation for transient heat conduction in single medium is 
established. Then from the established integral equation, a new single interface integral 
equation is derived for transient heat conduction in general multi-medium functionally graded 
materials, by making use of the variation feature of the material properties. The derived 
formulation, which makes up for the lack of boundary integral equation in solving 
multi-medium problems, has the feature that only a single boundary integral equation is used 
to solve multi-medium transient heat conduction problems. Compared with conventional 
multi-domain boundary element method, the newly proposed method is more efficient in data 
preparing, program coding and computational cost. Based on the implicit backward 
differentiation scheme, an unconditionally stable and non-oscillatory time marching solution 
scheme is developed for solving the time-dependent system of differential equations. 
Numerical examples are given to verify the correctness of the presented method. 

Keywords: Transient heat conduction, Multi-medium problems, Non-homogeneous problem, 
Interface integral equation. 

1. Introduction 
With the advantages of semi-analytical feature and dimensional reduction characteristic, the 
boundary element method (BEM) has been successfully applied to solve transient heat 
conduction problems [1-4]. According to the differences of solution procedures, most of the 
existing approaches can be classified into two broad categories: the transformed space 
approach ( Rizzo and Shippy [5]; Sutradhar et al.[6]; Sutradhar and Paulino [7]; Simoes[8]; 
Guo et al. [9]), and the time domain approach (Wrobel and Brebbia [10]; Ochiai et al.[11]; 
Tanaka et al.[12]; Yang and Gao[13]; Al-Jawary el al. [14]; Yu et al. [15]). In the transformed 
space approach, the time dependent derivative is removed by applying an algebraic transform 
variable, and the system of equations is solved in the transform space, then inverse transform 
is employed to reconstitute the solution in time domain. The other kind is the time domain 
approach, by which the solutions are found directly in the time domain. One implementation 
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of the time domain approach is the use of time-dependent fundamental solution [10, 11], that 
can result in a pure boundary integral equation algorithm. However, numerically evaluating 
the boundary integrals requires both space and time discretization. More details about 
time-dependent fundamental solution approaches can be found in the works of Wrobel and 
Brebbia [10] and Ochiai and Sladek [11]. Another implementation of the time domain 
approach is to employ the fundamental solution for the Laplace equation, and transform the 
volume integrals associated with time dependent derivative into equivalent boundary integrals. 
Among the transforming techniques, the dual reciprocity method (DRM) [16, 17], Multiple 
reciprocity method (MRM) [18], and radial integration method (RIM) [19 ] are most widely 
used.  
 
Transient heat conduction BEM has been broadened to a wide range of engineering problems, 
including non-homogeneous [21], anisotropic [20], and non-linear problems [33]. But most 
studies mainly focus on single medium. However, most engineering problems involve objects 
composed of different materials. Therefore, it is important to develop the multi-medium BEM. 
The conventional widely used technique for solving multi-medium problems is the 
multi-domain boundary element method (MDBEM) [25-29]. The basic idea of this method is 
that the whole domain of concern is broken up into a number of separate sub-domains, then a 
boundary integral equation is written for each sub-domain, and the final system of equations 
is formed by assembling all contributions of the discretized integral equations for each 
sub-domain based on the compatibility condition and equilibrium relationship. In the transient 
heat conduction field, Erhart et al. [31] developed a parallel domain decomposition Laplace 
transform BEM algorithm for solving the large-scale transient heat conduction problems. 
Recently, Gao et al. [25, 32] proposed a three-step multi-domain BEM for solving 
multi-medium non-homogeneous problems. 
 
Although MDBEM is flexible in solving multi-medium problems, it has disadvantages in data 
preparation and computational time, since twice the element information over the same 
interface needs to be defined for the adjacent two sub-domains, and twice integrations need to 
be carried out over interface elements. Moreover, the variable condensation and assembling 
processes require a higher coding skill to develop a universal program, which heavily 
influences the computational efficiency. Tracing the issue to its source, the existing boundary 
integral equations were established on a single medium assumption, therefore it is awkward to 
solve multi-medium problems through using MDBEM, which involves tedious domain 
decomposing and assembling processes. 
 
Recently, Gao and his coworkers proposed a single integral equation method, named interface 
integral BEM (IIBEM), for solving multi-medium problems [34-37]. Through a degeneration 
method from domain to interface integrals, the integral equation for solving single medium 
problems can be extended to interface integral equation capable of solving multi-medium 
steady heat conduction [34], elasticity [35, 36] and elastoplasticity [37] problems. Comparing 
with the conventional boundary integral equation, an additional interface integral appears in 
the basic integral equation, embodying the difference of material properties between two 
adjacent media. The derived formulations make up for the lack of a boundary integral 
equation in solving multi-medium problems. Compared with MDBEM, the derived integral 
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equation is very simple in form and only requires integration once over the interface elements. 
Attributed to the feature of being single integral equation, it is easy to adopt the fast 
multi-pole method to solve large-scale problems [41]. 
 
In this paper, a new single integral equation method is developed for solving general 
multi-medium transient heat conduction problems. Firstly, the boundary-domain integral 
equation for single medium non-homogeneous transient heat conduction is established. Then 
from the established integral equation, the interface integral equation for multi-medium 
transient heat conduction problems is derived, by a degeneration technique from a domain 
integral to an interface integral. The new formulation allows the thermal material properties 
(i.e., thermal conductivity, specific heat and mass density) varying spatially within each 
medium, and jump across the interfaces between every two adjacent different media. For the 
first time, a single integral equation method is employed to solve multi-medium transient heat 
conduction problems with variable material properties. 
 
To solve the time-dependent system of differential equations, the finite difference method 
(FDM) is used in the discretization of time to approximate the time evolution of temperatures. 
Based on an implicit backward differentiation scheme, an unconditionally stable and 
non-oscillatory time marching solution scheme is developed for solving the normal 
time-dependent system of equations, in which only temperature is involved as the 
time-dependent unknown variable. Numerical examples are given to verify the correctness of 
the presented method. The results show that, the presented formulations are robust in solving 
transient heat conduction in multi-medium functionally graded materials. 

2. Review of boundary-domain integral equation for transient heat conduction in single 
non-homogeneous medium 

In this paper, the thermal conductivity k, specific heat pc  and mass density ρ  are assumed 

to be functions of spatial coordinates x , i.e. )(xk , )(xpc , )(xρ . In this case, the governing 

equation for transient heat conduction problems can be written as follows: 

[ ] ),(),()()()(),()( 0 Ω∈>
∂

∂
=+∇∇ xxxxxxx               tt

t
tTcQtTk pρ          (1) 

where, ),( tT x  is the temperature at location x  at time t; )(xQ is the heat generation; 0t  is 

the initial time, and Ω  represents the computational domain. 

The initial condition is 

)()0,( 0 xx TT =                                   (2) 

where, )(0 xT  is the initial temperature. On the boundary, Dirichlet and Neumann boundary 

conditions are prescribed as follows: 
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TtTtT Γ∈= xxx                                    ),,(),(                     (3) 

qtq
n

tTktq Γ∈=
∂

∂
−= xxxxx           ),,(),()(),(                     (4) 

where, ),( tq x  is the normal heat flux on the boundary Γ  of the computational domain Ω ; 

n  is the unit outward normal to Γ ; and Ω∂=ΓΓ=Γ )( qTC  , ∅=ΓΓ qT  . In Eqs. (3) and 

(4), ),( tT x , ),( tq x  are the given temperature and heat flux on the boundary, usually 

prescribed as given functions. 

 

Taking the fundamental solution for the Laplace equation as the weight function, applying the 
weighted residual technique to Eq.(1), and using the Gauss’ divergence theorem, the 
boundary-domain integral equation for solving single medium transient heat conduction 
problems can be established [13]: 
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where c =1 for internal points and 1/2 for smooth boundary points; y  represents the source 

point, and x  the field point; ),( yxG  is the fundamental solution for Laplace equation, 

nG ∂∂ /),( yx  and ),( yxV  are the derived kernels. These quantities can be expressed as 

follows 
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where, 1−= βα  ( 2=β  for 2D problems and 3 for 3D problems); r is the distance between 

source point y  and field point x ; ixr ∂∂ /  is the partial derivative of r with respect to 

coordinate ix ; in  is the i-th component of n. In Eqs. (7) and (8) and through the paper, the 

repeated subscripts represent summation. 
 
In Eq. (5) normalized temperature and thermal conductivity are utilized, by considering the 
product of temperature and thermal conductivity as the unknown variable [13, 38] 

)()()(~ xxx TkT =                                    (9) 

)(ln)(~ xx kk =                                     (10) 

Integral equation (5) is the boundary-domain integral equation for solving general single 
medium transient heat conduction problems. And through the radial integration method (RIM) 
transforming the involved domain integrals in Eq.(5) to the boundary, a pure boundary 
element algorithm without internal cells for single medium transient heat conduction can be 
developed [13]. 
 

From Eq.(10) we can see that the kernel function ),( yxV  involves the spatial derivative of 

the thermal conductivity ixk ∂∂ /)(x , which indicates that )(xk  should vary continuously 

without jump in the domain Ω . However, for a problem consisting of multiple media, the 
thermal conductivity jumps across the interfaces between two adjacent materials, the 

derivative ixk ∂∂ /)(x  will lead to an infinity. Therefore, Eq.(5) is not valid for multi-medium 

problems. However, the singular kernel is in fact integrable as shown in section 3. In section 3, 
we will deal with multi-medium problems in which the conductivity is not continuous across 
the interfaces of media. In this case, the domain integral involved in Eq. (5) is degenerated 
into an interface integral between two adjacent materials. 

3. Interface integral equation for multi-medium transient heat conduction 

For the sake of convenience and not losing generality, a problem consisting of two media 

characterized by conductivities )(1 xk  and )(2 xk  is considered as shown in Fig. 1, in which 

Γ  is the outer boundary of the problem, IΓ  is the interface between media )(1 xk  and 

)(2 xk , and n′  is the outward normal to IΓ . Since the thermal conductivity jumps across the 

interface IΓ , we separate a narrow domain 3Ω  around IΓ , which has a constant 

infinitesimal thickness h∆  along the interface (see Fig.1). 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1021



 

Figure 1.  A narrow domain separated around interface of two media 

Referring to Fig. 1, the domain integral involving kernel ),( yxV  in Eq. (4) can be written as 
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where Ω  represents the whole integration domain consisting of all media with an infinite 

narrow domain isolated out, and in a specific medium ),( yxV is determined by Eq.(8). From 

Eq.(8), we can see that the kernel ),( yxV  involved in the above equation is related to the 

gradient of the normalized conductivity ixk /)(~ x∂ . With the existence of a jump effect across 

the interface IΓ , the second integral item on the right hand side of Eq.(8) can be manipulated 

as follows [34, 37]: 
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Substituting Eq.(12) into Eq.(11), and the result into Eq.(5), the final temperature integral 
equation is derived as follows: 
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Eq.(13) is the established interface integral equation for solving multi-medium transient heat 
conduction problems. The time-dependent effect is embodied by the domain integral 

involving the time derivative of temperature ttT ∂∂ /),(~ x . The jump effect of thermal 

conductivities across the interfaces between every two adjacent media is embodied by the 
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interface integral item carried out on IΓ ; The non-homogeneous effect of material properties 

is embodied by the domain integral item involving kernel ),( yxV . 

 
In numerical implementation, three types of points are introduced in discretization: outer 

boundary points on Γ , interface points on IΓ , and internal points in Ω . Eq.(13) is only 

suitable for the outer boundary points and internal points by setting 2/1=c  for smooth 

outer boundary and 1=c  for internal points, respectively. When the source point y  is 

located on the interface points, a similar integral equation can be obtained by letting IΓ→y  

[34]: 
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where, Iy  represents the source points located on the interface; Ic  is the free term 

coefficient, and for smooth interface, the expression of Ic  is 

)]()([
2
1

21
III kkc yy +=                           (15) 

where, )(1
Ik y  and )(2

Ik y  are the thermal conductivities for the adjacent two different 

materials on the location of Iy . 

 
For the convenience, taking into account Eqs. (9) and (10), we can rewrite Eqs. (13) and (14) 
in an uniform form 
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where, 
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To avoid discretizing the domain Ω  into internal cells for evaluating domain integrals 
involved in the above integral equations using the conventional cell-integration technique [39], 
a robust transformation technique from domain integrals into equivalent boundary integrals is 
described in reference [19]. In the paper, the three domain integrals involved in Eq.(16) are 
transformed into equivalent boundary integrals by the radial integration method (RIM) [13]. 

4. Numerical implementation 

Eq. (16) is the boundary-interface-domain integral equation for solving multi-medium 
transient heat conduction problems with variable material properties, and by employing RIM 
transforming the involved domain integrals into equivalent boundary integrals, a pure 
boundary element method without internal cells can be developed. 

4.1  System of differential equations 

After discretizing the outer boundary Γ  and interface IΓ  into a series of boundary elements 

and collocating the source point y  through all boundary, interface, and internal nodes, we 

can form the system of differential equations for Eq.(16). Assuming that the BEM model 

involves bN  boundary nodes, cN  interface nodes, and iN  internal nodes, the total number 

of nodes is icbA NNNN ++= . The discrete form of integral equation (16) is as follows: 
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 (19) 

where, bcH , ccH  and icH  correspond to the coefficients of the interface integrals; bbH , 

cbH , ibH  and bbG , cbG  ibG  correspond to the outer boundary integrals; iiH  is 

diagonal matrix consisting of free term coefficients for internal points. V  and C  (both with 

dimensions of AA NN × ) correspond to the last two domain integrals in Eq.(16). And bf , cf  
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and if are the domain integration results for heat sources. bT  and bq  are the temperatures 

and heat fluxes for the boundary nodes respectively, and  









=
2

1

T
T

Tb ,  








=
2

1

q
q

qb                          (20) 

In which, 1T  and 2q  are the given temperatures on the Dirichlet boundaries and and heat 

fluxes on the Neumann boundaries, respectively. 
 
Rearrange the system of equations Eq.(19) by transposing columns of [H], [G] and [V] from 
one side to the other, gathering all unknowns to the left-hand side, then we can rewrite Eq.(19) 
as 

TCyxA   -=                              (21) 

where, 
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In which, xT  consists of unknown temperatures on the Neumann boundary conditional nodes, 

the interface nodes and internal nodes. 
 
By writing the coefficient matrices A , C  in block form, we can reconstitute Eq.(21) as 
follows: 
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In Eq.(21), the unknown heat fluxes at nodes on Dirichlet boundary can be expressed by the 
unknown temperatures as following 

)(][ 111111
1

111 xxxx TCTCTAyAq  −−−= −                  (24) 

Given that 1T  are known temperatures on Dirichlet boundary, which do not vary with time, 

therefore 0T =1
 , substituting back into Eq.(24) yields the following equation: 

1111 FTDTEq ++= xxxx
                            (25) 

where, 
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xx 1
1

111 ][ AAE −−=                                (26) 

xx 1
1

111 ][ CAD −−=                                (27) 

1
1

111 ][ yAF −=                                   (28) 

Substituting Eq.(25) back to Eq.(23), 1q  can be eliminated from the system of differential 

equations, and the regularized form of differential equations that is only concerned with 
temperature can be derived: 

xxxxxxxxx YTCTBTA ++= 1
                            (29) 

Similarly, 1T =0 with the assumption that the temperature boundary conditions do not vary 

with time, Eq.(29) can be changed into the following form 

xxxxxxx YTBTA +=                                 (30) 

where, 

xxxxxx 1
1

111 ][ CAACA −−=                            (31) 

xxxxxx AAAAB −= −
1

1
111 ][                            (32) 

1
1

111 ][ yAAyY −−= xxx                              (33) 

Now, Eq.(30) is the normalized system of differential equations only concerned with 
unknown temperatures. To solve the time-dependent system of equations Eq. (30), the finite 
difference method (FDM) or precise integration method (PIM) [15] can be used to 
approximate the time evolution of temperatures. In this paper, we adopt the backward 
differentiation scheme [42], which is unconditionally stable and non-oscillatory in solving 
system of ordinary differential equations, to solve Eqs.(30) and (25). 

4.2  Time marching scheme 

To solve the equation set (30) and (25), we adopt the finite difference method to approximate 
the time derivative term: 

t

n
x

n
x

x ∆
−

=
+ TTT
1

                                       (34) 

n
x

n
xx TTT )1(1 θθ −+= +                                 (35) 

where, n
xT  represents the temperature at the n-th time step, and θ  is the Euler parameter 

which usually takes a value between 0.5 and 1 [40]. In this study, we take 1=θ . Substituting 
Eqs.(34) and (35) into Eq.(30), yields 

ΝMTT +=+ n
x

n
x

1                                      (36) 
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where, 

])1(/[]/[ 1
xxxxxxxx tt BABAM θθ −+∆−∆= −                (37) 

xxxxx t YBAN 1]/[ −−∆=  θ                               (38) 

where xxA , xxB  and xY  are defined by Eqs.(31)-(33). 

 

With a similar process, substituting Eqs.(34) and (35) into Eq.(25), the heat fluxes 1q  at 

nodes on Dirichlet boundary can be evaluated at each time step: 

1
11

1 FTKTJq ++= ++ n
x

n
x

n                                 (39) 

where,  

txx ∆+= /11 ∆EJ  θ                                   (40) 

txx ∆−−= /)1( 11 ∆EK  θ                               (41) 

In Eqs.(39)-(41), x1E , x1 D  and 1 F  are determined by Eqs.(26)-(28). Now, Eq.(36) and 

Eq.(39) can be employed to trace the time evolution of temperature and heat flux. 

5. Numerical example 

A Fortran code, named SIEBEM (single interface integral equation boundary element method) 
using the presented interface integral formulations in this paper has been developed. 

5.1  Transient heat conduction in a two-media composed square flange 

This example focuses on a square flange with four reinforced mounting holes, which are 
equally distributed along a circle with radius of cm 374.5=Φ , as shown in Fig. 2. The flange 
and the mounting holes are made of different materials, marked with different colors in Fig.2. 
The initial temperature is assumed to be T0 = 0℃. The temperature at the inner circular side 
suddenly changes to 800℃, while the temperature at the outer side of the square keeps 0℃. 
Inner sides of the mounting holes are temperature insulated. 
 
Due to symmetry of the flange, only a quarter is analyzed. The geometry and boundary 
conditions are shown in Fig. 3, where point O(x=0, y=0) is the spatial origin, point C (x =3.8, 
y =3.8) represents the center of the mounting hole. Symbols Ω1 and Ω2 are the computational 
domains for two different media, respectively. 
 
The material properties for media Ω1 and Ω2 are listed in Table 1, where k represents the 
thermal conductivity, cp represents the specific heat, and ρ the mass density. 
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Figure 2. Square flange          Figure 3. Quarter of the flange 

 
Table 1.  Material properties for each medium 

Medium k (W/m∙K)  cp (J/kg∙K)  ρ (kg/m3)  
Ω1 200 490 8.9×103 
Ω2 40 900 6.6×103 

 
The inner circular side of the flange is discretized into 30 equally-spaced linear boundary 
elements, and each of the two straight outer boundary lines is discretized into 35 
equally-spaced linear elements. The whole BEM model employs 998 nodes, in which 180 are 
outer boundary nodes, 40 are interface nodes, and 778 are internal nodes distributed within 
the domain. Fig. 4 shows the BEM model for computation. For comparison, this model is also 
analyzed using the conventional multi-domain boundary element method (MDBEM) reported 
in [25]. By using the same scale of mesh discretization, the MDBEM shown in Fig. 5 employs 
998 nodes and 260 boundary elements. Since the interface marked with ‘F’ shown in Fig.5 has 
to be discretized into elements in each medium, the number of elements used in the MDBEM 
model is bigger than that used in the SIEBEM model. Therefore the computation scale for the 
MDBEM model is bigger than that of the SIEBEM model. 

       

Figure 4.  SIEBEM model           Figure 5.  MDBEM model 
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Figure 6.  FEM mesh 

A 10s time period is analyzed with 100 equally discretized time steps, and the length of each 
time step is s 1.0=∆t . To provide a reference solution to compare with the BEM results, the 
solution of this problem is computed using the commercial software ABAQUS. Fig.6 shows 
the FEM mesh. 
 
Around the inner circle of the mounting hole with radius of R2=0.7cm, the temperature 
distribution at different times calculated by SIBEM, MDBEM and FEM software are shown 
in Fig.7. And Fig.8 shows the temperature distribution along x direction at the y =0 symmetric 
straight edge. Fig. 9 compares the BEM results with FEM results for the temperature with 
time around the interface circle with the radius R3=1.5cm in Fig.3. From Figs. 7 - 9, we can 
see that the results of SIEBEM coincide well with the results of MDBEM and FEM software, 
which validates the correctness of the presented method.  
 

 

Figure 7.  Temperature distribution along inner circle R2=0.7cm 

 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1029



 

Figure 8.  Temperature distribution along the y = 0 straight edge 

 

 

Figure 9.  Temperature distribution along the interfacial circle R3=1.5cm 

Fig.10 shows the contour plots of the temperature distribution at different time. From 
Fig.10, we can easily find the discontinuous effect of temperature distribution when crossing 
the interfacial circle between the body of the flange and the mounting hole. 

       

a                                 b 
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c                              d 

Figure 10.  Counter plot of the temperature at different times:  

(a) t = 1s ; (b) t = 2s; (c) t = 5s; (d) t = 10s 

5.2  3D transient heat conduction in a four-media composed hollow cylinder 

The third example to be considered is a hollow cylinder with a reinforcing stair, which is 
composed of four different media denoted by Ω1, Ω2, Ω3 and Ω4, as shown in Fig.11 (a) . The 
initial temperature is assumed to be T0=0℃. Then the temperature at the top surface changes 
to 800℃, while the temperature at the bottom surface stays as 0℃. The other sides are 
thermally insulated. Due to symmetry of the problem, only a quarter of the hollow cylinder is 
modeled. Figs. 11(b) and 11(c) shows detailed dimensions and boundary conditions for the 
geometrical model. 

        

a                          b                        c 

Figure 11. Four-media composed hollow cylinder: (a) 3D global view; (b) top view; 

(c) right-side view 

The material properties of the four media are prescribed as functions of spatial coordinates, 
and Table 2 gives these specific functions of coordinates for each medium. In order to show 
the variation of material properties with respect to the spatial coordinates more vividly, the 
profiles of thermal conductivity k and specific heat cp are illustrated in Fig. 12. From Fig.12 
we can see that the material properties vary in space continuously within each medium but 
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jump across the interfaces between different media. 
 

Table 2.  Material properties for each medium 

 k (W/m∙K) cp (J/kg∙K) ρ (kg/m3) 
Ω1 200×e50z 500×e30z 8900 

Ω2 )03.0(10400 224 −++ yx  )03.0(102900 224 −+×− yx  2700 

Ω3 200+104( z - 0.01) 500-104(z-0.01) 7900 
Ω4 600-106(z-0.03)2 700-5×105(z-0.03)2 6900 

 

 

Figure 12.  Profiles of thermal conductivity and specific heat along z-direction 

The BEM mesh employs 880 4-node linear elements, in which 144 are interface elements 
distributed on the three interfaces between every two different media. Discontinuous elements 
are used at the intersection points between the interface and outer boundary, ensuring that a 
collocation point is either used by an outer boundary element or an interface element, see Fig. 
13. The total number of nodes is 1546, among which 823 are boundary nodes, 195 are 
interface nodes, and 528 are internal nodes. Fig. 13 shows the BEM model for computation, 
in which different media are marked with different colors. 
 

 

Figure 13.  BEM mesh for the hollow cylinder 
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A 10 second time period is analyzed with 100 equally discretized time steps, and the length of 
each time step is Δt = 0.1s. For comparison, this model is also analyzed with ABAQUS by 
using the UMATHT subroutine [43]. Fig. 14 shows the distribution of temperature along z 
direction over the inner side vertical line of x = 2 cm and y = 0 cm. Fig. 15 shows the 
temperature distribution along x direction over the spatial straight line of y = 0 cm and z = 1 
cm. From Figs. 14 and 15 we can see that the BEM results coincide well with the FEM results, 
demonstrating the correctness of the proposed method. From Fig. 14, we can easily find that 
three segment of curves compose the profile of temperature at each time step. And in Fig.15, 
the profile is composed by two segments. This effect is caused by the jump effect of material 
properties in multi-medium problems. 

 

Figure 14.  Temperature distribution along the z coordinate direction 

 

 

Figure 15.  Temperature distribution along the x coordinate direction 

To examine the time evolution of temperature, three points A (1.7678, 1.7678, 3), B (1.4142, 
1.4142, 4) and C (1.4142, 1.4142, 2), are investigated. Table 3 shows the comparison of the 
temperature results at each time step between BEM and FEM method. Relative errors are also 
calculated, taking the ABAQUS results as standard values. From Table 3 we can see that the 
relative errors converge to zero with time evolution, indicating that the presented method is 
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stable with time. 
 

Table 3.  Computed temperatures at points A, B and C with Δt = 0.1s 

t(s) 
A B C 
BEM Abaqus Error(%) BEM Abaqus Error(%) BEM Abaqus Error(%) 

1 125.116 123.891 0.989 292.614 290.528 0.718 35.345 35.523 -0.500 
2 262.106 260.178 0.741 421.561 419.452 0.503 121.269 120.420 0.705 
3 350.276 348.363 0.549 493.677 491.700 0.402 194.533 193.266 0.656 
4 408.304 406.638 0.410 539.235 537.480 0.326 247.504 246.302 0.488 
5 447.202 445.886 0.295 569.295 567.807 0.262 284.317 283.406 0.321 
6 473.492 472.552 0.199 589.482 588.271 0.206 309.561 309.012 0.178 
7 491.323 490.739 0.119 603.138 602.187 0.158 326.784 326.588 0.060 
8 503.434 503.161 0.054 612.403 611.681 0.118 338.511 338.627 -0.034 
9 511.665 511.653 0.002 618.696 618.167 0.086 346.688 346.865 -0.051 
10 517.470 517.458 0.002 622.974 622.601 0.060 352.483 352.500 -0.005 
 
To examine the influence of the length of each time step Δt on the computed results, 
temperatures at points A, B and C are also computed by using different values of Δt. Fig. 16 (a) 
shows the change of relative errors using the time step Δt = 2s. In Fig.16 (a), both SIEBEM 
and ABAQUS results are calculated on Δt = 2s, and the ABAQUS results are utilized as the 
standard values. Meantime, Fig. 16 (b) shows the change of relative errors using Δt = 0.04s, 
equally the ABAQUS results on Δt = 0.04s are also given as the standard values. By 
comparing Figs. 16 (a) and 16 (b) we can see that, even Δt = 2s is 50 times the length of Δt = 
0.04s, the results calculated by SIEBEM coincide well with ABAQUS results, and their 
relative errors converge to zero, indicating that the presented method is stable and highly 
precise. 

 

   

a                                           b 

Figure 16.  Relative errors of temperature along with time: (a) Δt = 2s; (b) Δt = 0.04s 
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6.  Conclusions 

In this paper, based on a newly derived interface integral equation, a new and simple BEM 
characterized as interface integral equation method is developed for solving transient heat 
conduction in multi-medium materials with variable material properties. To solve the 
time-dependent system of differential equations, firstly the unknown heat fluxes are 
eliminated from the system of differential equations, then based on an implicit backward 
differentiation scheme, an unconditionally stable and non-oscillatory time marching solution 
scheme is developed for solving the normal time-dependent system of equations. 
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Abstract 
 
This paper presents a numerical scheme for modelling hydrogen assisted stress corrosion 
cracking (HASCC) along centerline of gas tungsten arc (GTA) welds of austenitic stainless 
steel 21Cr-6Ni-9Mn (21-6-9). FEM based cohesive zone modelling (CZM) is used to examine 
the crack extension through the weld fusion zone (FZ). Diffusion of hydrogen through the 
lattice is analyzed by finite difference method incorporating effects of hydrostatic stress 

.hσ J  versus crack extension curves are obtained. Results are presented by considering both 
constant diffusivity and its variation with hydrogen concentration. The results based on the 
later case compare well with published experimental data. Temporal variations of hydrogen 
concentration and hσ along the crack line ahead of the tip at various stages of crack extension 
are included. 
 
Keywords: Hydrogen assisted stress corrosion cracking, cohesive zone modelling, J -

a∆ variation,FZ, HAZ, fracture initiation toughness. 

1. Introduction  

Austenitic stainless steels consists of 16-26% Cr, 8-24% Ni + Mn, up to 0.40% C and small 
amounts of a few other elements such as Mo, Ti, Nb and Ta. The steel contains about 90-
100% of austenitic microstructure which is made possible by adjusting the amount of Cr and 
Ni + Mn. These alloys provide good strength and high toughness over a wide temperature 
range and oxidation resistance to little over 1000°F. Due to such excellent properties, they are 
mostly employed in machines, pipelines and structures subjected to hydrogen and other 
corrosive environments. During welding of such steels Cr content in base metal is generally 
kept high in filler wire as Cr is ferrite stabilizer whereas Ni is austenite stabilizer. After 
welding of austenitic steel and during solidification, melting of certain low melting point 
constituents like sulfur, phosphorous, manganese and silicon cause shrinkage induced strain. 
δ-ferrite has capacity to dissolve such harmful elements. Hence, residual amount of stable δ-
ferrite is always preferred in steel microstructure to prevent hot cracking [1]. But, it is also 
reported that δ-ferrites are the dominating sites for microcrack formation and its propagation 
under load [2]. Weld joints of the austenitic stainless steels therefore becomes weaker against 
HASCC due to retained δ-ferrite. A common source of hydrogen during welding is the flux 
used which has ingredients containing chemically bonded water (H2O) in their microstructure. 
This water dissociates as hydrogen and oxygen at high temperatures. Ingress of hydrogen is 
facilitated further by increase of hydrogen solubility in steel with increasing temperature. If 
the cooling is slow, some of the dissolved hydrogen may escape to the atmosphere; if the 
cooling is fast then there is no such possibility [3]. 
 
Several experiments [2][4][5] have shown that the dominant sites for initiation of micro-
cracks are the ferrite and ferrite-austenite boundaries in the weld microstructure. The micro-
cracks gradually develop into macro-cracks, which grow subsequently both along, and 
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perpendicular to, the initial crack line/plane. A 2-D analysis of such a crack growth only along 
the weld centerline, which is a FZ, is the objective of this study.  
 
Analysis of the problem is difficult because of existence of three distinct material zones, i.e. 
FZ, HAZ and the base metal (BM). Fracture in such steels is a complex phenomenon 
involving ferrite, austenite-ferrite boundary, micro-crack formation, shear linkage between 
micro-cracks [2]. Both tensile and H2 diffusion properties also differ from one zone to 
another. There is not much published data on the properties except some experimental results 
on variation of J  with crack extension [2][4]. The study of the problem is further complicated 
by the fact that the corrosion affects the crack extension and the later, in turn, affects the 
diffusion and corrosion. The two phenomena are therefore coupled. The analysis of such a 
problem through homogenous material in the presence of HASCC has been reported earlier 
by several investigators. Both sequential [6][7] and coupled analysis have been reported [8]. A 
sequential analysis of a crack propagation along the weld centerline is considered in this 
paper. Due to non-availability of all required exhaustive material properties/data, e.g., tensile 
strength, % elongation, diffusivity parameters, reduction of cohesive strength with hydrogen 
concentration, etc., the appropriate data are iteratively adjusted to get the best predictions for 
J  vs. a∆ variations. In the modelling, variation of yield strength across the HAZ has been 
interpolated linearly from Yσ  = 485 MPa at the interface of HAZ and BM to Yσ = 675 MPa at 
the interface of FZ and HAZ. The case studies presented here concerns internal hydrogen 
assisted corrosion (IHAC) in CT specimen with crack along the centerline of the weld. The 
complex failure mechanism is modelled using a hydrogen concentration dependent cohesive 
zone modelling technique (HCD-CZM). 
 
2. Experimental Details 

The experimental results of Somerday et al. [4] provide the basis for the present analysis. 
Similar studies were also carried by Jackson et al. [5] and Nibur et al. [9] for 304L/308L and 
21Cr-6Ni-9Mn/308L austenitic stainless steel welds respectively. The base metal for the 
present analysis is 21Cr-6Ni-9Mn (21-6-9) steel, which was available in the form of 
rectangular bar stock of size 75×75 mm.  

 
Figure 1.  a) Macrograph of 21-6-9/21-6-9 GTA weld [4] and (b) CT specimen 

considered for modelling the weld 

 
(a) 

 
                                    (b) 
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The details of preparation of specimen and testing is given in [4]. It suffices to state here that, 
in order to prepare the weld, a tapered “U ” groove was made at the centre of a rectangular 
bar stock (Fig. 1(a)). This groove was filled with 21-6-9 filler wire by GTA welding 
operation. A standard CT specimen was then cut out of the bar stock. The machined specimen 
was provided with a 450 side groove. Based on the overall dimensions provided in [4], 
dimensions of a typical specimen are: width (W ) = 26.5 mm, nominal thickness ( B ) = 6 mm, 
reduced thickness near the weld ( CB ) = 4.6 mm and pre-crack length to specimen width ratio 
( /a W ) = 0.50.  
 
Before the actual testing pre-cracking was appropriately done ahead of the machined notch. 
Specimens were then kept in hydrogen bath for charging for 29 days to reach a uniform 
hydrogen concentration of 230 ppm (by weight) and tested at loading rates of 0.4 and 0.04 
mm/min [4]. The J  integral ( J ) vs crack extension ( a∆ ) curves are reproduced in Fig. 2. 
These clearly shows that hydrogen reduces the fracture initiation toughness as well as the 
slope of crack growth resistance curve significantly. Fracture initiation toughness ( QJ ) 
dropped by more than 53 % (Fig. 2) for the specified pre-charging in comparison with charge-
free specimens [4].  

 
Figure 2.  J vs. ∆a curves for 21-6-9/21-6-9 GTA weld [4] 

3. Finite Element (FE) Model 
 
3.1 CT specimen geometry and model 
 
Only one half of the specimen is considered for analysis. Figs. 3, 4 and 5 shows the details of 
three geometries of FZ, HAZ and BM considered for the simulation. Fig. 3 considers a 
quadrilateral FZ where as Figs. 4 and 5 consider respectively a rectangular and triangular 
fusion zone. The dimensions of the three zones were approximated from the photograph of the 
specimen (Fig. 1(a)) using a plot digitizer software. The fusion and heat affected zones exhibit 
very different mechanical properties than that of the base metal. For example, the fusion zone 
exhibits a typical cast structure while heat affected zone exhibits a heat-treated structure 
involving phase transformation, recrystallization and grain growth. The BM and FZ have 
yields strength ( Yσ ) of 485 MPa and 675 MPa respectively [12]. Young’s modulus ( E ) of the 
two materials is 196.6 GPa and the Poisson’s ratio is 0.3 [4]. Over the HAZ, as mentioned 
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earlier, the material properties are assumed to vary linearly from Yσ = 485 MPa at the 

interface of HAZ and BM to Yσ = 675 MPa at the interface of FZ and HAZ. 

 
 

 

 
All dimensions are in mm 

Figure 3. Quadrilateral FZ dimensions 
 
 

 
All dimensions are in mm 

Figure 4. Rectangular FZ dimensions 
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3.2 TSL parameters (T0, δ0) 

In the present analysis the TSL 
employed is similar to the one used by 
Raykar et al. [13] and Scheider et al. 
[14]. This type of TSL introduces 
flexibility as the TSL shape can be 
varied easily by changing parameters 

1δ and 2δ (Fig. 6). The two important 
TSL parameters, traction 0( )T and critical 
separation displacement 0( ),δ were 
settled by analyzing the case of crack 
propagation through the quadrilateral FZ 
without any hydrogen charging and 
comparing the predicted J vs. ∆a 
variations with the corresponding 
experimental data (Fig. 2). The analysis 
under IHAC condition was done by replacing 0T by 0 (1 ).T Cµ− Actual traction separation 
variation for uncharged and charged cases are shown schematically in Fig. 6. The exact form 
of TSL is given below.  
 

2

1
0 0

0 1 2

3 2
0 0

2 0
0 2 0 2

2 ,

(1 ) 1,

2 3 ,

T T C

δ δ δ δδ δ

µ δ δ δ

δ δ δ δ δ δ δδ δ δ δ

 
               

 
 
 
 
 

    
    
        

− <

= − < ≤

− −
− < ≤− −

                       (1) 

 
All dimensions are in mm 

Figure 5. Triangular FZ dimensions  
 

 
Figure 6. Traction separation law for 

cohesive element 
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As can be seen from this equation, the term µC affects the cohesive strength (T). The 
reduction factor µ in the cohesive strength is considered constant for a particular loading rate. 
It is settled by comparing the predicted J  vs. ∆avariations with the corresponding 
experimental values for hydrogen charged specimens. µ=0 corresponds to testing under 
charge-free conditions. The hydrogen concentration (C) in Eqn. (1) is not constant for a given 
loading rate; it varies with time at any node of a cohesive element.  
 

3.3 Mesh size determination 

The specimen was discretized in such a way that top layer (Fig. 7) consists of cohesive 
elements of zero thickness. These elements are placed along the crack propagation direction 
as shown. Just below these elements, there are few layers of refined continuum elements; rest 
of the specimen have comparatively coarser mesh. The mesh size near the crack tip was fine 
enough to capture the stress distribution accurately around the crack tip.  
 
The side groove was accommodated by considering a 3-step variation of thickness (Fig. 3) of 
normal elements immediately below the cohesive element. The depth of the top two layers is 
0.145 mm each and their widths are 4.6 mm and 5.3 mm respectively. The cohesive element 
width is therefore 4.6 mm. The size of continuum and cohesive elements along the crack 
propagation direction were arrived at by trial and error by comparison of predicted and 
experimental J  vs. ∆adiagrams for charge free specimens for loading rate of 0.4 mm/min 
(Fig. 7). 

 

 
 

Figure 7. Mesh discretization of CT specimen 
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Case studies were performed by considering various combination of sizes for cohesive and 
continuum elements (Figs. 8, 9). Continuum elements are 4 noded quadrilateral plane stress 
elements (CPS4 of ABAQUS® software). Cohesive elements are 4 noded linear elements 
(COH2D4 of ABAQUS® software). From Figs. 8 and 9, it is observed that the optimum size 
of continuum and cohesive elements are 0.1 mm and 0.02 mm respectively. 
 

 
Figure 8. J vs. ∆a variation for continuum element size=0.1 mm and  

variable cohesive element sizes 
 
 

 
Figure 9. J vs. ∆a variation for cohesive element size=0.02 mm and 

variable continuum element size 
 

4. Analysis of hydrogen charged specimens 
 
When a charged specimen is tested, hydrogen concentration keeps changing near the crack tip 
because there is mobility of hydrogen atoms towards the location of high stress concentration. 
The equation governing this movement was first given by Sofronis and McMeeking [15] in 
the form given below. 
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22

2 2 0,h hL L H L H L
eff eff eff

C C V C V CD D D
t x RT x x RT x

σ σ∂ ∂∂ ∂ ∂
= − − =

∂ ∂ ∂ ∂ ∂
                         (2) 

where x is the distance from the crack tip along the crack path, hσ is hydrostatic 

stress. ,R T and effD are the universal gas constant, absolute temperature, effective diffusivity 

of hydrogen respectively. HV (= 2×103 mm3/mol) is partial molar volume of hydrogen in the 

metal at temperature ( )T  of 300K. LC  and TC  are the number of hydrogen atoms per unit 
volume present in the lattice and trap sites respectively. 
 

LC = .LL Nθ β β denotes number of normal interstitial lattice sites (NILS) per solvent atom, Lθ  

denotes the fraction of the NILS occupied by lattice hydrogen atom and LN is the number of 

solvent lattice atoms per unit volume. Parameters β  and LN  are constant for a given 

lattice; β  is taken as 1. Similarly TC  can be expressed as .TT Nθ α α signifies number of 

hydrogen atoms per trap, Tθ  is trap occupancy and TN  is number of traps per unit lattice 

volume [4].α is taken as 10. TC  is related to LC  by Oriani’s law [16] as follows.  
 

.

.
,

1
.

T
tr L

L
T

tr
L

L

NK C
N

C
K C
N

α
β

β

 
 
 =
 

+  
 

                             (3) 

where .
BE

RT
trK e= trK is trap equilibrium constant which depends upon the trap binding 

energy ( )BE for hydrogen atoms and absolute temperature ( ).T When BE  is small, the trap is 
called as reversible trap; this type of trap sites releases hydrogen and causes more 
damage. BE = 60 kJ is considered as the upper limit for binding energy for reversible trap 

sites. BE  and T for 21-6-9 austenitic stainless steel are given as 9.65 kJ/mol and 298K 
respectively [3].  
 

TN  is dependent upon plastic strain ( ).pε  The relation between TN  and pε is given by 

McMeeking [15] and Krom et al. [17] as follows.  
5.5

log 23.26 2.33 ,p
TN e

e−
= −                                          (4)      

,A
L

M

NN
V

= (5) 

where AN  is the Avogadro’s number (6.023×1023) and MV is the molar volume of the host 

lattice (7.116×10-6 m3/mol). The effective diffusivity ( )effD  is given by Sofronis and 

McMeeking [15]. 
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= ,
(1- )
L

eff L
L T T

CD D
C C θ+

                                                 (6) 

where LD is the lattice diffusivity of hydrogen atoms and .TO
T

T

C
N

θ
α

=  In the present analysis 

total hydrogen concentration is normalized as follows.  
 

,L T

LO TO

C CC
C C

+
=

+
                                                          (7) 

where 0LC  and 0TC  are stress free equilibrium solubility of hydrogen in iron at 300K. Value 
of 0LC  is taken as 2.0845×1021 atoms/m3 [15]. 0TC  is obtained through Eqn. (3) as 2.203×1017 

atoms/m3. Further, the initial hydrogen concentration has been taken to be equal to specified 
concentration 0LC  throughout the domain.  
Based on the observation that, for a two dimensional problem of a homogenous material, 1-D 
analysis of diffusion along the crack line is quite sufficient [13][14], 1-D form of diffusion 
Eqn. (2) was solved by finite difference method. In the present study results are obtained by 
considering the diffusivity to be constant in one case and variable in the other. 
 
4.1 Solution of 1-D diffusion considering constant diffusivity (Deff) 
 
One dimensional form of hydrogen diffusion equation with the inclusion of hydrostatic stress 

hσ  is obtained from Eqn. (2) as follows [13].  
 

 
22

2 2 ,x hL L L
eff H H L

C C CD E E C
t x x x x

σ σ∂ ∂∂ ∂ ∂
= − −

∂ ∂ ∂ ∂ ∂
                                     (8) 

where x  is measured from crack tip and .eff H
H

D V
E

RT
=  

This equation was solved numerically using Crank-Nicholson scheme (central difference 
method) along the line of Raykar et al. [13]. Let ( )n

L jC  be the magnitude of LC at time step n; j 
= 1, 2, 3… are the grid points; t∆  is the time interval between ( n +1) th   and n th step. x∆ is 
equal to width (0.02 mm) of cohesive elements. Total number of grid points considered is 
131, i.e., maximum value of j=131. The lattice concentration of hydrogen at a given location 
( )( )n

L jC  and at the two time steps n and n +1 are related. 
1

1 1 1
-1 1 -1 1

2

1 1
1 -1 1 -1 1 -1

( ) - ( )

( ) - 2( ) ( ) ( ) - 2( ) ( )
2

( ) - ( ) ( ) - ( ) ( ) - ( )
-

4 2

(
-

n n
L j L j

n n n n n n
L j L j L j L j L j L j

eff

n n n n n n
L j L j L j L j h j h j

H

L
H

C C
t

C C C C C C
D

x

C C C C
E

x x

C
E

σ σ

+

+ + +
+ +

+ +
+ + +

=
D

    + + +    
 D  
    +       
  DD     

1
1 -1

2

) ( ) ( ) - 2( ) ( )
2 ( )

n n n n n
j L j h j h j h jC

x
σ σ σ+

+  + +  
  D    

(9) 

This relation is obtained through the Crank-Nicholson scheme. 
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With the following substitutions, 

 1 22
effD t

x
α

D
=

D
                                                              (10) 

 1 1 12 (( ) ( ) )
8

n nH
h j h j

E t
x

β σ σ+ −

∆
= −

∆
                                               (11) 

1 1 12 (( ) 2( ) ( ) )
2

n n nH
h j h j h j

E t
x

γ σ σ σ− +

∆
= − +

∆
                                         (12) 

the following simplified form is obtained from Eqn. (9). 
 

1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

( )( ) (1 2 )( ) ( )( )

( )( ) (1 2 )( ) ( )( )

n n n
L j L j L j

n n n
L j L j L j

C C C

C C C

α β α γ α β

α β α γ α β

+ + +
+ −

+ −

− − + + − + − +

= + + − + + −
            (13) 

 
Eqn. (13) can be applied at a particular time step at all the grid points to get their hydrogen 

concentration at the time step ( n +1). This process is repeated as many times as required in a 

case study. These hydrogen concentrations were utilized to amend the reduction in strength of 

material due to variations in hydrogen concentration and hydrostatic stress. This was adopted 

in the crack propagation analysis through ABAQUS® subroutine USDFLD. 

 

4.2 Solution of 1-D diffusion equation considering variable diffusivity (Deff) 

 In this case the term 
effD is not constant but varies with change in level of LC and TC  with 

time. This effect is introduced in the model by substituting  effD in Eqn. (9) as follows. 

 
1

1

1

1

.( )

.( )
(C ) .(1 )

1 .( )

n
L L j

eff
ntr tr T

L j
n L

L j T
ntr

L j
T

D C
D K N C

N
K C
N

α
β θ

β

+

+

+

+

=

+ −
+

                                     (14) 

 

After substitution of Eqn. (14), Eqn. (9) gives rise to following non-linear relation in 1( ) .n
L jC +  

This was solved by Newton-Rhapson method following Kaiser et al. [18]. 
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 
     + −  −      
   DD       
 

  + − +   −    D                  (15)    
 
4.3 Boundary and initial conditions for diffusion analysis 
 
For the case of internal hydrogen assisted cracking (IHAC), it is assumed that the hydrogen is 

not allowed to diffuse out of the material (i.e. hydrogen flux is zero at crack tip and end of 

ligament). As the temperature of the specimen increases, the tendency of hydrogen to diffuse 

out of the specimen increases. To prevent hydrogen egress from the CT specimen, the 

temperature was maintained at 250 K after hydrogen pre-charging [4]. In the present model 

the boundary conditions employed are as follows. Both at the crack tip and ligament end, flux 

( ) 0.HJ =  That is,  

0,L L H
L L h

D C VD C
RT

σ∇ − ∇ =                                                 (16) 

at both the locations. 
 
For Eqn. (16) to be zero it is necessary that,at the crack tip and the end of ligament, 
 

 0,LC
x

∂  = ∂ 
(17) 

0,h

x
σ∂  = ∂ 

(18) 

 
These conditions are enforced by ensuring 0L LC C=  at the first three (i.e., j = 1, 2, 3) and last 
three consecutive grid points (i.e., j = 129, 130, 131) (Fig. 10). The end conditions on 
hydrostatic stresses (Eqn. (18)) are similarly introduced. This small adjustment is 
implemented in ABAQUS® software through a user subroutine.  
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During the initial state, the specimen is fully charged with hydrogen, i.e., at t = 0, 0L LC C=  
throughout the crack plane. For incorporating the displacement boundary conditions the 
respective top and bottom nodes are constrained such that they have same horizontal 
displacements and can exhibit separation only in the vertical direction [19]. Displacement 
loading (at the rate 0.4 mm/min) is applied at the node representing the load point. 
 

 
 

 
 

 
Figure 10. Diagrammatic representation of boundary conditions 

 
 
5. Comparison of simulation and experimental results 
 
As per ASTM E1820  J is given as follows. 

,elastic plasticJ J J= +                                                                 (19) 

where elasticJ  is represented by following equation. 
2

2(1 ) ,elastic
KJ
E

ν= − (20) 
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where E is Young’s modulus and ν is the Poisson’s ratio. K is the stress intensity factor which 
depends upon load ( E ) corresponding to a particular instant of crack extension ( a ), width of 
specimen (W ), nominal thickness ( B ) and minimum thickness ( cB ). 

1.5 2 3 4

2
  

1- 0.886  4.64  -  13.32  14.72 -  5.6c

a
P WK

BB W a a a a a
W W W W W

 + 
 =

          + +                     

(21) 

 

plasticJ  is given by following equation. 

,
( - )

p p
plastic

c

n U
J

B W a
×

=
×

(22) 

where pU  is the total plastic energy calculated from load displacement plot, pn  is a factor 

given by Clarke and Landes [20]. It depends on specimen type and varies with crack size (a) 
and width of specimen ( )W as follows. 

2 0.522 1p
an

W
 
 


+ −


=                                                       (23) 

5.1 Charge - free specimen 
 
Initially a number of iterations were performed considering various shapes of FZ. The 
analysis was done considering the loading rate of 0.4 mm/min. Fig. 11 shows comparison of 
experimental and predicted J vs. ∆a variations for three types of FZ shapes, i.e. rectangular, 
triangular and quadrilateral. The comparison is done for crack extension up to 1mm. The 
cohesive parameters are obtained comparing the predicted J  vs. ∆avariations with the 
corresponding experimental data for quadrilateral FZ are as follows: 0T = 1241 MPa and 

0 / 2δ = 0.0489 mm. Similarly for rectangular fusion zone the cohesive parameters giving best 

results are:  0T = 1231 MPa and 0 / 2δ = 0.0489 mm; for triangular fusion zone 0T = 1234 MPa 

and 0 / 2δ = 0.0489 mm. 
 
The fracture initiation toughness ( QJ ) is defined by intersection of J  resistance curve with 

0.2 mm blunting line. For charge-free specimens and loading rate of 0.4 mm/min the 
experimental fracture initiation toughness is 439 kJ/m2 [4].The corresponding predicted results 
by numerical modelling analysis are 438.31 kJ/m2, 308.03 kJ/m2 and 330.63 kJ/m2 for 
quadrilateral, rectangular and triangular FZs. This indicates errors of -0.16 %, - 29.83 % and – 
24.68 % with respect to QJ respectively. The maximum difference in the predicted results in 

the case of quadrilateral FZ is just +14.97 % at crack extension of 1 mm (Fig. 11). In the case 
of rectangular and triangular FZs, the maximum differences are – 45.07 % and – 40.08 % at 
crack extension of 1 mm. On the whole, the quadrilateral FZ gives better results. It is selected 
for the analysis of charged case.  
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Figure 11. Comparison of experimental and simulation results 

for charge free specimens 
5.2 Charged specimen 
 
The specimens with internal hydrogen assisted cracking (IHAC) were analyzed considering 
both constant diffusivity and variable diffusivity. 
 
5.2.1 Constant Diffusivity 
 
As indicated earlier, during loading, hydrogen atoms move towards the crack tip, where there 
is high stress concentration. These movements were studied. Set of Eqns. (2-22) are 
considered in the analysis. The loading rate is 0.4 mm/min as before. Three effD values were 

considered. They were calculated from lattice diffusivity ( )LD using, 

pε = 0, TN = 1.82×1022, 
17

0  2.2 1 ,0T TC C= = ´  
21

0 2.08 10 ,L LC C= = ´  
 

 
 

21

2 61 17

2.08 10
2.08 10

= ,
(1- ) (2.2 10 1.2 11 )0-

L
eff L L

L T T

CD D D
C C θ -=

+ × × ×+
×  

0.9999 L LD D= × ≈ , 
 
This indicates that effD is almost the same as LD . Analysis has been done for three trial values 
for LD , 1.2×10-2 mm2/min, 1.2×10-3 mm2/minand 1.2×10-5 mm2/min[21]. 
 
µ is varied in the range 0.2 to 0.6. The best value, based on comparison of predicted and 
experimental J  vs. ∆ais obtained as 0.28. The comparison of predicted and experimental J 
vs. ∆a for three effD is presented in Fig. 12. This shows that effD = 1.2×10-3 mm2/min gives the 
best comparison with experimental data over the later stages of crack extension. 
 

6
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Fig. 12 Comparison of experimental and simulation results 
with different Deff (mm2/min) 

 
5.2.2 Variable Diffusivity 
 
In this case diffusivity is considered to be varying with the level of local hydrogen 
concentration. This method has the advantage that it eliminates the need for iterations to 
determine effD [18]. The iterations start with initial value of effD = LD . Three LD values are 
again considered, 1.2×10-2 mm2/min, 1.2×10-3 mm2/min, 1.2×10-5 mm2/min. The finite 
difference formulation of the resulting diffusion equation leads to a set of non-linear 
simultaneous equations. These equations are solved with appropriate initial and boundary 
conditions and are linked to the crack propagation analysis through ABAQUS® (version 6.11) 
user subroutine USDFLD. Table 1 gives the comparison of J values calculated by constant 
and variable diffusivity respectively. 
 
By a suitable adjustment of the material data associated with diffusion and crack extension, 
better correlation is obtained for LD =1.2×10-5 mm2/min. A maximum difference of +19.85% 
in J is observed at ∆a =0.16 mm and the difference reduces to +1.46 % at the later stages 
(Table 1). The results further shows that, with the variable diffusivity, there is an overall 
improvement in comparison between experimental and predicted J vs. ∆a variations for 

LD =1.2×10-5 mm2/min.  
 
For charged specimens the experimental fracture initiation toughness is 100.75 kJ/m2. The 
simulation yielded 109.27 kJ/m2 for constant diffusivity ( effD = 1.2×10-3mm2/min) and 109.21 
kJ/m2 for variable diffusivity ( LD =1.2×10-5mm2/min). The crack extension (∆a) 
corresponding to fracture initiation toughness was taken as 0.27 mm [4]. 
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Table 1. Comparison of J at various stages of crack extension considering constant and variable diffusivity 
 

Constant diffusivity 
( effD = 1.2×10-3 mm2/min) 

Variable diffusivity 

( LD = 1.2×10-5 mm2/min) ( LD = 1.2×10-2 mm2/min) ( LD = 1.2×10-3 mm2/min) 
∆a 

mm 
Simulation 
J (kJ/m2) 

Experimental 
J (kJ/m2) 

%Error ∆a 
mm 

Simulation 
J (kJ/m2) 

Experimental 
J (kJ/m2) 

%Error ∆a 
mm 

Simulation 
J (kJ/m2) 

Experimental 
J (kJ/m2) 

%Error ∆a 
mm 

Simulation 
J (kJ/m2) 

Experimental 
J (kJ/m2) 

%Error 

0.16 106.30 88.66 19.89 0.16 106.26 88.66 19.85 0.16 106.20 88.66 19.78 0.16 106.29 88.66 19.88 

S0.
28 109.54 103.21 6.14 0.30 110.01 103.21 6.59 0.22 107.33 95.83 12.00 0.3 110.09 103.21 6.67 

0.48 115.65 113.69 1.73 0.48 115.35 113.69 1.46 0.30 108.71 103.21 5.33 0.38 112.46 109.50 0.35 

0.68 123.22 127.27 -3.18 0.64 121.26 124.08 -2.27 0.40 110.69 110.46 0.21 0.54 117.82 117.06 0.66 

0.80 129.65 136.34 -4.91 0.84 133.25 139.54 -4.51 0.62 115.97 130.45 -11.11 0.68 123.09 127.27 -3.29 

0.90 138.05 144.35 -4.36 0.92 142.39 146.12 -2.55 0.78 121.03 134.34 -9.91 0.8 129.51 136.34 -5.01 

0.94 147.67 147.90 -0.15 0.94 144.57 147.90 -2.25 0.90 125.65 144.35 -12.95 0.9 140.02 144.35 -3.00 

1 162.39 153.23 5.98 1 161.09 153.23 5.13 1 131.88 153.23 -19.93 1 159.55 153.23 4.12 
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The distribution of hydrogen concentration and hydrostatic stress ( )hσ  ahead of the crack tip 
over a span along the crack line is presented (Fig. 13) at different stages of crack extension. 
The concentration of hydrogen (Fig. 13) reaches the highest value at a small distance from 
the instantaneous crack tip. This is very similar to a case reported earlier for hydrogen 
environment assisted cracking for a homogenous material [7]. The hydrostatic stress has the 
highest value close to the point of maximum .LC This is because near the point of maximum 
hydrostatic stress, the lattice opens up the highest and has the maximum room for 
accommodation of hydrogen atoms. Thereby the hydrogen concentration becomes the 
maximum at this location [22].  
 

 
 

Figure 13. Variation of hydrogen concentrationand hydrostatic stress ahead  
of crack tip for constant Deff (1.2×10-3 mm2/min) 

 
5.3 Results for loading rate 0.04 mm/min 
 
Similar analysis was also carried out for loading rate of 0.04 mm/min. The quadrilateral 
fusion zone was again considered and iterations were performed to fix cohesive strength 
reduction factor (µ). µ is obtained as 0.36. The simulation was carried out by considering 
variable diffusivity LD =1.2×10-5 mm2/min. The analysis yielded fracture initiation toughness 
78.92 kJ/m2 compared with the experimental value 77.4 kJ/m2at ∆a = 0.25 mm.  
 
6. Conclusions 
 
In this study, an attempt has been made to examine the applicability of cohesive zone 
modelling to a heterogeneous specimen consisting of weld joint. The comparison (Table 1) 
indicates that a good prediction for J vs. ∆a variation for the case of IHAC is possible with 
the help of CZM technique. The CZM parameters T0 and δ0can be settled through combined 
numerical-experimental study. The same parameters can be employed for situations with 
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hydrogen charging. However, the cohesive strength reduction factor µ is required to be 
adjusted. This can be done through the combined numerical-experimental study. 
 
For charged specimens, analysis has been carried out considering both constant and variable 
diffusivity. There is an overall reduction in error when the analysis is done considering the 
variable diffusivity. Further, there is better agreement between the experimental and 
predicted fracture initiation toughnesses for the two loading rates.  
 
Out of the three shapes of weld fusion zones examined, i.e. triangular, rectangular and 
quadrilateral, the quadrilateral fusion zone gives the best comparison with experimental 
results. 
 
References 

[1] Lippold, J. C., and Savage, W. F. (1982) Solidification of austenitic stainless steel weldments: Part III-
the effect of solidification behavior on hot cracking susceptibility, Welding J., 61(12), 388. 

[2] Brooks and West, A. J. (1981) Hydrogen Induced Ductility Losses in Austenitic Stainless Steel Welds, 
Metallurgical Transactions A, 12A, 213-223 

[3] Kumar, Padhy Girish, and K.O.M.I.Z.O. Yu-ichi. (2013) Diffusible hydrogen in steel weldments, 
Transactions of JWRI, 42, 39-62. 

[4] Somerday, B.P., Dadfarnia, M., Balch, D.K., Nibur, K.A., Cadden, C.H. and Sofronis, P. (2009) 
Hydrogen-Assisted crack propagation in austenitic stainless steel fusion welds. Metallurgical and 
Materials Transactions A: Physical Metallurgy and Materials Science, 40, pp.2350–2362. 

[5] Jackson, H.F., Marchi, C.S., Balch, D.K. (2013) Effect of low temperature on hydrogen-assisted crack 
propagation in 304L/308L austenitic stainless steel fusion welds, Corrosion Science77, pp.210–221. 

[6] Scheider, I., Pfuff, M. and Dietzel, W. (2008) Simulation of hydrogen assisted stress corrosion cracking 
using the cohesive model. Engineering Fracture Mechanics, 75, pp.4283–4291. 

[7] Raykar, N.R., Maiti, S.K. and Singh Raman, R.K. (2011) Modelling of mode-I stable crack growth 
under hydrogen assisted stress corrosion cracking, Engineering Fracture Mechanics, 78(18), pp.3153–
3165. 

[8] Brocks, Wolfgang, Rainer Falkenberg, and Ingo Scheider. (2012) Coupling aspects in the simulation of 
hydrogen-induced stress-corrosion cracking. Procedia IUTAM 3, 11-24. 

[9] Nibur, K.A., Somerday, B.P., Balch, D.K., and SanMarchi, C. (2009) The role of localized deformation 
in hydrogen-assisted crack propagation in 21Cr–6Ni–9Mn stainless steel, Acta Mater., vol. 57, pp. 
3795–3809. 

[10] Fassel, V. (1959) Spectrographic Determination of Oxygen, Nitrogen and Hydrogen in Metals. Bunseki 
kagaku, 8(5), pp.324–335. 

[11] Gangloff, R. P. (2003)  Hydrogen assisted cracking in high strength alloys in Comprehensive Structural 
Integrity, Environmentally-Assisted Fracture. Elsevier, Oxford. Vol. 6. 

[12] Alexander, D. J. and G. M. Goodwin. (1992) Thick-section weldments in 21-6-9 and 316LN stainless 
steel for fusion energy applications, Materials. Springer US, 101-107. 

[13] Raykar, N. R., Maiti, S. K. and Singh, R.K. (2011) Modelling of mode-I stable crack growth under 
hydrogen assisted stress corrosion cracking, Engineering Fracture Mechanics 78(18), 3153-3165. 

[14] Scheider, I., Pfuff.  M., and Dietzel W. (2008) Simulation of hydrogen assisted stress corrosion cracking 
using the cohesive model. Engineering Fracture Mechanics 75(15), 4283-4291. 

[15] Sofronis, P., and McMeeking, R. M. (1989) Numerical analysis of hydrogen transport near a blunting 
crack tip. Journal of the Mechanics and Physics of Solids 37(3) 317-350. 

[16] Oriani, R. A. (1970) The diffusion and trapping of hydrogen in steel. Acta Metallurgica18, 147–157. 
[17] Krom, A. H. M., Koers, W. J., and Bakker A. (1999) Hydrogen transport near a blunting crack 

tip. Journal of the Mechanics and Physics of Solids 47(4), 971-992. 
[18] Kaiser, K., Raykar, N.R. (2015)Modelling of Hydrogen Assisted Stress Corrosion Cracking with 

Hydrogen Concentration Dependent Diffusivity, M. Tech dissertation, department of mechanical 
engineering, SP COE, India. 

[19] Brocks, Wolfgang, Diya Arafah, and Mauro Madia. (2013) Exploiting Symmetries of FE Models and 
Application to Cohesive Elements. Milano/Kiel. 

[20] Clarke, G. A., and Landes J. D. (1979) Evaluation of the J Integral for the Compact Specimen. Journal 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1054



 

of Testing and Evaluation 7(5), 264-269. 
[21] F.R. Coe. (1973) Welding Steels Without Hydrogen Cracking, Welding Institute, Cambridge, England 
[22] Geneon, Steven A. (1988) Hydrogen assisted cracking of high strength steel welds. No, MTL-TR-88-12. 

Army Lab Command Watertown Ma Materials Technology Lab. 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1055



Flow-excited vibration of a large-scale Axial-flow pump station with steel 

flow passageway based on FSI 

†*H.Y. Zhang
1
, L.J. Zhang

1
, and L.J. Zhao

1, 2 

1
 College of water conservancy and hydropower engineering, Hohai University, China. 

2
 Zhejiang design institute of water conservancy & hydroelectric power, China. 

*Presenting author: zhanghanyun@hhu.edu.cn  

†Corresponding author: zhanghanyun@hhu.edu.cn 

Abstract:  

Instead of the traditional concrete passageway, a new type structure of pump station with steel 

passageway is proposed for rapid construction and elimination temperature cracks. However, 

flow-excited vibration in the operation process of the pump station is still a crucial issue in 

design. A numerical model considering the interactions of the 3-dimensional (3D) unsteady 

turbulent flow with the concrete structure and steel passageway was established. Vibration 

characteristics and transient vibration for a pump station were analyzed based on 

fluid-structure interaction (FSI) method to predict the vibration responses of the concrete 

structure and steel passageway, and assess the vibration safety of the pump station structure 

system. 

Keywords: Axial-flow pump houses; Steel flow passageways; 3D unsteady turbulent flow; 

Fluid structure interaction; Flow-excited vibration 

Introduction 

Vibration is a common problem in the operation process of the pump station. This long-term 

vibration has influence on the durability of equipment and the health of staff. Serious 

vibration could affect the safety and reliability of the pump station [1]. As a result, for the 

large pump stations with steel passageways, a new type structure of pump station, it is very 

crucial to predict and assess the vibration response and safety of the pump station structure 

including steel passageways. 

Although a lot of researches on the flow-excited vibration analysis of the pump were carried, 

fluid-structure interaction was usually not taken into account, in particular, the steel 

passageway. In this study, in order to obtain the vibration responses occurred in the large 

axial-flow pump station, a numerical model considering the interactions of the 3D unsteady 

turbulent flow with the concrete structure and steel passageway was established based on 

ADINA. The impressible continuity equation, reynolds average Navier-Stokes equation and 

k   turbulent equations were used to simulate the 3D whole passageway unsteady 

turbulent flow of the axial-flow pump of steel passageway pump station [2]. The FSI 

boundary in the interface of fluid and structure is used for the energy transition between them 

[3]. The vibration characteristics and transient vibration for a pump station were analyzed 

based on fluid-structure interaction (FSI) method to predict the vibration responses of the 
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concrete structure and steel passageway, and assess the vibration safety of the pump station 

structure system. 

Description of the numerical model 

A designing pump station in East China was investigated. The typical section of the pump 

station is shown in Fig. 1. The main parameters are given in Table 1. A FSI model of pump 

station structure-steel passageway-fluid was established. The structural features and design 

proposal of the pump station (including concrete water inlet and outlet, concrete pump house 

structure, concrete supports, steel passageway and stiffening ribs) were simulated. The whole 

finite element model is shown in Fig. 2, where the x-axis of the coordinate system was 

vertical to the main stream, the y-axis was along the main stream, and the z-axis was upward 

vertically. The original point was in the impeller center. The concrete structure was discretized 

into 3D-solid elements; the steel passageway was discretized into shell elements; the 

stiffening ribs in the steel passageway was discretized into beam elements; the water in 

passageway was discretized into 3D-fluid elements; the upper structure and pump equipment 

were considered as added masses. The whole FEM model was totally discretized into 234120 

elements, including 43488 3D-solid elements, 2730 shell elements, 2430 beam elements and 

185472 3D- fluid elements. The normal constraint boundary was applied in the bottom and 

the wall vertical to the main stream of the concrete structure. In vibration analysis, single unit 

was investigated to improve the computational efficiency, as shown in Fig. 3 and 4. The finite 

element meshes of the steel passageway, stiffening ribs and water in passageway are shown in 

Fig. 5-7, respectively. The material parameters of the concrete structure, steel passageway and 

stiffening ribs are shown in Table 2. The dynamic elastic modulus of concrete was increased 

by 30%, and the Rayleigh damping was adopted with the damping ratio of 5% in the transient 

analysis. 

 
 

Figure 1. The typical section of the pump station Figure 2. Whole finite element model 
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Figure 3. Finite element model of 

single unit 
Figure 4. Cross-section of the mesh 

 

  
Figure 5. Finite element mesh of the steel 

passageway 

Figure 6. Finite element mesh of the 

stiffening ribs 

 

 

Figure 7. Mesh of the fluid 
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Table 1. Main parameters of the investigated pump station 

Parameters Qd Hd nd 
Inlet 

width 

Inlet 

height 

Outlet 

width 

Outlet 

height 

Value 
86 

m
3
/s 

5.93 

m 

214.3 

rpm 
4.505 m 3.678 m 5.5 m 2.5 m 

Table 2. Material parameters 

 Density (kg/m
3
) Elastic modulus (GPa) Poisson’s ratio 

Concrete structure 2400 28 0.167 

Steel passageway 7800 210 0.3 

Stiffening ribs 7800 210 0.3 

Cast iron casing of pump 7800 210 0.3 

Vibration characteristics analysis 

The vibration characteristics of the whole structure system in completion and operating 

conditions were analyzed. In operating condition, the fluid in the steel passageway was 

simulated by potential-based fluid elements. The first 15 order frequencies and the different 

main vibration positions are listed in Table 3. 

Comparison of two conditions  

The results indicate that the water in the passageway has obvious effects on the vibration 

characteristics of the whole pump station system. All-order frequencies of the whole pump 

station system in operating condition are smaller than that in completion condition. Taking the 

fundamental frequency as an example, the fundamental frequency is 7.17 Hz in the operating 

condition, which is decreasing by 56.8 % compared with that in completion condition. The 

vibration modes of two conditions are different. For instance, the primary vibration position is 

the concrete structure in the first mode of vibration in completion condition, whereas the 

primary vibration position is the steel passageway in the first mode of vibration in operating 

condition. For the first mode of vibration, in operating condition the whole steel passageway 

vibrates along the y-axis, and inlet of the passageway vibrates along the z-axis upward 

vertically, whereas in completion condition the whole concrete structure vibrates along the 

y-axis. The first several modes of vibration are shown in Fig.8 
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Table 3. The first 15 frequencies in two conditions  

No. 

Completion state  Operating state 

Frequency 

(Hz) 

Primary vibration 

position 

Frequency 

(Hz) 

Primary vibration 

position 

1 16.60 Concrete structure 7.17 Steel passageway 

2 32.72 Steel passageway 15.21 Concrete structure 

3 36.97 Steel passageway 17.06 Steel passageway 

4 38.30 Steel passageway 18.61 Steel passageway 

5 42.93 Concrete structure 20.46 Steel passageway 

6 44.97 Steel passageway 22.41 Steel passageway 

7 46.25 Steel passageway 23.75 Steel passageway 

8 49.82 Concrete structure 24.10 Concrete structure 

9 50.92 Steel passageway 25.09 Steel passageway 

10 56.25 Concrete structure 27.00 Steel passageway 

11 56.80 Concrete structure 27.39 Steel passageway 

12 57.49 Steel passageway 30.00 Steel passageway 

13 58.10 Steel passageway 31.45 Concrete structure 

14 59.98 Concrete structure 33.61 Steel passageway 

15 62.59 Concrete structure 35.11 Concrete structure 

 

  

(a) The 1
st
 mode of vibration (b) The 3

rd
 mode of vibration 
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(c) The 4
th 

mode of vibration (d) The 5
th

 mode of vibration 

  

(e) The 6
th

 mode of vibration (f) The 7
th

 mode of vibration 

Figure 8. Vibration modes of the steel passageway 

Resonance check 

The resonance of equipment and structures must be avoided in operating condition. The 

interval of the frequency between the structure and exciting vibration frequency should be 

greater than 20~30% in operating condition according to pump station design specification 

(GB50265-2010).The expression is as follow [4]: 

 0
100% 20% ~ 30%

i i

i

f f

f


   or

    0

0

1 0 0 % 2 0 % ~ 3 0 %
i i

i

f f

f


          (1)

 

Where, 0if  is the i
th

 order vibration frequency of the structure, if  
is the frequencies of 

vibration sources of various equipment. 

The vibration of pump station structures mainly results from machines, electromagnetism and 

hydraulic vibration which have relation to rotation frequency of the pump and close to its 
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rotational frequency. In this project, the rotational frequency of the pump is 3.575 Hz. The 

±20% of the rotational frequency ranges between 2.86 and 4.29 Hz. The frequency of the 

whole structure system is beyond the range both in completion and operating conditions. 

Transient vibration analysis  

Numerical method 

The unsteady flow in the passageway was simulated using the RNG  model [5]. The 

pressure-velocity coupling was performed using the SIMPLEC algorithm. Second-order 

format was used for pressure term [6]. 5000 time steps were picked out, with time step as 

0.01s in transient analysis. 

There were three combinations of boundary condition used in pump flow analysis. (1) Inlet: 

according to the previous research, the predominant frequency of the pulsating pressure in 

passageway is close to the rotational frequency and unevenness of the pulsating pressure is in 

the range of 16%. Therefore, a simple harmonic velocity, , with =0.865 

m/s, pulsation amplitude of 10% and pulsation frequency being equal to rotational frequency, 

was specified at the inlet[7] [8][9][10]. A averaged velocity, =0.865m/s, is obtained based 

on designed single unit flow 14.3 m
3
/s and area of the inlet of the pump station. (2) The vent 

was set as outflow boundary condition [11] [12]. (3) The SFI boundary was set in interface 

between the steel passageway and fluid.  

Concrete structure vibration 

The vibration amplitude of the displacement and stress of key points in the concrete structure 

are listed in Table 4 and 5. The positions of the key points were shown in Fig. 9. 

 

Figure 9. Key points in the concrete structure 

k 

(1 0.1sin )v v wt  v

v
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The vibration displacement of key points is tiny. The maximum X-direction vibration 

amplitude of displacement is 0.019 um in the concrete supports in the elbow of the 

passageway. The maximum Y-direction and Z-direction vibration amplitude of displacement 

is 2.311 and 3.046 um respectively, and both in the joint between the concrete inlet and steel 

passageway. The vibration amplitude of stress of all key points is much smaller than strength 

of the concrete, which is not the controlling factor in the concrete structure design. 

Table 4. The amplitude of the vibration displacement of the key points in the concrete 

structure in operating condition（μm） 

Key point 
Amplitude of vibration displacement 

X-direction Y-direction Z-direction 

A 0.004 1.390 0.176 

B 0.002 1.064 0.199 

C 0.002 2.311 3.046 

D 0.004 0.945 0.038 

E 0.019 0.864 0.004 

Table 5. The amplitude of the vibration stress of the key points in the concrete structure 

in operating condition（kPa） 

Key points 

Normal stress amplitude Amplitude of 

the first 

principal 

stress 

Amplitude of 

the third 

principal 

stress 

   

A 1.327 0.385 3.245 2.409 1.326 

B 1.388 0.349 4.094 1.388 4.064 

C 4.391 0.521 10.492 1.921 11.991 

D 0.176 0.200 0.033 0.598 0.448 

E 1.919 0.851 0.226 1.946 0.703 

Steel passageway vibration 

The vibration amplitude of the displacement and stress of key points in the steel passageway 

were list in Table 6 -8. The positions of the key points were shown in Fig. 10. 

The vibration amplitude of displacements of key points in the steel passageway is also tiny. 

x y
z
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The maximum X-direction vibration amplitude of displacement is 31.520 um in Point 2 in the 

side wall of the inlet segment of the passageway. The maximum Y-direction and Z-direction 

vibration amplitude of displacement are 53.215 and 176.435 um respectively, and both in 

Point 1 in the top surface of the inlet segment of the passageway. The vibration amplitude of 

stress of all key points is much smaller than strength of the steel, which is not the controlling 

factor in the steel passage design. 

 

Figure 10. Key points in the steel passageway 

Table 6. The amplitude of the vibration displacement of the key points in steel 

passageway in operating condition（μm） 

Key point 
Amplitude of vibration displacement 

X-direction Y-direction Z-direction 

1 0.008 53.215 176.435 

2 31.520 3.879 0.606 

3 0.013 12.045 1.282 

4 0.014 4.382 0.755 

5 0.040 1.192 0.371 

6 0.024 1.654 2.103 

7 0.012 1.389 6.322 

8 4.518 1.394 0.388 

9 0.014 1.106 7.791 
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Table 7. The amplitude of the normal stress of the key points in steel passageway in 

operating condition（kPa) 

Key point 

Normal stress amplitude 

   

1 298.000 282.660 19.909 

2 1.958 301.050 398.900 

3 358.400 2.268 33.386 

4 767.900 4.967 46.750 

5 17.750 18.332 6.875 

6 69.215 37.165 9.418 

7 120.634 58.260 0.005 

8 1.598 21.142 57.662 

9 140.634 75.242 0.009 

Table 8. The amplitude of the shear stress and principal stress of the key points in steel 

passageway in operating condition（kPa) 

Key point 

Shear stress amplitude Amplitude 

of the first 

principal 

stress 

Amplitude 

of the third 

principal 

stress 

   

1 0.486 0.165 75.480 302.850 0.230 

2 24.329 1.816 47.720 418.350 0.019 

3 0.066 0.969 0.566 33.317 358.400 

4 0.014 0.197 2.738 46.910 767.900 

5 0.190 0.091 11.331 25.247 17.750 

6 0.478 0.288 18.067 0.710 69.220 

7 0.337 0.172 0.594 58.287 0.095 

8 3.472 4.582 15.371 46.237 39.900 

9 0.238 0.016 0.424 0.429 140.631 

 

x y
z

xy
xz yz
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Vibration safety assessment 

At present, there is no explicit control standard for the vibration checking of pump station 

structures in China. The vibration of pump station structures is long-term continuous forced 

vibration, which is similar to the vibration of the hydropower house. Major research focused 

on the vibration control standard for hydropower house. The suggested vibration control 

standard for hydropower house is proposed, as shown in Table 9 [5]. The vibration of this 

pump station is assessed based on the standard for hydropower house. 

Table 9. Suggested vibration control standard for hydropower house  

Structure member 

Vibration 

displacement 

(mm) 

Vibration velocity  

(mm/s) 

Acceleration 

(m/s
2
) 

Vertical Horizontal Vertical Horizontal 

Floor 

As general structure 0.2 5.0 1.0 

As instrument 

foundation 
0.01 1.5  

Human health  0.2 3.2 5.0 0.4 1.0 

Solid wall 0.2 10.0 1.0 

Generator pier 0.2 5.0 1.0 

The maximum vibration amplitude of the concrete structure and steel passageway including 

displacement, velocity and acceleration are list in Table 10-12. The Envelope diagrams of 

vibration responses are shown in Fig. 11 to 14. 

Compared the data in Table 10-12 with the suggested standard in Table 9, the amplitude of 

vibration displacement of whole pump station system is not large. The amplitude of vibration 

displacement of concrete structure belongs to the allowed value listed in Table 9. The 

amplitude of vibration displacement in top surface of the inlet section of the steel passageway 

is 0.176mm. It should be relieved by strengthening stiffening ribs. The vibration velocity of 

the concrete structure belongs to the allowed value listed in Table 9. The maximum 

Z-direction vibration velocity of the steel passageway is 3.765mm/s, exceeding the index of 

human health (3.2mm/s). There is no office area near the passageway, so it is available. The 

vibration acceleration of the concrete structure and steel passageway belong to the allowed 

value listed in Table 9. 
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(a) X-direction (b) Y-direction (c) Z-direction 

Figure 11. Envelope diagram of the vibration velocity of the concrete structure (m/s) 

   

(a) X-direction (b) Y-direction (c) Z-direction 

Figure 12. Envelope diagram of the vibration acceleration of the concrete structure 

(m/s
2
) 

 

   

(a) X-direction (b) Y-direction (c) Z-direction 

Figure 13. Envelope diagram of the vibration velocity of the steel passageway (m/s) 
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(a) X-direction (b) Y-direction (c) Z-direction 

Figure 14. Envelope diagram of the vibration acceleration of the steel passageway (m/s
2
) 

Table. 10 The maximum vibration amplitude of displacement（μm） 

 X-direction Y-direction Z-direction 

Concrete structure 0.019 2.311 3.046 

Steel passageway 31.520 53.215 176.435 

Table. 11 The maximum vibration velocity（mm/s） 

 X-direction Y-direction Z-direction 

Concrete structure 0.010 0.052 0.066 

Steel passageway 0.067 1.139 3.765 

Table. 12 The maximum vibration acceleration（m/s
2） 

 X-direction Y-direction Z-direction 

Concrete structure 0.0002 0.001 0.001 

Steel passageway 0.015 0.025 0.085 

Conclusion 

(1) The water filling in the passageway has obvious effects on the vibration characteristics of 

the whole pump station system. The fluid-structure interaction is essential factor in resonance 

check of the pump station structure system. 

(2) The flow-excited vibration of the pump station is tiny and high frequency. The joint 

between the concrete inlet and steel passageway and the top surface of the inlet of the steel 

passageway are weakness positions where should be strengthened in design. 

(3) A FSI model considering the interactions of the concrete structure with steel passageway, 

fluid and pump machinery should be established and investigated. 
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Abstract 
In order to optimize food drying operations, a good understanding on the related transport 
phenomena in food cellular structure is necessary. With that intention, a three-dimensional (3-
D) numerical model was developed to better investigate the morphological changes and 
related solid and fluid dynamics of single parenchyma cells of apple, carrot and grape during 
drying. This numerical model was developed by coupling a meshfree particle based method: 
Smoothed Particle Hydrodynamics (SPH) with a Discrete Element Method (DEM). Compared 
to conventional grid-based numerical modelling techniques such as Finite Element Methods 
(FEM) and Finite Difference Methods (FDM), the proposed model can better simulate 
deformations and cellular shrinkage within a wide range of moisture content reduction. The 
model consists of two main components: cell fluid and cell wall. The cell fluid model is based 
on SPH and represents the cell protoplasm as a homogeneous Newtonian liquid. The cell wall 
model is based on a DEM and approximates the cell wall to an incompressible Neo-Hookean 
solid material. A series of simulations were conducted to mimic the gradual shrinkage during 
drying as a function of moisture content. 

 

Keywords: Food drying; Meshfree methods; Plant cell modelling; Smoothed Particle 
Hydrodynamics (SPH); Three-dimensional (3-D) model 

Introduction 

Drying is one of the most common and cost effective techniques for extending the shelf life of 
food materials and also is used for the production of numerous traditional and innovative food 
products [1]. It is employed to preserve approximately 20% of the planet’s fruits and 
vegetables [2]. During drying, the moisture is removed out of food material in order to slow 
down biological activities. With the removal of moisture, the food cellular structure undergoes 
major structural deformations which influence the drying process performance, food quality 
and the final market value. Therefore, to develop effective and efficient food drying 
operations, it is important that these cellular structural deformations are well understood and 
optimised. In doing so, a thorough understanding of the underlying solid and fluid dynamics is 
pivotal. The key driving forces for the transport phenomena are the moisture content [3-8] and 
the drying temperature [9]. The moisture content has a strong relationship with the cell turgor 
pressure [10] and the drying temperature links with the relative humidity and the rate at which 
moisture is removed from the cellular structure during drying. To derive appropriate 
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relationships among such driving forces, cellular morphogenesis and underlying transport 
phenomena, various microscale theoretical [11, 12] and empirical [3, 5, 13] models  have been 
developed.  

 

Numerical modelling has been utilised as an efficient tool in the studies of deformational 
analysis of various materials. Until recent times, this had not been used for comprehensive 
analysis of micro-structural deformations of food materials during drying. However, 
numerical modelling has recently attracted much attention as a viable tool for this purpose 
[14-16].  It is believed that through an accomplished numerical model, vast benefits could be 
obtained in food engineering in terms of drying process performance and predicting the final 
quality of the dried food product. With this background, this study aimed to develop a three-
dimensional (3-D) numerical model in order to investigate the morphological changes and 
related solid and fluid dynamics of parenchyma cells of apple, carrot and grape during drying. 
For the implementation, more versatile and novel meshfree particle methods have been chosen 
over the classical grid-based methods. A series of simulations were conducted to predict the 
shrinkage of each food tissue variety as a function of the moisture content.  
     

Methodology 

3-D Representation of a Single Cell 
For this study, a single cell of a cortex (parenchyma) tissue is considered, which is the 
fundamental building block of most bulk plant tissue structures. This type of a cell could be 
physically regarded as a stiff and thin-walled vessel containing a viscous fluid. Therefore, the 
developed numerical model is composed of two main components: cell wall and cell fluid. 
Based on the literature, the basic geometrical shape of a single cell was assumed to be  
spherical (see Figure 1) [17]. In the cell fluid model, the fluid volume was approximated to a 
sphere and the cell wall was approximated to a hollow 3-D spherical shell, enclosing the fluid 
sphere. The cell fluid hydrodynamic pressure is counterbalanced by the tension of the cell 
wall. Cell fluid was assumed to be incompressible and the system as a whole was treated as an 
isothermal unit. 

 
Figure 1.  3-D particle representation of the cell model, which is composed of two sub-

models: cell fluid model and cell wall model 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1071



 

After establishing these fundamental assumptions, the cell fluid and cell wall were separately 
discretised into particle schemes. The intention of this discretisation was to represent the 
whole system using a large number of non-interconnected particles in order to satisfy the 
fundamentals of Meshfree Particle Methods (e.g. Smoothed Particle Hydrodynamics (SPH) 
[18]). Due to the adaptivity and flexibility of the adopted particle framework, it could be 
easily extended up to multiple cell systems by aggregating  more cells together [19, 20]. At 
the same time, it has the capability to analyse different types of cells (apple, carrot etc.) 
without significant changes in the main modelling and simulation framework [21]. 
Furthermore, this particular modelling technique also ensures the ability to incorporate the 
mechanisms at the subcellular level.  

 

Cell Fluid Model 
protoplasm, which can be about 80-90% by volume [22], the cell fluid was approximated to 
an incompressible homogeneous Newtonian fluid equivalent to water with  an elevated 
viscosity. This can be effectively modelled with Smoothed Particle Hydrodynamics (SPH) 
considering low Reynolds number flow characteristics [19, 23-25]. Accordingly, in order to 
model the cell fluid, four different types of forces were used: pressure forces (Fp), viscous 
forces (Fv), wall-fluid repulsion forces (Frw) and wall-fluid attraction forces (Fa) as presented 
in Figure 2 [14, 26, 27]. The cumulative effect of these forces is used to define the total force 
(Fi) on any fluid particle  as, 

 

 (1) 

 

Where i' represents the neighboring fluid particles and k the interacting wall particles 

 

 
Figure 2.  Force fields on the 3-D fluid particle domain: pressure forces (Fp), viscous 

forces (Fv), wall-fluid repulsion forces (Frw) and wall-fluid attraction forces (Fa) 
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Cell Wall Model 
The cell wall was approximated to a Neo-Hookean solid material. It has been treated as a 
particle scheme composed of interconnected discrete elements connected to each other via a 
network, such that each element carries properties of the corresponding cell wall element. The 
cell wall deformations are represented by the displacement of respective particles under four 
types of force interactions: stiff forces (Fe), damping forces (Fd), wall-fluid repulsion forces 
(Frf) and wall-fluid attraction forces (Fa), as illustrated in Figure 3. [14, 15, 26]. Accordingly, 
the total force (Fk) on any wall particle k is derived as,  

 

 (2) 

 

Where, for each wall particle k, i indicate the neighboring fluid particles, j the bonded wall 
particles and l  the non-bonded wall particles 

 
Figure 3.  Force fields on the 3-D wall particle domain: stiff forces (Fe), damping forces 

(Fd), wall-fluid repulsion forces (Frf) and wall-fluid attraction forces (Fa) 
 

Modelling of Different Categories of Fruits and Vegetables 
In this study, individual cells of apple, carrot and grape have been modelled. Each food plant 
material is modelled via customized model parameters obtained from microscopic 
experimental observations and other numerical models available in the literature.  The 
physical properties necessary for modelling apple, carrot, and grape cells were directly 
extracted from sources in literature. There were a few properties which had to be calculated 
and assumed in the process. For instance, shear moduli (G) of the cell wall for carrot and 
grape were set so that the Young’s modulus (E) was 100 MPa which resulted in comparable 
values for cell wall stiffness at relevant cell wall thickness values. Turgor pressure of grape 
cells were set equal to the value of apple cells due to the lack of necessary information in 
literature. This approach has been proven to be successful in similar studies [21]. These model 
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parameters are outlined in Table 1.  The parameters which were used in common for all four 
plant food categories are shown in Table 2. 

Modelling Different Dryness States 

The previously mentioned model features were numerically set up with the physical properties 
of the cells as given in Table 1 and 2. The software tool, COMSOL Multiphysics (COMSOL) 
was used to generate the initial 3-D particle arrangement in a 3-D sphere corresponding to 
both the cell fluid and cell wall. There is the possibility to define and fine-tune the initial 
particle gap and the cell geometrical characteristics using COMSOL in order to obtain the 
initial particle positions with the preferred and effective particle resolution. The fluid particle 
scheme was placed without any interconnections among particles, adhering to the SPH 
fundamentals. In the cell wall, a series of spring networks joining the  cell wall particles were 
used according to the fundamentals of DEM [14, 15, 20] .  

It should be noted here that the simulations were carried out mainly based on the moisture 
content domain, similar to the recent 2-D meshfree based dried plant cell and tissue models 
[14].  It has also been assumed that the cell turgor pressure stays positive during the entire 
drying process and it would reduce at a regular rate with the moisture content variation. At the 
same time, the osmotic potential values corresponding to each dryness states were set equal to 
the minus value of the relevant turgor pressure and in the meantime the the magnitudes were 
kept constant in order to assure the stability of the numerical scheme [21]. 

 

Table 1. Values of the physical parameters adopted in the model 
 

Parameter Food variety used for modelling 

Apple Carrot Grape 

Initial cell diameter (D0) (µm) 150 100 150 

Cell wall thickness (T0) (nm) 126  126 62 

Wall shear modulus (G) (MPa) 18 33 33 

Fresh cell turgor pressure (PT) (kPa) 200 400 200 

Fresh cell osmotic potential (πT ) (kPa) -200 -400 -200 

 

As the model evolves with time according to the difference between the cell turgor pressure 
and the osmotic potential, the mass of the cell fluid tends to change and causing slight density 
variations [14, 15]. Such changes of density cause significant changes in cell turgor pressure 
as governed by an equation of state (EOS). These turgor pressure variations tend to push the 
cell wall inwards (shrinkage) or outwards (inflation) causing the cell volume, equivalent 
diameter and surface area to change. Based on such cell volume changes, the cell turgor 
pressure varies since it has to be counterbalanced by the cell wall tension. The changes in cell 
turgor pressure leads to the cell fluid mass gains or losses, which is governed by a mass 
transfer equation in the cell fluid model [14, 15]. This is repeated as a cycle until the cell 
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reaches a steady state condition where the cell size and the physical properties tend to reach 
steady values. For each cell type, this whole process was implemented and simulations were 
conducted.  

Table 2. Values of the physical parameters adopted in the model 

 

Parameter Value Refere
nce 

Initial cell fluid mass 1.767 × 10-9  
kg [14] 

Initial cell wall mass  1.767 × 10-10 kg [14] 

Wall damping ratio (γ) 5 × 10-6  
Nm-1s [14] 

Cell fluid viscosity (µ) 0.1 Pas [25] 

Cell wall permeability (LP) 2.5 × 10-6  
m2N-1s [28] 

Fluid compression modulus (K) 20 MPa [14] 

 

The model was developed as a C++ source code and it was executed in a High Performance 
Computer (HPC). Algorithms in an existing SPH source code based  on FORTRAN [18] were 
referred in developing the C++ source code. For the visualisations, Open Visualization Tool 
(OVITO) [29] was used [21] 

 

Results and Discussion 
Experimental data on drying of plant cellular materials indicate that there is an acceptable 
linear relationship between the removed moisture content and the bulk volumetric shrinkage 
[4, 30-33].  Further, the reductions of the cell area, diameter and perimeter are proportional to 
the overall volumetric shrinkage as well as the removed moisture content [3, 5]. All these 
experimental findings indicate that there is a strong connection between the moisture content 
of a plant food material and its shrinkage characteristics. In Figure 4, the model predictions 
have been visualized for apple, carrot and grape cells. Next, in order to quantify shrinkage 
characteristics of the cells, a set of geometrical parameters were used. Here, the moisture 
content (X) of the cell at a given dryness state is a critical parameter and the normalized 
moisture content (X/X0) was used here to assist comparison of the model behavior over 
different dryness states (see Eq. 3). Similarly, the geometrical parameters used to quantify the 
cellular shrinkage characteristics were also normalized (see Eq. 4, 5 and 6) [14, 15]. The 
model predictions for these parameters were then compared with the corresponding 
experimental results in literature [3]. In Figure 5, normalized cell area variation for apple cells 
are presented and in Figure 6 and 7, normalized cell diameter variation and the normalized 
cell perimeter variation are presented, respectively. The parameter variation comparison for 
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the other types of food categories (i.e. carrot and grape) follow a similar trend and were not 
included here.  

 
Figure 4. Visualization of the numerical results of the 3-D SPH-DEM model (a) initial 
conditions before simulations (b) the inflated fresh apple cell (X/X0 = 1) (c) dried state 

(X/X0 = 0.1) 
 

In the course of this study, results of our work (see the comparisons in the Figures 5, 6 and 7) 
has shown that there is the possibility to successfully develop a 3-D numerical model for the 
simulation of single parenchyma cells of apple, carrot and grape during the process of drying 
using a meshfree approach. There is a reasonably good agreement between the SPH-DEM 
model predictions and the experimental results [3, 5]. As it could be observed in Figures 5, 6 
and 7, this agreement is more positive in the higher moisture content values (i.e. X/X0 ≥ 0.4). 
When it comes to extremely low moisture contents (i.e. X/X0 ≤ 0.25), the model predictions 
tend to deviate from the realistic values considerably. 

 

 
(3) 

 
(4) 

 
(5) 

 (6) 

Therefore, it could be deduced that the developed 3-D SPH-DEM plant cell model has got the 
ability to approximate the true cellular scale drying behavior much quantitatively and 
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qualitatively. When comparing with the most recent 2-D numerical models for plant tissue 
drying [34, 35], it could be seen that this model shows great competency and potential to 
closely describe the true plant food tissue drying scenario, particularly in 3-D. Therefore 
credentials are there in these modelling schemes to be further developed and utilized in the 
field of food engineering. Furthermore, it should be emphasized that there is room for further 
improvements in the model especially at extremely dried stages (X/X0 ≤ 0.25). These 
improvements would add more details into the true deforming behavior of the cellular system.  

 
Figure 5.  Comparison of model predictions and experimental results [3] for normalised 

cell area of a single apple cell during drying 

 
Figure 6.  Comparison of model predictions and experimental results [3] for normalised 

cell diameter of a single apple cell during drying 
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Conclusion and Outlook 
A 3-D plant cell model has been developed using a coupled SPH-DEM numerical method in 
order to predict the shrinkage characteristics during drying. The model composed of two 
major parts: cell fluid model and cell wall model. The cell fluid model is based on SPH and 
approximates the cell protoplasm to a homogeneous Newtonian liquid. The cell wall model is 
based on a DEM and approximates the real cell wall to an incompressible Neo-Hookean solid 
material. The drying of single cells of apple, carrot and grape were modelled and simulated 
for the drying related deformations. Cell shape parameters such as surface area, diameter and 
perimeter were used to quantify the cell shape alterations. The quantitative shrinkage 
characteristics were compared with the results from relevant experiments on similar type of 
plant food materials. Comparisons show that there are similar trends in experimental results 
and the model predictions, even though there are deviations particularly at very low moisture 
contents values (extremely dried states of the cells). The reasoning behind such differences 
have been discussed. 

 
Figure 7. Comparison of model predictions and experimental results [3] for normalised 

cell  perimeter of a single apple cell during drying 
 

It could be noticed that the fundamental capabilities of the adopted numerical modelling 
technique can effectively handle large deformations of a multiphase cellular system in a 
comprehensive manner, particularly addressing the 3-D details. Moreover, it has been 
discussed that there is room for improvements, which can make the model predictions more 
realistic. This study has the potential to be extended to the level of multi-cell systems by using 
the developed single cell 3-D model as a fundamental building block.  
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ABSTRACT

A new type of smoothed finite element method, F-barES-FEM-T4, is demonstrated in static large deformation hypere-

lastic and elastoplastic cases. F-barES-FEM-T4 combines NS-FEM-T4 and ES-FEM-T4 with the aid of F-bar method

in order to resolve all the major issues of Selective ES/NS-FEM-T4: limitation of material models, pressure oscillation,

and corner locking. As well as other S-FEMs, F-barES-FEM-T4 inherits displacement-based formulation and thus has

no increase in DOF. Moreover, the cyclic smoothing procedure introduced in F-barES-FEM-T4 is effective to adjust the

smoothing level so that pressure oscillation is suppressed reasonably. A few examples of analyses for rubber-like hyper-

elastic and elastoplastic materials proof the excellent performance of F-barES-FEM-T4 in contrast to the conventional

hybrid elements.

Keywords: Smoothed finite element method, F-bar method, Large deformation, Cyclic smoothing, Pressure oscillation,

Locking-free.

Introduction

In the practical use of the finite element method (FEM) for complex shapes, analyses with tetrahedral meshes are indis-

pensable. However, the standard 4-node linear (constant strain) tetrahedral (T4) element has many accuracy issues such

as shear locking. Especially when the incompressibility arises in rubber-like or plastic materials, it also suffers from vol-

umetric locking and pressure oscillation issues. Due to the poor performance of the standard T4 element, there have been

many researches on the advanced FE formulations of tetrahedral elements.

The hybrid 10-node quadratic (2nd-order) tetrahedral (T10) elements [1] generally represent good results; however, they

have accuracy and convergence problems in severe large deformation analysis or contact analysis because of the presence

of intermediate nodes. The hybrid T4 element [1] is also used late years but has accuracy issues [5, 6] and brings significant

increase in the degree of freedom (DOF) as well. An alternative approach to this problem is the smoothed finite elements

methods (S-FEMs) [3]. Selective ES/NS-FEM-T4 [3, 4] would be one of the current best S-FEM-T4 formulations; yet,

it still has three major issues: limitation of material models, pressure oscillation, and corner locking [5]. Recently, we

proposed a new type of S-FEM-T4 formulation called F-bar aided edge-based smoothed finite element method (F-barES-

FEM-T4) [6]. As the adoption of the F-bar method [2] to combine NS-FEM-T4 and ES-FEM-T4 [3], F-barES-FEM-T4

is able to resolve all the major issues of Selective ES/NS-FEM-T4.

In this study, the effectiveness of F-barES-FEM-T4 in static large deformation analyses is demonstrated not only in

rubber-like hyperelastic cases but also in elastoplastic cases. Plastic deformation in progress generally decreases the

shear modulus drastically and thus presents near incompressibility, thereby inducing volumetric locking and pressure

oscillation frequently. A few examples of analyses show that F-barES-FEM-T4 is locking-free and pressure oscillation-

free in elastoplastic analyses as well as in nearly incompressible hyperelastic analyses.

Methods

The presenting method, F-barES-FEM-T4, takes advantages of ES-FEM-T4 and NS-FEM-T4 by combining them with F-

bar method [2]. The conceptual illustration of F-barES-FEM-T4 is shown in Fig. 1. In F-barES-FEM-T4, the isovolumetric

part of the deformation gradient (Fiso) is evaluated by using ES-FEM-T4, whereas the volumetric part (Fvol) is evaluated
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by using NS-FEM-T4 multiply. Combining Fiso and Fvol with F-bar method, the final deformation gradient F is given at

edges in the same manner as ES-FEM-T4.

A brief explanation of F-barES-FEM-T4 is described later in this section. See reference [6] for the detail.

Calculation of EdgeF̃iso

The isovolumetric part of the deformation gradient at each edge, EdgeF̃iso, is given in the same manner as ES-FEM-T4.

Edge

h
F̃iso =





1
Edge

h
J̃





1/3

Edge

h
F̃; (1)

Edge

h
F̃ =

1
Edge

h
V ini

∑

e∈
Edge

h
Ẽ

Elem
eF Elem

eV ini/6, (2)

Edge

h
J̃ = det(

Edge

h
F̃), (3)

where
Edge

h
Ẽ is the set of elements attached to edge h,

Edge

h
V ini and Elem

eV ini are the initial corresponding volume of edge h

and element e, respectively.

Calculation of EdgeFvol

On the other hand, the volumetric part of the deformation gradient at each edge, EdgeFvol, is given by the cyclic smoothing

procedure as follows.

i. Calculate ElemF and ElemJ at each element in the same manner as the standard FEM-T4:

Elem
eFi j =

Elem
eN ini

P, j xP:i, (4)

Elem
eJ = det(Elem

eF), (5)

where Elem
eN ini

P, j
is the spatial derivative of the shape function Elem

eN ini
P

in the x j direction and xP:i is the coordinate of

node P in the xi direction.

ii. Calculate the smoothed J at each node, NodeJ̃, in the same manner as NS-FEM-T4:

Node
n J̃ =

1
Node

nV ini

∑

e∈Node
nE

Elem
eJ Elem

eV ini/4, (6)

where Node
nE is the set of elements attached to node n, Elem

eV ini is the initial volume of element e, and Node
nV ini is the

initial corresponding volume of node n given by
∑

e∈Node
nE

Elem
eV ini/4.

F̃iso F
vol

F

Use NS-FEM
repetitively
to calculate

Use ES-FEM
once

to calculate

F-bar
method

Figure 1. Conceptual illustration of F-barES-FEM.

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1082



iii. Calculate the smoothed J at each element, ElemJ̃, as follows:

Elem
e J̃ =

1

4

∑

n∈Elem
eN

Node
n J̃, (7)

where Elem
eN is the set of four nodes comprising element e.

iv. Repeat ii. and iii. c times and obtain the multiply smoothed J at each element, ElemJ. Note that Elem
eJ is regarded as

Elem
e J̃ in the second or later evaluation of Eq. (6). Also, Elem

e J̃ is regarded as Elem
eJ in the last evaluation of Eq. (7).

v. Calculate the multiply smoothed J at each edge, EdgeJ, in a similar fashion as ES-FEM-T4:

Edge

h
J =

1
Edge

h
V ini

∑

e∈
Edge

h
E

Elem
eJ Elem

eV ini/6, (8)

where
Edge

h
E is the set of elements attached to edge h and

Edge

h
V ini is the initial corresponding volume of edge h given

by
∑

e∈
Edge

h
E

Elem
eV ini/6.

vi. Calculate the multiply smoothed Fvol at each edge, EdgeFvol:

Edge

h
Fvol =

Edge

h
J 1/3 I. (9)

where I is the unit tensor.

Note that Eq. (6), (7) and (8) satisfy the partition of unity condition and thus the near incompressibility of rubber-like

materials is satisfied at the multi-smoothing domain of each edge.

The number of cyclic smoothing, c, is the tuning parameter of F-barES-FEM-T4. F-barES-FEM-T4 with c-time cyclic

smoothing is referred to as “F-barES-FEM-T4(c)” hereafter in this paper.

Calculation of EdgeF

The final deformation gradient at each edge, EdgeF, is obtained by combining EdgeF̃iso of Eq. (1) and EdgeFvol of Eq. (9)

with F-bar method.

Edge

h
F =

Edge

h
Fvol ·

Edge

h
F̃iso. (10)

Calculation of EdgeT

The Cauchy stress at each edge, EdgeT, is then derived in the standard way with EdgeF. In case of history-dependent

materials such as elastoplastic materials, EdgeT is derived with the history of EdgeF.

Calculation of Edgef int

The contribution of each edge to the nodal internal force, Edgef int, is calculated in manner of the F-bar method as

Edge

h
f int
P:p =

∂
Edge

h
D̃i j

∂u̇P:p

Edge

h
Tpl

Edge

h
V. (11)

Note that the stretching tensor in this equation, EdgeD̃, is not the deformation rate of
Edge

h
F in Eq. (10) but that of

Edge

h
F̃ in

Eq. (2).

Results

Barreling of Hyperelastic Cylinder

A hyperelastic large deformation analysis of a 1/8 cylinder with enforced displacements is performed. Figure 2 illustrates

the outline of the analysis. Barreling deformation grows as the enforced displacement progresses, and then the lateral
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surface is squeezed out. The material constitutive model of the cylinder is the neo-Hookean hyperelastic model, T =

2C10
Dev(B)

J
+ 2

D1
(J − 1)I, where C10 = 4× 107 Pa and D1 = 5× 10−11 Pa−1 and thus the initial Poisson’s ratio is 0.499. The

mesh seed size is 0.05(= 1/20) m constant for 1st-order elements and is 0.1(= 1/10) m constant for 2nd-order elements.

Firstly, results of 4-node hybrid tetrahedral element of ABAQUS/Standard (ABAQUS C3D4H), 10-node quadratic mod-

ified hybrid tetrahedral element (ABAQUS C3D10MH), and 8-node hybrid hexahedral element (ABAQUS C3D8H) are

shown in Figs. 3–5. ABAQUS C3D4H is free from shear and volumetric locking; however, it has two major issues: pres-

sure oscillation and corner locking [5]. The corner locking is a type of locking that brings a strangely hard deformation

around corners in large deformation cases. ABAQUS C3D10MH is free from shear, volumetric, and corner locking; how-

Enforced

Displacement

2 m

2 m

1/8 of

Cylinder

ux = uy = uz = 0

ux = uy = 0

Neo-Hookean

Hyperelastic Material

with ν
ini

=0.499

x

y
z

Figure 2. Outline of the hyperelastic barreling analysis.

Figure 3. Pressure distributions of ABAQUS C3D4H results. Left: uz = 0.01 m. Right: uz = 0.40

m.

Figure 4. Pressure distributions of ABAQUS C3D10MH results. Left: uz = 0.01 m. Right: uz =

0.32 m.
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ever, it suffers from convergence failure in a relatively earlier stage. Moreover, the presence of intermediate nodes causes

accuracy loss of interpolation in large deformation cases. ABAQUS C3D8H is also free from shear, volumetric, and corner

locking; however, it suffers from pressure oscillation.

Secondly, results of Selective ES/NS-FEM-T4, F-barES-FEM-T4(1), (2), (3) and (4) are shown in Figs. 6–10. Selective

ES/NS-FEM-T4 and all F-barES-FEM-T4s are free from shear and volumetric locking and have no convergence problem.

Selective ES/NS-FEM-T4 and F-barES-FEM-T4(1) have pressure oscillation and corner locking issues, whereas F-barES-

FEM-T4(2) or later suppresses these issues. It should be noted that F-barES-FEM-T4(2) or later are not much different

each other and thus c is not much sensitive to the result. Therefore, F-barES-FEM-T4 with a sufficient cycles of smoothing

c resolves all the accuracy issues of conventional methods.

Figure 5. Pressure distributions of ABAQUS C3D8H results. Left: uz = 0.01 m. Right: uz = 0.40

m.

Figure 6. Pressure distributions of Selective ES/NS-FEM-T4 results. Left: uz = 0.01 m. Right:

uz = 0.40 m.

Figure 7. Pressure distributions of F-barES-FEM-T4(1) results. Left: uz = 0.01 m. Right: uz =

0.40 m.
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Shear-Tensioning of Elastoplastic Bar

An elastoplastic large deformation analysis of a bar with enforced displacements is performed. Figure 11 illustrates the

outline of the analysis. Shear deformation dominates at the middle part of the bar in the early stage of the analysis, whereas

stretch deformation dominates in the later stage. The material constitutive model of the bar is the elastoplastic model with

Hencky’s strain measure, von Mises yield criterion, and the isotropic hardening flow rule. The material properties are 1

GPa Young’s modulus, 0.3 Poisson’s ratio, 1 MPa yield stress, and 0.1 GPa constant work hardening rate. Hence, the

Poisson’s ratio under large plastic deformation in progress is greater than 0.48. The mesh seed size is 0.2(= 1/5) m

constant.

Results of ABAQUS C3D4H and F-barES-FEM-T4(2) are shown in Fig. 12 and 13. Figure 12 compares the deformations

and distributions of the equivalent plastic strain, while Figure 13 compares those of the pressure. The results of ABAQUS

Figure 8. Pressure distributions of F-barES-FEM-T4(2) results. Left: uz = 0.01 m. Right: uz =

0.40 m.

Figure 9. Pressure distributions of F-barES-FEM-T4(3) results. Left: uz = 0.01 m. Right: uz =

0.40 m.

Figure 10. Pressure distributions of F-barES-FEM-T4(4) results. Left: uz = 0.01 m. Right: uz =

0.40 m.
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C3D4H represent strange spatial oscillation on both the equivalent plastic strain and pressure distributions. On the other

hand, the results of F-barES-FEM-T4(2) are smooth in the both distributions and thus seem valid. F-barES-FEM-T4 is

considered effective not only for rubber-like materials but also for elastoplastic materials.

2 m

1 m
2 m

1 m

1 m

Fixed

Enforced
Displacement

Figure 11. Outline of the elastoplastic shear-tensioning analysis.

(a) ABAQUS C3D4H (b) F-barES-FEM-T4(2)

Figure 12. Comparison of equivalent plastic strain distributions on the elastoplastic shear-

tensioning analysis.

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1087



Conclusion

A new type of smoothed finite element method, F-barES-FEM-T4, is demonstrated in static large deformation hyperelastic

and elastoplastic problems. The characteristics of F-barES-FEM-T4 are summarized as follows.

• No increase in DOF.

• No limitation of material models.

• No convergence problem in large deformation.

• Free from shear, volumetric, and corner locking.

• Suppress pressure oscillation in rubber-like/elastoplastic materials.

• Adjustable smoothing level with the number of cyclic smoothings (c).

(a) ABAQUS C3D4H (b) F-barES-FEM-T4(2)

Figure 13. Comparison of pressure distributions on the elastoplastic shear-tensioning analysis.
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Abstract 

The developed device, has the codename CAR1, belongs to the passive energy dissipation 

systems, as it doesn’t require external power to generate system control forces. It can be used 

on new or existing structures and can be easily adapted to the particular demands of 

structures. It can be installed in a variety of ways such as in single or X diagonal bracing in 

building frames. Moreover the use of this device may result in improving (i) the increase of 

stiffness (ii) the absorption of seismic energy, (iii) as well as control of the axial forces that 

are developed at the diagonal steel braces. The main part of CAR1 device is the groups of 

superimposed blades, which absorb seismic energy through simultaneous friction and yield. 

Firstly this paper discusses the experimental and numerical evaluation of the effectiveness of 

this steel device. Full scale CAR1 device was experimentally investigated under cyclic 

loading in Laboratory for Strength of Materials and Structures of Aristotle University of 

Thessaloniki. Finite Element Models of CAR1 device were developed and analyzed using the 

software ABAQUS, checking the credible documentation of the device. In addition, a 

numerically robust finite element model of a whole one storey structure is described, for high-

fidelity simulations of inelastic responses of device CAR1 on braced frame. Aim of this study 

is to compare the response of one storey structure with and without the existence of device 

CAR1 on diagonal braces.  

 

Keywords: Experimental validation, Finite Element verification, Absorption Seismic Energy, 

Friction, Dynamic Explicit analysis.  

 

Introduction 

The safety of construction (existing or new) is one of the major priorities of engineering 

globally, because structures often subject to large and often devastating, for their viability, 

loadings. So, great interest is in the study of the innovations of the design and materials of 

construction that minimize the probability of failure of the structure in any charging. 

Steel concentrically braced frames have been used widely in high-seismic regions due to their 

efficiency in meeting lateral-load resisting requirements. Based on extensive research since 

the 1970’s, it is well known that the cyclic loading performance of steel braces depend on 

their slenderness ratio and on the width-to-thickness ratio of their cross sectional elements, 

and that adequate detailing of the bracing connection is critical to avoid premature fracture at 

the end of the brace. Braced frame systems are presently being designed to satisfy 

performance-based seismic design criteria [1, 2]. In terms of analysis capabilities, researchers 

have proposed methodologies to predict the occurrence of fracture from cumulative damage 

and to exhibit significant ductility in life safety and collapse prevention limit states, which are 

governed by inelastic post-buckling and tensile yielding behaviors of the brace elements. 

There are essentially two main orientations in order to protect braced elements, first one is to 

provide the structural system in order to avoid unexpected premature failure modes (mid-
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length or connections) and the second is to be incorporated in braces a passive energy 

dissipation devices.  

Buckling restrained braced frames (BRBFs) for seismic load resistance have been widely used 

in recent years because it yields under both tension and compression without significant 

buckling [3, 4, 5]. Others researchers create numerical models to approach brace elements. 

Numerical models can be classified in three categories, the phenomenological models [6, 7, 

8], the beam-column Finite elements models [9, 10, 11] and the 3-D Finite elements models 

[12, 13, 14, 15, 16, 17]. 

On the other hand, passive energy dissipation devices such as visco-elastic dampers, metallic 

dampers and friction dampers have widely been used to reduce the dynamic response of civil 

engineering structures subjected to seismic loads [18, 19, 20] and can easily replaced or 

repaired. Their effectiveness for seismic design of building structures is attributed to 

minimizing structural damages by absorbing the structural vibratory energy and by dissipating 

it through their inherent hysteresis behavior. So, several of these devices have been selected 

for seismic strengthening of existing or new buildings in the US, Canada and Japan [21, 22, 

23].  

In order to demonstrate the effectiveness of the devices, many passive energy dissipation 

systems were studied in experimental research [24, 25, 26, 27] or in numerical research [28, 

29, 30]. The Finite Element Method (FEM) has become the most popular method in both 

research and industrial numerical simulations, as it takes into consideration material laws, 

contact interface conditions and others parameters, which lead to the exact response of the 

device. Several algorithms, with different computational costs, are implemented in the finite 

codes, such as ABAQUS [31], which is commonly used software for finite element analysis. 

Comparison of numerical results with the same experimental one is very useful and necessary 

as it provides the possibility to researchers to study the behavior of their devices more widely 

[32, 33]. The calibrated FEM models are used to conduct a series of simulations to study the 

effect of different parameters. In this way, results come out that are harder to obtain 

experimentally. 

In the present paper, a numerically robust finite element model is described, which is based on 

explicit time-stepping, for high-fidelity simulations of inelastic responses of device CAR1 on 

braced frame. The effectiveness of the investigated device was recently developed at the 

Laboratory of Strength of Materials and Structures of Aristotle University of Thessaloniki. 

Aim of this study is to compare the response of one storey structure with and without the 

existence of device CAR1 on diagonal braces. 

Study of the individual device CAR1 

A short description: 

The developed device has the codename CAR1 and belongs to the passive energy dissipation 

system, as it doesn’t require external power to generate system control forces. This device 

proposed by Papadopoulos et al. [34] and it consists of 4 main elements, as illustrated in 

Figure 1. Device CAR1 has the advantage to (i) provide additional stiffness as well as (ii) 

absorption of seismic energy, through yield and friction, (iii) provision of control of the axial 

forces that are developed at the diagonal steel rods and last but not least the ability to retain 

the plastic displacements to a desired level, due to the restrain bolt. Energy dissipation is 

provided by inelastic bending of superimposed blades.  
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Figure 1: The investigated device CAR1. 

 

Moreover, device CAR1 can be used on new or existing structures and can easily be adapted 

to the particular demands of structures. However, it can be installed in a variety of ways 

which include using them in single diagonal braces or in X braces (Figure 2) and in 

accordance with the requirements of each construction, it can be used one or more devices.  

 

Steel diagonal

brace 

Proposed 

device CAR1 Proposed 

device CAR1

Steel 

diagonal

brace 

(a) (b)

(c) (d)

Proposed 

device CAR1 Proposed 

device CAR1

 

Figure 2: Possible positions of the device CAR1, incorporated in steel diagonal braces.  
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Experimental set up: 

A standard test has been carried out in order to establish the basic material properties of the 

superimposed blades (Figure 3). These experimentally derived material properties were 

utilized in the subsequent numerical study.  

 

(α) (β) (γ)

Young Modulus E 
(Gpa)

203.6

Yield Strength Fy

(Mpa)
220

Maximum 
Strength (MPa)

290

(α) (β) (γ)

 

Figure 3: A standard test in order to establish the basic properties of the superimposed 

blades.  

 

Full scale CAR1 device was experimentally investigated under cyclic loading. The 

experimental sequences have been conducted at the Laboratory of Strength of Materials and 

Structures of Aristotle University of Thessaloniki. The specimen details of the experiment are 

depicted in Figure 4. The load was controlled with a 100kN capacity load cell under 

deflection control. Two LVDT’s were positioned at each side of the longitudinal axis of the 

device CAR1, which measure the relative movement of the interior shaft to the exterior tube. 

All data were recorded and were stored in a digital data system via a computer. We notice that 

only two group of superimposed blades were tested. Every group consists of five steel blades, 

each 4mm thick. Quasi-static cyclic tests were carried out in order to ascertain device’s CAR1 

behavior to absorbed seismic energy. The experimental sequence is 17 cycles displacement 

control with values starting from 4.5 mm up to 10 mm with rate 3mm/minute.  
 

Actuator

Device CAR1

 

Figure 4: Specimen details. 
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Finite Element Modeling: 

The general purpose FE software ABAQUS was employed to generate FE models to simulate 

numerically the behavior of the device CAR1. It was selected to use an explicit dynamic 

solver because this allows the definition of very general contact conditions for complicated 

contact problems, without generating numerical difficulties. The explicit dynamics analysis 

procedure is based upon the implementation of an explicit integration rule together with the 

use of diagonal (“lumped”) element mass matrices.  

To the comparison with the Standard, the explicit dynamic solver is computationally 

inefficient for quasi-static problems if real time is used, because the time needed to finish an 

analysis is proportional to its duration. However, it is often possible to scale the real time to a 

very small time period if the response of the structure remains basically static. According to 

classical dynamic theory, when a dynamic system is subjected to a linearly rising load, its 

response can be approximately treated as static if the duration of the loading stage is large 

compared to the natural period of the system. For solving this problem, check the ratio of 

kinetic to internal energy can be used to check if the structure has failed and the analysis is 

continuing simply as dynamic motion. It is stated in the ABAQUS/Explicit manual [31] that 

the procedure is quasi-static if the ratio of the kinetic energy to the internal energy is less than 

2%. Any responses which have an energy ratio larger than this should be treated as dynamic 

and removed from the results. 

The FEM model geometry reproduced the actual geometry of the tests set up of the device 

CAR1 to characterize the behavior of the device. The geometry of FE model was reproduced 

in full detail (Figure 5). 

Force or 

displacement

Element Α:

Exterior tube

Element Β:

Interior shaft

Element C:

Group of superimposed  

blades

 

Figure 5: The FEM model used for the device CAR1 in software ABAQUS.  

 

Several simulations were conducted to identify the best meshing. For the explicit method, 

blades and interior shaft are meshed using 3D reduced integration solid element C3D8R 

(eight-node bricks), while exterior tube is meshed using 3D solid element C3D4 (four-node 

tetrahedron) available in ABAQUS. Normally, a higher mesh density provides for higher 

accuracy but also increases the computational time without improving substantially the 

accuracy of the results, therefore, a trade-off between time and accuracy becomes crucial [35]. 
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The final mesh has 8126 elements and it resulted in a solution that correlated with the 

experimental results.  

The uniaxial stress–strain relation of the blades, exterior tube and interior shaft are modeled as 

elastic with Young’s modulus (Es) and Poisson’s ratio (v) of which typical values are 200 

GPa and 0.3, respectively. Plastic behavior are defined in a tabular form, including yield 

stress and corresponding plastic strain. The experimentally obtained stress (σnom)-strain (εnom) 

curves for the blades was converted into the true stress (or Cauchy) (σtrue)-logarithic plastic 

strain ( ) format according to Eq. 1 and 2 and utilized to define the material response. 

 

 

     (1) 

     (2) 

 

The surface-to-surface contact formulation technique with small sliding between the 

contacting surfaces was chosen. The contact definition includes the specification of two 

surfaces, one acting as the ‘‘master’’ surface and the other as the ‘‘slave’’ surface. The 

contact algorithm searches whether the nodes of the slave surface are in contact with the 

nodes of the master surface and enforces contact conditions in an average sense over a region 

of slave nodes using a Lagrange multiplier formulation [31]. A friction coefficient equal to 

0.2 [36] was assumed between the contacting surfaces. A flowchart for carrying out the FEM 

analysis procedure is presented in Figure 6. 
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START

Establish the basic material properties
(experimentally stress-strain  curves are converted into the true stress –strain curves) 

Develop (or re-adjust) the 3D-FEM
(Mesh/Element Type/Boundary Conditions/Loading/Contact Surfaces/Friction)

Run monotonic Static analyses to validate/verify 3D-FEM

Is convergence 
achieved?

Are 
the response of the 
blades validated?

YESNO

YES

NO

Run monotonic Explicit Dynamic analyses to calibrate (quasi-static) explicit solution

Check the quasi-static response criterion
(Kinetic energy <2% input energy)

Check  the Energy Balance
(Εtot = Einput-Eoutput = 0)

Are criteria satisfied?NO

YES

Run cyclic Dynamic Explicit analysis

NO

YES

NO Are the numerical results be in good 
agreement with the experimental ones?

YES

END

Are criteria satisfied?

 

Figure 6: Flowchart in order to develop the Finite Element Model of Device CAR1 in 

ABAQUS.  

 

Figure 7 plots the force versus relevant displacement from FEM analyses along with the 

experimental hysteresis. Blue lines illustrate hysteresis loops of experiments, while green 

lines shows hysteresis loops of Finite Element Models. The predicted values for the load and 

displacement are in very good agreement with the corresponding experimental ones. The 

comparisons between the FEM analyses and experiments show that the proposed FEM model 

is capable of reproducing the inelastic response of the device CAR1. Therefore, it is a reliable 

tool for the simulation of the hysteretic behavior of the device CAR1 and can be used to 

contact further studies to investigate the effect of various parameters. In addition, the area 

within a hysteresis loop is equivalent to the amount of seismic energy that the device is 

dissipating. Since the shape and consistency of the hysteresis loops, observe the device's 

ability to absorb CAR1 seismic energy, whereas will not break during the cyclic loading. 
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Figure 7: Comparison of the experimental and the numerical force–displacement 

hysteresis of the device CAR1 

 

In addition, the numerical deformed shapes are compared with the corresponding 

experimental ones for relevant movement Uz=±5mm in Figure 8.  

 

 

 

Figure 8: Distribution of deformed shapes (values in m) 
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Study of one storey structure with and without the existence of device CAR1on diagonal 

braces 

 

A one storey reinforced concrete structure (Figure 9) was chosen to be studied. It has a height 

of 3m and length equal to 4.5m. The horizontal elements are beams with dimensions in plan 

25x50cm and the vertical are columns with dimensions in plan 35x35cm.  

3

x

z
4,5

Υποστυλώματα:

35/35 ( 8Φ16)

Δοκοί:

25/50 (3Φ14 αν., 3Φ12 κ.)

4.50m
3

.0
0

m

Columns:

35/35 (8Φ16)

Beams:

25/50 (3Φ14up, 3Φ12 down)

Concrete C16/20

Steel S400

 

Figure 9: The longitudinal section of structure.  

 

Structure was modeled and analyzed in SAP 2000 ver. 11.0.3 [37] in order to define floor’s 

displacement drifts for seismic performance “Life Safety” (drift=1.6%) and “Collapse” 

(drift=2.1%). Columns and beams were modeled by frame elements. As it is drawn, the 

maximum horizontal displacement was chosen equal to 6cm (drift=2.0%), smaller than the 

collapse displacement (6.3cm). Also, the 2004 NEHRP provisions [38] allow the design of 

buildings with passive damping systems to experience controlled inelastic deformations 

associated with typical design drifts limits, e.g. a 2% drift limit. For this horizontal 

displacement, both braced structures ((i) with diagonal brace and (ii) with diagonal brace and 

CAR1 device) will compare in software ABAQUS.  

 

LS C 

 

Figure 10: Deformed shape in SAP2000 

 

Both braced structures were model and analyses in software ABAQUS, as it is illustrated in 

Figure 11. Columns were modeled with 3D beam elements while part of beam, diagonal brace 

and device CAR1 were modeled with 3D solid elements. The main parameters of modeling 

are mentioned in section 2.3 and it is not considered necessary to re-commented. Horizontal 

displacement (δ) imposed at the top of the floor increased step by step until the maximum 
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displacement of 6cm. Dynamic Explicit analysis were contacted and useful results were 

observed. 

 

Column:
3D beam elements

Beam:
3D beam elements

Diagonal brace:
3D Solid elements

Hollow circular D=10cm, 
thickness 5mm

Beam:
3D solid elements

Column:
3D beam
elements

Beam:
3D beam elements

Diagonal brace:
3D Solid elements

Hollow circular D=10cm, 
thickness 5mm

Beam:
3D solid elements

CAR1 device

δ
δ

 
     (i)      (ii) 

Figure 11: (i) Braced Structure, (ii) CAR1-Braced Structure in ABAQUS.  

 

Figure 12 shows the distribution of horizontal displacement around x-x axis at the end of 

analysis. In Braced Structure, diagonal brace fracture especially at the middle length of 

diagonal, while in CAR1-Braced Structure the brace remains un-deformed without plastic 

hinges. Figures 13 and 14 show the peak plastic strains at the end of the analysis. In braced 

structure, maximum plastic strain observed at the middle length of diagonal brace (fracture 

point), while in CAR1-Braced Structure at the superimposed blades, which are easily be 

replaced with minimum cost. As a result, using CAR1 device on diagonal brace, the fracture 

life of brace is increased. The system exhibited uniform energy absorption with more stability, 

as strength and maximum deformation of the system increased considerably.  

 

Details

Fracture of brace

 

Figure 12: Deformed model at end of analysis, (i) Braced Structure, (ii) CAR1-Braced 

Structure (values in m). 
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Figure 13: Deformed shape and maximum plastic strain at the end of analysis. 

 

Figure 14: Maximum plastic strain in superimposed blades and diagonal brace at the 

end of analysis for CAR1-Braced Structure. 

 

 

 Conclusions 

In the present paper, an anti-seismic steel device (with code name CAR1) for seismic 

strengthening of existing or new buildings, which was recently developed at the Laboratory of 

Strength of Materials and Structures of Aristotle University of Thessaloniki, is studied 

experimental. A detailed nonlinear finite element model (FEM) was also developed. This 

model was calibrated against experimental results and used to explain the response of the 

device CAR1. In addition, a numerically robust finite element model of a whole one storey 

structure is described, for high-fidelity simulations of inelastic responses of device CAR1 on 

braced frame.  

 

Based on the findings of this paper, the following conclusions are drawn: 

 

1. Device CAR1 is a reliable energy dissipated device, which can be used on new or 

existing structures and minimize the probability of failure of the structure in any 

charging.  

2. The developed nonlinear FEM models can be reliable used to access the behavior of 

the proposed anti-seismic steel device CAR1 as they are capable to trace the hysteretic 

behavior and predict the deformed shape of the device with good accuracy.  

3. Based on the shape and consistency of the hysteresis loops, it is recommended seismic 

energy, whereas will not break during repeated cyclic loading.  
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4. The calibrated FEM model permits a thorough investigation of the stress state in the 

blades and helps to identify all possible local failures  

5. Using CAR1 device on diagonal brace, the fracture life of brace is increased. The 

system exhibited uniform energy absorption with more stability, as strength and 

maximum deformation of the system increased considerably.  
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Abstract 

In this paper, a Consistent Particle Method (CPM) is presented to model violent wave impact with 

compressible air pockets. The novelty of this method lies in four key aspects: (1) accurate 

computation of spatial derivatives for Laplacian and gradient operators (and hence better pressure 

prediction) without the use of kernel function unlike some other particle method, (2) rational 

treatment of density discontinuity at the water-air interface without any smoothing or smearing 

scheme, (3) a thermodynamics-based compressible solver for modelling compressible air that 

eliminates the need of determining the artificial sound speed, and (4) two-phase coupling of 

compressible air solver and incompressible water solver without iteration between the two solvers. 

An experimental study of sloshing impact with entrapped air pocket is conducted to validate the 

numerical model. 

Keywords: Particle Method, Wave Impact, Two-phase Flow, Air Compressibility. 

Introduction 

Modelling of wave impact on structures is of great practical interest in offshore and marine 

engineering e.g. for design of seawalls against tsunami waves in terms of the required height and 

strength. With the rapid advances of computer power, many numerical methods have been 

developed to predict the wave profile and impact forces. However, most of these studies
1, 2

 do not 

consider the presence of entrapped air pockets, or treat the air pockets as incompressible. While 

incompressibility is a reasonable assumption in some water-air flow scenarios
3
, air entrapment or 

entrainment may be generated in some other problems such as violent wave impact on structures
4
. 

The compressibility of entrapped air pockets can play an important role in the water-air interaction 

in terms of influencing the pressure peak and impact duration in a wave impact process
5
. Therefore, 

it is necessary to include air compressibility to better simulate such water-air flow problems. 

 

The numerical difficulties to model wave impact problems with entrapped air pockets include the 

large and discontinuous deformation of fluid and the abrupt discontinuity of fluid properties 

(density and viscosity) at the interface between water and air. A greater challenge is to have an 

integrated solution for water and air that behave very differently, the former being practically 

incompressible and the latter highly compressible. To address these issues, many mesh-based 

methods (such as Finite Difference Method and Finite Volume Method) and particle methods have 

been developed. Due to the meshless and Lagrangian nature, particle methods possess three 

inherent advantages over mesh-based methods: (1) better capability in modelling large and 

discontinuous fluid motion such as breaking waves, (2) better tracking of moving interface of 

different fluids, and (3) no numerical diffusion induced by the convection term in the Navier-Stokes 

equation. Therefore, a particle method was selected as the underlying tool of the present study. The 

most commonly used particle methods include SPH, ISPH, MPS and CPM. The primary difference 

between them lies in the computation of spatial derivatives. Compared to the other three, CPM 

computes the gradient and Laplacian operators in a more fundamental way by using Taylor series 
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expansion. Eliminating the use of a kernel function, the spatial derivatives can be approximated 

much more accurately and hence no artificial schemes are required
6
. 

 

The main difficulties of using CPM to simulate violent waves with air entrapment is the 

approximation of spatial derivatives with sharp density change across fluid interface and the 

consistent modelling of incompressible water and compressible air. To address these two issues, an 

improvement of the derivative-approximation scheme in the original CPM was recently proposed to 

deal with the sharp density discontinuity
6
. In addition, a thermodynamically-consistent 

compressible solver that not only can be integrated with the developed incompressible solver 

seamlessly but also can overcome some issues encountered by other compressible solvers is 

developed
7
. In this paper, the main features and advantages of CPM are presented systematically. 

Using this method, water sloshing with entrapped air pocket in a specially designed oscillating tank 

is studied with our own experimental validation. 

Governing equations and CPM formulations 

The governing equations for viscous Newtonian fluids (both incompressible and compressible) in a 

two-fluid system are the Navier-Stokes equations as follows
8
: 

 
1

0
D

Dt




 v  (1) 

   1 1 TD
p

Dt


 
         
 

v
v v g  (2) 

where ρ is the density of fluid, v the particle velocity vector, p the fluid pressure, μ the dynamic 

viscosity of fluid and g the gravitational acceleration. 

 

For both incompressible and compressible fluids, the governing equations are solved by a predictor-

corrector scheme
9, 10

. In the predictor step, the temporary particle velocities and positions are 

computed by neglecting the pressure gradient term. In the corrector step, a pressure Poisson 

equation (PPE) can be derived as follows 

 

( 1) *
( 1)

* 2 ( 1)

1 1 k
k

k
p

t

 

 






  
   

 
 (3) 

For incompressible fluids, the incompressibility condition is enforced by setting the fluid 

density at the current time step (
( 1)k 

) to the initial value ( 0 ). The intermediate fluid density (

* ) is evaluated in the same way introduced in Luo et al. 
6
. For compressible fluids, although a 

similar approach is used to evaluate fluid density, a slow-slope weighting functions whose value 

at r = 0 is smaller is adopted to allow more compressibility of fluid (more details can be 

referred to Luo et al. 
7
). Another distinct feature in the simulation of compressible flows is that, 

without the incompressibility condition, the fluid density 
( 1)k 

 in Equation (3) should be 

treated as unknown (more details will be presented later). 

Gradient and Laplace operators involving density discontinuity 

The derivative computation scheme in CPM is derived based on Taylor series expansion. This 

scheme has been demonstrated to work well for 1-phase flows
11, 12

. In two-phase flows, the pressure 

function is continuous at the fluid interface but its gradient changes drastically because of the large 

density difference between two fluids (e.g. water and air densities differ by three orders of 

magnitude)
6
. Hence, when applied to pressure, the scheme introduced in the previous section does 
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not give good approximation of gradient and Laplacian terms near the fluid interface. This problem, 

nevertheless, can be resolved by observing that the pressure gradient normalized with respect to 

density, i.e. /p  , is of the same order of magnitude in the two fluids of a general dynamic 

problem and, in the hydrostatic case, is in fact constant. By addressing the normalized pressure 

gradient term, the formulation to compute the gradient and Laplacian operators with abrupt density 

discontinuity can be derived to be (more details can be referred to Luo et al. 
6
) 

  1

1 1

0.5( )
j j i

j i i ji

p
C p p

x  

  
   

     
  (4) 

and 

  3

1 1

0.5( )
j j i

j i i ji

p
C p p

x x  

    
    

        
  (5) 

The coefficients 
1 jC  and 

3 jC  are the same as those in  1-phase CPM
11

. The above reformulation 

retains the consistency with Taylor series expansion in computing the required gradient and Laplace 

terms with abrupt density discontinuity. Since no density smoothing or smearing scheme is needed, 

this scheme is able to model sharp fluid interface (e.g. water and air whose density difference is 

about three orders of magnitude) with good accuracy. 

Compressible solver based on thermodynamics 

For compressible flows, 
( 1)k 

 in Equation (3) is unknown and hence a closure condition is needed 

to solve the PPE. The polytropic gas law as shown in Equation (4) is selected to be the closure 

relation since it does not require the input of speed of sound ( sc ), which is dependent on the 

composition and temperature of a fluid. This avoids the need to determine the actual or numerical 

sound speed, unlike in the sc  dependent EOS. 

 constant
p

  (4) 

where γ is the ratio of specific heats at constant pressure and constant volume. Its value for air is 

about 1.4. 
 

Incorporating the closure condition of Equation (4) to Equation (3), the PPE accounting for 

fluid compressibility can be obtained as (more details can be referred to Luo et al. 
7
) 

 

*
( 1) ( 1)0 0 0

* 2 * 2 * 2 *

0

1 1 1 1 1k ka a i a
i i

i i a i i

p p
t p t t

   

     

   
      

   
 (5) 

Since the speed of sound sc  is not involved in Equation (5), the issue of how to determine the actual 

or numerical value of sc  is avoided. This is a significant benefit of the present compressible solver. 

More importantly, this thermodynamically-consistent compressible solver and the previously 

proposed incompressible solver
6
 both use the predictor-corrector scheme to solve the same 

governing equations and thus can be easily integrated, leading to the complete two-phase model. 

Named 2-phase CPM, it is capable of simultaneously and consistently simulating two-phase 

incompressible and compressible flows with large density difference. 
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Numerical examples 

Sloshing impact with entrapped air pocket 

To study wave impact scenario with entrapped air pocket, a new experiment is designed and 

conducted as shown in Figure 1. The water container comprises a big (left) tank connected by a 

short channel to a small (right) tank. It is designed such that when water in the left tank sloshes 

to the right (or left), some water will move through the connecting channel and compress (or 

expand) the air in the right tank. The same tank as shown in Figure 16 of Luo et al. 
7
 is used. 

Air pressure at the middle of the top wall of the right tank, i.e. PA1, is measured by an absolute 

pressure sensor. Water pressures at 60 mm from the bottom on the right wall of the right tank 

(PW1) and 30 mm from the bottom on the left wall of the left tank (PW3) are measured by gauge 

pressure sensors. 

 

Figure 1. Setup of water-air sloshing experiments in a connected container under rotational 

excitation 

 

Experiment CPM 
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Figure 2. Wave profiles of sloshing in a connected tank with closed air pocket under 

rotational excitation: experimental result and CPM simulation 

In the case presented in this section, the filling depth is adopted to be 0.18 m. The excitation 

frequency of 0.92ω0 (= 3.6493 rad/s) is found to generate a relatively large variation of air pressure 

in the right tank, where ω0 is the reference frequency (not the natural frequency of the sloshing 

system but only a reference value) computed based on the linear wave theory with water depth (dL) 

and length (LL) in the left tank. In numerical simulation, an initial particle distance of 0.005 m and 

fixed time step 0.0005 s are adopted on the tradeoff between accuracy and efficiency. The water and 

air densities at the NTP (Normal Temperature and Pressure) condition are adopted. The dynamic 

viscosities of water and air are selected to be 10
-3

 Pa·s and 1.983×10
-5

 Pa·s respectively. 

 

The wave profiles and pressure histories at points A1, W1 and W3 are presented in Figure 2 and 

Figure 3. Generally good agreement between numerical simulation and experimental result  is 

obtained. The water moves like a bore (because of the relatively low filling depth) which 

develops over time (see t = 2.00 s and 2.88 s in Figure 2). At t = 3.12 s, violent wave impact 

occurs near the connecting channel, generating large compression force to the air pocket in the 

right tank. This can be clearly seen in Figure 3a, which shows a large peak for the air pressure 

at point A1. As the water in the left tank runs up along the right wall of the left tank ( t = 3.20 s 

in Figure 2), the compression force continues to exert on the air pocket in the right tank. At t = 

3.68 s, the run-up water falls back to the water body and begins to move towards left. It is noted 

that the air pressure in the right tank shows vibration during the impact process.  The air 

t = 3.12 s 

t = 3.20 s 

t = 3.68 s 
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pressure also influences the water pressure near the air pocket (see the water pressure at Pw1 as 

shown in Figure 3b). 
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Figure 3. Simulated air pressure at Point PA1 and water pressures at Point PW1 and PW3 in 

comparison with experimental results 

The pressure vibration in the air pocket is further investigated through a power spectral analysis 

using the Fast Fourier Transform (FFT). It is interesting to note that there is only one peak 

value, i.e. 6.120 Hz, in the frequency-power curve. It means that the air pressure vibrates with 

one distinctive frequency. To verify that this pressure vibration is real and not spurious due to 

the numerical algorithm, the natural frequency of the air tube (under the compression of water) 

is derived. Following Ramkema 
13

 who addressed the problem of wave impact on coastal 

structures, the air-pocket-water system is represented by a mass-spring system as shown in 

Figure 4, in which the spring is the air pocket and the mass is the water effectively contributing 

to the impact. The upper bound of the effective water mass is the water in the connecting 

channel and the right tank, while the lower bound is the upper bound excluding the water in the 

rectangular region at the right bottom corner of the container (the region within the dash-dot 

line in Figure 4). Since water at the right bottom corner (dark shaded region in Figure 4) is 

almost stationary relatively to the tank (theoretically the right bottom point of the container is a 

stagnation point), the effective mass of the present problem (light shaded region in Figure 4) is 
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approximated to be water in the connecting channel and the right tank excluding the right 

bottom corner. 

 

Figure 4. Schematic view of water impact on an air pocket (not to scale) 

Assuming the water level in the right tank to be horizontal and giving it a small perturbation z, 

the force (per unit width) applied on the effective water mass is as follows 
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  (6) 

where 0ap
 
is the initial air pressure in the right tank, LR the length of the right tank and Ha0 the 

initial height of the air tube. Ignoring the friction forces from the tank walls, the dynamic equation 

for the effective water mass is as follows 

 

2

0 R
w 2

a0

0ap Ld z
M z

dt H


    (7) 

where Mw is the effective water mass (per unit width). Then the natural frequency of the dynamic 

system can be obtained as 

 
0 R

a0 w

1

2

ap L
f

H M




   (8) 

the form of which is similar to that derived by Cuomo et al. 
14

 who analytically studied wave 

impingement entrapping an air pocket against vertical wall. Substituting the upper and lower 

bounds of Mw into Equation (8), the lower and upper bounds of the natural frequency of the 

entrapped air pocket can be obtained to be 5.668 Hz and 6.507 Hz, whereas the natural frequency 

corresponding to the adopted value of Mw is 6.296 Hz. Compared to the observed frequency of 

pressure vibration (i.e. 6.120 Hz) in the experimental result, the relative differences are only 7.3 %, 

6.3 % and 2.8 %, respectively, for the lower and upper bounds and the adopted value of Mw. 

Therefore, the accuracy of this simplified model is acceptable. The study on the natural frequency 

Water
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LR
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z

Air
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of the air pocket further substantiates that the pressure oscillations observed in the experiment and 

CPM simulation are real and due to the natural vibration of the entrapped air pocket (air cushion 

effect). 

Conclusions 

In this paper, the novel CPM is presented with three features: (1) Accurate computation of first- and 

second-order derivatives in a way consistent with Taylor series expansion even in two-phase cases 

with abrupt density change to about 1000; (2) A thermodynamically-consistent compressible solver 

by employing the polytropic gas law; (3) Seamless integration of the incompressible and 

compressible solvers such that wave impact problems with entrapped air pocket can be simulated in 

a simultaneous way. 

 

An experimental study of water sloshing in a specially designed tank is conducted to measure the 

pressure change of a closed air pocket under wave impact. Numerical results including wave 

profiles, wave impact pressures and particularly the pressure vibration in the air pocket predicted by 

CPM agree generally well with the experimental results. 
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Abstract

The pairwise comparisons method, together with inconsistency analysis, are used to assess the
hazard level for abandoned mines. Weights, reflecting the relative importance of the objectives
concerned are one of the most commonly used solutions for this type of data. Subjective as-
sessments involve inaccuracy (which is difficult to manage) and inconsistency in assessments
(which can be measured and may influence the accuracy). The pairwise comparisons method
allows us to define a consistency measure and use it as a validation technique. A consistency-
driven knowledge acquisition, supported by a properly designed software, contributes to the
improvement of quality of knowledge-based systems.

Keywords: pairwise comparison, knowledge management, multicriteria evaluation, inconsis-
tency, hazard rating.
1 Introduction

The first (somewhat documented but never formally published) use of pairwise comparisons
(PC) is attributed to Ramon Llull, a 13th-century mystic and philosopher (see [5]). Thurstone
applied pairwise comparisons in the form of “the law of comparative judgment” in [18]. There
is a variation of this law known as the BTL (Bradley-Terry-Luce) model (cf. [2]). A number
of customized methods of pairwise comparisons followed in numerous (some of them contro-
versial) studies. We do not intend to endorse any such customization here. However, Saaty’s
seminal work [17] had a considerable impact on the pairwise comparisons (PC) research and
should be acknowledged despite serious controversies generated by it.

The technical issues of acquiring this knowledge, representing it, and using it appropriately to
construct and explain lines-of-reasoning, are important problems in the design of knowledge-
based systems. Knowledge acquisition involves extracting knowledge from human experts,
books, documents, sensors, or computer files. In the knowledge validation stage this knowl-
edge is validated and verified until its quality is considered acceptable according to some pre-
established standards.

Knowledge acquisition is the extraction of knowledge from sources of expertise and its transfer
to the knowledge base. Acquisition is actually done throughout the entire expert system de-
velopment process. Knowledge is a collection of specialized facts, procedures, and assessment
rules and may be collected from many sources. These sources can be divided into two types:
documented and undocumented. The latter resides in people’s minds. Knowledge can be iden-
tified and collected by using any of the human senses. It can also be identified and collected by
machines.

The knowledge engineer elicits knowledge from the expert, refines it with the expert, and rep-
resents it in the knowledge base. The elicitation of knowledge from the expert can be done
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manually or with the aid of computers. The main purpose of computerized support to the expert
is to reduce or eliminate the potential problems mentioned earlier, especially those of inde-
terminate bias and ambiguity. These problems dominate the gathering of information for the
initial knowledge base and the interactive refinements of this knowledge. A smart knowledge
acquisition tool needs to be able to add knowledge incrementally to the knowledge base and
refine, or even correct, existing knowledge. Visual modeling techniques are very important in
constructing the initial domain model. The objective of the visual modeling approach is to give
the user the ability to visualize real-world problems and to manipulate elements of it through
the use of graphics.

The expert’s knowledge may be, for example, expressed in assessing the number of preferences,
relevant criteria or factors, or possible alternatives. When devising methods for formulating and
assessing preferences, a knowledge engineer has to take into account the limitations in human
capabilities for undertaking such endeavor. One possible technique of extracting the expert’s
knowledge and preferences is based on the pairwise comparisons method.
2 Pairwise Comparisons Preliminaries

The pairwise comparisons method utilizes statements about expert’s preferences and assess-
ments. These statements are expressed by examination of pairs of criteria or objectives. The
presented methodology utilizes mapping of inconsistent evaluations by an expert into a numer-
ical scale (see Table 1) that closely approximate his/her assessments. Ordinal numbers are used
to express relative preferences. In particular the numbers do not represent “absolute” measure
of the mapped criteria, as such may simply not exist (for example, it is hard to define a global
measure of public safety but it is still practical to compare it, in relative terms, with the degree
of environmental pollution).

Intensity definition explanation
1 equal importance equal contribution
2 weak importance of one

over another
slightly favor one criterion over another

3 essential or strong im-
portance

strongly favor one criterion over an-
other

4 demonstrated impor-
tance

strong dominance

5 absolute importance the highest preference
1.2, 2.3,
...,etc.

Intermediate values when compromise is needed

Table 1: Scale used for pairwise comparisons

The traditional matrix representation of pairwise comparisons (PC) is by using a PC matrix M
of the following format:

M =


1 m1,2 · · · m1,n
1

m1,2
1 · · · m2,n

...
...

...
...

1
m1,n

1
m2,n

· · · 1

 .

PC matrix elements represent the intensities of an expert’s preference between individual pairs
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of entities (or criteria) expressed as ratios chosen from an assumed scale for subjective data and
transformed by the recently published formula in [10]. Note the criteria E1, E2,..., En (where
n is the number of criteria to be compared). The entry mij in the i-th row and j-th column
of the PC matrix M , denotes the relative importance of entity (or criterion) Ei compared with
objective Ej , as expressed by an expert. This PC matrix M has all positive elements and has
the following reciprocal property:

∀i, j, 1 ≤ i, j ≤ n, mij = 1
mji

.

The PC matrix M is called consistent if ∀i, j, k, 1 ≤ i < j < k ≤ n, it is the case that
mij ∗mjk = mik. The vectors consisting of the three values [mij, mik, mjk] are called “triads.”
By the reciprocity condition, triads have a mirror image below the diagonal, and so it is sufficient
to concentrate on the values above the diagonal.

Let wi denote the unknown weight of the criterion i. How can the vector w = [w1, w2, ..., wn]
be estimated on the basis of the PC matrix M? One possible solution can be the following. If
the expert’s assessments are completely consistent, one would have:

∀i, j, 1 ≤ i, j ≤ n, aij = wi

wj

.

The following heuristic:

wi = (
n∏

j=1
mij)1/n

was proposed in [19] for finding vector w for inconsistent PC matrices. In fact it trivially works
also for consistent PC matrices.

A definition of consistency proposed in [9] allows us to locate the most inconsistent assessments
and reexamine them. New and more consistent assessments may be expressed in an interactive
way. They may contribute to the overall reduction of the inconsistency.
3 Abandoned mines hazard rating

The knowledge engineer usually has to cope with a large number of criteria, factors or alterna-
tives during the data acquisition process. Our model is presented visually1 in Fig. 1, and is used
by a tool called “Concluder.”2

The model was the result of a team effort involving mining experts from the Ministry of North-
ern Ontario and Mines, with expertise based on years of experience. One episode that was in
everyone’s mind was the collapse of a school yard (fortunately, at a time when the children
were attending classes in the school building). The yard caved in as it was built on a forgotten
abandoned mine. Based on the expertise of the mining professionals, and data from historical
reports, pairwise comparisons were gathered into a large matrix. Needless to say, with such a
large number of experts and data, the matrix that was created was inconsistent.
4 Inconsistency in pairwise comparisons

For a single triad [x, y, z], the inconsistency indicator is given by the following formula:

1The graphic has been produced with Prefuse, a set of software tools for creating rich interactive data visual-
izations [8].

2Which we make available on Sourceforge [3].

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1113



ii = 1−min
(

y

x ∗ z
,
x ∗ z

y

)
.

The new definition was proposed in [9], formally generalized to the entire matrix by the use of
the max function for all triads (defined by the consistency condition), and simplified in [14].
Making comparative assessments of intangible criteria (e.g., the degree of an environmental
hazard or pollution factors) involves not only imprecise or inexact knowledge but also incon-
sistency in our own assessments. The improvement of knowledge elicitation by controlling the
inconsistency of experts’ assessments is not only desirable but absolutely necessary.

Checking the consistency in the pairwise comparisons method could be compared to checking
that the divisor is not equal to 0. It does not make sense to divide anything by 0. The proposed
solution of the pairwise comparisons method is based on the assumption that the given recip-
rocal matrix is consistent. However, expecting that all subjective assessments are consistent is
not realistic especially if they are subjective. We know that most assessments are subjective,
inaccurate, and nearly always contain some kind of bias, and therefore the total consistency is
not to be expected.

To have inconsistent assessments we must have at least three criteria to be compared. Conse-
quently we may assume, that all indexes i, j, k must be pairwise different. We may calculate
inconsistencies only for triads with indexes holding the property 1 ≤ i < j < k ≤ n.

The inconsistency indicator of a PC matrix is the indicator of the quality of the knowledge. The
“improvement” process of the quality of the knowledge begins with computing the inconsis-
tency of the assessments. The triad with the largest inconsistency is displayed for the experts to
have an opportunity to revise their preferences.

In our case, Concluder highlights the worst triad as illustrated by Fig. 2.

The inconsistency of 0.44 is regarded as too high (the threshold value is assumed 1/3 for similar
applications) so experts need to reconsider their assessments. By changing 1.5 in the high-
lighted triad into 1.3, we can decrease inconsistency indicator to 0.32 which is assumed to be
acceptable so weights w (automatically computed and illustrated by Fig. 3) can be used for
decision making.
5 Conclusions

The consistency-driven approach presented in this paper was tested in a research project re-
lated to the decision process of rehabilitation of abandoned mines in Ontario by the Provincial
Ministry of Northern Development and Mines. The implemented system assists middle-level
management in making semistructured decisions. The main goal of the system is to provide
management with the most comprehensive and most updated information necessary to make
responsible decisions (for details see [1]).

The consistency-driven pairwise comparisons refocused the attention from the race of finding
better and better approximation of weights for inconsistent matrices to devising heuristics to
influencing assessments to be more consistent (but by no means totally consistent). Finding
an ideal vector of weights for inconsistent (or very inconsistent) matrices is a mirage. It is a
theoretically challenging and exciting task but does not have much practicality. It could be com-
pared to an attempt at finding lengths of objects using a ruler which randomly changes (by, for
example, extreme temperature) its length for each of them. The truth is that no “ideal” solution
exists and understanding the true source of our problem, that is inconsistency of assessments, is
absolutely necessary for decreasing the inaccuracy.
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Reducing the inconsistency is not easy unless we know its location (not only its value). The
presented definition of inconsistency locates it. The expert is given the feedback and opportunity
of reconsideration of his/her assessments by using various approaches (e.g., Delphi method). It
may not be advisable to allow the expert the full flexibility since his/her subjective assessment
may change due to an unsubstantiated race for consistency of assessments instead of non-biased
subjective opinions. We may, for example, allow the referee to change only a fixed number of
opinions by a factor of a fixed total. For example, in case of a matrix of order 4 when we have
6 assessments we may allow to modify a maximum of three modifications on condition that the
total of all changes does not exceed say 3 (so three assessments may be modified by one up or
down, or one assessment may be modified by 3 up or down).
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Figure 1: PC model for abandoned mines hazard rating
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Figure 2: Inconsistency analysis

Figure 3: The final weights
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Abstract 
Shield-driven tunnels are widely adopted in the development of underground spaces for 
transportation and utility networks in soft soils. Numerical modeling has now become an important 
element in the design of underground excavations in soils and rocks. Numerical analysis can 
provide realistic representation of the field conditions taking into account key elements of the 
excavation such as the geomechanical characteristics of the ground and the in situ stress condition. 
In order to solve the problems of section design and verification of concrete segments, the 
computational models are proposed for designs of concrete segments with symmetrical 
reinforcement bars under the action of bending moments and axial forces. Based on the constitutive 
model of steel bars and similarity criterions of strains in beam section, the analytical expression of 
stress on reinforcement bars located in compressive region is derived. Influences of axial forces on 
the ultimate bearing bending moment of segments and the area of reinforcement bars in tension 
region are discussed through analyzing two practical underground tunnels with concrete segment 
linings. The investigation shows that the depth of compressive region increases ith increasing axial 
force on segment. The ultimate bearing bending moment of concrete segment increases with 
increasing axial force on segment when area of reinforcement bars is constant.  
Keywords: Concrete segment, Section design and verification, Bending moment, Axial force, 
Computational model. 
 

Introduction  
Reinforced concrete segments are widely used in Metro tunnels, hydraulic tunnels and mining 
tunnels. The optimal design and analysis of ultimate bearing performance for concrete segments 
refer to safety and economic problems of underground structures. Especially with commonly using 
shield machine in underground engineering, the investigations about ultimate bearing performance 
for concrete segments have received general attentions in domestic and overseas. Jiang studied 
influences of hybrid tendons, load locations and joint numbers to flexural strength of fully 
segmental beams. For comparison purpose, a monolithic beam with hybrid tendons was also tested. 
The deflections, ultimate loads, stresses of prestressing strands and failure modes were investigated. 
At the ultimate stage, the stresses of all tendons are greater than 1500 MPa[1]. Caratelli performed 
full-scale tests on both traditional reinforced concrete and fiber reinforced elements. In particular, 
bending tests were carried out in order to compare the behaviour of the segments under flexural 
actions, while point load tests were developed with the aim of simulating the thrustforce induced by 
the Tunnel Boring Machine, and then the effect of load concentration and splitting phenomena[2]. 
Yan presented a comprehensive experimental study on the comparative behaviour of the reinforced 
concrete and the hybrid fibre reinforced concrete shield TBM tunnel lining segments exposed to fire. 
The tests were conducted using a newly developed test facility, which is capable of accommodating 
different mechanical loading and boundary conditions under different fire scenarios[3]. Shalabi 
proposed lining structure which was made of bolted and double gasketed precast concrete segment 
lining with convex to convex longitudinal joint surfaces. Lining evaluation included the sealant 
performance of different gasket materials under water pressure less than 90 psi. Testing program 
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was designed to evaluate the longitudinal joint and T-joint sealant behavior under static and 
dynamic loading using large scale concrete segments[4]. Nehdi investigated the mechanical 
performance of Ultra-high performance fiber-reinforced concrete tunnel lining segments. Flexural 
and edge-point load tests were conducted on 1/3-scale tunnel lining segments to evaluate its 
bending and thrust load resistance[5]. Zhang proposed a method based on the moment-force 
interaction and the effect of bolt pockets. The method considered that the load corresponding to the 
appearance of the first crack is the load of bond cracking, and assumed that the K-segment is a 
column which is subjected to axial loading and biaxial bending. Analytical results were compared 
with experimental values obtained from four reinforced-concrete K-segments[6].Amau studied the 
phenomena associated to coupling effects, determines the main involved parameters and analyzes 
their influence on a real lining structural response by means of a 3D numerical model. The 
comparison with the usual plane models currently employed in linings designs provide significant 
conclusions about the coupling effects implications and the conditions in which become more 
relevant[7].Analysis from Ye on the effective ratio of the transverse bending rigidity values under 
different load levels with different bolt pre-tightening forces and different assembly modes shows 
that value of the stagger-jointed segmental ring is obviously lager than that of the straight-jointed 
segmental ring, and that difference decrease gradually with the load increasing[8].Analysis from 
Moller shown that installation procedures are most important to be considered in order to arrive at 
proper predictions for tunneling settlements, horizontal deformations and lining forces. For the 
installation of closed face shield tunneling a novel simulation method is presented, named the grout 
pressure method. It is shown that the grout pressure method yields the best predictions for both 
ground movements and structural forces[9]. Do proposed the influence of joint rotational stiffness, 
the reduction in joint rotation stiffness under the negative bending moment, the lateral earth 
pressure factor and Young modulus of ground surrounding the tunnel should not be neglected. On 
the other hand, the results have also shown an insignificant influence of the axial and radial stiffness 
of the joints on segmental tunnel lining behavior[10]. The aim of the paper is to propose the 
relationship between the ultimate bending moment of concrete segment and axial force, analyze 
stress state of reinforced bars in compressive zone, investigate the worst loading combination 
between bending moment and axial force, and further develop computing models for evaluating 
ultimate bearing performances of concrete segments.  

Current computing models for ultimate bearing performances of concrete segments 
The concrete segments are idealized as column with loading of eccentric force N. Based on Code 
for design of concrete structures, assume that the deformed bars on compressive zone and tensile 
zone are yielded. An equivalent rectangular stress distribution is simplified with little loss in 
accuracy, as shown in Fig. 1   

 
 

Figure 1. Idealized computational models for concrete segments with symmetrical 
reinforcement bars 
 
It is assumed that the axial force, concrete grade and area of deformed bar are known. Based on the 
balance of forces acting on the section, as shown in Fig. 1, it is given by  
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1 cN f bxα=                                 (1) 

Where N is axial force,а1 is stress coefficient, x is depth to neural axis, b is width of segment, fc is 
compressive strength of concrete. The depth of neural axis is expressed as follows  

1 c

Nx
f bα

=                                  (2) 

The ultimate bearing bending moment of concrete segment is derived as  

0

1 0
1 1

0

( 0.5 )

( ) ( / 2 )

u

c
c c

s y s s a

M Ne
N Nf b h
f b f b

h a f A N h a e

a
aa

=

= −

+ − − − +

                    (3) 

Where e0 is a distance (original eccentricity) from the centroid of deformed bar to axial force, Mu is 
ultimate bending moment, as is vertical distance from the joint point of all longitudinal tension bars 
to the cross section of the cross section, h is section height, h0 is section effective height, h0=h-as, As 
is reinforced area, fy is tensile strength of reinforcement. 

0 i ae e e= −                                   (4) 

Where ei is a distance from the centroid of section to axial force accounting for adding eccentricity, 
as shown in Fig. 1. ea is a adding eccentricity.  

/ 2i se e h a= − +                                   (5) 

1 0 0( 0.5 ) ( )c s y sf xb h x h a f A
e

N
a − + −

=                         (6) 

Where e is a distance from the centroid of deformed bar in tensile zone to axial force.   
Based on Code for design of concrete structures, evaluate the segment is in a state of small 
eccentricity or large eccentricity according to following formulas  

                                1ub c bN f bxα=                                   (7) 

Where Nub is ultimate compressive force of segment under boundary condition, xb is boundary 
depth to neural axis. If  N<Nub, then segment is in a state of large eccentricity; otherwise in a state 
of small eccentricity.  

0b bx hx=                                      (8) 

Where ζb is relative boundary depth to neural axis.  
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Where Es is elastic modulus of reinforcement, εcu is ultimate strain of concrete, εcu=0.0033. The 
calculating steps for ultimate bearing performance of concrete segment are listed as: Step 1) 
Evaluate the segment is in a state of small eccentricity or large eccentricity according to equation 
(7); Step 2) Calculate depth to neural axis according to equation (2); Step 3) Calculate a distance 
(eccentricity) from the centroid of deformed bar to axial force according to equation (4), (5) and (6); 
Step4) Calculate ultimate bearing bending moment of concrete segment according to equation (3). 

New computing models for ultimate bearing performances of concrete segments 

Accounting for the specifics of concrete segments in Metro tunnels, such as higher concrete grade, 
and section height of segments far less than section width of segments, the depth to neural axis is 
smaller and the stress of deformed bars in compressive zone is less than yield limit, and even the 
stress of deformed bars in compressive zone is in tensile state. So, based on current computing 
models, the practical stress of deformed bars in compressive zone is different from model solutions.    

 

 
Fig. 2 Force and bending moment balances for column with eccentric compressive loading 

 

Fig. 3 Simplified strain distributions on concrete segment   
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Fig. 4 Idealized computational models for concrete segments with symmetrical reinforcement 
bars and eccentric compressive loading 
Based on force balance, as shown in Fig. 2 and 4, it is derived as   

1 c sc s y sN f bx A f Aα s= + −                            (10) 

Where σsc is compressive stress of reinforcement. The depth to neural axis is expressed as  

1

sc s y s

c

N A f A
x

f b
s
α

− +
=                          (11) 

Assume that the stress of deformed bar in compressive zone is less than yield limit, the relation 
between stress and strain for deformed bars is given by  

sc sc sEs ε=                                 (12) 

Under the action of axial force with an eccentricity e, and based on plane deformation assumption, 
as shown in Fig. 3, the relation between strain of deformed bars in compressive zone and ultimate 
strain of concrete is given by  

1(1 )sc c s s

cu c

x a a
x x

ε β
ε

−
= = −                         (13) 

Were b1 is a factor that is a function of the strength of the concrete, as is the distance from the center 
of tensile bars to inter surface of segment, as shown in Fig.4. xc is distance from the outer 
compressive fiber to neural axis, and x is depth of neural axis for simplified equivalent rectangular. 
εcu is ultimate strain of concrete, εcu=0.0033. If εsc>0, then the stress of deformed bars in 
compressive zone is in compressive state; otherwise in tensile state.  

1(1 )s
sc cu

a
x

βε ε= −                               (14) 

Substitute equation (14) into equation(12), it is obtained  

 ei 

 e 

centriod 

Neural axis 
a’s 

fy As 

α1fc 

x=b1 xc 

as 

sscAs 

 N  M=Ne0 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1123
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Substitute equation (15) into equation (11), it is obtained  
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bε
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=                        (16) 

2
1 1( ) 0c y s s cu s s cu s sf bx N f A E A x E A aa ε ε b− + + − =                  (17) 

The depth to neural axis is solved by equation (17), and then the stress of deformed bars in 
compressive zone is obtained by equation (15). Based on the balance principle of force moment, as 
shown in Fig.3, it is obtained  

1 0 0( 0.5 ) ( )c s sc sNe f xb h x h a Aa s= − + −                     (18) 

1 0 0( 0.5 ) ( )c s sc sf xb h x h a Ae
N

a s− + −
=                          (19) 
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f xb h x h a A h a e

N
a s
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= − − +

            (20) 

The ultimate bearing bending moment of concrete segment is derived as 

0

1 0 0( 0.5 ) ( ) ( / 2 )
u

c s sc s s

M Ne
f xb h x h a A N h aa s
=

= − + − − −
             (21) 

The calculating steps of proposed new models for ultimate bearing performance of concrete 
segment are listed as: Step 1) Evaluate the segment is in a state of small eccentricity or large 
eccentricity according to equation (7); Step 2) Calculate depth to neural axis according to equation 
(17); Step 3) Calculate the stress of deformed bars in compressive zone according to equation (15); 
Step 4) Calculate a distance (eccentricity) from the centroid of deformed bar to axial force 
according to equation (20); Step5) Calculate ultimate bearing bending moment of concrete segment 
according to equation (21). 

Case study for two Metro tunnels  

In order to investigate the differences between current models and new proposed models, two 
practical Metro tunnels with concrete segment lining are studied. The stress distribution in 
deformed bars and ultimate bending moment are calculated respectively. The drawbacks of current 
models are discussed in detail. The first practical engineering example is Beijing Metro tunnel[11]. 
The maximum embedded depth of tunnel is 10. 31m. The outer diameter of tunnel segment is 6.0m. 
The height of segment is 300mm. The width of segment is 1.2m. Concrete Grade is C50 with 
symmetrical reinforcement bars. The yield limit of bars is 300MPa. The area of deformed bars is 
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2514mm2 both for compressive zone and tensile zone, respectively. The distance from the center of 
tensile bars to inter surface of segment is as=40mm.  

 

Fig. 5 Bending moment distributions on concrete segments (Unit: kNm, Beijing Metro tunnel) 

 
Fig. 6 Axial force distributions on concrete segments (Unit: kN, Beijing Metro tunnel ) 
Finite element method is used to compute the internal force distributions on segments for Beijing 
Metro tunnel , as shown in Fig. 6 and 7. It is obtained from Fig.6 and 7 that The maximum bending 
moment on segments is 160 kNm. The axial force on segments is in compressive state and varied 
from 400kN to1010kN.  Variations of ultimate bending moment of segments versus axial force are 
listed in Table 1 and 2.  
Table 1 Variation of ultimate bending moment of segments versus axial force (Current model, 
Beijing Metro tunnel ) 

Axial force /kN 400 500 600 700 800 900 1000 

x/mm 

Mu/kN⋅m 

ssc /MPa 

14.4 

215 

300 

18.1 

226 

300 

21.6 

237 

300 

25.25 

248 

300 

28.8 

258 

300 

32.5 

268 

300 

36.1 

278 

300 

 
Table 2 Variation of ultimate bending moment of segments versus axial force (New proposed 
model, Beijing Metro tunnel ) 

Axial force /kN 400 500 600 700 800 900 1000 

x/mm 35.6 37.0 38.6 40.2 41.9 43.6 45.5 
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Mu /kN⋅m 

ssc /MPa 

224 

66 

233 

90 

242 

113 

251 

134 

260 

156 

269 

176 

278 

196 
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Fig. 7 Variation of compressive depth versus axial forces 
It is found from Fig.7 that the compressive depth in concrete segment increases with increasing 
axial force, and the compressive depth in new proposed model is larger than one in current model.  
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Fig. 8 Variation of stress of reinforced bars in compressive zone versus axial forces  
It is found from Fig.8 that the stress of reinforced bars in compressive zone increases with 
increasing axial force. The stress of reinforced bars in compressive zone is less than yield strength, 
especially for Dongguan tunnel, the stress of reinforced bars in compressive zone is in tensile state.  
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Fig. 9 Variation of ultimate bending moment of segments versus axial force 
It is observed from Fig. 9 that the ultimate bending moments of segments for both current and new 
proposed models are nearly same even if the compressive depths and stresses of reinforced bars in 
compressive zone for two models are different. The second practical engineering example is 
Dongguan-Huizhou tunnel under water[12]. The maximum embedded depth of tunnel is 16. 2m. 
The maximum water depth is 16. 2m. The outer diameter of tunnel segment is 8.5m. The height of 
segments is 400mm. The width of segments is 1.6m. Concrete Grade is C50 with symmetrical 
reinforcement bars. The yield limit of bars is 300MPa. The area of deformed bars is 882mm2 both 
for compressive zone and tensile zone, respectively. The distance from the center of tensile bars to 
inter surface of segment is as=40mm. The maximum bending moment acting on segments is 
90kNm. The maximum axial force is 100kN. Variations of ultimate bending moments of segments 
versus axial force are listed in Table 3 and 4, respectively.   
Table 3 Variation of ultimate bending moment of segments versus axial force (Current model, 
Dongguan tunnel ) 

Axial force /kN 400 500 600 700 800 900 1000 

x/mm 

Mu//kN⋅m 

ssc /MPa 

10.8 

154 

300 

13.5 

171 

300 

16.2 

188 

300 

18.9 

204 

300 

21.6 

220 

300 

24.4 

235 

300 

27.0 

253 

300 

 
Table 4 Variation of ultimate bending moment of segments versus axial force (New proposed 
model, Dongguan tunnel ) 

Axial force /kN 400 500 600 700 800 900 1000 

x/mm 

Mu /kN⋅m 

ssc /MPa 

23.6 

165 

-235 

25.0 

180 

-182 

26.6 

195 

-134 

28.2 

209 

-88 

30.0 

224 

-46 

31.6 

239 

7 

33.5 

251 

30 

Note: Negative represents deformed bars in tensile state.  

Conclusions  

1) The investigation validates that the stress of reinforced bars in compressive zone increases with 
increasing axial force. The compressive depth in concrete segment is far less than 2as, so the stress 
of reinforced bars in compressive zone is less than yield strength. Especially for Dongguan tunnel, 
the stress of reinforced bars in compressive zone is in tensile state.  
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2) Two practical Metro tunnels with concrete segment lining are computed by using two different 
models. The results show that the compressive depth in concrete segment increases with increasing 
axial force, and the compressive depth in new proposed model is larger than one in current model. 
The worst loading combination is maximum bending moment with minimum axial force. 
3) It is observed that the ultimate bending moments of segments for both current and new proposed 
models increase with increasing axial force, and are nearly same even if the compressive depths and 
stresses of reinforced bars in compressive zone for two models are obviously different. The 
proposed computing model can precisely calculate the stresses of reinforced bars in compressive 
zone. 
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Abstract 

Nano-beams and nanowires are widely used as building blocks in the rapid development of 

Nano/Micro-electro-mechanical system (N/MEMS), micro-sensors, energy harvesting and 

storage devices, etc., and their vibration behaviors have aroused great concerns in both pure 

science and engineering applications. In this study, we investigate the nonlinear free vibration 

of a nano-beam considering its surface effects, including the surface elasticity and the residual 

surface stress. Firstly, a mechanics model on the transverse vibration of a cantilever nano-

beam is developed according to Hamilton’s principle. In use of the Galerkin and complex 

normal form methods, the approximate analytical solution of the nonlinear equation is 

obtained, which has been confirmed by the numerical simulation. The present work can 

provide theoretical basis for the precise design of nanowires or nanofibers in atomic force 

microscopy, generators and nano-sensors in electronic devices. 

 

Keywords:  Surface elasticity，Residual surface stress，Complex normal form method，

Quasi-periodic motion，Chaos 

 

1 Introduction 

Nano-beams or nanowires, due to their perfect advantages of greatly magnified sensitivity, 

increased reliability and reduced sizes, have been highly advanced in Nano/Micro-electro-

mechanical systems (N/MEMS), biotechnology, sensors, actuators, resonators and atomic 

force microscopy [1-3]. Owing to the extremely high surface to volume ratio, surface effects 

of nanowires have become more important factors than the volumetric forces, which are 

crucial to their mechanical performance. Based on a number of results from experiments and 

atomic simulations, the residual surface stress and surface elasticity have proved to be the key 

origins of the size-dependent properties for most nanomaterials or nanostructures [4]. 

 

It has already been known that surface effects can significantly affect the static properties of 

nanowires, such as the internal force diagram, modulus, deflection and buckling of nano-

beams [5–8], and these phenomena have attracted growing interest of many scholars. 

However, the more interesting issue for a nano-beam is its dynamic response, because it is an 

essential techinique to measure the dynamic parameters in vibration, in order to characterize 

the bending stiffness [1]. As a consequence, a great deal of work has been performed to 

investigate the natural frequency and amplitude of a nano-beam in linear vibration [9–13]. For 

example, Wang and Feng [9] deduced the natural frequency of a simply supported nano-beam, 

in consideration of both the surface elasticity and residual surface stress, which indicates that 

the frequency may be enhanced with a positive residual surface stress and reduced by a 

negative one. Based on the same model, He and Lilley [10] studied the influence of surface 

effects on the first-mode natural frequency for a nano-beam with different boundary 
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conditions. Their theoretical solutions show that the positive surface stress can alter the 

natural frequency for a cantilever, a simply supported beam and a fixed-fixed nano-beam. 

From the different viewpoint, Ansari and Hosseini et al. [11] explored the impact of surface 

effects on the natural frequency of a nano-beam in use of the compact finite difference 

method. They claimed that the surface effects on the natural frequency are dependent on the 

aspect ratio and thickness of the beam. It should be stressed that for a nano-beam with small 

aspect ratio, the Timoshenko beam model is normally utilized to analyze its transverse 

vibration, which is more accurate than the Euler-Bernoulli beam model mentioned previously 

[12, 13].  

 

Moreover, it is necessary to consider the nonlinear vibration of nanowires in many 

applications [14, 15]. For example, it is desirable to reduce the size of N/MEMS and achieve 

high-output energy, but this requires the nano-beam or nanowire in N/MEMS come into 

operation near the nonlinear working regime [14]. For instance, Chen and Hu et al. [16] 

developed a periodicity-ratio approach to calculate the response of a piezoelectric laminated 

micro-beam system actuated by AC and DC voltages, and the periodic and chaotic region 

diagrams were plotted. Miandoab and Yousefi-Koma et al. [17] studied the chaotic behaviors 

of a nano-resonator in MEMS/NEMS subjected to electrostatic forces, and they found that the 

system undergoes homoclinic and heteroclinic bifurcations in the appearance of chaos. Yet in 

the real situations, besides such normal nonlinear factors as curvature, geometry nonlinearities 

and the coupling of multi-fields [18–21], surface effects play an important role in the 

nonlinear vibration of nano-beams. One example is that, taking the von-Karman geometric 

nonlinear strain into account, Gheshlaghi and Hasheminejad [22] studied the influence of 

residual surface stress on the free nonlinear vibration of a nano-beam and got the exact 

expressions of the natural frequency and vibration amplitude. In addition, Moeenfard and 

Mojahedi et al. [23] used the Homotopy Perturbation Method to analyze the nonlinear free 

vibration of a clamped-clamped or a clamped–free nano-beam, and the effects of axial loads, 

rotary inertia, shear deformation and slenderness ratio on the natural frequency have been 

discussed. 

 

It should be stressed that, to fully probe the dynamics of a nano-beam, it is imperative to 

consider its semi-analytical solution, and more importantly, surface effects are necessary to be 

analyzed in this model. To the best of our knowledge, there is hitherto a lack of systematic 

exploration on this issue, for there is a very strong coupling between the nonlinear factors and 

surface effects. Therefore, we concentrate on the nonlinear free vibration of a nano-beam, 

towards extending our understandings on the solution, which is helpful to better design 

N/MEMS, micro-sensors, energy harvesting and storage devices.  

 

The present paper is organized as follows. In Section 2, the dynamics equation of the free 

vibration of a cantilever beam including surface effects is derived based on Hamilton 

Principle. The Galerkin method is then adopted to discrete the partial differential equation 

into ordinary differential equations in Section 3. Next, in Section 4, we analyze the solution 

and its stability on the nonlinear vibration by using the complex normal form method 

(CNFM), and the numerical simulation is followed. Finally, conclusion are given in detail.  

 

2 Kinematics  

2.1 Surface effects model 

Generally speaking, “surface effects” of nano-materials are mainly attributed to the surface 

energy or surface stresses on the solid surface [24, 25]. The body and surface layer of a 

nanowire can be abstracted as a composite beam with a core-shell structure, which includes a 
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solid core with a Young’s modulus and a surface layer with a surface modulus [9], as 

schematized in Fig. 1. The thickness of the surface layer is normally negligible. 

 

In light of the generalized Young–Laplace equation [9], the residual surface stress in the 

surface layer of the nano-beam can induce a jump of the normal stress across the interface 

between the bulk and the surface, and this leads to a transversely distributed pressure qs(s) 

along the axial direction of the beam, namely 

 sq s H , (1)  

where H is a constant parameter correlated with the residual surface stress and the cross-

sectional shape. The parameter H for a nano-beam with a circular cross section is normally 

expressed as 02H D  [9], where D is the diameter of the cross section.  

 

For the nano-beam with a circular cross section, the effective bending stiffness (EI)
*
 can be 

further modified according to the composite beam model, which is expressed as [6, 9, 10]  

  4 3π π

64 8

sEI ED E D

  , (2)  

and the effective tensile stiffness (EA)
*
 is given by 

  2π
π

4

sEA ED E D

  , (3)  

where E is the Young’s modulus of the bulk material, E
s
 the surface elastic modulus, I the 

moment of inertia on the cross section, and A is the area of the cross section. 

 

2.2 Vibration equation 

We consider a cantilever nano-beam with surface effects, as shown in Fig. 1. The length of 

the beam is L, and the mass per unit length is m. Refer to a Cartesian coordinate system (O-

xy). The model is assumed to be an Euler-Bernoulli beam, whose axis is initially along the x 

direction and then it can oscillate in the (x, y) plane [26]. As schematized in Fig. 1, the 

location of an arbitrary material point B in the beam axis transfers to the position of point B1 

after deformation. Let   be the slope angle between the tangential line of the beam axis and 

the horizontal line at any point in the axis. We also introduce the curvilinear coordinate, i.e. 

the arc length s along the axis of the beam, starting from the origin.  

 

To analyze the nonlinear vibration of the beam, the nonlinear effects on the deformation must 

be incorporated, so the infinitesimal deformation model can not be adopted here. In fact, at 

any point in the beam axis, there are the following geometric relations:  

cos x  , sin y  . (4)  

Taking derivative with respect to the arc length s on both sides of the second equation in Eq. 

(4), one can get the expression of the planar curvature 

2

1
=

cos 1 y

y
y 




 


, (5)  

where  
 d

ds
   and  

 2

2

d

ds
  . 

In use of the Hamilton’s principle, one has  

0 0
( , )d ( , )d 0

T T

L y T T W y T T    , (6)  

where time is denoted by T and the Lagrangian function is L=U–K.  
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The strain energy, kinetic energy and external work of the beam can be respectively given by  

   
* * 2

2

20 0
d d

2 2 1

L LEI EI
U s s

y

y








  , 

2

0

d
d

2 d

Lm y
s

T
K

 
 





 , 

0
d

L

sW q y s  . (7)  

By virtue of the variational principle, the governing equation of the free vibration for the 

nano-beam can be deduced as  

   
* 2 3 21

4 0
2

my EI y y y y y y y H y y y
 

                
 

. (8)  

The initial conditions and fixed boundary conditions of the beam are y(0,T)=0, (0, ) 0y T  , 

( , ) 0y L T  , ( , ) 0y L T  . 

Introducing the following non-dimensional quantities 
y

w
L

 , 
s

L
  , 

 
*

*

2

1 EI

L m
  , 

*t T , 
 

2

*

HL

EI
  , the governing equation can be recast as 

   4 2 2 31
4 0

2
w w w w w w w w w w w

 
               

 
, (9)  

where 
d

d

w
w

t
 , 

2

2

d

d

w
w

t
 , 

d

d

w
w


  , 

2

2

d

d

w
w


  , 

3

3

d

d

w
w


  ,

 
and  

4
4

4

d

d

w
w


 . 

 

3 Galerkin Method 

It is noticed that Eq. (9) is a high order and nonlinear partial differential equation (PDE), and 

it is nearly impossible to find the close-formed solution at hand. Herein, we use the Garlerkin 

discretization method to transform the PDE to the ordinary differential equations (ODEs). 

 

We select the two-mode approximation on the solution, which is of adequately accuracy to 

analyze the nonlinear vibration. Assumes ( , )w t  can be approximated by the two-mode 

solution as below: 

         1 1 2 2,w t q t q t      , (10) 

where q1(t) and q2(t) 
represent the amplitudes of the first and second principal modes, 

respectively. The first and the second mode shape functions 1( ) 
 
and 2 ( )   can be described 

as:  

 
sin sinh

( ) cosh cos sinh sin
cos cosh

i i
i i i i i

i i

r r
r r r r

r r
     


   


 (i=1, 2), (11) 

where ri is governed by the frequency equation on a cantilever beam: cos( )cosh( ) 1i ir r   . 

We first substitute Eqs. (10) and (11) into (9), and the obtained equation is multiplied by 

1( ) 
 
or 2 ( )  , then the integration of the product from 0 to 1 yields a second-order 

differential equation, where the orthogonal property of trigonometric functions is used. As a 

result, the ODEs on  
T

1 2,q q  are presented as:  

 

 

3 2 2 3

1 11 1 12 2 13 1 14 1 2 15 1 2 16 2

3 2 2 3

2 21 1 22 2 23 1 24 1 2 25 1 2 26 2

0

0

q a q a q a q a q q a q q a q

q a q a q a q a q q a q q a q

       


      

, (12) 

where the values of the parameters a11, a12, a13, a14, a15, a16, a21, a22, a23, a24, a25, a26  
are 

shown in Appendix A.  
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4 Solution analysis: CNFM 

Next, we use the CNFM to solve the nonlinear ODEs in Eq. (12), where the two quantities q1 

and q2 are coupled together [27]. Firstly, we assume its solutions can be formulated as 

   
1 1 1 2 2

2 1 1 1 2 2 2

q

q

   

   

    


    

, (13) 

where 1 , 2  are the complex conjugates of 1  and 2 , respectively, and their normal 

expressions are 

ij t

i iAe
  , ij t

i iAe
 

  (i=1,2), (14) 

where 1  and 2  are two frequencies, and 2 1j   .  

 

The first step is to insert Eq. (13) into the linear part of Eq. (12), and then we can derive the 

frequency equation on i  

 4 2

11 22 11 22 12 21 0a a a a a a      . (15) 

Moreover, the parameters 1  and 2  are given as 

2

11 21

2

12 22

i
i

i

a a

a a






    


 (i=1,2), (16) 

which are both real numbers. 

 

In combination with Eq. (13) and its derivatives with respect to t, it can reach an equation 

group including four equations. Consequently, the complex variable equations on the 

parameters 1  and 2  are listed as 

 

      

      

    

3

11 1 1 2 2

2

12 1 1 2 2 1 1 1 2 2 2

1 1 1 2

23 1 1 2 2 1 1 1 2 2 2

3

14 1 1 1 2 2 2

b

b

j j
b

b

   

       
  

       

   

   
 
 
        
 

   
         
 
      
 

, (17) 

 

      

      

    

3

21 1 1 2 2

2

22 1 1 2 2 1 1 1 2 2 2

2 2 2 2

23 1 1 2 2 1 1 1 2 2 2

3

24 1 1 1 2 2 2

b

b

j j
b

b

   

       
  

       

   

   
 
 
        
 

   
         
 
      
 

, (18) 

where the expressions of b11, b12, b13, b14, b21, b22, b23, b24 are all shown in Appendix B. 

 

In order to simplify the above equation, we introduce the following near-identity coordinate 

transformations 

 

 

1 1 1 1 1 2 2

2 2 2 1 1 2 2

, , ,

, , ,

h

h

     

     

 


 

, (19) 
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where the functions h1 and h2 are expressed in Appendix C.  

Inserting Eq. (19) into Eqs. (17) and (18), and if the values of 1,i , 2,i
 
(i=1, …, 20) in Eq. 

(19) are properly chosen (shown in Appendix C), one can get the simplest normal forms of 

Eqs. (17) and (18): 

 

 

2

1 1 1 11 1 2 2 12 1 1

2

2 2 2 21 1 1 2 22 2 2

j j c c

j j c c

      

      

   


  

, (20) 

where   is small perturbation parameter, and the expressions of the symbols c11, c12, c21, c22 

are all given in Appendix D. 

 

If the quasi-periodic solutions of the equation exist, the expression of 1  and 2  can be 

written in the polar form 

 

 

1 1 1 1

2 2 2 2

1
exp

2

1
exp

2

a j t

a j t

  

  


 


  


, (21) 

where a1, a2 are amplitudes and 1  and 2  are phase angles, which are all real numbers. 

 

Substituting Eq. (21) into Eq. (20), and separating the real and imaginary parts yields 

1

2

2 3

1 1 1 2 11 1 12

2 3

2 2 1 2 21 2 22

0

0

1 1

4 4

1 1

4 4

a

a

a a a c a c

a a a c a c











   



  


, (22) 

The above equations tells us that, a1 and a2 must be constants, and 1  and 2  can be solved 

when the a1 and a2 are given.  

 

Up to now, the solutions on q1 and q2 can be acquired, and their expressions are shown in 

Appendix E. Therefore, the embryo conclusion is that, since a1 and a2 
can be taken as 

arbitrary values, the considered system must have multiple quasi-periodic trajectories; and 

with different initial conditions, the system will converge to different quasi-periodic 

trajectories.    

 

5 Validation of CNFM  

To verify the validity of the CNFM, the numerical simulation based on the Runge-Kutta 

method is performed, where the time span is selected from 0 to 40 seconds. In the simulation 

process, the physical parameters of the nano-beam are chosen as [5, 8]: D=50 nm, L=500 nm, 

the mass per meter m=3.787610
–11

 kg/m, the bending stiffness  
*

EI =2.3310
–20

 Pa m
4
 

and tensile stiffness  
*

EA =1.4910
–4

  Pa m
4
. The residual surface stress 0 , which can be 

either positive or negative depending on the crystallographic structure for different 

nanomaterials, is selected in the regime from –2 to 2 N/m [8]. The simulation program is 

realized in MATLAB using the 4
th

-order Runge-Kutta method, where the time step is set as 

0.02 seconds. 
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We only study the trivial singular point near the center  2 1 2 2, , ,a a  =(0, 0, 0, 0), where 

multiple stable quasi-periodical solutions exist. For the CNFM, the parameters are selected as: 

a1=0.005, a2=0.0005. Correspondingly, the initial parameters in the numerical simulation are 

selected as 1 1 2 2 0
( , , , )

t
q q q q


=(0.0055, 0, 0.00129, 0) to ensure they have the same initial 

values as those of the CNFM. The time history diagrams on q1 and q2 are shown in Fig. 2(a) 

and (b), respectively. From the figure it is clearly seen that the two curves from the Runge-

Kutta method and CNFM nearly overlap with each other. This manifests that the CNFM is 

efficient to analyze the vibration of this system with small magnitude 1 0.01q   and 

2 0.01q  , as this method is applicable in weak nonlinear systems.  

  
(a) 

 
(b) 

Fig. 2 Comparison between the complex normal form solution and the Runge-Kutta solution, (a) q1, (b) q2. 

  

6 Conclusion 

In conclusion, the nonlinear free vibration of a cantilever nano-beam has been systematically 

investigated, and the surface effects are considered. The CNFM and numerical simulation are 

applied to obtain the solution of the system. The numerical simulation demonstrates that the 
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complex normal form can be accurate enough to analysis the vibration with small magnitude 

The study provides insight into the mechanism of the nonlinear dynamics of nanowires, and 

given theoretical basement for design of the element structures in N/MEMS, sensors, 

actuators, and resonators, etc.   
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Appendix A  
In Section 3, the parameters of Eq. (12) are shown as follows: 

11 10.0082 0.8588a   , 

12 10.0312 11.7440a    , 

13 140.4229 2.1570a   , 

14 1306.8797 41.2253a    , 

15 12484.0513 147.2018a   15 12484.0513 147.2018a   , 

16 12178.2983 192.7033a    , 

22 10.1131 13.2933a   , 

21 10.02992 1.8738a    , 

23 1102.2965 3.4639a    , 

24 12484.1298 32.0625a   , 

25 16530.1573 44.4370a    , 

26 113416.8369 53.2163a   . 

Appendix B 

In Section 4, the parameters of Eqs. (17) and (18) are shown as follows: 

 
23 2 13

11

1 2 12

a a
b






 
,

 
24 2 14

12

1 2 12

a a
b






 
,

 
25 2 15

13

1 2 12

a a
b






 
,

 
26 2 16

14

1 2 12

a a
b






 
, 

 
1 13 23

21

2 2 12

a a
b



 


 
,

 
1 14 24

22

2 2 12

a a
b



 


 
,

 
1 15 25

23

2 2 12

a a
b



 


 
,

 
1 16 26

24

2 2 12

a a
b



 


 
. 

Appendix C 

  3 3 3 3 2

2 1 2 1 2 2,1 1 2,2 1 2,3 2 2,4 2 2,5 1 1

2 2 2 2 2 2

2,6 1 2 2,7 1 2 2,8 1 1 2,9 1 2 2,10 1 2 2,11 1 2

2 2 2 2 2

2,12 1 2 2,13 1 2 2,14 1 2 2,15 2 2 2,16 2 2

2,17 1 2 2 2,18 1 2 2 2,

, , ,h          

        

       

   

     

     

    

   19 1 1 2 2,20 1 1 2. 

,

 

  3 3 3 3 2

1 1 2 1 2 1,1 1 1,2 1 1,3 2 1,4 2 1,5 1 1

2 2 2 2 2 2

1,6 1 2 1,7 1 2 1,8 1 1 1,9 1 2 1,10 1 2 1,11 1 2

2 2 2 2 2

1,12 1 2 1,13 1 2 1,14 1 2 1,15 2 2 1,16 2 2

1,17 1 2 2 1,18 1 2 2 1,

, , ,h          

        

       

   

     

     

    
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Appendix D 
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21 21 1 2 22 1 1 2 23 1 2 246 4 2 2 4 6c b b b b             . 
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Abstract 

This paper reports an experimental and numerical analysis of the impact behavior of composite 
sandwich panels. An innovative sandwich construction with an ATH/Epoxy core (i.e. epoxy 
resin filled with alumina tri-hydrate (ATH) particles) and non-crimp glass fabric fibre-reinforced 
epoxy face-sheets was subjected to impact loads. Explicit nonlinear finite elements model was 
developed to predict the damage characteristics in both the face-sheets and core. The obtained 
numerical results were compared with the test data to assess the effectiveness of the proposed 
model. A good correlation with respect to the contact force and energy-time relationships, 
permanent deformation, and impact-induced damage was achieved. The contribution of each 
component of the sandwich structure to its energy absorption capabilities was also evaluated. It 
was found, for an impact energy of 21J, that the energy dissipated in the ATH/Epoxy core is 
almost two times more than that dissipated in the face-sheets. The important role of the core 
material for reducing face-sheet damage was identified. 

Keywords: Impact behaviour, Composite sandwich panel, Alumina trihydrate (ATH) particles, 
damage mechanisms. 

Introduction 
Composite sandwich structures are finding increasing utilization in many engineering 
applications such as the aerospace, automotive, building, and water turbine industries, because of 
their relative benefits over other structural materials [1]. For instance, conventional structures in 
hydraulic turbine are nowadays replaced with composite sandwich structures to improve energy 
production and to facilitate in-site manufacturing. However, in such application, it has been 
found that the river flow can provoke huge amount of waterborne debris and the waterborne 
debris impact was highlighted as a major source of damage for the composite hydraulic turbine 
blades. Therefore, impact resistance is an important topic in engineering communities. 

Impact resistance of composite sandwich depend on the mechanical and geometrical properties 
of its constituents such as the face-sheet material, core material, and the adhesive interface 
properties. Core crushing was identified as the major failure mechanism under an impact event 
[2]. Meanwhile, one major drawback of sandwich structures is its poor transverse stiffness [3]. 
Therefore, the core material properties are the main parameters to improve impact resistance of 
composite sandwich panels. A wide variety of material can be used as core in sandwich 
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constructions such as synthetic foam, honeycomb, balsa wood, and corrugated cores among 
others [1]. The main functions of the core materials are to absorb impact energies and provide 
the overall bending resistance. However, the problem with light-weight cores is that they are not 
enough resistant to withstand high impact loads. 

Mines et al. [2] reported that the core density affects the failure progression. Furthermore, it has 
been shown that absorbing impact energy via the plastic deformations of the core can improve 
the damage tolerance of sandwich structures [4]. Torre and Kenny [5] used an innovative 
sandwich construction made of glass/phenolic composite skins and a rigid polymer foam core 
with fibre reinforced plastic to enhance crush resistance for civil engineering structures. The 
sandwich addressed herein is a high density core made of epoxy resin filled with Alumina tri-
hydrate particles. This sandwich construction was designed to increase the core crushing 
resistance and hence improve damage tolerance of sandwich panels at high impact loads. 

In light of the aforementioned considerations and the existence of some limitations for 
performing experimental tests, there is a strong need to develop a numerical model that can be 
used to predict the structural impact response and the damage process and locations under impact 
conditions. 

There are several numerical approaches reported in the open literature for prediction of the 
response of sandwich structures under impact loads. In order to reduce the computational time, 
some researchers [6-8] have used 2D shell elements to model the face-sheets. Among them, 
Zhou et al. [6] studied the perforation resistance of foam-based sandwich panels using 2D 
elements for the face-sheets, however, it should be noted that these elements are not accurate for 
failure analysis since the stress distribution in the face-sheets is a 3D problem. Feng et al. [9] 
used a progressive damage model to simulate the damage scenarios in foam-based sandwich 
composites subjected to impact loads. In their proposed model, a 3D damage model was used to 
track the intra-laminar damages in face-sheets and cohesive elements were used to simulate 
interface delaminations. 

The objective of this work is to investigate the impact response of a particular composite 
sandwich panel designed to the water turbine industries. This sandwich is made of a high-density 
core (ATH/Epoxy: epoxy resin filled with alumina trihydrate particles) and Non-Crimp Fabrics 
glass/epoxy skins. To the best of the authors’ knowledge, there is no published studies deal with 
this sandwich construction. A numerical 3D continuum model was implemented in LS-
DYNA/Explicit code to simulate the intra-laminar damage initiation and development within the 
face-sheets. This model included an enhanced non-linear shear model and a mixed-matrix 
damage initiation and propagation law. The cohesive elements approach is also used to simulate 
the inter-laminar delamination. Furthermore, a specific continuum damage model is developed to 
simulate the behaviour of the ATH/Epoxy core. This model accounts for the damage initiation 
and propagation as well as the residual strength after final failure. The numerical results were 
compared with the test data and a good correlation was obtained. The numerical model was also 
used to assess the contribution of each component of the sandwich structure to its energy 
absorption capacity. 
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Compression test on ATH/Epoxy core 
Flatwise compressive characteristic of ATH/Epoxy core with 50 wt% ATH was studied. Note 
that the ATH amount was selected on the basis of a preliminary experimental study (not reported 
herein), which was conducted earlier to identify the optimum ATH amount that can be used to 
minimize the heat generated during the epoxy curing reaction. The square cross-section 
specimens of 51 × 51 mm dimensions with thickness of 25.4 mm were prepared according to the 
ASTM D1621-10 standard procedure [10]. Testing was carried out on the MTS testing machine 
with displacement rate of 2.5 mm/min. The uniform distributed load was applied on specimens 
by two flat and parallel plates (Fig. 1). 

 

Fig. 1 Flatwise compression test setup 

Fig. 2 depicts the load-displacement curves from compression testing experiments which served 
us to calculate the compressive Young’s modulus and crush strength values. 

 
Fig. 2. Compressive force-displacement response of ATH/Epoxy  
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Face-sheets damage model 

Material constitutive model and nonlinear shear response 
For a better definition of the material constitutive model of composite laminates, both the non-
linear behaviour due to the plastic deformation and the damage in the laminate must be 
considered [11]. These two phenomena can be simulated using plasticity and continuum damage 
theories, respectively. Thus, in the present work, elastic Hooke’s law for linear orthotropic 
materials is adopted to contemplate the non-linear shear behavior. 

The material constitutive model can be expressed as follows: 

�
𝜎𝜎11
𝜎𝜎22
𝜎𝜎33

� =
1
Ω
�
𝐸𝐸11(1 − 𝑣𝑣23𝑣𝑣32) 𝐸𝐸22(𝑣𝑣12 − 𝑣𝑣32𝑣𝑣13) 𝐸𝐸33(𝑣𝑣13 − 𝑣𝑣12𝑣𝑣23)
𝐸𝐸11(𝑣𝑣21 − 𝑣𝑣31𝑣𝑣23) 𝐸𝐸22(1 − 𝑣𝑣13𝑣𝑣31) 𝐸𝐸33(𝑣𝑣23 − 𝑣𝑣21𝑣𝑣13)
𝐸𝐸11(𝑣𝑣31 − 𝑣𝑣21𝑣𝑣31) 𝐸𝐸22(𝑣𝑣32 − 𝑣𝑣12𝑣𝑣31) 𝐸𝐸33(1 − 𝑣𝑣12𝑣𝑣21)

� �
𝜀𝜀11
𝜀𝜀22
𝜀𝜀33

�  

 
Ω = 1 − 𝑣𝑣12𝑣𝑣21 − 𝑣𝑣23𝑣𝑣32 − 𝑣𝑣31𝑣𝑣13 − 2𝑣𝑣21𝑣𝑣32𝑣𝑣13 

(1) 

 

The nonlinear shear stress-strain part of the constitutive model is assigned as follows: 

𝜏𝜏𝑖𝑖𝑖𝑖 = 𝐺𝐺𝑖𝑖𝑖𝑖�𝛾𝛾𝑖𝑖𝑖𝑖 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖��1 − 𝛼𝛼𝛾𝛾𝑖𝑖𝑖𝑖�  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑖𝑖𝑖𝑖 = 1,2,3 (2) 
where 𝛾𝛾𝑖𝑖𝑖𝑖 is total shear strain that can be decomposed into elastic 𝛾𝛾𝑖𝑖𝑖𝑖𝑒𝑒  and inelastic 
components 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:  

𝛾𝛾𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑖𝑖𝑖𝑖𝑒𝑒 + 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (3) 
Before damage initiation, inelastic component of the strain can be obtained by: 

𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑖𝑖𝑖𝑖 −
𝜏𝜏𝑖𝑖𝑖𝑖
𝐺𝐺𝑖𝑖𝑖𝑖0

−
𝜏𝜏𝑖𝑖𝑖𝑖

𝐺𝐺𝑖𝑖𝑖𝑖0 (1 − 𝛼𝛼𝛾𝛾𝑖𝑖𝑖𝑖)
 (4) 

where 𝐺𝐺𝑖𝑖𝑖𝑖0  is initial shear modulus, 𝛼𝛼 is a material constant expressing the gradual shear modulus 
which can be found experimentally. To depict the nonlinear shear behaviour, a polynomial cubic 
stress-strain as follow was used: 

𝜏𝜏𝑖𝑖𝑖𝑖�𝛾𝛾𝑖𝑖𝑖𝑖� = 𝑐𝑐1𝛾𝛾𝑖𝑖𝑖𝑖 + (𝛾𝛾𝑖𝑖𝑖𝑖)𝑐𝑐2𝛾𝛾𝑖𝑖𝑖𝑖2 + 𝑐𝑐3𝛾𝛾𝑖𝑖𝑖𝑖3  (5) 
where 𝑐𝑐1, 𝑐𝑐2, and 𝑐𝑐3 are the coefficients obtained by curve fitting to experimental shear stress-
strain response.  

 
Fig. 3 Typical shear stress-strain response  
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Damage initiation and propagation in material constitutive was taken into account through the 
continuum damage mechanic model (CDM). Therefore, a physically-based CDM model was 
developed in the FE software. The continuous damage evaluation in each ply of laminate was 
described by a damage matrix D, which defined by three internal damage variables 𝑑𝑑𝑖𝑖𝑖𝑖 
correspond to the different damage modes. Each of the damage variables reduces a component of 
the undamaged stress tensor 𝜎𝜎 to simulate the stiffness degradation.  

𝜎𝜎𝑑𝑑 = 𝐷𝐷𝐷𝐷 (6) 

Intra-laminar damage model 

Fibre failure modes 

Two strain-based failure criteria, 𝐹𝐹11𝑇𝑇  and 𝐹𝐹11𝐶𝐶 , were used to detect fibre damage initiation under 
tensile and compressive loading, respectively: 

𝐹𝐹11𝑇𝑇 = �
𝜀𝜀11
𝜀𝜀11𝑜𝑜𝑜𝑜

�
2

− 1 ≥ 0 

𝐹𝐹11𝐶𝐶 = �
𝜀𝜀11
𝜀𝜀11𝑜𝑜𝑜𝑜

�
2

− 1 ≥ 0 

(7) 

where 𝜀𝜀11𝑜𝑜𝑜𝑜 and 𝜀𝜀11𝑜𝑜𝑜𝑜 are the damage initiation strain in tension and compression, respectively.  

Once the damage initiates, material starts to gradually lose its stiffness up to the final failure as 
sketched in Fig. 4. Here, the damage variables for tensile (𝑑𝑑11𝑡𝑡 ) and compressive (𝑑𝑑11𝑐𝑐 ) fibre 
failures are defined as follows: 

𝑑𝑑11𝑡𝑡 =
𝜀𝜀11
𝑓𝑓𝑓𝑓

𝜀𝜀11
𝑓𝑓𝑓𝑓 − 𝜀𝜀11𝑜𝑜𝑜𝑜
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2

 

𝑑𝑑11𝑐𝑐 =
𝜀𝜀11
𝑓𝑓𝑓𝑓

𝜀𝜀11
𝑓𝑓𝑓𝑓 − 𝜀𝜀11𝑜𝑜𝑜𝑜

�1 −
𝜀𝜀11𝑜𝑜𝑜𝑜

𝜀𝜀11
�
2

 

(8) 

where 𝜀𝜀11
𝑓𝑓𝑓𝑓 and 𝜀𝜀11

𝑓𝑓𝑓𝑓 are the maximum strain at failure which are calculated as a function of the 
critical energy release rates (𝐺𝐺11𝑡𝑡  and 𝐺𝐺11𝑐𝑐 ), maximum longitudinal stresses (𝑋𝑋𝑡𝑡, 𝑋𝑋𝑐𝑐) and the 
characteristic length, 𝑙𝑙∗ as follows: 

𝜀𝜀11
𝑓𝑓𝑓𝑓 =

2𝐺𝐺11𝑡𝑡

𝑋𝑋𝑡𝑡  𝑙𝑙∗
 ;   𝜀𝜀11

𝑓𝑓𝑓𝑓 =
2𝐺𝐺11𝑐𝑐

𝑋𝑋𝑐𝑐  𝑙𝑙∗
 (9) 

 

One coupled tension-compression damage variable, d1f, was used to simulate fibre degradation in 
the longitudinal direction: 

 
𝑑𝑑1𝑓𝑓 = 𝑑𝑑11𝑐𝑐 + 𝑑𝑑11𝑡𝑡 − 𝑑𝑑11𝑡𝑡 𝑑𝑑11𝑐𝑐  (10) 
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Fig. 4. Intra-laminar damage model behaviour for fiber failure 

 

Matrix failure modes 
Matrix damage initiation: Failure criterion proposed by Catalanotti et al. [12] was used to detect 
matrix cracking, 𝐹𝐹22𝑇𝑇 , and Puck failure criterion [13] was used to identify matrix crushing, 𝐹𝐹22𝐶𝐶 .  

These criteria were defined as:  

where 𝑌𝑌𝑡𝑡 , 𝑆𝑆t𝑖𝑖𝑖𝑖, and 𝑆𝑆l𝑖𝑖𝑖𝑖 are the matrix tensile strength and the in situ shear strength in transverse 
and longitudinal directions, respectively; 𝜅𝜅 and 𝜆𝜆 are defined as 𝜅𝜅 = (𝑆𝑆𝑙𝑙2 − 𝑌𝑌𝑡𝑡) 𝑆𝑆𝑡𝑡⁄ 𝑌𝑌𝑡𝑡 and 
𝜆𝜆 = 2𝜇𝜇𝑛𝑛𝑛𝑛𝑆𝑆𝑡𝑡 𝑆𝑆𝑙𝑙⁄ − 𝜅𝜅; 𝜇𝜇𝑛𝑛𝑛𝑛  and 𝜇𝜇𝑛𝑛𝑛𝑛 are friction coefficients defined as 𝜇𝜇𝑛𝑛𝑛𝑛 = −1 tan (2𝜃𝜃𝑓𝑓)⁄  and 
𝜇𝜇𝑛𝑛𝑛𝑛 = 𝜇𝜇𝑛𝑛𝑛𝑛 𝑆𝑆12 𝑆𝑆𝑡𝑡⁄  where 𝑆𝑆𝑡𝑡 = 𝑌𝑌𝑐𝑐 2tan (𝜃𝜃𝑓𝑓)⁄  and 𝑌𝑌𝑐𝑐 is the matrix compressive strength. The angle 
of fracture plane, 𝜃𝜃𝑓𝑓, is approximately 53° for unidirectional laminate under pure compressive 
loading. 

The two previous criteria depend on the stresses in the potential fracture plane (Fig. 5) which can 
be calculated using the standard transformation matrix 𝑇𝑇(𝜃𝜃): 

𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛 = [𝑇𝑇(𝜃𝜃)]𝜎𝜎123[𝑇𝑇(𝜃𝜃)]𝑇𝑇 (12) 
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Fig. 5. Fracture plane in compression loading 

Matrix damage propagation: when the matrix failure initiates under combined loading, the 
resulted stress, 𝜎𝜎𝑟𝑟, and the corresponding strain, 𝜀𝜀𝑟𝑟, on the potential fracture plan should be 
recorded as follows:  

𝜎𝜎𝑟𝑟 = �〈𝜎𝜎𝑛𝑛𝑛𝑛〉2 + (𝜏𝜏𝑛𝑛𝑛𝑛)2 + (𝜏𝜏𝑛𝑛𝑛𝑛)2 

𝜀𝜀𝑟𝑟 = �〈𝜀𝜀𝑛𝑛𝑛𝑛〉2 + (𝛾𝛾𝑛𝑛𝑛𝑛)2 + (𝛾𝛾𝑛𝑛𝑛𝑛)2 

𝜀𝜀r,in
0 = �(𝛾𝛾𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖)2 + (𝛾𝛾𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖)2  

(13) 

Here, 𝜀𝜀r,in
0 , is the inelastic component of the strain at the moment of failure initiation. 

The matrix damage parameter, 𝑑𝑑𝑚𝑚, is defined as: 

𝑑𝑑𝑚𝑚 =
𝜀𝜀r
𝑓𝑓 − 𝜀𝜀r,in

0

𝜀𝜀r
𝑓𝑓 − 𝜀𝜀r𝑜𝑜

�
𝜀𝜀r0 − 𝜀𝜀𝑟𝑟
𝜀𝜀𝑟𝑟 − 𝜀𝜀r,in

0 � (14) 

 

The shear and tensile stresses on the fracture plane are reduced by the following relations and 
then they are transformed to the original plane. 

𝜎𝜎𝑛𝑛𝑛𝑛 = (1 − 𝑑𝑑𝑚𝑚)𝜎𝜎𝑛𝑛𝑛𝑛 

𝜎𝜎𝑛𝑛𝑛𝑛 = (1 − 𝑑𝑑𝑚𝑚)𝜎𝜎𝑛𝑛𝑛𝑛 

𝜎𝜎𝑛𝑛𝑛𝑛 = 𝜎𝜎𝑛𝑛𝑛𝑛 − 𝑑𝑑𝑚𝑚𝜎𝜎𝑛𝑛𝑛𝑛 

(15) 

 

The fracture energy of the matrix, 𝐺𝐺𝑚𝑚, under combined stresses can be calculated as follows: 

𝐺𝐺𝑚𝑚 = 𝐺𝐺𝐼𝐼𝐼𝐼 �
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 (16) 

where 𝐺𝐺𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 are the critical strain energy release rates for modes I and II, respectively. 

The final failure strain, 𝜀𝜀𝑟𝑟
𝑓𝑓, which is governed by the critical strain energy release rate, Gm, and 

characteristic length, l, is defined as follows: 
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𝜀𝜀𝑟𝑟
𝑓𝑓 =

2𝐺𝐺𝑚𝑚
𝜎𝜎𝑟𝑟 𝑙𝑙

 (17) 

Inter-laminar damage model 
Cohesive elements —defined by a linear traction-separation model— are frequently used for 
simulating the delamination between two successive plies with different fiber orientations. This 
cohesive model is composed of an elastic behaviour until the damage initiation according to a 
stress-based quadratic interaction criterion, followed by decohesion of the two plies as a result of 
the damage propagation. 

The quadratic stress-based criterion adopted herein to detect delamination initiation was defined 
as follows: 
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where 𝜎𝜎1, 𝜏𝜏2, 𝜏𝜏3 are the interface tangential and normal stresses and 𝑇𝑇, 𝑆𝑆 are the maximum 
traction stresses in normal and tangential directions. 

The delamination propagation was modeled using the Benzeggagh-Kenane rule [14] for mixed-
mode loading:  
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where 𝛽𝛽 is the mixed mode ratio, 𝑋𝑋𝑋𝑋𝑋𝑋 is exponent of the mixed mode criterion, 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the area 
under the load-displacement curve, and 𝐺𝐺𝐼𝐼𝐼𝐼,𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 are the inter-laminar fracture toughness in mode 
I, II.  

ATH/Epoxy core damage model 
In order to model the core damage behavior, some numerical approaches have been proposed in 
the open literature. Some authors [15, 16] applied a yield criterion that considers the transvers 
normal and shear stresses to predict the initiation of plasticity. Atkay et al. [8] proposed a 
removing failed element technique to simulate the damage propagation in honeycomb and foam 
cores. Nevertheless, this approach can not represent the residual strength of material after 
compressive failure. In this work, a damage model based on the continuum damage mechanic 
was proposed to simulate the damage initiation and propagation in ATH/Epoxy core. This model 
takes into account the residual strength after compression failure as sketched in Fig. 6. 

The Besant’s failure criterion [15] was adopted to detect the core failure initiation under 
combined shear and compression loads 

�
𝜎𝜎𝑧𝑧𝑧𝑧
𝜎𝜎𝑐𝑐𝑐𝑐

�
2

+ �
𝜏𝜏𝑥𝑥𝑥𝑥
𝜏𝜏𝑙𝑙𝑙𝑙

�
2

+ �
𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑡𝑡𝑡𝑡

�
2
≥ 1 (20) 

where 𝜎𝜎𝑐𝑐𝑐𝑐, 𝜏𝜏𝑙𝑙𝑙𝑙, and 𝜏𝜏𝑡𝑡𝑡𝑡 are the corresponding yields stresses. 

After damage initiation, the stresses (𝜎𝜎𝑧𝑧𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥, and 𝜏𝜏𝑦𝑦𝑦𝑦) are gradually reduced using a damage 
variable, dc, defined as follows: 
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where 𝜀𝜀c𝑜𝑜 is the strain at the failure initiation and 𝜀𝜀c
𝑓𝑓 is the strain at the final failure.  

 
Fig. 6. Stress-strain response of the ATH/Epoxy core 

Experimental details 
In this investigation, non-crimp fabric (NCF) glass reinforced composite laminates are used as 
skins for sandwich panels. The composite skins were composed of six layers of E-glass/epoxy 
reinforcement. Each NCF lamina consists of three plies of [90°/0°/90°] tied together using 
polyester yarn. At first, the composite skins were manufactured using the vacuum infusion (VI) 
process. Meantime, sandwich core was prepared by mixing the resin epoxy with 50 wt% of ATH 
particles. The polymerization mixture was poured into a wood mould where the skins are earlier 
positioned at its both ends as sketched in Fig. 7. The nominal thickness of sandwich core is 34 
mm. After the casting process was completed, the curing of the plastic core (ATH/Epoxy) was 
achieved at room temperature for 24h. Following the curing process, the sandwich panels were 
cut into specimens with 100 mm × 100 mm in dimension.  

 
Fig. 7. Wood mould for fabrication of sandwich panel  
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Impact tests were performed using a drop weight machine following the guideline given in the 
ASTM standard D3763 [17]. The impactor had a mass of 22 kg and a diameter of 25.4 mm. 
During impact test, the specimen was constrained between two parallel rigid supports with a hole 
of 75 mm diameter in the center (see Fig. 8). A sufficient clamping pressure was applied to 
prevent slippage of the specimen during experiments. 

 

Fig. 8 Specimen fixture apparatus 

Finite element model 
A 3D finite element model was implemented in LS-DYNA/Explicit code to predict the structural 
behavior of the whole sandwich panels as well as the damage characteristics for the core and 
face-sheets during impact loading. To decrease the computational time, only one quarter of the 
sandwich panel with symmetric boundary conditions was modelled as illustrated in Fig. 9.  

Both the plastic core and face-sheets were modelled using eight-node solid elements with 
reduced integration and hourglass control. Zero-thickness cohesive elements were used to 
simulate delamination between adjacent plies with different fiber orientations. The impactor and 
support plate are defined to be rigid bodies. A surface-to-surface type contact element was 
defined between the upper face-sheet and the impactor surface. 

Since no damage was observed in the bottom face-sheet following the experimental testing, the 
face-sheets damage model was only defined for the upper face-sheet. The ATH/Epoxy core 
behaviour was simulated through the core material model described in the previous section. 
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Fig. 9. Finite element model for impact simulations 

Results and discussions 

Impact response of ATH/Epoxy core 
In order to validate the damage model proposed to simulate the AHT/Epoxy damage behavior, 
impact tests on the ATH/Epoxy specimens were performed for an impact energy of 21J. The 
choice of this energy level was made to avoid damaging of the used cell load since no data are 
available in the open literature regarding the impact resistance of the studied sandwich 
construction. 

Figs. 10a and b present a comparison between numerical and experimental force-time curves and 
energy-time curves, respectively. In general, close correlation is achieved between the numerical 
prediction and the experimental data. The maximum recorded contact force is about 22.5 kN 
which can be considered as a high impact load.  

Moreover, with regards to impact energy, the experimental results show that about 9.5J energy 
was absorbed through plastic deformations and matrix damage in the ATH/Epoxy core. 
Numerical model tends to underestimate the value of absorbed energy as is evident in Fig. 10b. 
The difference between numerical predictions and experimental data seems a priori due to an 
underestimation of the plastic deformation that the ATH/Epoxy material suffered during the test. 

  
Fig. 9. Impact response of ATH/Epoxy core for an impact energy of 21J 

0

5

10

15

20

25

0 1 2 3 4 5 6

Fo
re

c(
kN

) 

time(ms) 

Exp.

Num.

a) 

0

5

10

15

20

25

0 1 2 3 4 5 6

En
er

gy
(J)

 

time(ms) 

Exp

Num.

b) 

Impactor 
ATH/Epoxy core 

Laminated face sheet 50 mm 

50 mm 

34.4 mm 

Six [90°/0°/90°] layers of 
glass/epoxy NCF 

90° 
90° 
0° 

One layer 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1151



A comparison between the experimental and predicted damage area at impact energy of 21J is 
presented in Fig. 11. The damage area reported herein represents the projected damage area 
towards the impacted surface. At first sight, it can be noticed that the numerical model is able to 
capture the shape (circular shape) and size of the damage area. This pointed out the 
appropriateness of the proposed core material model to simulate the damage pattern in the 
ATH/Epoxy plastic core. 

From the numerical results, it can be noticed that the predicted damage depth is equal to almost 
one-half of the predicted damage diameter. Thus, it can be assumed that the experimental 
damage depth is about 4.5 mm. Microscopic observations will be needed to confirm this 
hypothesis. 

On the other hand, the numerical results show that the compressive stresses in the ATH/Epoxy 
core are highly intense in the localized contact area. One can therefore draws the conclusion that 
the damage in ATH/Epoxy core resulted from high compressive stresses under the impactor. 
Moreover, numerical results show the presence of an irreversible deformation of the ATH/Epoxy 
core close to the impact zone. This residual deformation is manifested as a permanent 
indentation of 0.3 mm depth. 

 
Fig. 10. Damage zone in ATH/Epoxy specimen 

Impact response of NCF laminated face sheet 
In order to investigate the influence of sandwich core on the damage evolution in NCF 
glass/epoxy laminates face-sheets, the impact response of the face-sheets laminates was 
simulated herein under the same boundary conditions. 

Fig. 12a and b illustrate the contact force and energy as a function of time for an impact energy 
of 21J. The predicted maximum contact force and absorbed energy are about 8.5 kN and 7.5J, 
respectively. The NCF composite laminates absorb energy through matrix damage and interface 
delamination mechanisms. 

5.7 mm 5.7 mm 
9 mm 

a) experimental damage zone b) numerical damage zone 
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Fig. 11. Impact response of NCF laminated for an impact energy of 21J 

Fig. 13 shows the predicted impact damage pattern in the NCF composite laminates. As can be 
seen in Fig. 13, the damage area is roughly circular with a diameter of 30 mm, which is relatively 
large damage area. The numerical results reveal that the matrix damage and delaminations are 
the main failure mechanisms in the NCF laminates for 21J impact energy. The high tensile 
stresses due to the large bending deformation are the main reason behind the matrix damage 
propagation. 

 
Fig. 12. Damage zone in NCF laminated 

Impact response of the sandwich 
Figs. 14a and b present the contact force-time and impact energy-time of the sandwich panel. As 
can be seen from Fig. 14a, there is a reasonable correlation between numerical predictions and 
experimental data. The maximum force is well predicted and its value is almost close to that 
achieved for the ATH/Epoxy specimen. The contact time, which is related to the material’s 
resistance, is slightly shorter than that of ATH/Epoxy specimen. It seems that sandwich panel is 
a little stiffer than the ATH/Epoxy. From the experimental and numerical results, it was clear 
that the core material played an important role in the impact response of sandwich panel. 

There is a smaller difference between the predicted and measured absorbed energy as shown in 
Fig. 14b. This difference is probably due to the plastic deformation in the core material. Beyond 
this, these results demonstrate the capacity of core material and sandwich panel to absorb energy. 
The sandwich panel absorbs more than half of impact energy. The absorbed energy is dissipated 
through face-sheets damage and core damage. The damage in the face-sheets was considerably 
reduced due to present of the ATH/Epoxy core (compare to NCF laminates only). Indeed, the 
nature of stress distribution is different from that of NCF laminates. The flexural deformation in 
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the face-sheets decreased due to core stiffness, and hence, the amount of the bending cracks 
significantly decreased. In contrast, the shear cracks, which result from the high transverse shear 
stresses, are more pronounced in this case. 

  
Fig. 13. Impact response of sandwich panel for an impact energy of 21J 

The impact-damage areas in both the upper face-sheet and core are shown in Fig. 15. The 
damage pattern in the upper face-sheet is well predicted in terms of shape and size. Because of 
some experimental limitations, it was difficult to assess the impact-damage inside the core. 
However, since the damage model of the core was previously compared and validated with 
experimental data, the predicted damage in the core must be reasonably considered as reliable.  

As expected, the size of damage area in the core is smaller than that of ATH/Epoxy specimen 
(without face-sheets) as shown in Fig. 15.  

Moreover, the numerical results show a debonding failure at face-sheet/core interface close to the 
impact zone (Fig. 15a) where the shear stresses are the highest. It can therefore deduce that the 
sliding mode is the main cause of the interface debonding between the upper face-sheet and the 
core. The debonding zone is meanwhile relatively small. This could be due to the high elastic 
modulus of the ATH/Epoxy material. Indeed, the core’s elastic modulus has a considerable effect 
on the interface debonding resistance [18]. 

 

 
Fig. 14. Damage zone in sandwich panel 
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In order to highlight the role of the plastic core on the energy dissipation process under impact 
loads, the energy dissipation in each component of the sandwich panel is tracked. Fig. 16 
displays the energy dissipated in the core and the face-sheets along with the total energy 
dissipated in the sandwich panel for 21J impact energy. According to these energy curves, it was 
found that the energy dissipated in the ATH/Epoxy core is almost two times more than that 
dissipated in the face-sheets. Furthermore, more than 25% of the initial kinetic energy is 
absorbed in core crush (which was about 65% of the overall absorbed energy). However, less 
than 12% of the initial kinetic energy is absorbed in the upper face-sheet damage. These 
numerical findings are consistent with the previous results that reveal that the ATH/Epoxy has a 
good ability to locally deform and hence can absorbed a considerable amount of the energy 
dissipated in the whole structure. 

 
Fig. 15. Damage dissipation mechanism for an impact energy of 21J 

Conclusions 
A 3D progressive damage model was implemented into FEM software LS-DYNA/Explicit to 
predict the face-sheets and core damage in ATH/Epoxy core sandwich panels subjected to low-
velocity impact loads. A continuum damage model was used to describe the behaviour and 
failure of the NCF glass/epoxy composite face-sheets, accounts for matrix damage, delamination, 
and fiber failure. Besides this, a damage model was developed to simulate the ATH/Epoxy 
behaviour which includes damage initiation and propagation and residual compressive strength. 
Experimental tests were conducted to validate the numerical model. In general, a reasonable 
correlation between the experimental data and the numerical simulations was achieved. The 
damage model used to simulate damage propagation in the face-sheets, has reflected accurately 
the experimental damage in the face-sheet. The numerical model of ATH/Epoxy predicted the 
damage and the absorbed energy in ATH/Epoxy specimens precisely.  

Form experimental and numerical results, it can be drawn that ATH/Epoxy core sandwich panels 
are effective structure at withstanding low-velocity impact with relatively high impact energy. 
The ability of the ATH/Epoxy material to locally deform and absorb a large amount of impact 
energy makes them a suitable choice for the sandwich core when impact damage resistance is the 
main design issue. 
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The work presented in this paper is the first step in the development of a novel generation of 
hydraulic turbines components made from composite sandwich structures capable to better 
withstands impact loads. 
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Abstract 
Damage of breakwaters during earthquakes is mainly attributed to the liquefaction of 
foundation soil. Most of the studies have investigated the dynamic response of breakwaters 
considering uniform sand foundation and a single earthquake event. However, the foundation 
of a breakwater usually consists of many sub-layers of soil from liquefiable sand to relatively 
impermeable clay. Moreover, during earthquakes a main shock may trigger numerous 
aftershocks within a short time which may have the potential to cause additional damage to 
soil and structures. In this study, the performance of an existing caisson type breakwater on 
the natural ground composed of discontinuous liquefiable sand layer and impermeable clay 
layer is investigated using an effective based soil-water coupling finite element method. In the 
calculation, a real recorded seismic wave in the 2011 Great East Japan earthquake which 
composed of a main shock and two aftershocks is adopted as the input earthquake wave. The 
results reveal that time histories of excess pore water pressure is the governing factors to 
estimate the behavior of breakwater during and after an earthquake, and the repeated 
earthquake shakings have a significant effect on the accumulated displacement of breakwater 
and ground. Eventually the settlement is the most important aspect for the tsunami resistance 
capacity of breakwater structures.  
Keywords: Caisson type breakwater, Repeated Earthquake shakings, Excess pore water 
pressure, Settlement, FEM. 

Introduction 

Earthquake induced liquefaction has become a major problem to offshore structures such as 
breakwaters, river dykes, levees, earth dams etc., supported on a cohesionless foundation soil. 
Previous studies have shown that the wide spread damage to offshore structures occurred 
mainly due to the liquefaction of foundation soil, resulting in settlement, tilting, slumping and 
lateral spreading (Seed 1968, Adalier et al. 1998, Huang & Yu 2013) [1]-[3]. Despite the 
extensive research and development of remedial measures to prevent the large deformation of 
soil structures, offshore structures have suffered severe damage during 2011 Great East Japan 
Earthquake (Oka et al. 2012, Mori et al. 2013, Mori et al. 2015) [4]-[6]. The minor to major 
damage was attributed due to the liquefaction of foundation soil. This event elucidates the 
further need to understand the deformation behavior of offshore structures resting on non-
homogeneous liquefiable foundations. However, attention given to the seismic response of 
offshore structures under strong seismic loading is limited. Among these offshore structures, 
breakwaters may damage or lose their normal ability to resist tsunami loading during strong 
earthquake loading before the arriving of tsunami. To date, most of the investigations on 
breakwaters concentrated on the tsunami wave and the mechanical behavior of rubble mound  
(Fujima 2006, Imase et al. 2012, Susumu 2012, Takahashi et al. 2014) [7]-[10]. Experimental 
and numerical investigations on seismic behaviors of a composite breakwater under 
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earthquake loading are still limited, which can be found in the works (Memos et al. 2003, 
Yuksel et al. 2004, Jafarian et al 2010, Ye 2012) [11]-[14]. 

On the other hand, most of the experimental studies and numerical analyses have been 
conducted previously to examine the behavior of offshore structures resting on uniform 
cohesionless soil during earthquakes (Aydingun & Adalier 2003, Adalier & Sharp 2004, Ye 
& Wang 2015)  [15]-[17]. However, it is noted that natural soil deposits normally consist of 
many sub-layers with different soil particles and properties, ranging from sand to cohesive 
clay and coarse sand layers, referred to as non-homogeneous soil deposits. Huang et al. (2015) 
[18] point out that liquefaction in the saturated layer was the contributing factor to large 
settlement and sliding of the structures. Thus, the dynamic behavior of the breakwater on a 
liquefiable non-homogeneous foundation, consisting of discontinuous low permeability layers 
of silt or clay at different depths should be well understood.  

During the earthquake that repeated ground-motion sequences occurring after short intervals 
of time, resulting from a main shock and aftershocks earthquakes (Zhang et al. 2013) [19], it 
was found that the low amplitude aftershock can accumulate large lateral deformation and 
continue for several minutes on the liquefied soil (Maharjan & Takahashi 2014) [20]. 
However, in most of the previous experimental and numerical studies seismic performance of 
soil structures is investigated by applying only a single earthquake, ignoring the influence of 
repeated shake phenomena. Among the limited studies considering the repeated earthquake 
shakings, Ye et al. (2007) [21] conducted shaking table tests and numerical analyses on 
saturated sandy soil to investigate the mechanical behavior of liquefiable foundations 
considering repeated shaking and consolidation processes. Xia et al. (2010) [22] presented 
numerical analysis of an earth embankment on liquefiable foundation soils under repeated 
shake and consolidation condition. During 2011 Great East Japan Earthquake, some structures 
continued to shake after the onset of soil liquefaction for more than two minutes. Moreover, 
during the reconnaissance survey after the earthquake, Sasaki et al. (2012) [23] found that the 
more severe deformation and subsidence of levees was due to the occurrence of aftershock, 30 
min after the main shock. However, no previous study has examined the effects of repeated 
earthquake shakings on breakwaters lying on non-homogeneous soil deposits. Therefore, to 
understand the deformation mechanism of breakwaters resting on non-homogeneous soil 
deposits under main shock and sequential aftershocks is of great importance. 

In this study, the co-seismic and post-seismic behavior of an existing caisson type breakwater 
resting on the natural ground composed of discontinuous clay and sand layer under the 
recorded seismic wave in the 2011 Great East Japan Earthquake which composed of a main 
shock and two aftershocks is investigated using an effective based soil-water coupling 
numerical model DBLEAVES (Ye 2011) [24]. In the analysis, an advanced elasto-plastic soil 
constitutive model named as Cyclic Mobility model (Zhang et al. 2007, Zhang et al. 2011) [25] 
[26] is used to describe the complicated nonlinear dynamic behavior of the foundation soils. 
The results show that the used numerical method is capable of capturing the progressive 
ground liquefaction and long-term consolidation process of the breakwater and foundation 
system during and after earthquake loading. The influence of earthquake can significantly 
reduce the capacity of breakwater to resist tsunami loading. In engineering practice, the 
settlement maybe a serious problem for the breakwater when its foundation ground composes 
of discontinuous impermeability clay and liquefiable sand soils.  

Constitutive model 

Using a proper constitutive model to accurately describe soil behaviors including the 
development of excess pore water pressure during earthquakes becomes a key factor when 
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assessing the dynamic behavior of ground and foundation. In the studies using numerical 
methods, most of the previous investigations on seismic dynamics of offshore structures used 
simple constitutive models such as elastic or Mohr–Coulomb model to model the seabed soil  
(Ye & Wang 2015) [17]. These simple models are not capable of simulating the complicated 
nonlinear cyclic behaviors of soils and the failure process of offshore structures. Intensive 
nonlinear interaction between foundation and the structure cannot be effectively captured. Iai 
et al. (1998) [27] conducted effective stress analyses of port structures in Kobe port during the 
Hyogoken–Nambu earthquake in 1995. The numerical analyses calculated that the composite 
breakwater constructed on loose seabed soil settled about 2m during the event, which is 
consistent with the field observation. The work highlighted the importance of using effective 
stress analyses with well-calibrated cyclic soil model to realistically capture the nonlinear 
structure–foundation interaction. Therefore, it is very important to estimate the co-seismic and 
post-seismic behavior of breakwaters using an effective numerical method with proper 
constitutive model, for tsunami associated with the earthquake would cause serious damage to 
the structures especially when the foundation composed of liquefiable layer and might 
experience large deformation by earthquakes.  

For this reason, by adopting the concepts of subloading  (Hashiguchi & Ueno 1977) [28] and 
superloading (Asaoka et al. 2002) [29], Zhang et al. (2007) [25] proposed a rotational 
kinematic hardening elasto-plastic model named as Cyclic Mobility model (CM model) which 
can describe the mechanical behavior of soils under different drainage and loading conditions. 
Zhang et al. (20110 [26] and Ye B. et al. (2012) [30] extended the CM model to describe the 
mechanical behavior of soils under general three-dimensional stress conditions to consider the 
intermediate principal stress (Ye G.L. et al. 2012, Ye G.L. et al. 2013) [31] [32]. According to 
the work of shaking-table tests and numerical simulation under a repeated liquefaction-
consolidation process by Ye B. et al. (2007) [33], it was confirmed that the static and dynamic 
behavior of sand could be well described by the CM model, considering the effect of the 
stress-induced anisotropy, the density and the structure of the soil formed in the natural 
sedimentary process, different loading conditions and drained conditions in a unified way. 

In this study, the clay and sand are modeled with the above mentioned CM model. Eight 
parameters are employed in the model, among which five parameters, Μ, Ν, λ, κ and ν, are 
the same as those in the Cam-clay model. The other three parameters, a: the parameter 
controlling the collapse rate of the structure, m: the parameter controlling the loosing rate of 
the overconsolidation ratio or the change in density of the soil, and br: the parameter 
controlling the developing rate of the stress-induced anisotropy, have clear physical meanings 
and can be easily determined by undrained triaxial cyclic loading tests and drained triaxial 
compression tests. The values of eight parameters involved in the model are fixed in all 
loading process once they are determined from the laboratory tests. A detailed description of 
the CM model can be found in the references (Zhang et al. 2007, Zhang et al. 2011, Zhang et 
al. 2010) [25] [26] [34]. 

FEM model and parameters 

Analysis range and soil profiles 

The analysis range is shown in Fig.1, in which, the breakwater consisting of a caisson and 
rubble mound beneath, is constructed on a natural ground mainly composed of clay soil noted 
as Ac and sand soil noted as As. The original clay soil beneath rubble mound was replaced by 
sand noted as Rs. The caisson is made of concrete, and can be practically treated as an 
impermeable; while the rubble mound, which made of stones, is permeable. The total length 
of the analysis range is 240 m, and the distances from the centerline of breakwater to lateral 
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sides of the ground foundation are both 120 m, which is considered to be large enough. The 
whole depth of the ground is 31 m, which composed of clay noted as Ac, sand noted as As 
and bottom sand noted as Ds. The depth of each soil layer and the size of breakwater are listed 
in Fig.1. Obviously, the liquefiable sand lay lied beneath thick clay layer which may prohibit 
the dissipation of pore water pressure. To improve the ground bearing capacity for structures, 
the original clay soil was replaced by sand beneath breakwater during project construction. 

Some typical points on the breakwater and in the ground are chosen to illustrate the co-
seismic and post-seismic behaviors of breakwater and foundation system. As shown in Fig. 1, 
the points on the breakwater are P-1  at the top of breakwater and P-2 at the bottom of caisson 
on rubble mound; the points beneath breakwater at the centerline are C-1 (GL-5 m) and C-2 
(GL-15 m); the points in the near-filed of the ground (20 m away from the caisson) are N-0 
(GL-0 m), N-1 (GL-5 m), N-2 (GL-15 m); the points in the far-filed of the ground (100 m 
away from the caisson) are F-0 (GL-0 m), F-1 (GL-5 m), F-2 (GL-15 m). Here, the locations 
with depth of 5 m and 15 m below ground surface in free field and beneath the breakwater are 
representative for the seismic behavior in upper clay layer and middle sand layer. 

Ground parameters 

As is known that the identification of parameters from laboratory and in situ tests is 
convincible, since no cyclic tests data of soils are available, some of these parameters were 
determined by element simulation with reference to the standard penetration tests. The 
average N-value and permeability for soils are listed in Table 1, while the eight ground 
parameters of each soil layer used in calculation are listed in Table 2. The initial values of the 
state variables employed in the constitutive model are listed in Table 3. On the other hand, the 
caisson which made of concrete is modeled as impermeable elastic solid element. The rubble 
mound, which made of stones, is modeled as permeable elastic solid element. The Physical 
properties of breakwater are listed in Table 4. 
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Figure 1.  Soil profiles and section view of the caisson type breakwater 

Analysis program and boundary condition 

The numerical analysis was conducted using an effective stress based 2D/3D soil-water 
coupling program named as DBLEAVES (Ye 2011) [24], whose applicability and accuracy 
was firmly verified by the investigation on group-pile foundations in real scale (Jin et al. 2010) 
[35] and model tests (Bao et al. 2012, Bao et al. 2014) [36] [37]. Not only the instant reaction 
of ground and structure system when subjected to a strong earthquake but also the 
consequential long-term settlement of an alternately layered ground can be well examined 
using a sophisticated constitutive model and effective stress based soil-water coupling finite 
element method (Bao et al. 2016) [38].  

For the boundary conditions, the base nodes of the ground foundation were assumed to be 
fixed in both x and y direction. The side boundary nodes at the same elevation were all “tied” 
together to experience the same accelerations. The earthquake loading is applied as a time-
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varying input acceleration to the foundation base. A constant water level is assumed and the 
drained boundary is set at the surface of the ground. As a large ocean wave is unlikely to 
occur simultaneously with earthquake, the wave loading is not considered in this study. 

Table 1. The average N-value and permeability of ground soils 

Layer Clay Ac Sand As Replaced Rs Ds 
N-value 3 13 20 above 50 
Permeability k (m/sec) 1×10-9 1×10-4 1×10-4 4×10-5 

Table 2. Material parameters of ground soils 

Layer Ac As Rs Ds 
Compression index  λ 0.13 0.05 0. 05 0.046 
Swelling index  κ 0.026 0.062 0.065 0.0061 
Stress ratio of critical state Μ 1.21 1.41 1.42 1.42 
Void ratio N (p’=98 kPa on N.C.L.) 1.08 0.93 0.92 0.88 
Poisson’s ratio ν 0.38 0.35 0.35 0.35 
Degradation parameter of overconsolidation state m 2.20 0.10 0.10 0.10 
Degradation parameter of structure a 0.10 2.20 2.20 2.20 
Evolution parameter of anisotropy br 0.10 1.50 1.50 1.50 

Table 3. Initial values of the state variables of ground soils 

Layer Ac As Rs Ds 
Void ratio e0 0.97 0.98 0.91 0.81 
Degree of structure R0

* 0.80 0.60 0.60 0.70 
Overconsolidation OCR (1/R0) 2.00 3.00 4.00 20.0 
Anisotropy  ζ0 0.0 0.0 0.0 0.0 

Table 4. Physical properties of breakwater  

Item Elastic modulus 
(kPa) 

Poisson’s ratio 
ν 

Density 
ρ(t/m3) 

Permeability  
k (m/sec) 

Caisson 1.0×108 0.25 2.5 1.0×10-11 
Rubble mound 1.0×106 0.30 2.0 1.0×10-2 

Earthquake loading and simulation stages 

Input Earthquake wave 

In the calculation, the seismic wave induced by the 2011 Great East Japan Earthquake (ML 
=9.0) is used as the earthquake loading to applied to the breakwater and foundation system. 
One of the main features of this earthquake is that the aftershock activity was extremely 
vigorous. The input earthquake motion recorded 2,300 m below ground surface at Urayasu in 
E-W direction is considered as being representative in Chiba Prefecture (source: www.k-
net.bosai.go.jp) as shown in Fig. 2. This observation station is near to the coastal line of 
pacific ocean, therefore, the chosen input earthquake wave in the analysis is similar as close 
as possible with the real seismic wave propagating to the breakwater foundation. 

 It is noted that the earthquake composed of a major shock and two aftershocks lasts for 42.25 
munities. The first shock (major shock) lasted for 5 min with a maximum acceleration of 85 
gal and the second shock (first aftershock) also lasted for 5 min with a maximum acceleration 
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of 25 gal while the third shock (second aftershock) lasted for 2.25 min with a maximum 
acceleration of 3 gal as shown in Fig.3. The interval between the first shock and the second 
shock was approximate 24 min, and the interval between the second shock and the third shock 
was approximate 6 min. It should be mentioned herein that such a long duration of motions 
has been the major cause of the severe liquefaction and ground deformation. 

Newmark-method is used and the integration time interval is 0.01s. Rayleigh type of initial-
rigidity-proportional attenuation is used and the damping values of the soils, the structure and 
the piles are assumed to be 2% and 10% for the first and second modes respectively in the 
dynamic analysis of the breakwater and foundation system. 

Calculation steps 

The analysis was performed in three steps: 
Step 1: The static analysis considering the ground foundation-breakwater as a whole system is 
carried out to get the initial effective stress of the ground before the dynamic analysis. The 
distribution of initial mean effective stress caused by the gravity of ground and breakwater is 
shown in Fig. 4.  

Step 2: Effective stress based soil water fully coupled dynamic analysis to investigate the 
seismic behavior of ground and breakwater during earthquake loading. In this step, static 
consolidation process followed by each earthquake shock is considered. Excess pore water 
pressure would develop in liquefiable sand layer, and the ground deformation would begin to 
accumulate. 

Step 3: The long-term static analysis after earthquake loading, considering a complete 
consolidation in 3.5 years to examine the post-seismic behavior of breakwater and ground soil. 
The detailed loading process is listed in Table 5. 
 

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60

 E-W

A
cc

el
er

at
io

n(
m

/s
ec

2 )

Time (min)

Earthquake wave

 
 Figure 2. Recorded earthquake loading in E-W direction during the 2011 Great East 
Japan Earthquake 
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Figure. 4 Distribution of initial mean effective stress in the breakwater and foundation 
system due to gravity (unit: kPa) 

Results and discussions 

Seismic responses of breakwater and foundation soil 

The seismic responses of breakwater and foundation soil under the earthquake loading are 
investigated. Fig.5 shows the horizontal acceleration responses of P-1 at the top of breakwater 
and P-2 at the bottom of caisson under the earthquake loading. The acceleration seismic 
responses at the two points are very similar and the amplification from the bottom of caisson 
to the top of breakwater is not obvious. However, the acceleration seismic responses are 
damped out by soil in the middle sand layer comparing with the input earthquake wave as 
shown in Fig. 6. The peak value of horizontal acceleration decreases obviously for the soil in 
liquefiable sand layer (GL-15 m), while the seismic wave was transmitted well in the upper 
clay layer (GL-5 m & GL-0 m). The amplitude of acceleration decreased as the building up of 
excess pore water pressure (Su et al. 2013) [39], and the soil’s shear strength is reduced, 
which hampers effective propagation of shear waves to the soil surface. As the EPWPR value 
was larger at the middle sand layer (Fig. 8), the accelerations were highly attenuated relative 
to the base input (Fig. 6). Moreover, the attenuation of acceleration due to the loss of soil 
stiffness and strength was more significant in the near filed than that in the far field at the up 
clay layer. It was confirmed by Fig. 7 of the relationship between shear strain and shear stress, 
that larger shear strain in near field than that in far field was considered to be influenced by 
the replaced sand soil with high permeability below the breakwater structure. 

Table 5. Loading process in liquefaction-consolidation analysis (a major shock followed 
by two aftershocks) 

Step Analysis type Loading type Calculation time (min) 
1 Dynamic analysis Major shock 5.00 (300 sec) 
2 Static analysis Consolidation 24.00 (1440 sec) 
3 Dynamic analysis First aftershock 5.00 (300 sec) 
4 Static analysis Consolidation 6.00 (360 sec) 
5 Dynamic analysis Second aftershock 2.25 (135 sec) 
6 Static analysis Consolidation 3.5 years 
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Figure 5. Horizontal acceleration responses of breakwater under earthquake loading 
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(a) Near field                               (b) Far field 

Figure 6. Horizontal acceleration responses at different depth of foundation soil under 
earthquake loading 
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Figure 7. Comparison of shear stress-strain relationship in upper clay layer in near field 
and far field   

Liquefaction analysis 

Fig. 8 shows the time history of excess pore water pressure ratio (EPWPR), which is defined 
as the ratio of excess pore water pressure (EPWP) to the initial vertical effective stress, at the 
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selected location (see Fig. 2 for locations of these points). Comparing the results in upper clay 
with that in middle sand layer, it was clear that liquefaction occurred seriously in middle sand 
layer. The EPWPR values were significantly smaller at upper clay layer and replaced sand 
region (GL-5 m) throughout the shaking, revealing the clay soil and replaced sand had not yet 
liquefied. A small aftershock (the second shock) caused rapid increase in EPWPR, re-
liquefying the middle sand layer (GL-15 m) at both near and far field and beneath the 
breakwater. EPWPR continued to increase and remained significantly larger until the end of 
earthquake. The dissipation of EPWP was in a slower rapid in near and far field than that in 
the region beneath breakwater, which could cause a slower rate of the settlement 
accumulation in near and far field than that beneath the breakwater. Obviously, this was 
attributed to the high permeability of the replaced sand soil beneath the breakwater structure. 

As shown in Fig. 9, excess pore water generated rapidly with the highest value in middle sand 
layer below breakwater, in near field and far field. It is clear that liquefaction occurs at the 
end of the first shock, however, the liquefaction area become large at the end of the second 
shock, and at the end of the third shock, large area of liquefaction still remains in the middle 
sand layer. The thicker the upper clay layer is, the longer the duration of liquefaction is. This 
is because the dissipation of large excess pore pressures generated in the deeper depth leads to 
a longer duration of flow to the shallower depth. In addition, the replaced sand soil beneath 
breakwater is not fully liquefied during the whole earthquake loading because of its high 
permeability and the overlying breakwater structure which constricted soil liquefaction. 
Moreover, the replaced sand soil beneath breakwater might have reduced the degree of 
liquefaction of the soil lying below around the centerline and allowed the lateral stretching of 
the soil below the replaced sand towards the free field.  

Fig. 10 shows the dissipation process of EPWP. The pore water was accumulated in middle 
sand layer beneath the clay layer as the clay layer acted as the barrier for vertical dissipation 
of EPWP. It was found that EPWP remains for a longer period of time in middle sand layer 
below upper clay layer compared with the region below the replaced sand soil. In the region 
around centerline below breakwater, EPWP become much lesser and the dissipation was quite 
faster after earthquake shakings (after t = 4 hours shown in Fig. 10). This might be due to the 
reason that the presence of replaced sand region underneath breakwater distributes the out 
flow of pore water.  Overall, the dissipation of pore water was concentrated through the 
discontinuity region below the breakwater and finally towards the ground surface, contracting 
the foundation soil below breakwater and inducing additional settlement after shaking. In 
another word, EPWP remained for a longer period of time at discontinuous regions in non-
homogeneous soil deposits, manifesting a larger settlement at that corresponding region 
causing non-uniform settlements. A significant amount of non-uniform settlement took place 
during and after earthquake shaking as shown in Figs.11&12. The value of EPWP build-up 
beneath breakwater was larger than that in other locations, which caused larger amount of 
settlement at breakwater than at ground surface in near and far field. The total amount of 
settlements at ground surface in near field and far field are 0.697 m and 0.688 m respectively, 
which was smaller than the settlement of the breakwater with a value of 0.815 m after 
complete consolidation of the ground as shown in Table 6. Obviously, the aftershock (the 
second shock) caused additional amount of settlement to breakwater structure (Fig. 11). The 
settlements occurred during earthquake shakings are almost the same at ground surface in 
both near field and far filed except for the small amount of heave at ground surface in the near 
filed (Fig. 12). However, the settlement developed faster in near filed than that in far field 
under post-earthquake consolidation process because of the quick out flow of pore water from 
near filed to the replaced sand region. As the pore water pressure dissipated mainly through 
the discontinuity, the complete dissipation took a long period of time, about 3.5 years (Fig. 
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10). An additional breakwater settlement of 0.277 m was measured due to post-seismic and 
dissipation of EPWP. The heaving at ground surface in near field occurring during the main 
shock shaking also settled down to a final settlement of 0.697m.  

The total amount of settlements of ground in near field and far field were smaller than the 
settlement of the breakwater after complete consolidation of the ground. This might be due to 
the lager volume strain of replaced sand soil underneath breakwater during the dissipation of 
pore water. As the settlement induced due to dissipation of pore water after earthquake 
shaking were significantly larger in near field (0.549 m) and far field (0.547 m) than that at 
breakwater (0.277 m), dissipation of EPWP became the major factor after the earthquake 
shaking stopped, which caused larger amount of additional ground settlement than that during 
earthquake shaking. 

Table 6. Amount of settlement at different positions (Unit: m) 

Time P-1  N-0  F-0 
At the end of earthquake 0.538 0.148 0.141 
3.5 years after earthquake 0.815 0.697 0.688 

Deformation of the breakwater and foundation system 

From Figs. 11&12 of the time histories of vertical displacements at top of breakwater and 
ground surface in both near field and far field, as mentioned above, a total settlement of 0.815 
m for breakwater structure was observed, of which 0.538 m (66%) was measured during the 
main shock shaking (Table. 6). The main mechanisms that contribute to the settlement of 
foundation on a liquefied soil layer are volumetric compaction and shear deformation of the 
soil mass underneath the foundation. Shear deformation is accompanied by the lateral 
spreading of the non-liquefied soil below the structure which is initiated when the soil in the 
free field adjacent to the underlying soil on either side of the breakwater liquefies and loses its 
shear strength and allows the newly unconstrained soil below the breakwater collapse 
vertically and spread outwards. This type of settlement causes considerable vertical strain 
with no volume change. Concurrently, volumetric compaction of the sand mass under the 
upper clay layer occurs which results in both vertical and volumetric strains. This settlement 
results in the disruption of soil structure and rearrangement of soil grains and is the main 
mechanism responsible for the settlement in the free field (Maharjan & Takahashi 2014) [20]. 
It is difficult to separate the volumetric compaction effect from the shear deformation effect 
beneath the breakwater as they both happen at the same time. The final mechanism involved 
in the foundation soil settlement is the long-term dissipation of the excess pore pressure 
(consolidation).  

From Table 6 of the calculated values for the settlement at the end of earthquake and final 
settlements of the breakwater and ground surface, as mentioned above, most part of the 
breakwater settlement (66%) accumulated during earthquake shaking. After ending of the 
earthquake shaking, the settlement of breakwater increases with a lower rate and ceases to 
increase when dissipation of excess pore pressure is completed. However, for the settlement 
of ground surface in both near field and far field, it is notable that the significant part of the 
settlement takes place in the process of pore pressure dissipation after the end of earthquake 
shaking (78.8% and 79.5% in the near field and far field, respectively). The calculated 
settlements of breakwater and ground surface differ to some extent from each other. This 
difference can be attributed to the upper clay layer that hindered the dissipation of pore water 
for near and far filed soil, and conversely, the replaced sand soil beneath the breakwater 
structure that accelerated the dissipation of pore water around centerline below the breakwater. 
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Obviously, the overall deformation of the ground around breakwater was large as shown in 
Fig.13 of displacement vector of breakwater and foundation system. The soil near breakwater 
translated sideways and lateral deformation was observed at the two sides of breakwater 
during earthquake shaking, especially in the middle sand layer that was found to laterally 
spread on both sides towards the free field. This caused serious settlement of breakwater. 
Shear deformation of underlying liquefied sand and volumetric change due to pore water 
dissipation are also factors for breakwater and ground settlements. As the presence of the 
upper clay layer acted as a hindrance and it took about 3.5 years for the water complete its 
dissipation through the discontinuous region according to the calculation results. 
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Figure 8. Time history of EPWPR at different depth of foundation soil 

 
(a) At the end of the first shock (t = 5 minutes) 

 
(b) At the end of the second shock (t = 34 minutes) 

 
(c) At the end of the third shock (t = 42.25 minutes) 
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(d) After earthquake shaking (t = 1 hour) 

 
(e) After earthquake shaking (t = 4 hours) 

 
(f) After earthquake shaking (t = 1.3 days) 

 
(g) After earthquake shaking (t = 13 days) 

 
(h) After earthquake shaking (t = 130 days) 

 
(i) After earthquake shaking (t = 3.5 years, complete dissipation of EPWP) 

Figure 9. Distribution of Excess pore water pressure ratio at different time 

 
(a) At the end of the first shock (t = 5 minutes) 
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(b) At the end of the second shock (t = 34 minutes) 

 
(c) At the end of the third shock (t = 42.25 minutes) 

 
(d) After earthquake shaking (t = 1 hour) 

 
(e) After earthquake shaking (t = 4 hours) 

 
(f) After earthquake shaking (t = 1.3 days) 

 
(g) After earthquake shaking (t = 13 days) 

 
(h) After earthquake shaking (t = 130 days) 
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(i) After earthquake shaking (t = 3.5 years, complete dissipation of EPWP) 

Figure 10. Dissipation process of excess pore water pressure (unit: kPa) 
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Figure 11. Time history of vertical displacement at the top of breakwater 

-1

-0.5

0

0.5

0 10 20 30 40 50 60

ground surface
N-0 (near filed)
F-0 (far filed)

V
er

tic
al

 d
is

pl
ac

em
en

t (
m

)

Time (min)   
-1

-0.5

0

0.5

0 20 40 60 80 100 120

ground surface

N-0 (near filed)
F-0 (far filed)

V
er

tic
al

 d
is

pl
ac

em
en

t (
m

)

Time (hour)  
(a) Within 60 minutes                      (b) Within120 hours 

Figure 12. Time history of vertical displacement at ground surface in near field and far 
field 

    
 (a) At the end of the first shock (unit: m) 
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 (b) At the end of the second shock (unit: m) 

   
(c) At the end of the third shock (unit: m) 

   
(d)  After complete dissipation of EPWP (unit: m) 

Figure 13. Displacement vector of breakwater and foundation system during and after 
earthquake loading (A part of mesh) 

Conclusions 

In this study, the co-seismic and post-seismic performance of a caisson type breakwater 
resting on the natural ground with discontinuous low permeability an liquefiable layers 
subjected to the 2011 Great East Japan Earthquake is investigated using soil-water coupled 
finite element method. Based on the calculated results, the following conclusions can be 
drawn: 

1. The repeated earthquake shaking has a significant effect on the accumulated 
deformation of embankments. The second aftershock caused an increase in EPWP 
generation and an additional settlement. Moreover, the effects of aftershocks were 
more pronounced in the non-homogeneous liquefiable foundations, leading to the 
post-liquefaction delayed settlement and this conclusion was also confirmed by 
Maharjan and Takahashi (2014) [20]. 

2. The replaced sand region with a high permeability has faster dissipation of pore water 
while the dissipation continued for a longer time period in near and far field of ground, 
accumulating delayed displacements. Overall, the dissipation of pore water was 
concentrated through the discontinuity region below the breakwater and finally 
towards the ground surface, contracting the foundation soil and inducing additional 
settlement after shaking and causing larger amount of settlement on breakwater than 
that on ground surface in near and far filed. 

3. The accumulation of pore water beneath the low permeability upper clay layer induced 
large shear strain in middle sand layer, resulting large amount of lateral spreading. 
Lateral spread, shear deformation of underlying liquefied sand and volumetric change 
due to pore water dissipation are the main factors for breakwater and ground 
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settlements. The presence of the upper clay layer acted as a hindrance and it took 
about 3.5 years for the water complete its dissipation through the discontinuous region 
according to the calculation results. 

4. The thick clay layer may cause long term consolidation process while the thick sand 
layer may bring a large area of liquefaction and severe ground deformation. Although 
the replaced sand soil beneath breakwater structure can improve ground bearing 
capacity, it may cause the risk of large amount of settlement to breakwater, which can 
reduce capacity of the breakwater to resist tsunami after earthquake loading.  
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Abstract 
The objective of this study is to evaluate the residual loading capacity of the damaged RC 
slabs by the combined blast and fragment loading (CBFL) effects.  High-fidelity physics-
based (HFPB) finite element analysis technique is used for the numerical simulations in this 
study, which takes into account material nonlinearity, strain rate effects, large deformation 
behavior, “real time” blast and fragment loading, and actual supporting boundary conditions.  
Numerical model and simulation techniques have been validated through five tests including 
the quasi-static tests, the blast loading only test and the CBFL tests, in comparison of the 
deformation and pristine/residual loading capacity of the RC slabs, which was carried out 
without knowing the test results.  Using a fast running tool, fragments and blast loading are 
generated on full scale RC slabs.  A parametric study has been done to investigate dynamic 
response of the full-scale RC slabs under CBFL effects. 
Keywords: Blast loading, fragment loading, RC slab, dynamic response, residual capacity. 

Introduction 
When a cased munition or an improvised explosive device (IED) detonates nearby a structure, 
the structure is subjected to a combination of blast and fragment loading (CBFL). Dynamic 
response of reinforce concrete (RC) slabs under the CBFL may be different from that under 
the air blast loading.  Some studies have been done in this area for the formation of fragments 
loading and their effects on the structural members, e.g., the works reported in reference [1-5].  
A series of small scale experiments using bare charge with pre-formed ball bearings were 
conducted by Swedish Research Institute (FOI) to investigate the effects of the combined 
blast and fragment loadings [4].  The objective of the study was to develop a fast running tool 
to account for the fragmentation effect on the doubly reinforced concrete slab.  As part of the 
study, numerical simulations were conducted for five of the experiments. This paper will 
focus on the numerical simulation to predict the residual capacity of the RC slabs after CBFL 
effect. 
 
High-fidelity physics-based (HFPB) finite element analysis (FEA) technique is used for the 
simulations in this study, which can take into account many physical behaviors of materials 
and structures, such as: (a) material nonlinearity and geometry nonlinearity (large 
deformation); (b) dynamic strain rate effects for material strength increase; (c) structural 3D 
behavior with complex stress states – not only flexural but also axial, shear and torsional 
behaviors/responses; (c) multi-components with multi-materials and structural details for 
connections – not only global but also localized response; (d) “Real time” blast loading – 
blast loads are generally applied with different arrival times and pressure time histories at 
different locations (i.e., non-uniform loading); (e) more realistic boundary conditions of the 
structure, instead of the artificial boundary conditions in SDOF model. 
 
LS-DYNA (www.lstc.com) is used for the simulations in this study. LS-DYNA is a general-
purpose finite element program capable of simulating complex dynamic structural problems, 
which has been widely used in blast and impact effects analysis communities.  
 
K&C concrete material model (i.e., MAT_072 in LS-DYNA) has been incorporated in LS-
DYNA, which enables that more reliable analysis results can be obtained for reinforced 
concrete (RC) structures under blast and impact effects.  This is because this concrete model 
has implemented many key features of concrete materials: (a) three-invariant strength surfaces 
to reflect the pressure-dependent and difference in triaxial extension and compression; (b) 
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effects of confinement - compressive strength is significantly enhanced by confinement; (c) 
non-linearity - Elastic, plastic with hardening and softening (or damage), for which a damage 
metric is used in K&C model to gauge the evolution; (d) strain rate effects – significant 
material strength enhancement by high strain rate, which is important for blast loading effects 
where the concrete strength could be more than doubled; (e) Fracture energy – important 
tensile behavior of concrete; (f) Shear-dilatancy – Concrete's expansion upon cracking 
provides increased strength /ductility where confinement is adequate. 
 

 

 

 

Figure 1.  Test set-up and RC slab specimen. 

RC Slab Tests Under Fragment Loading 
A series of test has been conducted for RC slabs using the test set-up shown in Figure 1 [4].  
Tables 1 and 2 summarize the information about the specimens and test data from five tests, 
which include two quasi-static loading (QSL) tests of the pristine slabs, two fragment loading 
tests followed by QSL tests of the damaged slabs for the residual capacity, and one test under 
CBFL. 
 
Three approaches were taken using three types of set-ups: (a) the QSL test (three point 
loading flexural test) for loading capacity of the pristine slab specimens as a baseline control, 
(b) expose the specimens to the fragments loading then conduct QSL test of the damaged 
slabs for their residual loading capacity, and (c) Expose the specimens to the CBFL effects 
and record dynamic displacement histories; QSL test was not conducted for the damaged slab. 
 

Table 1.  Test specimens of RC slabs for quasi-static and dynamic tests. 

Test 
No. 

Slab 
No. Spacer bar 

Concrete Strength 
(MPa) 

Pristine 
Capacity 

(kN) 

Residual 
Capacity 

(kN) 
Loading 

Cube Cylinder 
24 20 No 39.9 31.9 178 - Quasi-static 
40 19 One side 43.2 34.5 183 - Quasi-static. 
19 18 Both sides 37.3 29.8 - 172 Fragment  
41 16 Both sides 37.9 30.3 - 185 Fragment  
52 22 No 33.2 26.6 - - Blast & Fragment 

Note: a) The dimension of all slabs is 1600 x 800 x 200 mm. b) Longitudinal bars in all slabs are 12Ф6 
as shown in Figure 1. 
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Table 2.  Dynamic test results under fragment explosive charges. 

Test 
No. 

Charge 
Weight 

(kg) 

Fragment 
size 

(mm) 
No. of Balls Height of 

Burst (m) 

Average 
Velocity from 

Test (m/s) 

Fragment 
Density  
(kg/m2) 

19 8.847 Ф8 345 2.1 1,880 0.25 
41 8.969 Ф8 346 1.9 1,880 0.30 
52 8.877 Ф8 345 2.7 1,815 0.17 

 

Blind Prediction of Test Results 

Quasi-static Loading for Pristine Slabs 
Two QSL tests (i.e., Test 24 and Test 40 in Table 1) were conducted for the pristine slabs as 
the baseline control data.  The loading capacity was evaluated through three points loading 
flexural test on the simply supported slabs as shown in Figure 2.  In those tests, the slabs were 
loaded quasi-statically till all the bottom longitudinal rebars fractured, which captured the 
post-peak low strength as well. 
 

 
(a) Test 24 as described in Table 1. 

 
(b) Test 40 as described in Table 1. 

Figure 2.  Two quasi-static tests for the pristine slabs. 

 
Finite element models have been developed for the five specimen slabs (Table 1) to simulate 
the tests.  As an example, simulation results for test 24 presented in Figure 3 show that 
concrete damage is concentrated at the middle span of the slab and rebars are fractured, which 
agrees the test failure mode shown in Figure 2a.  The predicted loading capacities of 165 kN 
(Figure 4a) in Test 24 and 185 kN in Test 40 are quite close to the test results of 178 kN in 
Test 24 and 183 kN in Test 40, respectively.  Those simulation results indicate the numerical 
model developed for the slab QSL test is valid.  In addition, the predicted loading capacities 
of the five pristine slabs (Table 1) are presented in Figure 4b, which indicate the spacer bars 
have some influence. 

Fragment Loading Effects 
Two tests (i.e., Test 19 and Test 41) were carried out by the fragment loading for dynamic 
response and then QSL on the damaged slabs for their residual capacities. The tested 
specimen of Test 41 is shown in Figure 5.  These two tests are simulated with following 
procedures: Step 1: Gravity loading is applied from 0 to 100 ms (t1); Step 2: Blast/fragment 
loading is applied from 100 to 200 ms (t2), where the fragments’ velocities and positions are 
outputted from the fragment explosive charge simulation described in the previous section 
according to the height of burst in Table 2 and mapped on the test specimens; and Step 3: 
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Posttest QSL with a displacement loading on the loading bar of 50 mm/s from 200 ms until 
the rebars fracture. 
 
The simulation results for Test 41 in Figure 6 indicate that fragment damage is mainly on the 
top surface of the slab and the failure of the damaged slab in QSL simulation is due to rebar 
fracture.  The residual capacity and the pristine capacity of the slab are compared in 
Figure 6d, which indicates that the residual capacity is about 91% of the pristine capacity.  
This is probably because the loading capacity is governed by the rebar fracture and the 
concrete damage has relatively less influence to the loading capacity. 
 
An interesting observation from the simulation on the residual capacity is the damaged slab 
behaved more ductile than the pristine slabs, i.e., the force-displacement curve has a clear 
“softening” stage, instead of dropping immediately to the lowest value in the pristine slab as 
shown in Figure 6d.  This is probably because all rebars in the pristine slabs are at the same 
stress status and break at the same time, whereas the rebars may be in slightly different stress 
status and break at the different time due to the non-uniform damage of concrete. 
 
From the simulation results for Test 19, the same observations and conclusions can be drawn 
as those in Test 41.  The residual capacity of the damage slab in Test 19 is about 88%.  A 
comparison of the predicted results and test results in Table 3 indicates that the numerical 
model can reasonably predict the loading capacity of the damaged slabs.  In addition, the 
fragment damage in these two cases doesn’t significantly reduce the loading capacity of the 
slabs.  

Slab Response by Combined Blast and Fragment Loading 
Displacement-time histories from the simulation results of Test 52 are presented in Figure 7, 
which indicates the response of the slab specimen under the CBFL is basically a significant 
rebound and followed by some oscillations.  The rebound displacement was not captured 
during the CBFL test, which is probably the displacement gages were not set for the rebound 
displacement.  Nevertheless, it may be considered that the predicted overall response is still 
reasonable when compared to the entire global response curves from test (Figure 7a) and 
simulation (Figure 7b). 
 
 

 
(a) Concrete damage at failure. 

 
(b) Rebar fracture. 

Figure 3.  Simulation of quasi-static loading test for pristine slab - Test 24. 
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Table 3.  Comparison of loading capacity from pristine and fragment damaged slabs. 

Test Pristine slab 
(predicted) 

Damaged slab 
(predicted) 

Damaged slab 
(Test) 

Percentage of 
Residual Capacity 

Test 19 205 180 172 88% 
Test 41 200 182 185 91% 
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(a) Test 24                                                      (b) All five specimens. 

Figure 4.  Loading capacity of pristine slabs in five tests. 

 
 

 
(a)  Damaged by the fragment loading. 

 
(b)  Failure in quasi-static test for the damaged slab. 

Figure 5.  Test 41 – slab under fragment loading and posttest quasi-static test. 
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(a) Damage by fragment loading            (b) Failure model after QSL 
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(c) Rebar fracture in QSL                   (d) Compare loading capacity 

Figure 6.  Simulation results for Test 41. 

 
(a) Test measurement. 

 
(b) Simulation 

Figure 7.  Test and simulation results for Test 52. 
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Parametric Study 

Case Description 
Following the successful validation of the numerical model described in the foregoing 
sections, this section summarizes the simulation results from the ten cases for a parametric 
study. The ten cases are defined in Table 4, including Cases D1 to D5 for Bomb B and Cases 
E1 to E5 for Bomb C at different standoff distances and different orientation angles α (Figure 
8).  The slabs to be analyzed are 3.0 m long by 1.6 m wide, while their thickness and 
reinforcement bars (rebars) are different in the two series as shown in Table 4.  Concrete of 
the slabs is Grade C32/40 (f′c= 32 MPa), and the rebar is Grade 500C (fy = 500 MPa). 
 
The fragment loading from these two bombs are calculated by KC-Frag [5], which has been 
developed by K&C for characterizing fragment loading from a pipe bomb.  The blast loading 
for the two cases is calculated based on the reduced charge weight, which is determined by 
the Fano Equation [9]: 
 

 
 

Where, W1/W is the ratio of the reduced charge weight to the actual charge weight; 
             M/C is the case to charge weight ratio. 
 
The loading characteristics from these ten cases are summarized in Tables 5 and 6.  The two 
key parameters are the total momentums due to air blast and fragments, which is usually 
dominant the damage of the RC slabs.  The total momentum due to fragments is much greater 
than that due to air blast in all cases, which indicates that the fragment loading may produce 
greater damage on the slab.   
 
The fragment loading for each fragment generated by KC-Frag is a triangle pressure pulse 
with a high pressure peak and a short duration based on the momentum from a fragment, 
which will be applied to a single element.  About two thousands of loading curves calculated 
from the effective charge weight are generated and mapped on the slabs to mimic the “real 
time” blast and fragment loading as each load curve has its own arrival time, peak pressure 
and duration.   
 

Table 4.  Parameters of the ten cases. 

Case 
No. 

Bomb 
(Effective 
Charge) 

Orientation 
Angle, ɑ 

Standoff  
(m) 

Scaled 
Distance 
(m/kg1/3) 

Slab Dimension & 
Reinforcements 

D1 

Bomb B 
(46.05 kg) 

0o 5 1.395 3.0 x 1.6 x 0.6 m                          
(clear span = 2.8m) 
Longitudinal rebars: 
11H16 (150 mm c/c) 
Transverse rebars: 

15H10 (200 mm c/c) 

D2 10o 5 1.395 
D3 17o 5 1.395 
D4 0o 7.5 2.092 

D5 0o 10.0 2.790 

E1 

Bomb C 
(2.29 kg) 

0o 2.8 2.124 3.0 x 1.6 x 0.25 m                        
(clear span = 2.8m) 
Longitudinal rebars: 
16H13 (100 mm c/c) 
Transverse rebars: 

15H10 (200 mm c/c) 

E2 10o 2.8 2.124 
E3 17o 2.8 2.124 
E4 0o 5.0 3.793 

E5 0o 7.5 5.690 

Note: Concrete is grade C32/40 (fpc fc’ = 32 MPa); Reinforcement bar is Grade 500C (fy=500 MPa). 
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Table 5.  Summary of blast and fragment loading for Cases D1 to D5 with Bomb B. 

Description D1 D2 D3 D4 D5 
Standoff (m) 5 5 5 7.5 10 
Orientation (degree) 0 10 17 0 0 
Charge Explosive Weight (kg) 90 
Casing Weight (kg) 141 
Reduction Factor 0.512 
Reduced Charge Weight (kg) 46.05 
Peak AirBlast Pressure (MPa) 1.82 1.82 1.82 0.51 0.24 
Peak AirBlast Impulse (MPa-msec) 1.65 1.65 1.65 1.01 0.73 
Total Momentum due to AirBlast (N-sec) 7633 7633 7633 4704 3477 
Total number of fragment 1184 764 298 798 602 
Smallest fragment weight impacting slab (g) 0.16 0.17 0.17 0.16 016 
Largest fragment weight impacting slab (g) 139 102 85 139 139 
Total fragment weight impacting slab (g) 7827 5594 2289 5432 4044 
Lowest fragment normal impact velocity (m/s) 868 875 850 868 868 
Highest fragment normal impact velocity (m/s) 3499 3445 3078 3499 3499 
Average fragment normal impact velocity (m/s) 2171 2137 2079 2184 2179 
Fragment velocity per Gurney Equation (m/s) 2187 
Average fragment impact momentum (N-sec) 14.2 15.7 15.9 14.5 14.8 
Total Momentum due to Fragment (N-sec) 16861 12029 4738 11571 8875 

 

Finite Element Model 
The finite element models for Cases D1 to D5 (Model D) and Cases E1 to E5 (Model E) are 
shown in Figures 9 and 10, respectively.  In these models, 25 mm cube solid elements are 
employed for concrete material and 25 mm long beam elements are employed for 
reinforcement bars.   

Fragment Loading 
As an example, the blast and fragment loading in Case D1 and D2 is shown in Figures 10, 
which provide information about the fragment distribution on the slab and the momentum of 
each fragment.  This figures also clearly exhibit how the orientation angle influences the 
fragment distribution on the slab, i.e., when the orientation angle increases, the affected area 
reduced from the entire top face (Figure 10c) to about two third (Figure 10d).  The key 
parameters of the blast and fragment loading in Cases D1 to D5 summarized in Table 5 
indicate that the total number of fragments and the total momentum due to the fragments are 
significantly reduced from Case D1 to Case D3, while the average normal impact velocities of 
the fragments are almost identical.  Table 5 also indicates that the fragments numbers are 
reduced when the standoff distance is increased in Case D4 and D5 in comparison with Case 
D1. 
 
The key parameters of the fragment loadings in Cases E1 to E5 are summarized in Table 6 
and exhibit the same characteristics as in Case D1 to D5 mentioned in the above paragraph. 
 
As each fragment loading is represented by a triangle pressure pulse, a lot of loading curves 
are generated according to the total number of fragments in Tables 5 and 6 (i.e., from 73 to 
1184) and applied on the slab, where applicable. 
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Table 6.  Summary of blast and fragment loading for Cases E1 to E5 with Bomb C. 

Description E1 E2 E3 E4 E5 
Standoff (m) 2.8 2.8 2.8 5.0 7.5 
Orientation (degree) 0 10 17 0 0 
Charge Explosive Weight (kg) 7 
Casing Weight (kg) 37 
Reduction Factor 0.327 
Reduced Charge Weight (kg) 2.29 
Peak AirBlast Pressure (MPa) 0.49 0.49 0.49 0.12 0.057 
Peak AirBlast Impulse (MPa-msec) 0.355 0.355 0.355 0.186 0.117 
Total Momentum due to AirBlast (N-sec) 1568 1568 1568 886 555 
Total number of fragment 431 320 73 272 194 
Smallest fragment weight impacting slab (g) 0.26 0.31 0.31 0.26 0.26 
Largest fragment weight impacting slab (g) 224 224 194 194 127 
Total fragment weight impacting slab (g) 5471 4290 1053 3707 2589 
Lowest fragment normal impact velocity (m/s) 148 145 269 148 148 
Highest fragment normal impact velocity (m/s) 2587 2547 2070 2586 2586 
Average fragment normal impact velocity 
(m/s) 1356 1355 1318 1378 1393 

Fragment velocity per Gurney Equation (m/s) 1355 
Average fragment impact momentum (N-sec) 17.0 18.2 19.7 18.6 18.2 
Total Momentum due to Fragment (N-sec) 7343 5820 1436 5064 3534 
 

      
Figure 8.  Model for parametric study (not to scale). 

 
Figure 9.  Finite element model for Cases D1 to D5. 
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Figure 10.  Finite element model for Cases E1 to E5. 

Analysis Results 

Analysis Results for Cases D1 to D5 
The analysis results from Case D1 are presented in Figures 11.  The analyses results exhibit 
that the fragment loading dominates the slab damage, e.g., the entire top face of the slab is 
damaged by the fragments in Case D1, which results in only 39% of residual capacity of the 
damaged slab (Table 7).  In Case D2, the fragments hit only about two third of the top face 
and only this area is badly damaged (Figure 12), which results in 42% of residual capacity.  In 
Case D3, nearly one third of the top face is badly damaged by fragments and the damaged 
slab remains 95% residual capacity.  From the QSL simulations for the damaged slabs 
(Figures 11 and 12), all slabs lose their loading capacities due to the concrete shear failure 
without rebar fracture in Cases D1 to D3. 
 
When the standoff distance is increased in Cases D4 and D5 compared to Case D1, both blast 
and fragment momentums decrease significantly (Table 5).  Consequently, the concrete 
damage is less severe and the slab residual capacity in these two cases are increased 
significantly, i.e., 75% in Case D4 and 83% in Case D5 (Table 7). 
 
The loading capacities of the pristine and damaged slabs shown in Figure 13 indicate that the 
slab residual capacity in Case D1 and D2 is less than a half of the pristine capacity and the 
residual capacity in Case D3 has no significant reduction.  In Cases D4 and D5, substantial 
residual capacities still exist.  Furthermore, the loading capacity of the damaged slab by blast 
loading only has almost no reduction compared to the pristine slab. 
 
Table 7 summarizes the loading capacities, the peak dynamic displacements and 
corresponding support rotation angle [4] in Cases D1 to D5.  A relationship between the 
support rotation and residual capacity is plotted in Figure 13, which indicates that the residual 
capacity of the damaged slabs can be significantly reduced (less than 50%) when the support 
rotation is greater than 0.7 degree. 

 
Table 7.  Loading capacities of pristine and damaged slabs for Case D1 to D5. 

 Loading Capacity (kN) 
Pristine Blast D1 D2 D3 D4 D5 

Value 1800 1800 710 763 1710 1346 1497 
percentage 100% 100% 39% 42% 95% 75% 83% 
Dmax (mm) - 1.4 24 19 6 7.6 5.2 

θmax  0.050 0.980 0.780 0.250 0.310 0.210 
Note: Dmax = the peak dynamic displacement at the slab center. 
         θmax = the maximum support rotation angle (degree). 
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(a) Peak pressure.                                               (b) Maximum Impulse. 

  
(c) Fragment Loading in Case D1.                                     (d) Fragment Loading in Case D2. 

Figure 11.  Blast and fragment loading distribution in Cases D1 and D2. 

  
              (a) Damage by CBFL                            (b) Damage by CBFL (view through the middle 

section). 

 
(c) Displacement history (B – middle span; A and C – 
at quarter spans on left and right, respectively). 

(d) Failure of the damaged slab in posttest QSL (view 
through the middle section). 

Figure 12.  Case D1: slab response under CBFL (Continued). 
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              (a) Damage by CBFL                            (b) Damage by CBFL (view through the middle 

section). 

 
(c) Displacement history (B – middle span; A and C – 
at quarter spans on left and right, respectively). 

(d) Failure of the damaged slab in posttest QSL (view 
through the middle section). 

Figure 13.  Case D2: slab response under CBFL. 
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              (a) Loading Capacity                                        (b) Support rotation vs. residual capacity. 

Figure 14.  Loading capacities of pristine and damage slabs in Cases D1 to D5. 

Analysis Results for Cases E1 to E5 
As an example, the blast and fragment loadings on the slab is shown in Figure 14 and the 
analysis results from Cases E1 are presented in Figures 15.  In Case E1, the slab damage is in 
the middle along the longitudinal span as the fragment loading distribution from Bomb B 
(Figure 14b).  However, the right side of the slab (Figures 15a) undergoes severer damage due 
to larger fragment momentum in this area as shown in Figure 4-14b.  Damage patterns from 
other cases are not shown here. 
 
The analysis results summarized in Table 8 indicate that the residual capacities of the 
damaged slabs in Cases E1, E2 and E4 are 15%, 60% and 64%, respectively, when compared 
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to the pristine slab.  The damaged slabs in Cases E3 and E5 and by blast loading only have 
almost the same loading capacity with the pristine slab.  The relationship between the support 
rotation and the residual capacity in Figure 16 indicates that the slabs lose about 50% loading 
capacity when the support rotation is greater than 1.2 degree. 
 
When the standoff distances are increased in Case E4 and E5, the global damage to the slab is 
less significant compared with that in Case E1, although a fragment near the slab edge may 
cause severe local damage (Figure 16). 
 
The loading capacities of the pristine and damaged slabs are evaluated and their load 
displacement curves are presented in Figure 17.  Similar with Cases D1 to D3, from the 
failure model of the damaged slab in posttest QSL, all slabs lose the loading capacity due to 
concrete shear failure and no reinforcement bars fracture. 
 

Table 8.  Loading capacities of pristine and damaged slabs for Case E1 to E5. 

 Loading Capacity (kN) 
Pristine Blast E1 E2 E3 E4 E5 

Value 460 460 70 273 458 295 470 
Percentage 100% 100% 15% 60% 100% 64% 100% 
Dmax (mm) - 2 61 20 8.5 19 10 

θmax  0.080 2.490 0.820 0.350 0.780 0.410 
Note: Dmax = the peak dynamic displacement at the slab center. 
         θmax = the maximum support rotation angle (degree). 

 

  
Figure 15.  Case E1: Blast and fragment loading on slab. 

Conclusions 
In this study, the HFPB finite element techniques and procedures for evaluating the residual 
capacities of RC slabs after the combined blast and fragment loading effects have been 
validated.  A parameter study has been conducted to evaluate the residual capacity of the RC 
slabs subjected to various blast and fragment loadings.  The calculated loading shows the total 
momentum from fragments can be greater than that from air blast loading generated by pipe 
bombs.  The simulation results show that the fragment loading can dominate the damage of 
the RC slabs and their residual capacities. 

Acknowledgement 
The authors acknowledge the financial and technical support by Defence Science & 
Technology Agency (DSTA) and Nanyang Technological University (NTU). 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1187



 

   
              (a) Damage by CBFL                            (b) Damage by CBFL (view through the middle 

section). 

 
(c) Displacement history (B – middle span; A and C – 
at quarter spans on left and right, respectively). 

(d) Failure of the damaged slab in posttest QSL (view 
through the middle section). 

Figure 16.  Case E1: slab response under CBFL. 
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Figure 17.  Loading capacities of pristine and damage slabs in Cases E1 to E5. 
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Abstract 

It is well-known that fibres improve the performance of cementitious composites by acting as 

bridging ligaments in cracks. Such bridging behaviour is often studied through the fibre 

pullout tests. The relation between the pullout force versus slip end displacement is 

characteristic of the fibre-matrix interface. However, such a relation varies significantly with 

the fibre inclination angle. In the current work, we establish a numerical model to explicitly 

represent the fibre, matrix and the interface for arbitrary fibre orientations. Cohesive elements 

endorsed with mixed-mode fracture capacities are implemented to represent the bond-slip 

behaviour at the interface. Contact elements with Coulomb’s friction are placed at the 

interface to simulate frictional contact. Matrix spalling is modelled through material erosion. 

The bond-slip behaviour is first calibrated through pull-out curves for fibres aligned with 

loading direction, then validated against experimental results carried out by Leung and 

Shapiro in 1999 for steel fibres oriented at 30° and 60°. The proposed methodology provides 

the necessary pull-out curves for a fibre oriented at a given angle for multi-scale models to 

study fracture in fibre-reinforced cementitious materials. 

Keywords: Fibre-reinforced concrete, Pullout response, Cohesive model, Matrix spalling,  

Introduction 

Cementitious materials, known as a quasibrittle, have almost no ductility, additionally, have 

very low tensile strength. The addition of fibers in a cement-based matrix enables a 

considerable amount of energy dissipated during structural cracking. 

 

The effectiveness of force transmission of certain fibres is often assessed by a pullout test, in 

which the force required to pull a fibre out of the hardened concrete is measured. This force is 

derived from interfacial bond, defined as the shear stress at the interface between the fibre and 

the surrounding matrix [1]–[4]. 

 

Classical approaches assume that the perfect bond on the interface between fibre and matrix 

will be maintained unless a failure criterion is achieved [5]. Stress criterion [6][7] or energy 

criterion [5][8][9] have been adopted, as well as cohesive approaches where bond stress is 

determined by relative slip between fibre and matrix [2][5][10][11]. Naaman et al. [2] 

indicated that for aligned fibres whose load direction is along the fibre direction, there are two 

types of shear bond at the interface: the elastic shear bond and the frictional one. If the elastic 

one exceeds the bond strength of the interface, bond becomes frictional in nature. 

 

Based on the interfacial properties, Chanvillard [12] took into consideration the different 

phenomena existed in a non-straight fibre with a new micro-mechanical model. Ellis [13] 
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carried out a simulation with emphasis of fibre morphology. Despite of the good agreement, 

only aligned fibres were considered in these two models. 

 

In fibre reinforced cementitious material, most fibres lie at an angle to the load direction. For 

inclined fibres, besides bond strength and friction along the interface, additional phenomena 

such as fibre bending, matrix spalling and local friction effects need to be considered [14]–

[17]. Furthermore, these micro-mechanisms are sensitive to fibre inclination angle and fibre 

material properties [3][9][14][15][16][18][19]. Fibre bending contributes increasingly more 

for larger inclination angles and the fibre curvature has an impact on the pressure distribution 

against the surrounding matrix. Because of the fibre curvature and residual stress at the 

interface, matrix is likely to crack and spall [14][16][19], which in turn influences the 

effective embedment length and deformation within the fibre. 

 

A great deal of efforts have been put to study the above phenomena in the pullout process of 

inclined fibres. For example, Mortons and Groves [20] calculated the force needed to produce 

a plastic hinge in the fibre based on an elementary beam theory. The model reproduced well 

the experimental observations for lower inclination angles, but failed to do so for steep 

inclinations due to the fact that matrix spalling was not accounted for. Regarding the fibre as a 

beam bent on an elastic foundation with variable stiffness, Leung and Li [9] studied the 

coupled fibre bending-matrix spalling mechanism in random brittle fibre-reinforced brittle 

matrix composites. Afterwards, the micro-mechanical model was extended to ductile fibres 

[21]. However, the whole pullout curve was not simulated. 

 

More comprehensive models such as Cailleux et al. [19] and Fantilli et al. [11], require a 

number of parameters which can only be obtained through pullout experiments in aligned as 

well as inclined fibres, and the numerical iterative procedures involved are tedious. 

 

In spite of continuous efforts during the last decades, models that cover all the aforementioned 

phenomena, however, have been seldom developed to explicitly consider the whole pullout 

process for fibres at a random inclination angle. In this study, we endeavour to do so. 

Cohesive models able to represent mixed-mode fracture and Coulomb’s friction at the 

interface between fibre and matrix are employed. In addition, fibre bending and matrix 

spalling are naturally taken into account owing to the explicit representation of the fibre, the 

matrix and the interface in between. 

 

The paper is structured as follows. Section 2 describes the interfacial bond characteristics and 

matrix spalling. Afterwards, model calibration and validation are given in Section 3. The 

numerical results and relevant conclusions are respectively presented in Section 4 and Section 

5. 

Bond characterisation and matrix spalling 

In this section, two major factors that determine the pullout response of a fibre with arbitrary 

orientation are explained in detail: bond characterisation and quantification of matrix spalling. 

Interface bond characterisation 

As a constitutive property of the interface, the shear stress versus slip relationship is very 

important for predicting both the mechanical and fracture properties of fibre reinforced 

composites. Naaman et al. [1] ascribed the presence and combination of four bond 

components: physical and chemical adhesion, the mechanical contribution of deformed or 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1191



 

 

hooked fibres, the entanglement of fibres and friction. In this work, the concept of internal 

friction is illustrated and quantified through fitting with the test data of Leung and Shapiro 

[16]. 

 

Regardless of the fibre orientation, after debonding during pulling out, there exists certain 

frictional resistance which is mainly determined by the surface roughness. This component is 

denominated as internal fraction resis tance, τ0. As for inclined fibres, pullout load is 

decomposed of a parallel force and a perpendicular force. The former pulls the fibre out while 

the latter bends the fibre and changes the direction of fibre during the pullout process. A 

constitutive law involving three constituents to govern the interface evolution is proposed as 

follows  

    ( , ) ( ) ( ) ( )f bs s s p              (1) 

where µ  is the friction coefficient of Coulomb, p(θ) is the pressure against the matrix when 

the fibre is inclined at an angle θ with respect to the external load direction. The first term, 

τf(s), is contributed by the internal friction, acting as a resistance between the fibre and the 

matrix. The second term, τb(s), represents the interfacial bonding caused by internal physical 

and chemical cohesion. The third term describes the shear stress due to dry friction, which 

works only when the fibre is oriented at a non-zero angle. 

 

Authors are responsible for obtaining permission for reprinting any material included in their 

papers that is already copyrighted elsewhere.  

 

In the case of constant friction, see Fig. 1, τf(s) is unchanging with the slip displacement s. In 

the current work, both τf(s) and τb(s) are decaying functions of s and they are assumed as 

linear-decreasing: 

    0

0

s
( )= 1-f s

s
 

 
 
 

      (2) 

    max 0

s
( )=( ) 1-b

c

s
s

  
 

  
 

      (3) 

where τ0 represents the internal frictional resistance, τmax is the bond strength, defined as the 

maximum shear stress resisted at the interface, covering both the internal bond and internal 

friction. 

 
Figure 1.  Interface bonding.  

Eqs. (1-3) presents a gradual failure at the interface which is of vital importance, since in most 

actual fibre applications, the slip displacement is less than 1 mm, see Yu et al. [22]. When 
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working in a corrosive environment, the maximum allowed crack opening in steel-fibre 

reinforced composites is 0.3 mm making it paramount to trait the detailed failure process at 

small slips. 

Matrix spalling 

The local curvature and stretching of the fibre segment at the free end will inevitably lead to 

spalling of matrix. Because the failure process starts near the interface within a narrow band, 

convergence problems led by excessive mesh distortion impedes the further modelling of the 

entire pullout process. As a result, simplifications are often assumed so that the spalling part 

is removed once the matrix tensile strength is reached [17][19][23][24]. The length of the 

eroded matrix along the fibre direction is the so-called spalling length, denoted as Lsp. The 

spalling length of the matrix can be estimated according to Laranjeira et al. [23] as follows: 

    
2 0sp spaL bL c         (4)  

where 

    max

2

sin2 cos
= , ,

sin sin sin

f

t

d P
a b c

f



  
          (5)  

in which, df is the fibre diameter, θ is the inclination angle, Pmax is the peak pullout load of the 

aligned fibre. The results from Eq. (4) closely match the ones measured by scanning electron 

microscopy (SEM) by Leung and Shapiro [16]. 

 

In this work, Eq. (4) serves as a first approximation to obtain the size of the matrix wedge to 

be spalled off. Then trial runs are conducted to determine the moment to deactivate the matrix 

wedge. Then the elements within the matrix wedge stop to contribute to the overall stiffness 

and state variables. Furthermore, the first principal stress within the matrix is checked and the 

spalled length is adjusted if necessary. 

Model calibration and validation 

To explicitly model the physical phenomena in the pullout process, matrix is represented as 

solid elements with elastic constitutive law while fibre is by solid elements with bilinear 

kinematic plastic constitutive law. Cohesive elements representing mixed-mode fracture [25]-

[29] are employed as the interface in between. Furthermore, contact pairs coincident with the 

cohesive elements are implemented to model friction after de-bonding.  

Experimental setup of Leung and Shapiro,1999 

To assess the effect of fibre yield strength on the maximum crack bridging force and total 

energy absorption, Leung and Shapiro [16] performed pullout tests for steel fibres of different 

yield strengths. All the fibres are of 0.5 mm in diameter and 22 mm in length. The pullout 

specimens are blocks of 25.4 mm× 12.7 mm ×  9.5 mm in dimension, with effective 

embedment length of 10 mm. The material parameters of the matrix, fibre and the interface 

are given in Table 1, whereas the yield and tensile strengths of the four fibre types are listed in 

Table 2. Additionally listed in Table 2 is the critical fibre length, the maximum embedded 

length for a fibre to be pulled out from a matrix without rupture [14]. It is related with the 

maximum shear stress τmax as follows 

    

2

max max

/ 4

4

f y f y

c

f

d f d f
L

d



  
        (6)  
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Note that this estimation is for aligned fibres only, in the case of inclined ones, this length is 

smaller due to fibre bending. 

Table 1. Material parameters for the matrix and the fibre given in [16]. 

   E   
cf  

 [kg/m
3
] [GPa] - [MPa] 

Matrix 2100 30 0.20 36.5 2.5 
Steel fibre 7800 200 0.33 - 

Table 2. Yield and tensile strength of the four types of fibres tested in [16], the 

corresponding Lc is listed for a diameter of 0.5 mm. 

Fibre type 1 2 3 4 

yf [MPa] 275 469 635 954 

tf [MPa] - 783 847 1023 

cL [mm] 12.7 21.7 29.4 44.2 

 

Identification of the fibre-matrix interface properties 

With the assumption that fibre-matrix interface property is uniform, the peak pullout load and 

maximum fictional load are respectively calculated as 

    
max max 0,f e f f eP d L P d L           (7)  

The values for Pmax and Pf are determined from pullout response of aligned fibres, as shown in 

Fig. 2 and Fig. 3. The critical slip displacement for internal frictional resistance, s0, is directly 

assumed as the final slip length, 9.0 mm approximately. The straight dotted line in Fig. 2a 

starts at the point (s0, 0), follows the mean slope of the experimental curves and intercepts the 

load axis at (0, Pf). The values for Pmax and Pf are averaged for the four types of fibres listed in 

Table 2 to obtain those of τmax and τ0 as well as their standard deviations in Table 3. The 

critical slip for interfacial bond, sc, is determined through trial and error so that the first 

decaying branch of the numerical pullout responses, as demonstrated in Fig. 2b, should fall 

within the experimental range. As regards the friction coefficient given in Table 3, it is 

estimated according to the experimental results of Chanvillard [12], which was also adopted 

by Laranjeira et al. [17]. 

 
Figure 2.  Experimental range for pullout curves for aligned fibre type 2 (yield strength 

469 MPa) [16], where the dotted line represents the contribution from internal friction. 
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Figure 3.  The corresponding numerical pullout curve plotted against the experimental 

range for aligned fibre type 2 (yield strength 469 MPa) [16]. 

 

Table 3. Extracted parameters of the fibre-matrix interface from the experimental data 

of Leung and Shapiro [16]. 

 max  0  0s  cs    

 [MPa] [MPa] [mm] [mm] - 

2.7 0.1 - 783 847 1023 

 

Numerical model 

Fig. 4 illustrates the in-plane dimensions and boundary conditions to simulate the pullout tests 

performed by Leung and Shapiro [16]. Note that within a two-dimensional plain stress 

framework, the fibre thickness, Tf, is calculated through Eq. (8) so that the contact area at the 

interface is the same as that of the tested one. 

 

Figure 4.  In-plane dimensions and boundary conditions for the pullout tests performed 

by Leung and Shapiro [16], with fibre inclination angle of 0  , 30  and 60 . 

Similiarly, the fibre height, Hf, is determined via Eq. (9) so that the second moment of inertia 

is the same as the original fibre. For the case of fibre diameter of 0.5 mm, Tf and Hf are 

computed as 0.785 and 0.36 mm respectively. 

    
2

f f
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Boundary conditions are described in Fig. 4. Vertical displacements are prevented on the top 

and bottom sides, whereas horizontal movements are impeded on the left. The right end of the 

fibre is fixed in the vertical direction so that only horizontal movement is permitted. The 

pulling process is carried out with intervals of 0.001 mm in the horizontal direction until 0.3 

mm, followed with increments of 0.01 mm until the end. 

Mesh description 

A typical mesh and detailed element distribution around the fibre for the inclination angle of 

30  is demonstrated in Fig. 5. Note that the right end of fibre leans on a matrix wedge which 

will spall later on. For this particular case, the matrix and the fibre consist of 2198 and 154 

solid elements respectively, whereas 289 contact pairs are placed at the interface. The mesh 

sensitivity analysis performed to achieve a balance between the computational efficiency and 

accuracy is going to be presented in Section 4. 

 

Figure 5. Typical mesh (left), zoomed in around the fibre (top right) and discretisation of 

the fibre (bottom right). 

Numerical results and discussion 

In this section, we first conduct the mesh sensitivity analysis along the fibre transverse and 

longitudinal directions to determine the particular mesh to employ for further studies. Second, 

the entire pullout load vs slip displacement curves are extracted to compare with those 

obtained experimentally by Leung and Shapiro [16]. Third, the von Mises stress and the first 

principle stress evolutions are explored both for the fibre and the matrix. Finally, the pullout 

work is obtained. 

Mesh sensitivity analysis 

The mesh-sensitivity analysis is carried out for the inclination angle of 30   and the yield 

strength of 635 MPa type 3 in Table 2). Two kinds of mesh sensitivities are studied: the 

refinement in the transverse direction and along axial direction of the fibre. The former is to 

check the capacity of the mesh in the fibre to bear bending moments, whereas the latter is to 

assess if the discretisation is fine enough to resolve the slip length. 
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Figure 6. Different number of divisions in fibre transverse direction (one, two and four). 

 

In the transverse direction, the fibre is split into one, two or four divisions, see Fig. 6, the 

corresponding load-displacement curves are plotted in Fig. 7. Meshes of two divisions across 

the transverse direction are employed for further studies. Along the longitudinal direction of 

the fibre, four different element sizes are considered: 0.303 mm, 0.222 mm, 0.135 mm and 

0.068 mm, which lead to 33, 45, 74 and 148 divisions along the 10-mm length, see Fig. 8, the 

corresponding pullout load versus slip end displacement curves are depicted in Fig. 9. In order 

to keep a balance between the computational efficiency and accuracy of sought results, the 

mesh size of 0.135 mm is selected for further studies. 

 

Figure 7. The pullout load vs displacement responses corresponding to different number 

of divisions in fibre transverse direction (one, two and four) . 
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Figure 8. Different element sizes (number of divisions) along the fibre. 

In addition, From Fig.9, it is observed that the maximum pullout load was achieved at slip 

displacement of 0.07 mm, this verifies the statement of Morton and Groves [20], who claimed 

that this value should be of the order of, but less than half a fibre diameter. 

 

Figure 9. The pullout load-displacement responses corresponding to different element 

sizes (number of divisions) along the fibre. 

Validation against experimental pullout load vs displacement response 

In order to verify the previously developed methodology, we compare the entire pullout 

curves with their experimental counterparts given by Leung and Shapiro [16]. 

This comparison is displayed in Fig. 10 for fibres inclined at 30   and 60   with four different 

yield strengths given in Table 2. Note that both the peak loads and the general tendency are 

well captured, the numerical curves fall within the experimental range, in particular the rising 

tail at the end of each pullout process is also reproduced. 

Stress evolution within the fibre 

Taking fibre type 2 (yield strength 469 MPa) with inclination angle of 30   as an example, the 

von Mises stress evolution for several characteristic points within the fibre are examined. 

These points are the pullout end A, the embedded end D, two intermediate ones B (location of 
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matrix spalling) and C, as depicted in Fig. 11. Note that at point A, the first peak stress was 

obtained when the pullout load reached its maximum due to interface debonding. Then after a 

slight decrease, this stress increased again until yielding at the slip end displacement of 3 mm. 

Similar peaks are observed for B and C at slip displacement of 0.3 mm and a second peak 

upon yielding at 2 mm for point B and 5 mm for point C respectively. The second peak is 

attributed to the stress concentration due to the cusp formed by matrix spalling. This is the 

snubbing effect introduced by Li et al. [14]. 

 

In Fig. 12 and Fig. 13, the first principal stress distributions in the fibre at different loading 

stages are plotted for type-2 fibre inclined at 30   and type-3 fibre inclined at 60   respectively. 

Note that during the pullout process, there are stress gradients both in the transversal direction 

and along the longitudinal one, which indicates bending contribution. Stress concentration is 

also observed at the fibre exit point. In addition, the maximum tensile stress is always inferior 

to the fibre tensile strength. This means that the fibre was pulled out but not broken. 
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Figure 10. Numerical-experimental comparison: complete pullout curves for the four 

yield strengths given in Table 2, the fibre is inclined either at 30   (left column) or 60   

(right column). 

 

Figure 11. Four positions (A, B, C and D) within the fibre during pullout and the 

corresponding von Mises stress evolution for type 2 (fibre yield strength 469 MPa). 
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Figure 12. The first principle stress evolution (in Pa) for pullout displacement from 0.01 

mm to 8.2 mm for fibre inclination of 30  and yield strength of 469 MPa (type 2 in 

Table 2). 

 

Figure 13. The first principle stress evolution (in Pa) for pullout displacement from 0.3 

mm to 7.8 mm for fibre inclination of 60  and yield strength of 635 MPa (type 3 in 

Table 2). 

Stress evolution in the matrix 

For the matrix, we are more concerned on the tensile stress distribution to ensure that no 

fracture should take place where matrix spalling is not expected. Three representative points, 

E, F and G, see Fig. 14, are selected to display the first principal stress evolution in the matrix. 

The point E is where the matrix is expected to spall. The point G is the location where the 

fibre is anchored, whereas F is the point in the matrix close to the fibre centre. 
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Figure 14. Three positions (E, F and G) in the matrix and the corresponding first 

principle stress evolution during pullout (the top left one is in Pa while the other three in 

MPa).  

 

Since the tensile strength was not measured, we estimate it to be 1/12 of the compressive 

strength, which is 3.0 MPa. Note that at point E, there is significant stress fluctuation during 

the pullout process. This indicates, on the one hand, the stressing-relaxing cycle endured by 

the matrix. On the other hand, it can be attributed to the fact that the spalled matrix is assigned 

with a zero stiffness at the moment of spalling, whereas the real failure process is gradual. 

The stress evolution curves at points F and G, assimilate those of global pullout curves in Fig. 

10, each with a different amplitude. 

 

Furthermore, it is noted from Fig. 10 that the maximum tensile stress due to axial pull out of 

the fibre and bending load occurs at the close region at the fibre exit point. This confirms the 

assumption adopted by Zhang and Li [30] in their study on the effect of inclination angle on 

fibre rupture load in fibre reinforced cementitious composites.  

Variation of the pullout work with respect to fibre yield strength 

The pullout work is calculated as the area under the load vs slip displacement curve. In Fig. 

15, both experimenta and numerical values for fibres inclined at 30   and 60  are depicted. 

Note that as a general trend, the pullout work increases with the increase of fibre yield 

strength, and such a tendency is correctly captured by our numerical model. 
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Figure 15. Pullout work vs fibre yield strength. 

The maximum pullout load  

To explore the effect of fibre inclination, a spectrum of angles up to 85  are simulated by 

keeping the fibre, matrix and interface properties fixed. It is known that the length of spalled 

matrix and the time when the matrix spalls both matter in the pullout responses. According to 

Laranjeira et al. [23], spalling is considered to take place just after the beginning of fibre 

debonding but prior to its full accomplishment. After some trial runs, this slip displacement is 

estimated, which is around 0.01 mm. Simulations of different fibre yield strengths are carried 

out and the obtained pullout curves are plotted in Fig. 16, the corresponding fitting parameters 

are given in Table 4. 

 

Figure 16. Maximum pullout load vs. inclination angle for the four yield strengths given 

in Table 2 and fitted curves using Eq. 10 with parameters given in Table 4. 

 

    

2 2

1 2
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Table 4. Fitted parameters for the maximum pullout load vs fibre inclination angle. 

Fibre  

type 
1F  

[N] 
2F   

[N] 
1   

[  ] 
2   

[  ] 
1   

[ ] 
2   

[ ] 

1 15.5 42.0 7.9 26.2 19.7 56.4 
2 18.1 49.4 12.7 26.7 16.2 55.7 
3 20.1 54.2 12.6 27.4 16.0 55.9 
4 33.7 59.0 12.7 33.0 14.6 48.2 

 

From Fig. 16, when the fibre is inclined at angles around 12   or 15 , the maximum pullout 

load is the largest. After that, the maximum pullout load goes down almost linearly. This 

differs from the result of Morton and Groves [20], who claimed that θmax is about 45  for 

polyester resin matrix of rather high tensile strength and steel fibres of high yield strength. 

This indicates that optimum inclination angle for maximum pullout resistance varies with 

both fibre and matrix strength as well as the interface properties. 

CONCLUSIONS 

We have proposed a numerical model to explicitly reproduce the pullout behaviour of a single 

fibre embedded within a cement-based matrix. This model takes into consideration of the 

gradual deterioration of interface bond, internal and dry friction as well as matrix spalling. In 

particular, a constitutive law which isolates the contributions of internal bond, internal friction 

and dry friction is formed and validated. Cohesive elements endorsed with mixed-mode 

fracture capacities are implemented to represent the bond-slip behaviour at the interface. 

Contact elements with Coulomb’s friction are placed at the interface to simulate frictional 

contact. Matrix spalling is modelled through material erosion. The bond-slip behaviour is first 

calibrated through pull-out curves for fibres aligned with loading direction, then validated 

against experimental results carried out by Leung and Shapiro for steel fibres oriented at 30   

and 60  . The influence of fibre yield strength on the stress distribution within the fibre and 

the matrix, the effect of the inclination angle on the pullout response are all explored in detail. 

The proposed methodology provides the necessary pull-out curves for a fibre oriented at a 

given angle for multi-scale models to study fracture in fibre-reinforced cementitious materials. 
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Abstract 
The minimum volume of nonlinear longitudinal fin with rectangular and triangular profile by 
using the modified Newton-Raphson method is presented in this paper. The dimension of the 
fin profile is regarded as optimization variables. Furthermore, a mechanism called “volume 
updating” is added into the modified Newton-Raphson algorithm to obtain the minimum 
volume of the fin. Two examples are illustrated to demonstrate the proposed method. The 
obtained results showed that the proposed method use efficiently and accurately in finding the 
minimum volume of the nonlinear longitudinal fin problem with the rectangular and triangle 
profile. 

Keywords: Shape Optimization; Modified Newton-Raphson; Rectangular fin; Triangular fin. 

Introduction 

Fin or extended surface is used widely in various industrial applications when we want to 
improve the convective heat transfer from a hot surface where cooling is required [1].  
However, the use of fins increases the volume or mass of systems and rise the costs of 
production. Consequently, the optimization of fins for light weight and high efficiency and 
compact heat exchanger system is of great interested and have been done in the past several 
decades.  
 
Fin optimization problems can be divided into two approaches. The first approach of 
optimization problem is to select a simple profile (i.e. rectangular or triangular) and then 
determine the dimensions of fin so that either maximize the heat transfer rate for a given 
volume or minimize the volume of fin for a specified heat dissipation. In the second approach, 
the shape of fin is determined so that the volume of the material used is minimum for a given 
heat loss. For this second approach, the criterion of fin optimization problems was first 
proposed by Schmidt [2]. For purely conduction and convection fins, the author suggested 
that the minimum volume of the optimization fins is a parabolic shape. Unfortunately, the 
parabolic profiles of optimization fin in the second approach are curved surface with zero tip 
thickness which is too complex and expensive to manufacture. Thus, the first approach of 
problems is more relevant and important than the second type of problems. 
 
In fact, the rectangular and triangular profiles are widely used in the heat exchanger system 
due to the ease of fabrication. As a result, more studies have been performed to determine the 
optimal size of these types. Under the assumption constant thermal parameters, negligible 
effects of heat transfer from the tip, and approximation of one-dimensional heat transfer 
equation, the optimization of rectangular and triangular profiles is treated in the book by 
Kraus [1]. Aziz [3] published an article which present a literature survey on optimum 
dimension of this object. Aziz [4, 5] optimized the rectangular and triangular fins with 
convective boundary conditions and presented the optimum design of a rectangular fin with a 
step change in cross-sectional area under the constant thermal parameters. Under the variable 
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thermal parameters, Yu [6] studied the optimization of rectangular by applying Taylor 
transformation method. Recently, by using the differential transformation method, Poozesh 
[7] presented the efficiency of convective-radiative fin with temperature-dependent thermal 
conductivity. In Poozesh’s paper, the effects of convection-conduction parameter, thermal 
conductivity parameter and the radiation-conduction parameter on efficiency of fin are 
considered and discussed. For a bi-dimensional analysis, Kang [8, 9] estimated the optimum 
dimension of annular fins with rectangular profile under thermally asymmetric convective and 
radiating condition as well as optimized an annular trapezoidal fin using a new approach to a 
two-dimension analytical method. However, these above researches were performed based on 
the analytical method under assumption of constant thermal parameters. The drawback of 
analytical methods is that they can not solve the general non-linear fin design problem. 
However, none of previous published papers however propose the effective methods to 
minimize the volume of rectangular and triangle fins for general non-linear fin design 
problem until now.  
 
In this paper, an effective method is presented to find the minimum volume of longitudinal fin 
of rectangular and triangular profiles for general high non-linear fin design problem based on 
modified Newton Raphson method (MNR). A mechanism called as “volume updating” is 
added in MRN algorithm to obtain the minimum volume of optimum fin. The potential and 
feasibility of applying MNR as an optimization method on the fin problems will be 
demonstrated in this work. 

Problem Statement 

     
 

Figure 1. The longitudinal fin with rectangle and triangle shape 
 

Consider a longitudinal symmetric fin model with rectangular and triangular profiles as 
Figure 1, in the steady state condition, the general heat transfer equation without internal heat 
source for the two-dimensional model given by the semi-cross-section of the natural 
convection and radiation cooled fin takes on the following forms: 
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where T is the unknown temperature field over the cross-section domain of fin , k is the heat 
thermal conductivity, Ab is the fin cross section area  at the base, flowq  is the inward total heat 
loss at the base, h is the convective heat transfer coefficient, ε is emissivity coefficient, s is 
Estefan-Boltzmann constant, T∞  and surT  is the ambient and surrounding temperature 
respectively, and n is the exterior normal vector of the convective surface. In general, the 
coefficients k, h, ε  are constant or functions of temperature. 
 
When the shape of fin and all boundary condition is known and given, the temperature field of 
fin and the base temperature could be estimated by solving the non-linear fin design problem 
(Eqs.(1-4)). This direct problem is solved by the finite element method (FEM) [10].  

The Optimization Problem 

Modified Newton Raphson 

In this paper, the purpose of optimization process is to minimize the volume of the 
longitudinal fins of rectangular and triangular profiles for a given heat loss and the specified 
base temperature. Therefore, the dimensions of fin profiles are regarded as optimization 
variables. For this two-dimensional geometric problem, the dimension of fin is determined by 
the length and width of fin. We will thus have 2 optimization variables for both of rectangular 
and triangle profiles as shown in Figure 2. Besides, to remain the continuity during the 
optimization process, the position of control points must satisfy the following conditions: 
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Figure 2. The profile of fins and their optimization variables: a) rectangular fin; b) 
triangular fin 
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MNR method [11] is used to find out the minimum volume by finding the optimal position of 
control points. The proposed method directly formulates the problem from two comparisons 
between the calculated and the expected temperature at the base, and between the calculated 
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and expected volume of the fin. Therefore, the expected base temperature i
xT and the expected 

fin volume xV  are necessary to be given first; the calculated temperature i
cT  and the 

calculated fin volume cV  are evaluated from direct problem. Then, the estimation of optimal 
fin shape can be recast as the solution of a set of nonlinear equations as following: 

 
0
0

i i
c x

c x

T T
V V
 − =


− =
 1, 2...i M=  (6) 

where, M is the number of the temperature equation which is obtained from the base. As a 
result, there are M+1 equations in Eq. (6).  
 
The characteristic of fin is that the fin width compared to the fin length is very small. 
Therefore, the variation of the base temperature along with the width of fin could be 
neglected. Consequently, the expected temperature at the base would be assigned to one 
expected value. Furthermore, since the value of fin volume is very small compared to the base 
temperature, the volume value is converted into the temperature value so that the influence of 
fin volume and base temperature in Eq. (6) is the same. Subsequently, Eq. (6) can be re-
written as following: 

 
0

ˆ 0

i
c x

c x

T T

V T

 − =


− =
 (7) 

where, xT  is the expected temperature at the base and ĉV is the converted volume given by: 

 ˆ .c
c x

x

VV T
V

=  (8) 

The detail procedure to solve Eq. (7) can be shown as following: 

 { } { } { } { } { }1 2 ˆ ˆ[ T , T , , T , T ]
TM T

c x c x c x c x cT T T V T= − − − − =T   (9) 

where, ĉT is the component of vector T . 
The optimization variables are set as folowing: 

 { } { } { }1 2 ˆ, y ,T T
vx χ χ χ= = =χ  (10) 

where, x, y are the size of the fin (as Fig. 1),  ˆvχ is the component of vector χ  

The derivative of  ˆ
cΦ  with respect to  ˆvχ  is can be expressed as following: 

 
ˆ
ˆ

c

v

T
c
∂

=
∂

S  (11) 

where, S is the sensitivity matrix. 
With the above derivatives from Eq. (6) to Eq. (11), we have the following equation: 

 
1

( ) ( ) ( ) ( )T T
k k k k k

−
 = −  Δ S χ S χ S χ T χ  (12) 

 
 1k k kλ+ = +χ χ Δ  (13) 

where, λ  is the factor to adjust the step size of kΔ  so that the constraints of Eq. (5) are 
satisfied. 
 
From Eq. (9), it is claimed that the solution can be achieved when the base temperature and 
the appropriate volume of fin is given. However, the minimum volume of the fin is unknown 
prior and is the optimization goal. To solve this problem, an approach called “volume 
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updating” is added into the modified Newton Raphson algorithm. This approach is based on 
“curve fitting” mechanism of the modified Newton Raphson method. In this mechanism, the 
obtained solution is the best approximation which is defined as that which minimizes the sum 
of squared differences between the computed and expected value. As a result, in Eq. (9), the 
larger value of N is, the closer solution to the expected temperature compared to the expected 
volume is. Consequently, “volume updating” approach is performed as following: 
 
Step 1: Set a large value for M and guess a small initial value of fin volume.  
Step 2: Use Eqs. (9-13) to find the best solution. 
Step 3: Update the new volume obtained from the best solution of step 2 and return to step 1. 
Step 4: Terminate the process if the stopping criterion is satisfied. 

The stopping criteria 

The modified Newton Raphson method from Eq. (11) to Eq. (15) is used to determine 
the optimal location of the control points which are presented as the unknown variables, χ .  
The step size  goes from to  and it is determined from Eq. (16). Once  is 
calculated, the iterative to determine is executed until the stopping criterion is satisfied. 
There are two stopping criteria used in the proposed method. One is for updating the volume 
and another is for modified Newton Raphson method. Base on the discrepancy principle [1], 
the volume would be updated when both of two criteria are satisfied as following: 

 ( ) ( ) ( )1 1

0c x

k k

T

kcc  δ c+ +

− ≥
 − ≤

T

J J J
 (14) 

where, 

 ( )
22

1
1

ˆ
M

i
k c x c x

i
T V T+

=

  = − + −   ∑J χ T  (15) 

and the stopping criteria is given by 
 c x xT e T− ≤T  (16) 

or 
 ( ) ( ) ( )1 1k kkχ χ δ χ+ +− ≤J J J  (17) 

where, e  and δ  are small positive value known as the convergence tolerances. 

Computational Algorithm 

The procedure for the proposed method can be summarized as following: 
Given overall convergence tolerance e  and δ  , the initial control point 0χ  , the initial 

volume of fin 0
xV  , and the adjusting factor λ  (say  1λ =  in the present work). The value kχ  

is known at the iteration as following: 
 
Step 1: Solve the direct problem Eqs. (1-4), and compute cT . 
Step 2: Integrate cT with xT  through Eq. (9) to construct T . 
Step 3: Calculate the sensitivity matrix S  through Eq. (11). 
Step 4: Knowing S  and T , calculate the step size kΔ  from Eq. (12). 
Step 5: Calculate 1k+χ through Eq. (13). 
Step 6: If condition of Eq. (5) is not satisfied, replace 0.1λ λ=  and return to step 5. 

Otherwise, accept the new control points 1k+χ and set 1λ =  again. 

kΔ kχ 1k+χ kΔ

1k+χ
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Step 8: Update the fin volume if the updating criterion Eq. (14) is satisfied, and 
replace k  by 1k +  and return to step 2. 
 Step 9: Terminate the process if the stopping criterion Eq. (16) or Eq. (17) is satisfied. 
Otherwise, replace k  by 1k +  and return to step 2. 

Results and Discussions 

In this section, two cases with the triangle and rectangle profile of the longitudinal fin are deal 
with to demonstrate the proposed method. The two-dimensional model will be considered in 
two cases. Additionally, the optimal results by the proposed method are discussed and 
compared with the theory results by Kruas [1]. The longitudinal fin with the height of fin of 

0.2[m]H =  and the thermal conductivity of 58.3[W/mK]k = is considered in two cases. It is 
assumed that our purpose is to find the minimum volume of the fin so that the fin can 
dissipate a given heat flow of 20[ ]Q W= with the base temperature of 400[ ]bT K=  in the 
surrounding ambient with the temperature 300[ ]aT K= . The convective heat transfer 
coefficient is considered to be constants and obtained from Eq. (18) by Dobaru [13] as 
following: 

 
[ ] 1/431/2

2

( )8 Pr
93 336 Pr
5

g T x T Hkh
vH

β ∞ −
=  

    +    

 (18) 

 

where, all the fluid properties are computed at a mean temperature, ( ) / 2m b aT T T= + . With the 
given thermal parameters above, the mean convective heat transfer coefficient is 

25.2564 [W/m K]=h .  
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Figure 3. The temperature distribution along the length of the optimal fin for triangle 

profile. 

 

In Case 1, a fin design problem with triangle profile of the longitudinal fin is considered. For 
optimization procedure by MNR, the value of updating and stopping criteria used were 
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410δ −=  and 410ε −=  respectively. The initial volume is 0 34 5( )xpcdV e m= − . The initial 
dimensions of the fin with triangle profile are 0 0.3[ ]x m=  and 0 0.001[ ]y m= . In this case, the 
optimal results obtained by the proposed method and the theory optimal results are shown in 
Table 1. The relative difference of the geometrical parameters of the optimal fin between the 
theoretical value and MNR’s results are also shown in Table 2. Furthermore, the temperature 
distribution along the length of the optimal triangle fin is presented in Figure 3. 

 

Table 1. The geometrical parameters of the optimal fin by MRN method and theoretical 
results for the triangle profile 

Dimension of optimum fin Theoretical 
Results The proposed Method 

The length, x[m] 1.6022 1x e= −  1.6020 1x e= −  
The semi-width, y[m] 1.3498 3y e= −  1.3503 3y e= −  
The min volume, V[m3] 4.3255 5V e= −  4.3265 5V e= −  

Table 2. The relative difference of fin geometrical parameters between MRN method 
and theoretical results for the triangle profile 

Dimension of  
optimum fin Error (%) 

The length, %x 0.01% 
The semi-width, %y 0.04% 
The min volume, %V 0.023% 

 
As shown, with specified thermal properties and given boundary conditions above, the 
minimum volume of the optimal triangle fin is about 4.325 5V e= − . The optimal length of 
triangle fin is about 0.16[ ]x m=  and the optimal semi-width triangle fin is about 

1.35 3[ ]y e m= − . Table 2 show that the relative error of the geometrical parameters of the 
optimum fin between MRN method and the theoretical is small. The relative error for the 
minimum volume is 0.23% and that for the length and semi-width are 0.01% and 0.04% 
respectively. This mean that the results obtained by the proposed method satisfied the given 
condition and are in high agreement with the theoretical values. 
 

Table 3. The geometrical parameters of the optimal fin by MRN method and theoretical 
results for the rectangle profile 

Dimension of  
optimum fin 

Theoretical 
result 

The proposed Method 
2D model 
(no tip 
convection) 

2D model 
(tip 
convection) 

The length, x[m] 1.5178 1x e= −  1.5179 1x e= −  1.5022 1x e= −  
The semi-width, y[m] 1.0313 3y e= −  1.0313 3y e= −  1.0350 3y e= −  
The min volume, 
V[m3] 6.2613 5V e= −  6.2614 5V e= −  6.2188 5V e= −   

 
In Case 2, the fin design problem with the rectangle profile is investigated. In this case, the 
initial dimensions of the rectangle fin are 0 0.2[ ]x m=  and 0 0.001[ ]y m= . Two cases of no tip 
convection and tip convection are considered in this case. Table 3 showed the optimal results 
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achieved by the proposed method and the theoretical formulation. Table 4 illustrated the 
relative deviation of the geometrical parameters of the optimal rectangle fin between MNR’s 
method and theoretical formulation. In addition, the temperature distribution along the length 
of the optimal rectangle fin is drawn in Figure 4. 

Table 4. The relative difference of fin geometrical parameters between MRN method 
and theoretical results for the rectangle profile 

Dimension of  
optimum fin 

The proposed Method 
2D model 
(without convective 
tip) 

2D model 
(convective tip) 

The length, %x 0.02% 1% 
The semi-width, %y 0% 0.3% 
The min volume, %V 0.0016% 0.68% 
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Figure 4. The temperature distribution along the length of the optimal fin for the 

rectangle profile. 
 

The obtained results showed that there is good approximation between the optimal result by 
MNR’s method and theoretical method for the case of insulated tip. Particularly, the 
minimum volume the case of insulated tip is about  36.26 5[ ]V e m= −  for both of the theory 
method and the proposed method. The length and semi-width of the optimal rectangle fin are 
respectively about 1.52 1[ ]x e m= −  and about 1.03 3[ ]y e m= −  with the very small relative 
deviation between the methods (as Table 4). For the case of the convective tip, the minimum 
volume of optimal fin is about 36.22 5[ ]V e m= − . As shown in Table 4, the value of the 
optimal rectangle fin volume with the convective tip is 0.68% less than that with the insulated 
tip. This is due to the face that the consideration of convective tip leads the increase of heat 
dissipation comparing with the assumption of the insulated tip. Thus, the volume of the 
optimal rectangle fin with the convective tip is less than that with the insulated tip. 
 
With the obtained results from two cases, it can be said that the proposed method is potential 
and feasible in finding the minimum volume of the optimum fin with rectangle and triangle 
profile. Furthermore, the proposed method does not depend on the type of the direct problem 
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(linear or non-linear direct problem). In the other words, the proposed method can be utilized 
in finding the minimum volume for any fin design problem with rectangle and triangle 
profile. 

Conclusions 

In this work, the minimum volume of the longitudinal fin with the rectangular and triangular 
profile for the given heat flow and the expected temperature at the base by using the modified 
Newton Raphson method was presented. A mechanism called as “volume updating” was 
added in the proposed algorithm to obtain the minimum volume of the optimum fin. Two 
cases with the rectangle and triangle profile were performed to validate the proposed method. 
The obtained results by MNR’s method have been compared with the results of Kraus [1]. 
The results showed that the values of the volume of the optimal fin are in good agreement 
with that of Kraus [1] in all two cases. In the other words, it can be declared that the proposed 
method is an efficient and accurate method to find the minimum volume of the optimal fin 
with triangle and rectangle profile for the given heat flow and the expected temperature at the 
base. Furthermore, the proposed method do not depend upon the type of the direct problem. 
Thus, this method can be applied for any linear or non-linear fin design problem. 
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Abstract 

 The magnetohydrodynamic transient free convection flow of a visco-elastic fluid (Rivlin - 

Ericksen) caused by the sinusoidal oscillation of a plane flat porous plate has been studied in this 

paper. The constitutive equations of continuity and mass conservation of visco-elastic fluid are 

solved by Laplace transform technique. The Velocity profiles of transient and steady-state due to 

porous plate in presence Magnetic Hartmann Number and porosity of the medium are obtained in 

exponential forms and Complementary Error Functions. The results got for velocity profiles are 

shown through graphs and discussed in the concluding section. 

Key Words: MHD, Transient flow, Porous Plate, Rivlin – Ericksen fluid, Sinusoidal Oscillation. 

 Introduction 

 Stokes first studied the unsteady free convection flow of a viscous incompressible fluid past an 

impulsively started infinite horizontal plate. The plate oscillates in its own plane. The plate has 

two natures- one is of impulsively starting in its own plane suddenly set into motion which 

creates a start - up flow and other one is of oscillating – that oscillates in its own plane. H. 

Schlichting
*
 called the farmer problem as “Stokes first problem” and later one as “Stokes second 

problem”. Stokes presented exact solutions to both the problems. These problems being of 

fundamental in nature are referred in all the text books of viscous flow. Stokes result for the 

oscillating plate is the steady- state solution which applies after the effect of any initial velocity 

profile has died out. But this solution is not a complete solution, since it does not satisfy the 

initial condition. The complete solution for the problem requires the transient solution as well as 

steady state solution. And this is given by Panton (7). He presented the solution to transient 

problem in exact from in terms of standard mathematical functions and velocity distributions for 

the plate either oscillating as 𝑆𝑖𝑛 𝑇  or−𝐶𝑜𝑠 𝑇 . Later on, 𝐷𝑒𝑘𝑎 𝑒𝑡. 𝑎𝑙. (2) studied this 

problem considering semi – infinite incompressible viscous fluid in the presence of a uniform 

magnetic field applied transversely to the plate. I determined to extend this paper by considering 

the fluid as Visco – elastic electrically conducting and the flat plate as Porous. In section 2, the 

mathematical formulation and a solution to transient component is presented in terms of standard 

mathematical functions. In section 3, characteristics of the solutions are cited, while in section 4, 

the problem is concluded with outcome of investigation. 
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 Mathematical Formulation  

 The constitutive equation of second order Visco – elastic (extended by Rivlin - Ericksen) fluid 

in tensor notation is as follows - 

     𝜏𝑖𝑗 =−𝑝𝛿𝑖𝑗 +𝜇1𝐴 1 𝑖𝑗
+𝜇2𝐴 2 𝑖𝑗

+𝜇3𝐴 1 𝑖𝛼 𝐴 1 𝛼𝑗
                       (1) 

Where 𝜏𝑖𝑗  is the stress tensor, 𝑝 is the hydrostatic pressure, 𝛿𝑖𝑗  is the Kronecar delta, 𝐴 1  and 

𝐴 2  are Rivlin – Ericksen tensors of order  1 and 2, and 𝜇′𝑠 are coefficients of viscosity.  Here 

𝐴 1  and 𝐴 2  are given by symmetric tensors and they are defined by  

 𝐴 1 𝑖𝑗= 𝑣𝑖,𝑗+𝑣𝑗 ,𝑖
                                                               (2) 

𝐴 2 𝑖𝑗 =  𝑎𝑖 ,𝑗 +  𝑎𝑗 ,𝑖 + 2𝑣𝑚,𝑖𝑣𝑚,𝑗                               (3) 

            𝑎𝑖,𝑗 =
𝜕𝑣 𝑖

𝜕𝑡
+  𝑣𝑗𝑣𝑖,𝑗    𝑖, 𝑗, 𝑚 = 1,2,3  

      𝑣𝑖 = Component of velocity, 𝑎𝑖 = component of acceleration. 

Here the plate is porous and semi-infinite horizontal. The 𝑋/ − axis is taken along the flat plate 

while the Y
/ 
- axis is taken normal to the plate. Let 𝑢/𝑎𝑛𝑑 𝑣/   

be the fluid velocities along 

𝑋/𝑎𝑛𝑑 𝑌/axis, respectively. Then since the plate is semi infinite in extent, the fluid is taken to 

occupy the upper half plane. 𝑢/ is a function of y
/
 and t

/
 and v

/
 is independent of y

/
. The fluid is 

electrically conducting and the plate is non- conducting. Let a uniform magnetic field 𝐻0be 

applied in a direction perpendicular to 𝑋/- axis. The fluid is assumed to be of low conductivity; 

so induced magnetic field is negligible. The Lorentz’s force is −𝜎𝐻0
2𝑢/. At time 𝑡(≤ 0), the 

plate and fluid are at rest. At 𝑡 (> 0), the plates start oscillating in its own plane. For boundary 

condition it is assumed that there is no slip at the wall. 

Under these assumptions, we can write the continuity and momentum equations which governs 

the flow field as – 

                                              
𝜕𝑣 /

𝜕𝑦 / = 0                                                                      (4) 

                                             
𝜕𝑢 /

𝜕𝑡 / + 𝑣/ 𝜕𝑢 /

𝜕𝑦 / = 𝜗/ 𝜕2𝑢/

𝜕𝑦 /2 −
𝜎𝐻0

2𝑢/

𝜌
+

𝐾0

𝜌

𝜕3𝑢/

𝜕𝑡 /𝜕𝑦 /2                   (5) 

Where, 

𝜌 = density of the fluid, 𝐻0 = uniform magnetic field applied transversely to the plate, 𝜎 = 

electrical conductivity of the fluid, 𝜗 =co-efficient of Kinematic viscosity of the fluid, 𝐾0 = 

coefficient of elasticity. 
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The initial and boundary conditions are 

𝑢/ 𝑦/, 0 =0;      𝑢/ ∞, 𝑡/ < ∞;     𝑢/ 0, 𝑡/ = 𝑈𝑠𝑖𝑛 𝜔/𝑡/                                              (6) 

The non-dimensional quantities are defined as follows: 

𝑦 =
𝑦 /𝑈

𝜗
, 𝑢 =

𝑢/

𝑈
, 𝑡 =

𝑡/𝑈2

𝜗
, 𝑅𝑐 =

𝐾0𝑈
2

𝛼0
,  𝑀 =

𝜎𝐻0𝜗
2

𝜌𝑈2 , 𝜔/ =
𝑈2

𝜗
, 𝑉 =

𝑣/

𝑈
, 𝑃 =

𝛼0𝐶

𝐾
             (7) 

Hence, the equations of continuity, motion and boundary conditions reduces to-  

                             𝑈
𝜕𝑉

𝜕𝑦
= 0                                                             (9) 

𝜕𝑢

𝜕𝑡
+ 𝑉

𝜕𝑢

𝜕𝑦
=

𝜕2𝑢

𝜕𝑦2 −𝑀𝑢 + 𝑅𝑐
𝜕

𝜕𝑡
 
𝜕2𝑢

𝜕𝑦2 ,        𝑅𝑐 =
𝐾

0𝑈2

𝛼𝜗
                   (10)    and 

      𝑢 𝑦, 0 = 0,   𝑢 0. 𝑡 = sin⁡(𝑡), 𝑢 ∞, 𝑡 < ∞                         (11) 

 Solution of Equation 

Solving equation (9), we obtain  

                   𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

For constant suction, we consider  𝑉 = −𝑉0                                    (12) 

where the negative sign indicates that the suction is towards the plate.  

Hence the equation (10) reduces to 

       
𝜕𝑢

𝜕𝑡
− 𝑉0

𝜕𝑢

𝜕𝑦
=

𝜕2𝑢

𝜕𝑦2 + 𝑅𝑐
𝜕

𝜕𝑡
 
𝜕2𝑢

𝜕𝑦2 − 𝑀𝑢                                      (13) 

Equation (13) is a 3
rd

 order differential equation due to the presence of the elastic parameter 𝑅𝑐 . 

If the elastic parameter 𝑅𝑐  would zero, we would have it as second order differential equation, 

and thereby the fluid reduces to Newtonian case (viscous fluid). To have the complete solution of 

(13), we require another boundary condition. But we have only two boundary conditions as 

specified above. However, we overcome this difficulty by considering the physical condition of 

the fluid.  As, 𝑅𝑐 , the elastic parameter is a small quantity based on vanishing memory, it is 

always ≪ 1. So we can expand u in powers of 𝑅𝑐   as   

           𝑢 = 𝑢0 +  𝑅𝑐𝑢1                                                                   (14) 

Substituting (14) in equation (13), and equating the coefficients of equal powers of 𝑅𝑐  , and 

neglecting those of 𝑅𝑐
2, we have the following equations 

     
𝜕𝑢0

𝜕𝑡
− 𝑉0

𝜕𝑢0

𝜕𝑦
=

𝜕2𝑢0

𝜕𝑦2 −𝑀𝑢0                                                       (15) 
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𝜕𝑢 1

𝜕𝑡
− 𝑉0

𝜕𝑢1

𝜕𝑦
=  

𝜕2𝑢1

𝜕𝑦2 +
𝜕

𝜕𝑡
 
𝜕2𝑢0

𝜕𝑦2  − 𝑀𝑢1                               (16) 

The boundary conditions (11) now modified as  

       𝑢0(𝑦, 0) = 0,   𝑢1(𝑦, 0) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 , t=0                      (17a) 

        𝑢0 (∞, 𝑡) < ∞,     𝑢1(∞, 𝑡) < ∞   , 𝑡 > 0                             (17b) 

         𝑢0 0, 𝑡 = sin 𝑡 ,   𝑢1 0, 𝑡 = sin 𝑡 , 𝑡 > 0                  (17c) 

The velocity may be decomposed into steady – state and transient components satisfying 

equations (15) and (16) as: 

      𝑢0 = 𝑢0
𝑠 + 𝑢0

𝑡        and    𝑢1 = 𝑢1
𝑠 + 𝑢1

𝑡                                   (18) 

The steady-state components can be derived as: 

       𝑢0
𝑠 = exp⁡(−𝑎𝑦/√2)𝑠𝑖𝑛 𝑡 − 𝑏𝑦/√2    and   𝑢1

𝑠 = exp⁡(−𝑎𝑦/√2)𝑠𝑖𝑛 𝑡 − 𝑏𝑦/√        (19) 

          Where 𝑎 =  𝑀 + √1 + 𝑀2, 𝑏 = 1
𝑎  

The solutions (19) satisfy the boundary conditions (17b) and (17c), but not the initial condition 

(17a). If the transient solution satisfies the following boundary conditions 

       𝑢0
𝑡  𝑦, 0 [= −𝑒−𝑎𝑦/√2𝑠𝑖𝑛 −𝑏𝑦/√2 ] = 𝐼𝑚𝑒−𝑐𝑦/√2 =𝑢1

𝑡 (y, 0)          (19a) 

            𝑢0
𝑡  ∞, 𝑇 = ∞ = 𝑢1

𝑡 ∞, 𝑇                                                               (19b) 

            𝑢0
𝑡  0, 𝑇 = 0 = 𝑢1

𝑡 0, 𝑇                                                                 (19c)  

 where 𝑐 = 𝑎 − 𝑖𝑏, then the composition of the both transient and steady – state solutions will 

completely satisfy eq. (13) or (15) and (16). For the transient solution, we apply Laplace 

Transform Technique on the transient part of (15) and (16), and on boundary conditions 

[19(a,b,c)]. The final results are found as – 

𝑢0
𝑡  𝑌, 𝑇 = 𝐼𝑚  

1

2
𝑒
𝑇

2
 𝑏2−𝑎2 − 

𝑌2

4𝑇
+
𝑉0

2𝑇

4
 
 𝑤 𝑧1 − 𝑒−𝑌𝑉0𝑤 𝑧2                                               (20a) 

𝑢1
𝑡 𝑌, 𝑇 =

1

2
𝐼𝑚

 
 
 
  𝑀 − 1 − 𝑖  𝑒

𝑇

2
 𝑏2−𝑎2 − 

𝑌2

4𝑇
+
𝑇𝑉0

2

4
 
 𝑤 𝑧3 + 𝑒

𝑖
𝑌𝑏

√2
−
𝑌𝑎

√2𝑤 𝑧4   

−2𝑒
−
𝑎

√2
(𝑌+𝑇𝑉0)

𝑒
−𝑖

𝑏

√2
(𝑌+

√2𝑇

𝑏
+𝑉0𝑇)  

 
 
 

             (20b) 

  Where, 
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          𝑧2 =  
𝑇

2
𝑏 + 𝑖(

𝑌

2√𝑇
−

√𝑇

2
𝑉0 +  

𝑇

2
𝑎) =𝑧3 

          𝑧4 = − 
𝑇

2
𝑏 + 𝑖  

𝑌

2√𝑇
−  

𝑇

2
𝑎 +

√𝑇

2
𝑉0  = 𝑧1 

The complete steady state and transient solutions are respectively 

                   𝑢𝑡(𝑌, 𝑇) = 𝑢0
𝑡  𝑌, 𝑇 + 𝑅𝑐𝑢1

𝑡(𝑌, 𝑇)                         (21) 

                  𝑢𝑠 = 𝑢0
𝑠 𝑌, 𝑇 + 𝑅𝑐𝑢0

𝑠(𝑌, 𝑇)                                   (22) 

 

    

 Figure1: Transient vel. distribution; Plate velocity sin (T)        
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                 Figure. Starting Phase vel. Distribution; Plate velocity sin (T) 

 

 Conclusion 

If we go through the figures presented by Panton [5] and Deka  et. Al. [1], in their respective 

papers with our obtained figures, a clear difference can be seen. We see that the fluid trying 

penetrating towards the plate at and near the plate. However at far distance from the plate this 

nature cannot be seen. We feel that this effect is due to the magnetic parameter (M), the porosity 

(V0) of the plate on the flow field and due to elastic property of the fluid.  However, the effect of 

Rivlin-Ericksen fluid is very clear. 
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Abstract
In electromagnetic and structural coupled problems such as magnetic damping vibration, the
staggered method is used for coupled analyses because of its low computational cost. However,
numerical instability may occur as a result of the time lag in coupled effect evaluation even if
the time integration method for each phenomenon is unconditionally stable.

In this study, the stability of staggered coupled analyses is evaluated based on the spectral radius,
and the stable regions of time increments with the intensity of the coupling effect are obtained.
The numerical stability of the coupled analysis methods is compared for various coupling effect
intensities based on the stable region.

The coupled analysis method with the conventional serial staggered algorithm and generalized–
α method is most stable. The stability of the conventional parallel staggered algorithm is much
improved if the generalized–α method is used.

Keywords: Numerical instability, Electromagnetic and structural coupled analysis, Coupled
algorithm, Time integration method, Numerical damping.

Introduction
The use of coupled finite element analyses such as fluid–structure interaction analysis and
electromagnetic–structural coupled analysis is increasing in the design of mechanical compo-
nents. Coupled finite element analysis methods are classified as simultaneous (or monolithic)
and staggered (or partitioned) methods. In simultaneous methods, the coupled finite element
equations are obtained by combining each finite element equation for multi-physics phenomena
and then solved. However, high computational cost is incurred because the matrix size becomes
large. In staggered methods, multiple finite element equations are solved separately. Because
the computational cost of the staggered method is low, this method is used in many coupled
analyses. However, numerical instability may occur owing to time lag in coupled effect evalua-
tion even if the time integration method for each phenomenon is unconditionally stable.

Many studies of staggered methods have been performed for fluid–structure interaction prob-
lems. In addition to the conventional serial staggered (CSS) algorithm, which is widely used
for staggered analysis, several coupled algorithms have been proposed such as the conventional
parallel staggered (CPS) algorithm, improved serial staggered algorithm and improved parallel
staggered algorithm; and then the numerical stability, result accuracy and computing time of
these methods have been discussed[1].

Magnetic damping vibration is one type of electromagnetic and structural coupled problem.
Studies have focused on magnetic damping vibration analysis, which is required for the design
of conductive structures located in a strong magnetic field, such as those in future fusion reac-
tors or magnetically levitated vehicles. Several coupled analysis methods have been compared
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for magnetic damping vibration with the bending mode[2] and with the bending and torsional
mode[3] from the viewpoint of the modeling, formulation, type of element, and time integra-
tion method. In the past few years, the geometrical nonlinearity of magnetic damping vibration
has been discussed[4], and a coupled analysis method using a Lagrangian approach has been
proposed[5]. However, numerical instability occurs in magnetic damping vibration analysis
even if unconditionally stable time integration methods are used.

In this study, a stability evaluation method is proposed for the coupled finite element analysis
of magnetic damping vibration. In this method, the stability is evaluated by the spectral radius
obtained from the coupled eigenmode and the time integration scheme. Next, the numerical sta-
bility is examined by the stable region for various coupled analysis methods that are combined
with a coupled algorithm and a time integration method with numerical damping.

Coupled Finite Element Analysis Method for Magnetic Damping Vibration Problem
Magnetic Damping Vibration

Magnetic damping vibration occurs in a conductive structure located in a magnetic field. A
conductive structure is vibrated by the Lorentz force which is induced by an eddy current and a
magnetic field. While the structure is vibrating, the electromotive force reduces the eddy current
and vibration.
Finite Element Equations

The T method is used for eddy current analysis of the magnetic damping vibration problem of
a thin shell structure[6]. The matrix equation of the eddy current analysis is expressed using the
nodal point normal component T of the current vector potential and nodal point deformation
vector u:

UṪ + RT = Ceu̇ + Ḃex . (1)

Here, U, R, Ce, and Ḃex are the inductance matrix, the resistance matrix, the coupling sub-
matrix of electromotive force, and the time-varying external magnetic field, respectively.

The matrix equation of the structural analysis is expressed by

Mü + Ku = CsT + Fex , (2)

where M, K, Cs, and Fex are the mass matrix, the stiffness matrix, the coupling sub-matrix of
the Lorentz force, and the external force, respectively.
Coupled Algorithms

The coupled analysis methods for magnetic damping vibration are classified as simultaneous
and staggered methods. In the simultaneous method, the coupled finite element equation ob-
tained by combining Eqs. (1) and (2) has been solved[6] and shown to be unconditionally
stable[7]. In the staggered method, Eqs. (1) and (2) are solved separately and alternately. How-
ever, it is conditionally stable even if unconditionally stable time integration methods are used
for each equation because the solution diverges by numerical instability under specific condi-
tions, for example, according to the intensity of the magnetic field and the time increment. In
addition to the CSS algorithm, the CPS algorithm have been proposed for fluid–structure in-
teraction analysis[1]. According to the previous studies, the CPS algorithm has weak stability.
In this study, the numerical stability of these coupled algorithm are discussed for staggered
methods of magnetic damping vibration analysis.

Fig. 1 shows the data flow between the eddy current analysis and the structural analysis using
the CSS and CPS algorithms for magnetic damping vibration analysis. In the CSS algorithm,
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(a) Conventional serial staggered (CSS) algorithm
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Eddy current analysis
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Coupled effect Coupled effect

∆t

(b) Conventional parallel staggered (CPS) algorithm

Figure 1: Procedures of staggered coupled algorithms for eddy current and structural
coupled analyses.

Eq. (1) for the eddy current analysis is solved using the results from the previous time step of
the structural analysis to evaluate the coupling term in Eq. (1). Then, Eq. (2) for the structural
analysis is solved using the results of eddy current analysis to evaluate the coupling term in
Eq. (2). In the CPS algorithm, Eq. (1) for the eddy current analysis and Eq. (2) for the structural
analysis are solved simultaneously and separately in each time step. The terms for the coupled
effect in Eqs. (1) and (2) are evaluated using the results from the previous time step.
Coupld Analysis Methods

For eddy current analysis, the backward difference method is applied. Eq. (1) becomes

(U + ∆tR)T t+∆t = ∆tCeu̇t+∆t + UT t + ∆tḂext . (3)

The backward difference method is unconditionally stable for uncoupled eddy current analysis.

For structural analysis, two types of time integration methods are applied. By using the param-
eter ρ∞ to control the numerical dissipation, Eq. (2) becomes{

(1− αm) 1
β∆t2 M + (1− αf ) K

}
ut+∆t

= (1− αf )F ext+∆t + αfF ext
+ Cs {(1− αf )T t+∆t + αfT t}

− M
[
(1− αm)

{(
1− 1

2β

)
üt −

1
β∆t

u̇t −
1
β∆t2 ut

}
+ αmüt

]
− αfKut, (4)

where

αm = 2ρ∞ − 1
ρ∞ + 1

, αf = ρ∞
ρ∞ + 1

, δ = 1
2
− αm + αf , β =

(1− αm + αf )2

4

for Newmark’s β method (δ = 1/2, β = 1/4) with αm = αf = 0, and the asymptotic annihi-
lation case ρ∞ = 0 of the generalized–α method (δ = 3/2, β = 1)[8]. These time integration
methods are unconditionally stable for uncoupled structural analysis.
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For the electromotive force or the coupled effect in eddy current analysis, the coupling term
Ceu̇ is evaluated under the assumption that u̇ is equal to u̇t for both coupled algorithms. The
Lorentz force or the coupled effect in structural analysis is evaluated in a different way for each
coupled algorithm. In the CSS algorithm, the coupling term for structural analysis CsT can be
evaluated using T t+∆t obtained from the eddy current analysis in the same time step. In the
CPS algorithm, T is assumed to be T t to evaluate the coupling term.

Stability Analysis Method of Magnetic Damping Vibration Analysis
The stability of a time integration method for uncoupled analysis can be generally evaluated
using the spectral radius[9]. The stability of magnetic damping vibration analysis, which is one
type of coupled analysis, is also evaluated using the spectral radius[10].

The stability analysis method for the combination of the vibration modem and the eddy current
mode n is described below. By ignoring the term of the external transient magnetic field in
Eq. (3) for eddy current analysis and using the mode amplitude factor ū(m) for the vibration
modem, the mode amplitude factor T̄ (n) for the eddy current mode n is expressed as(

Ū (n) + ∆tR̄(n)
)
T̄

(n)
t+∆t = ∆tC̄(m)(n)

e
˙̄u(m)
t+∆t + Ū (n)T̄

(n)
t , (5)

where Ū (n) and R̄(n) are respectively the modal inductance and modal resistance of eddy current
mode n, and C̄(m)(n)

e is the modal electromotive force of the coupling effect between vibration
modem and eddy current mode n. On the other hand, by ignoring the term of the external force
in Eq. (4) for structural analysis, ū(m) is expressed as{

(1− αm) 1
β∆t2M̄

(m) + (1− αf ) K̄(m)
}
ū

(m)
t+∆t

= C̄(m)(n)
s

{
(1− αf ) T̄ (n)

t+∆t + αf T̄ (n)
t

}
− M̄ (m)

[
(1− αm)

{(
1− 1

2β

)
¨̄u(m)
t −

1
β∆t

˙̄u(m)
t −

1
β∆t2 ū

(m)
t

}
+ αm ¨̄u(m)

t

]
− αfK̄(m)ū

(m)
t , (6)

where M̄ (m) and K̄(m) are respectively the modal mass and the modal stiffness for vibration
modem, and C̄(m)(n)

s is the modal Lorentz force for the coupled effect between vibration mode
m and eddy current mode n.

By combining Eqs. (5) and (6) and moving terms according to the time, the recurrence equation
of the magnetic damping vibration analysis becomes{

¨̄u(m)
t+∆t

˙̄u(m)
t+∆t ū

(m)
t+∆t T̄

(n)
t+∆t

}T
= A

{
¨̄u(m)
t

˙̄u(m)
t ū

(m)
t T̄

(n)
t

}T
. (7)

The stability of the magnetic damping vibration analysis can be evaluated using the modulus of
the complex eigenvalue |λ(m)(n)|, which is the spectral radius of the amplitude matrix A. If any
|λ(m)(n)| is greater than 1.0, the coupled analysis method is considered unstable.

The stability analysis method is applied to the coupled analysis method with CSS algorithm and
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Newmark’s β method. The eigenvalues λ of A are obtained from the characteristic equation

λ4 +
{
−2 + 4ω2∆t2

4 + ω2∆t2 −
1

1 + φ∆t
− 2∆t2

4 + ω2∆t2
1

1 + φ∆t
C̄eC̄s

M̄Ū

}
λ3

+
{

1 +
(

2− 4ω2∆t2

4 + ω2∆t2

)
1

1 + φ∆t

}
λ2

+
{
− 1

1 + φ∆t
+ 2∆t2

4 + ω2∆t2
1

1 + φ∆t
C̄eC̄s

M̄Ū

}
λ = 0, (8)

where

ω =

√
K̄

M̄
, φ = R̄

Ū
,

and the superscripts (m) and (n) of the modal coefficients are omitted. The characteristic equa-
tions for other coupled analysis methods are obtained in the same way as described above.

The values of ω, φ, and
C̄eC̄s

M̄Ū
in Eq. (8) depend on the material properties, geometric configura-

tion, and intensity of the coupled effect, so they are obtained using theoretical and finite element
solutions. The value of ω is obtained from Young’s modulus, mass density, length, width, and
thickness of the plate by using the theoretical solution for a thin flexible plate. For the values

of φ and
C̄eC̄s

M̄Ū
, the characteristic equation of the magnetic damping vibration[11] is used. By

combining modal Eqs. (1) and (2), the characteristic equation becomes

α3
c + φ α2

c +
(
ω2 − C̄eC̄s

M̄Ū

)
αc + ω2φ = 0, (9)

where αc is coupled eigenvalue that depends on the geometry. By using the result of the eigen-
value of the coupled finite element monolithic matrix equation[11] combined with Eqs. (1) and

(2), Eq. (9) becomes a complex linear equation with unknown variables φ and
C̄eC̄s

M̄Ū
, which

are determined through this equation. Therefore, the eigenvalue of the characteristic equation
Eq. (8) can be solved numerically for each ∆t using the Newton method, and the stability can
be evaluated using the spectral radius |λ|.
Results of stability analysis of coupled analysis methods
Magnetic Damping Vibration of Elastic Plate

The coupled analyses are performed for a magnetic damping vibration problem, as shown in
Fig. 2[2]. A copper rectangular plate clamped at one end is placed in a longitudinal steady
magnetic field Bx and transient magnetic field

Bz = 5.5× 10−2 exp −t
6.6× 10−3 [T], (10)

that is applied perpendicularly to the plate surface. The Lorentz force produced by both the
eddy current induced by Bz and Bx causes bending vibration. While the plate is vibrating, the
electromotive force induced by the vibration velocity andBx induces a coupling effect to reduce
the eddy current and vibration.
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Figure 2: Schematic diagram of a clamped plate placed in electromagnetic field.

Verification of the stability analysis method

The spectral radii |λ| obtained by the stability analysis for the coupled analysis methods using
the CSS algorithm are shown in Fig. 3 for Bx = 0.5 T. The time increment ∆t is normalized by
the natural period τ0 = 9.37 × 10−2 s for the first vibration mode. The critical time increment
∆t(s)
c is defined from the limit of ∆t when all |λ| values become less than or equal to 1.0. If any

value of |λ| is greater than 1.0, the coupled solution is unstable. For coupled analysis method
with generalized–α method, |λ| is always less than 1.0.

The validity of the stability analysis method should be confirmed using the coupled finite ele-
ment analysis for various values of ∆t, in which the staggered method for both the vibration
mode response analysis and the eddy current mode response analysis is used. For coupled anal-
ysis methods with Newmark’s β method, coupled finite element analyses are performed under
the time increment conditions of both ∆t < ∆t(s)

c and ∆t > ∆t(s)
c . For coupled analysis method

with the generalized–α method, coupled finite element analysis is performed using large ∆t,
such as the natural period τ0.

Fig. 4 shows the deflections at the free end of the plate. According to Fig. 4(a), the results
obtained using the method with Newmark’s β method is stable when ∆t < ∆t(s)

c , but it is
unstable when ∆t > ∆t(s)

c . For the method with the generalized–α method, instability is not
observed in Fig. 4(b) even if ∆t is set to be as large as the natural period.

The |λ| values obtained by the stability analysis are shown in Fig. 5 for the coupled analysis
methods with the CPS algorithm. For the method with the generalized–α method, |λ| is always
less than 1.0. Fig. 6 shows the deflections of the plate obtained using the CPS algorithm. Ac-
cording to Fig. 6(a), the results obtained using the method with Newmark’s β method is stable
when ∆t < ∆t(s)

c , but it is unstable when ∆t > ∆t(s)
c . For the method with the generalized–α

method, instability is not observed in Fig. 6(b) even if ∆t is set to be as large as the natural
period. Therefore, the validity of the stability evaluation method using the spectral radius is
confirmed for the coupled analysis methods for the magnetic damping vibration.

Comparison of Numerical Stability
The numerical stability of the coupled analysis methods is compared for various intensities of
the coupling effect. Fig. 7 shows the normalized critical time increment ∆t(s)

c /τ0 for various
steady magnetic fields Bx, which is proportional to the intensity of the coupling effect. The
lower left region of each curve is stable, whereas the upper right region is unstable because of
the high intensity of the coupling effect. Although Newmark’s β method, the generalized–α
method and the backward difference method are unconditionally stable for uncoupled analysis,
all coupled analysis methods using these time integration methods are conditionally stable on
account of the staggered coupled analysis method. Because ∆t(s)

c /τ0 becomes smaller with
increasing intensity of the coupling effect, the stability deteriorates with the coupling effect. The
stable regions of the coupled analysis methods with the generalized–α method are larger than
those with Newmark’s β method. This is because the numerical damping of the generalized–α
method may suppress the instability induced by these coupled analysis methods.
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Figure 4: Deflection of the plate ob-
tained by coupled analysis methods with
CSS algorithm.
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Figure 5: Results of spectral radii |λ| of
coupled analysis methods with CPS al-
gorithm.
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Figure 6: Deflection of the plate ob-
tained by coupled analysis methods with
CPS algorithm.

When results for the CPS algorithm are compared with those for the CSS algorithm, the stable
regions of the CPS algorithm are smaller than those of the CSS algorithm, which is the same
tendency as in the fluid–structure interaction analysis with the CPS algorithm[1]. This may be
because the time lag of coupled effect evaluation for the CSS algorithm treats only the elec-
tromotive force, whereas that for the CPS algorithm treats both the electromotive force and the
Lorentz force. Although the stability of the CPS algorithm was worse than that of the CSS
algorithm in general, it was much improved when using the generalized–α method, and this
offers the advantage of a shorter computing time.

Conclusions
A stability evaluation method using the spectral radius was proposed and applied to the cou-
pled finite element analysis of magnetic damping vibration. The stability was evaluated for
coupled analysis methods that were combined with a coupled algorithm and time integration
method. The validity of the stability evaluation method and the results of stability analysis were
confirmed through comparisons with the results of coupled finite element analyses.

The coupled analysis method with the CSS algorithm and generalized–α method is the most
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Figure 7: Stability limit of coupled analysis methods as a function of intensity of the cou-
pled effect. Lower left region of the curve is stable region, and upper right region of the
curve is unstable region.

suitable for the coupled finite element analysis of the magnetic damping problem. The generalized–
α method is superior to Newmark’s β method from the viewpoint of the stability of the coupled
analysis. The CPS algorithm is considered inferior to the CSS algorithm in terms of numerical
stability, but the stability is much improved if the generalized–α method is used. Then, the
advantage of parallel computing can be better utilized when the intensity of the coupling effect
is low.
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Abstract

In this work, a computational model for the interaction of blood flow with the wall of an
intracranial saccular aneurysm that is surrounded by cerebral spinal fluid is considered.
The coupled fluid-structure interaction model presented includes growth and remodeling
effects within the soft-tissue by incorporating elastin and collagen dynamics which are two
of the main layers in the arterial wall. The resulting nonlinear system of coupled differen-
tial equations are solved numerically using implicit finite difference methods coupled with
the Newton’s method. The linearized version of the nonlinear system was also considered
and solved both analytically using Laplace transformation and numerically using implicit
finite difference methods. The nonlinear effects on rupture was studied and compared for
benchmark studies and the computational results indicate that the model proposed is ro-
bust and reliable.

Keywords: Mechanics, Computation, Aneurysm, Rupture, bio-mechanics.

Introduction

Over the last three decades there has been a lot of efforts to study intracranial saccular
aneurysms which are focal dilatation of the arterial wall that are found in the Circle of
Willis. The specific mechanisms responsible for their genesis, enlargement, and rupture
has been a prominent area of research during these years. There have been competing
hypothesis in the literature on the pathogenesis and lesion development involving limit
point instabilities, [12, 1, 7], equilibrium wall stress and wall strength comparisons [2]
and instability of the wall in response to pulsatile blood flow [8, 18, 13, 17, 19, 11].

Intracranial Saccular aneurysm which is a soft tissue interacts with a variety of flows in-
cluding blood as well as the Cerebral spinal fluid. Based on the influence of various
bio-mechanical factors, the growing aneurysm can be potentially ruptured and that leads
to either a neurological disorder or death. About 80% to 90% of ruptured aneurysms leads
to death [21].

∗Contact Emails: mbadgai2@masonlive.gmu.edu, pseshaiy@gmu.edu (Corresponding Author)
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In the last two decades, several researchers have tried to investigate different aspects of
biomechanics of aneurysms [14, 15, 16, 20]. Different groups of researchers had identi-
fied the elastodynamics of the arterial wall interaction with the blood flow to be the main
reason for the rupture of an aneurysm [8, 18, 13]. A coupled fluid-structure model to
understand the elastodynamics better was studied more extensively in the past few years
[17, 19, 4, 11]. These models introduced mathematical models of increasing complexity
for intracranial saccular aneurysms that described the coupled interaction between blood,
arterial wall, and Cerebral Spain Fluid (CSF). In [19], the CSF was modeled using sim-
plified Navier-Stokes equations, whereas the arterial wall structure was modeled using a
spring mass system. A Fourier series was used to model the interaction between blood
pressure and inner wall. While the model developed yielded good insight into understand-
ing rupture, there was a great need to incorporate the growth and remodeling effects of the
soft-tissue that will help to introduce important attributes and constituent of the arteries
wall which will be the focus of this work. There are three main constituents of the artery
wall, namely, the elastin, the collagen, and the smooth muscle [9, 5]. The elastin is a stable
protein and is considered the most load bearing element that functions as resistance to the
formation of an anuerysm, whereas the collagen is the protein that is responsible for pre-
venting rupture after formation of an aneurysm. The growth of the aneurysm is associated
with deficiency of elastin and weakening of the artery wall [6]. Hence, elastin and colla-
gen should be incorporated into the modeling of arterial wall in order to obtain an accurate
biological model of the aneurysm that can lead to better interpretation and prediction for
this disease. This is one of the main contributions of this work.

In Section 2, we will describe the mathematical model that we will consider to solve a
coupled fluid structure problem. Section 3 describes the implicit finite difference imple-
mentation of the coupled system. In section 4 we include some results from our compu-
tational experiments indicating the influence of collagen and elastin. Finally in section 5,
we conclude and present some future work.

Mathematical Models and Background

The current work will build on models developed in [19] which helped to develop a
very simple mathematical model of a thin-walled, spherical intracranial aneurysm sur-
rounded by cerebral spinal fluid which is referred to as CSF (See Figure 1). This model
involved solving coupled partial differential equations for fluids (modeling blood and cere-
bral spinal fluid) interacting with elastic structures modeling aneurysms using novel ap-
proaches. These models in [19, 4] were validated using analytical techniques and compu-
tational tools.

Next we describe briefly the models that were proposed which will be considered in this
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Figure 1: Model of an aneurysm in an arterial wall with blood inside and CSF outside

work and how they will be enhanced in this work using effects of growth and remodeling.

Model of the Cerebral Spinal Fluid

The model of Cerebral Spinal Fluid (CSF) considered in this paper is the simplified one
dimensional Navier-stokes equation. Assuming the CSF is inviscid and slightly compress-
ible with negligible non-linear effects, one can derive the following wave equation [19]:

vt = c2uxx (1)

ut = v (2)

Here u(x, t) is assumed to be the displacement of the CSF with v(x, t) as the velocity.
Since we are looking to find the movement of outer wall due to the interaction with CSF,
we consider x = 0 to denote the outer wall (See Figure 1) and therefore we are interested in
finding the solution to equations (1) and (2) at x = 0 that will describe the movement of the
wall at any time t ≥ 0. In order to solve the system, we will assume that the displacement
and velocity of the CSF is zero initially. This is given by the initial conditions:

u(x, 0) = v(x, 0) = 0. (3)

The boundary conditions will be described later after the discussion of the modeling of the
blood pressure and the arterial wall which are discussed next.
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Model of the Blood Pressure

The blood pressure is modeled using Fourier series since we consider the behavior to be
pulsatile [3, 10, 17]. This relation can be described as:

PB(t) = Pm +
N∑
n=1

(An cos(nwt) +Bn sin(nwt)) (4)

where Pm is the mean blood pressure, An, Bn are Fourier coefficients, and w is the funda-
mental circular frequency [10].

Model of the Arterial Wall

We consider the arterial wall to be modeled using a simple spring-mass system that incor-
porates the elastin and collagen effects in the outer wall of the arteries. The force of this
system maybe denoted by FS which is given by FO − FI where FO and FI are the forces
of outer and inner wall respectively. This maybe expressed as:

FS = KEAE(t)σE(εE) +KCAC(t)σC(εC) − aPB(t) (5)

where KE, KC are the scaling coefficients, AE(t), AC(t) are the cross-sectional areas, and
σE(εE), σC(εC) are the stresses for elastin and collagen respectively. These stresses are
related to the respective strains through nonlinear constitutive laws given by:

εE = (((L+ u(0, t))/L)2 − 1)/2 εC = (εE + (1 − r2)/2)/r2

where L denotes the length of the unstrained tissue, u its extension, and r is the stretched
factor of unstrained tissue of collagen fiber.

Governing Equations of Motion

In order to solve the system (1)-(2), we need two boundary conditions. The first boundary
condition is at point x = 0, and it can be derived from the model of blood pressure and the
arterial wall that we have discussed. Note that the force balance equation at x = 0 maybe
written as:

FT = FF − FS. (6)

where FT = mvt(0, t) which is the inertial term corresponding to the product of mass
of the wall m and acceleration, FF = ρc2ux(0, t)a is the fluid force, with a is the cross-
sectional area and ρ, the density of the CSF.
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Substituting equation (5) into (6) we obtain the following boundary condition at x = 0:

mvt(0, t) = aPm − KEAE(t)σE(εE) −KCAC(t)σC(εC) + ρc2aux(0, t)

+
N∑
n=1

(aAn cos(nwt) + aBn sin(nwt)) (7)

The second boundary condition can be obtained using the plane wave approximation that
states that the waves from the wall will die down some fixed distance away from the wall.
If this can be applied at point x = L , then the second boundary condition becomes [19]:

v(L, t) = −cux(L, t) (8)

Combining (1), (2), (3), (7) and (8), we obtain the following system of coupled fluid-
structure interaction problem:

vt = c2uxx

ut = v

u(x, 0) = v(x, 0) = 0 (9)
mvt(0, t) = aPB(t) −KEAE(t)σE(εE)

−KCAC(t)σC(εC) + ρc2aux(0, t)
v(L, t) = −cux(L, t)

For simplicity, we will assume that the cross-sectional areas are constant and a materially
linear constitutive relationship between stress and strain is considered. In particular, we
consider AE(t) = γE, AC(t) = γC , and σE(εE) = εE , σC(εC) = εC . Note that we still
consider the soft-tissue to be geometrically non-linear which is the relation between the
strains and the respective displacements. Given that system (9) is a coupled nonlinear sys-
tem, it requires a numerical solution which will be discussed next.

An Implicit Finite Difference Solution Method

In order to solve system (9), we use an implicit finite difference method wherein we will
replace the derivatives of the terms in the system by their corresponding finite difference
approximations in a discretized domain. We employ the following second order finite
difference approximation:
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u′(yi) = u(yi + ∆y) − u(yi − ∆y)
2∆y +O(∆y2), ∆y ≤ yi ≤ Y − ∆y

u′′(yi) = u(yi + ∆y) − 2u(yi) + u(yi − ∆y)
∆y2 +O(∆y2) ∆y ≤ yi ≤ Y − ∆y

u′(0) = −3u(0) + 4u(∆y) − u(2∆y)
2∆y +O(∆y2) (yi = 0)

u′(Y ) = u(Y − 2∆y) − 4u(Y − ∆y) + 3u(Y )
2∆y +O(∆y2) (yi = Y )

where ∆x = L

M
, ∆t = tF

N
, 0 ≤ x ≤ L, and 0 ≤ t ≤ tF

Then the system (9) can be rewritten implicitly as:

vj+1
i − vj−1

i

2∆t = c2(uj+1
i+1 − 2uj+1

i + uj+1
i−1 )

∆x2 +O(∆x2,∆t), 1 ≤ i ≤ M − 1 (10)

uj+1
i − uj−1

i

2∆t = vj+1
i +O(∆t), 0 ≤ i ≤ M (11)

m(vj+1
0 − vj−1

0 )
2∆t = aPB(t(j + 1)) + ρc2a(−3uj+1

0 + 4uj+1
1 − uj+1

2 )
2∆x − KEγE

L
uj+1

0

−KEγE
L

(uj+1
0 )2 − KCγC

Lr2 uj+1
0 (12)

−KCγC
2L2r2 (uj+1

0 )2 − KCγC(1 − r2)
2r2 +O(∆x2,∆t)

vj+1
M = −c(uj+1

M−2 − 4uj+1
M−1 + 3uj+1

M )
2∆x +O(∆x2) (13)

Rewriting this nonlinear system as F (u) = 0 after dropping the higher order terms we get:

( 2c2

∆x2

)
uj+1
i −

(
c2

∆x2

)
(uj+1

i−1 + uj+1
i+1 ) +

( 1
2∆t

)
vj+1
i −

( 1
2∆t

)
vj−1
i = 0 (14)

uj+1
i − 2∆tvj+1

i − uj−1
i = 0 (15)
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(
KEγE
2L2 +KCγC

2L2r2

)
(uj+1

0 )2+
(3ρc2a

2∆x +KEγE
L

+KCγC
Lr2

)
uj+1

0 −
(4ρc2a

2∆x

)
uj+1

1 +
(
ρc2a

2∆xu
j+1
2

)
+
(
m

2∆tv
j+1
0

)
−
(
m

2∆t

)
vj−1

0 − aPB(t(j + 1)) + KCγC(1 − r2)
2r2 = 0 (16)

cuj+1
M−2 − 4cuj+1

M−1 + 3cuj+1
M + 2∆xvj+1

M = 0 (17)

The system can be solved at each time step J + 1 for J ≥ 1 using the Newton’s method
for solving nonlinear system:

un+1 = un − J(u)−1F (u) (18)

where J(u) is the Jacobian matrix of the system, n is the Newton iteration number, and
F (u) is the system above. Here,

J(u) =
[
B(u) C
D E

]

B(u) =



3ρc2a
2∆x + KEγE

L
+ KCγC

Lr2 +
(
KEγE

L2 + KCγC

L2r2

)
uj+1

0
−4ρc2a

2∆x
ρc2a
2∆x 0 . . . 0

− c2

∆x2 2 c2

∆x2 − c2

∆x2 0 . . . 0
0 − c2

∆x2 2 c2

∆x2 − c2

∆x2 . . . 0
... . . . . . . . . . ...
... . . . . . . . . .
0 . . . 0 − c2

∆x2 2 c2

∆x2 − c2

∆x2

0 . . . 0 c −4c 3c



C =



m
2∆t 0 0 . . . 0
0 1

2∆t 0 0 . . . 0
0 0 1

2∆t 0 0 . . . 0
... . . . . . . . . . ...
0 . . . 0 0 1

2∆t 0
0 . . . 0 0 0 2∆x


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D =


1 0 . . . 0
0 1 . . . 0
... . . . ...
0 . . . 0 1



E =


−2∆t 0 . . . 0

0 −2∆t . . . 0
... . . . ...
0 . . . 0 −2∆t


To solve using the Newton’s method, we require a guess which we will use from the
solution at first two time steps.

For 1 ≤ i ≤ M − 1,

v1
i − v0

i

∆t = c2(u1
i+1 − 2u1

i + u1
i−1)

∆x2 +O(∆x2,∆t) (19)

for 0 ≤ i ≤ M ,
u1
i − u0

i

∆t = v1
i +O(∆t) (20)

m(v1
0 − v0

0)
∆t = aPBlood(t) + ρc2a(−3u1

0 + 4u1
1 − u1

2)
2∆x − KEγE

L
u1

0 − KEγE
2L2 (u1

0)2

− KCγC
Lr2 u1

0 − KCγC
2L2r2 (u1

0)2 − KCγC(1 − r2)
2r2 +O(∆x2,∆t) (21)

v1
M = −c(u1

M−2 − 4u1
M−1 + 3u1

M)
2∆x +O(∆x2) (22)

Then substituting the initial condition and drooping higher order terms, we get:

( 1
∆t

)
v1
i −

(
c2

∆x2

)
u1
i+1 +

( 2c2

∆x2

)
u1
i −

(
c2

∆x2

)
u1
i−1 = 0 (23)

for 0 ≤ i ≤ M ,
u1
i − ∆tv1

i = 0 (24)
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(
m

∆t

)
v1

0 +
(3ρc2a

2∆x + KEγE
L

+ KCγC
Lr2

)
u1

0 +
(
KEγE
2L2 + KCγC

2L2r2

)
(u1

0)2 − 4ρc2a

2∆x u
1
1

+ ρc2a

2∆xu
1
2 + KCγC(1 − r2)

2r2 − aPBLOOD(t) = 0 (25)

cu1
M−2 − 4cu1

M−1 + 3cu1
M + (2∆x)v1

M = 0 (26)

Computational Experiments

In this section, we perform some computational studies to validate the numerical solution
to the geometrically nonlinear model that introduces the effects of the elastin and collagen.
Since this nonlinear system can only be solved numerically using nonlinear solvers, the
following steps are applied in order to validate this solution. First, the nonlinear model
is linearized using Taylor series expansion, and this linearized version of the model was
solved both analytically using Laplace transform and numerically using implicit finite dif-
ference approximation. The behavior of numerical solution against the analytical solution
was validated. After the validation, the influence of various parameters on the displace-
ment of the wall u(0, t) was investigated. Secondly, the numerical solution for the linear
model is used as initial guess for the nonlinear model to solve system numerically using
Newton’s method with implicit finite difference approximation. Finally the influence of
some parameters on the displacement of wall is also considered.

In this experiment, the following realistic values are utilized. For the CSF, p = 1000kg/m3,
c = 1500m/s are used. For the Wall, a = 0.01m2, kE = 800 N/m, kC = 3.52N/m,
AE = 20 m2, AC = 10 m2, r = 2 m , and L = 1.5m are used. Finally, Pm =
8759.279403mmHg, w = 1rad/s are used for the blood pressure model, and for the har-
monics, A1 = −7.13, A2 = −3.08, A3 = −0.130, A4 = −0.205, A5 = 0.0662, B1 =
4.64, B2 = −1.18, B3 = −0.564, B4 = −0.346, B5 = −0.120, all in mmHg.

First, in Figure 2, we compare the linear solution without growth and remodeling obtained
in [19] in comparison to both the analytical solution obtained by linearization of coupled
non-linear system with growth and remodeling (9) as well as the numerical solution to
(9) obtained via the implicit finite difference method. The figure shows that the inclusion
of growth and remodeling does have an effect even though the solution seems to have
the same shape. Their inclusion yields a decreased displacement of the outer wall which
seems to suggest that including elastin and collagen can help prevent rupture.

The Influence of length of unstrained tissues

Next, we wanted to investigate the effect of the length of the column where the CSF lives
on the displacement of the outer wall. As Figure 3 illustrates, we noted that as the length
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Figure 2: Nonlinear Growth and Remodeling solution VS Linear Solutions

is reduced, the movement of the wall declines dramatically. Figure 3 illustrates the motion
of the wall for decreasing length from L = 1.5 m to L = 0.1 m. The results seem to agree
with what is expected intuitively.

Influence of Elastin and Collagen parameters

The elastic and collagen parameters (KE ,KC) seem to play an important role in the mod-
eling of the arterial wall since they are responsible for the elasticity and strength of wall
tissue. Figure 4 shows the solution for different values of KE starting from 300N/M till
800N/M while figure 5 represent the solution for different values of KC starting from
1.52N/M till 6.52N/M . Figure 4 suggests that the displacement increases and takes
longer to stabilize into a periodic motion as KE decreases. However, Figure 5 shows that
the displacement increases in a steady periodic motion as KC increases. Both these com-
putational observations seem to correspond to what has been observed in the literature.
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Figure 3: Influence of Length of Unstrained Tissues

Conclusions and Future work

The model developed in this work studies the influence of growth and remodeling on the
rupture of an aneurysm In this model, three important components of aneurysm modeling
that were considered include the blood pressure,the CSF, and arterial wall. The specific
contribution of this paper was to expand on an earlier work to incorporate more relevant
features of the arterial wall to stimulate the complex biological structure of the human ar-
teries. The collagen and elastin are the most important fibers located in the wall layers that
are incorporated herein in the model of the wall. This new incorporation results in a new
nonlinear system that is solved numerically using implicit finite difference approximation
and Newton’s method for solving system of nonlinear equations. The results obtained in
this work is encouraging to understand and provides a better insight into the rupture of an
aneurysm. The model for the fluid considered herein is a linear model and we hope to ex-
pand our work to incorporate non-linearities in the fluid as well as develop similar models
in higher dimensions which are aspects that will be considered in forthcoming papers.
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Figure 4: Influence of parameter kE on the displacement of the outer-wall
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Abstract 
Due to the use of two cover systems, i.e., the mathematical cover system and the physical cover 
system, the numerical manifold method (NMM) is able to solve both continuous and discontinuous 
problems within the same framework. In the present paper, the NMM is developed to analyze 
unsteady heat conduction problems in two-dimensional settings. The NMM discrete equations are 
derived using the weighted residual method in Galerkin form. The spatial integration is performed 
through triangulation and Gauss quadrature while time integration is realized by the backward Euler 
scheme. The proposed approach is verified through a typical numerical example. 

Keywords: Numerical manifold method (NMM), Two-dimensional heat conduction, Transient, 
Temperature 

Introduction 

In the past two decades, considerable efforts have been put on to the development of the numerical 
manifold method (NMM) proposed by Shi [Shi (1991)]. The outstanding performance of the NMM 
originates from the use of finite cover concept. Benefiting from the use of dual cover systems, that 
is, the mathematical cover system and the physical cover system, the NMM is able to solve both 
continuous and discontinuous problems in a unified framework. The major highlights of the NMM 
can be summarized in the following aspects: (1) the mathematical cover system can be independent 
of both external and internal boundaries; (2) the local property of physical field can be manifested 
in essence or through the proper choice of cover functions; (3) Higher-order approximation can be 
achieved at a fixed mathematical cover system by the use of higher-order cover functions.  

Since the advent, the NMM has been applied and developed to solve various problems in many 
fields. Tsay et al applied the NMM to predict crack growth trajectory combined with the local 
remeshing technique [Tsay et al. (1999)]. Chiou et al adopted the NMM to investigate mixed mode 
crack propagation together with the virtual crack extension method [Chiou et al. (2002)]. Li et al  
developed the enriched meshless manifold method to solve two-dimensional (2D) crack problems 
[Li et al. (2005)]. Terada et al applied the NMM (called finite cover method therein) to analysis 
progressive failure processes involving cohesive zone fracture in heterogeneous solids and 
structures [Terada et al. (2007)]. Kurumatani and Terada extended the NMM to crack simulations 
for quasi-brittle heterogeneous solids by using only a regular structured mathematical mesh 
[Kurumatani and Terada (2009)]. Ma and his co-authors tackled 2D complex crack problems using 
singular physical covers in the NMM [Ma et al. (2009)], and then they further studied multiple 
crack propagation problems [Zhang et al. (2010)]. Zhao et al applied the NMM to consider the 
microstructure influence of materials in plane micropolar elasticity [Zhao et al. (2010)]. An et al 
introduced weak-discontinuous physical covers to describe material discontinuities within the 
framework of NMM [An et al. (2011)]. Zhang and Zhang computed the SIFs on polygonal 
mathematical elements by the NMM [Zhang and Zhang (2012)]. Wu and Wong studied the effects 
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of the friction and cohesion on the crack growth from a closed crack under compression with the 
NMM [Wu and Wong (2012)]. An et al solved 2D bimaterial interface crack problems by the NMM 
[An et al. (2013)]. Fan et al simulated the stress wave propagation through fracture rock with the 
NMM [Fan et al. (2013)]. Zhang and Ma investigated the fracture of functionally graded materials 
by the NMM [Zhang and Ma (2014)]. Zhang et al focused on 2D crack problems under thermo-
mechanical loading [Zhang et al. (2014)]. Hu et al developed a discontinuous approach for the 
simulation of fluid flow in heterogeneous media by the NMM [Hu et al. (2015)]. Zheng et al 
proposed a mixed solution to the unconfined seepage problems with the NMM [Zheng et al. 
(2015)].Wang et al proposed a second-order NMM to study free surface flow containing inner 
drains [Wang et al. (2016)]. 

In the present paper, the NMM is further developed to study 2D unsteady heat conduction 
problems. To this end, the remaining of the paper is addressed as follows. Firstly, the governing 
equations and associated boundary and/or initial conditions for concerned problems are provided. 
Secondly, the NMM formulations for transient heat conduction analysis are derived; then, to verify 
the proposed method, a typical numerical example is tested. Finally, the corresponding conclusions 
are drawn. 

Governing equations 

Ignoring the heat source, the governing equations for transient heat conduction problems is [Prasad 
et al. (1996)] 

( , ) ( , ) 0T tc t
t

ρ ∂
+∇ =

∂
x q x             (1) 

where ρ is the mass density and c is the specific heat at constant pressure. ∂  denotes partial 
derivative. ( , )T tx  is the temperature with ∈Ωx (Ω  denotes the physical domain) and t the time. 
The heat flux q is determined by the Fourier’s law as k T= − ∇q  with k the thermal conductivity 
for isotropic material and ∇  the gradient operator. 

The associated boundary conditions are 
( , ) ( , ) ( )TT t T t= ∈Γx x x                                                               (2) 

( , ) ( , ) ( )qt q t⋅ = ∈Γq x n x x                                                               (3) 

where TΓ  is the temperature boundary and qΓ  is the flux boundary. T  and q  are, respectively, the 
prescribed temperature and flux on corresponding boundary. n  is the outward unit normal to the 
domain.  

The initial condition for Eq. (1) is  
0( ,0) ( )T T= ∈Ωx x                                                                         (4) 

The NMM for unsteady heat conduction 

A brief introduction of the NMM 

In the NMM, to solve a given problem, the mathematical cover (MC) system is firstly built. Broadly 
speaking, the MC composed of mathematical elements can be of any shape and the MC system may 
be independent of all domain boundaries (including internal ones) but must be large enough to 
cover the whole domain. On each MC, a partition of unity (PU) [Melenk and Babuska (1996)] 
weight function is defined. Next, the physical cover (PC) system is formed by the intersection of 
MCs and physical domain. On each PC, the cover function is constructed to represent the local 
physical property. Then, the manifold elements (MEs) are generated through the shared region of 
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PCs. Accordingly, the NMM approximation on each ME is obtained by pasting the cover functions 
using the associated weight functions. More details about the above process can be found in the 
previous work [Zhang et al. (2010)].  

For the present problem, the temperature in any ME e is approximately expressed as 

1
( , ) ( ) ( , )

tn
h

i i
i

T t w T t
=

=∑x x x           (5) 

where tn  is the amount of PCs shared by e. ( )iw x  is the PU weight function defined on the MC 
containing the ith PC. ( , )iT tx  is the cover functions defined on the ith PC. For 2D continuous 
problems, ( , )iT tx  is frequently chosen as 

( , ) ( ) ( , )i iT t t=x P x a x         (6) 
where ia  is the thermal degrees of freedom (DOFs) defined on the ith PC. ( )P x  is the polynomial 
basis being 

[ ]( ) 1 x y= ⋅⋅⋅P x                                   (7) 

NMM Discrete equations 

The NMM discrete equations can be derived using the weighted residual method in Galerkin form 
[Lin (2003)]. Let 1( )T H∈ Ω be the temperature trial function and 1( )T Hδ ∈ Ω be the corresponding 
test function with 1H  the first Hilbert space and δ  the first order variation. A weak form of the 
discrete problem on a ME e is to find hT in the finite dimensional subspace 1( )hV H∈ Ω , 

h hT Vδ∀ ∈  so that 

 T ( ) ( T ) ( ) 0
e e e

T q

h h h h h h
T

Tc T k d T T T d q T d
t

ρ dd  λ dd
Ω Γ Γ

∂ + ⋅ Ω + − Γ − Γ = ∂ ∫ ∫ ∫q q       (8) 

where Tλ  is the penalty numbers adopted to enforce the essential boundary conditions due to the 
inconsistence of MC system with the physical boundary. eΩ  and e

mΓ  (m denotes T and q) are, 
respectively, the domain and/or boundary occupied or shared by the ME e. 

Through Eq. (5), the test functions hTδ  is expressed as 

1
( , ) ( ) ( , )

tn
h

i i
i

T t w T tδ δ
=

=∑x x x                                                                  (9) 

On substituting Eqs. (5) and (9) into Eq. (8) and considering the arbitrariness of variation of DOFs, 
the NMM discrete equations for transient thermal conduction problems are derived as 

T T T=K T + C T F                                                                         (10) 
where T  and T  are, respectively, the vector of thermal DOFs and their time derivatives. TK ,  

TC and TF  are, respectively, the thermal conductivity matrix, the heat capacity matrix and the 
equivalent thermal load vector as 

  T T
e e

T
T T T T T Tk d dλ

Ω Γ
= Ω+ Γ∫ ∫K B B N N                                                        (11) 

T
eT T Tc dρ

Ω
= Ω∫C N N                         (12) 

T T
e e
T q

T T T TTd qdλ
Γ Γ

= Γ − Γ∫ ∫F N N                                                            (13) 

where the superscript T denotes the matrix transpose. The entries of TN  and TB  are 
1 2 ... ... tni

T T T T T =  N N N N N                                                             (14) 
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    1 2 ... ... tni
T T T T T =  B B B B B                                                             (15) 

with 
[ ]i

T iw=N P                                                                            (16) 

,

,

( )
( )

i xi
T

i y

w
w

 
=  
 

P
B

P
                                                                        (17) 

Numerical integration 

Although the shape of MCs is user-defined, the highly developed elements in the finite element 
method are widely chosen. In view that the MC system can be independent of the physical domain, 
in this work, square elements are adopted. Further, for simplicity, the polynomial basis in Eq. (7) is 
set to be constant. In addition, since the shape of MEs may be diversified due to the inconsistence of 
MCs and physical boundary, to conveniently and accurately calculate the corresponding spatial 
integration in Eqs. (11) and (12), each non-triangular ME is  firstly partitioned into several sub-
triangles, and then the 3-point Gaussian quadrature rules are applied on each sub-triangle, the 
corresponding result on which finally adds up to the integration of the ME. As for the time 
integration, the widely used Euler backward difference method [Cebeci (2002)] is used. 

 Numerical examples  

In this section, to verify the accuracy of the proposed method, unsteady heat conduction in an 
isotropic square plate is considered.  

As shown Fig. 1a, the side length of the plate is L. The associated boundary and initial conditions 
are prescribed as 

                        (0, , ) ( ,0, ) ( , , ) ( , , ) 0.0T y t T x t T L y t T x L t= = = =                                           
(18) 

( , ,0) 10sin( )sin( )T x y x y=                                                               (19) 

When modeling, corresponding parameters are set as: , 1.0, 1.0L cπ ρ= = =  and 1.0k = . 
Accordingly, the theoretical temperature solution to this problem is [Li et al. (2011)] 

( , , ) 10sin( )sin( ) exp( 2 )T x y t x y t= −                                                      (20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

L 

y 

L 
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o 
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Figure 1. Transient heat conduction in a square plate: (a) physical domain and (b) 
discretization when h=0.15 

In the simulation, mathematical cover system of element size (defined as the edge length of the 
square mathematical elements) h =0.15 is used to cover the whole plate and the associated 
discretized domain is illustrated in Fig. 1b, which contains 484 PCs and 441MEs. As for the time 
step, three values, i.e., 0.1,0.05t∆ =  and 0.02, are examined. The penalty number Tλ  in Eq. (8) is 
taken as 1.0×106. The computed temperatures of two sample points A: ( 4, 4π π ) and B: 
( 2, 2π π ) at different instants by the present method are, respectively, plotted in Fig. 2 and 3. For 
comparison, the exact results from Eq. (20) are also provided therein. Obviously, the temperatures 
at all time steps match well with the exact solution; what’s more, with the decrease of time step, our 
results are getting closer to the analytical ones, which conforms to the convergence rule of the 
backward difference method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Computed temperatures of point A at different instants  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Computed temperatures of point B at different instants 

Conclusions  

In this work, the numerical manifold method has been developed to study 2D unsteady heat 
conduction problems. The NMM discrete equations are derived and the numerical integration 
schemes in the spatial and time domain are presented. A typical example is conducted to validate 
the proposed method. Mathematical covers formed by square elements are adopted for numerical 
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modeling due to the inconsistence of the mathematical cover system and physical boundaries. It’s 
found that the accuracy of the present method is satisfactory compared with the reference solutions. 
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Abstract 
Numerical analyses on the particle-packing structures on a spherical surface are performed. 
The particles are assumed to have uniform radius and connected by inter-particle interaction. 
The positions of the particles are justified to minimize the interaction energy, which is 
assumed to be represented by two-body potential function. The number of particles N and 
radius ratio x of the particles to the central large sphere are varied as the model parameters. As 
a result, it revealed that filling all the space by the hexagonal packing on a sphere surface is 
impossible and some defects are needed. Also the optimized arrangement of the defects 
presents a regular pattern. In conclusion, the availability of the present method for the 
optimization of the particle packing structure is fairly validated.  
Keywords: Particle packing, Optimization problem, Close packed structure, Molecular 

dynamics method, Computer simulation. 

Introduction 

Advanced materials using nano- or micro-particles have been developed and applied for 
various engineering fields such as electronics, biological and medical engineering, and so on. 
The packing structure of particles plays an important role on the functionality of the material, 
and the arrangement of the particles is one of the most definitive factors in the material 
design. In general, to set the particles artificially on designed sites is difficult, and hence self-
organization process is often utilized. In such processes, however, the structure obtained is 
limited, and more suitable structures may exist to generate much higher performance. 
Therefore, we have been investigating the optimum structures of particle packing for specified 
purposes. Considering when arranging particles with uniform radius on a planar face, for 
instance, it is well known that the densest packing is achieved when the centers of particles 
are disposed on the regular triangular positions making regular hexagonal arrangement, which 
is often referred to as honeycomb arrangement. Concerning the three-dimensional structures, 
the closest packed structure is well known as the face-centered cubic (fcc) or hexagonal close 
packed (hcp) structures, which is achieved by accumulating this hexagonal plane to the 
perpendicular direction.  
 
This kind of simple problem is, however, very complicated if the applied condition is varied; 
for instance, when the shape of particles is not sphere, when the size of particles are not 
identical, and when the particles are arranged on a curved surface. Since the analytical 
solutions for these problems are difficult to obtain, we have been approaching them using 
numerical analysis [1][2]. Particularly, in this study, the packing structures of small spherical 
particles with uniform radius on a spherical surface with relatively large radius are 
investigated, and the optimum structures are discussed on the basis of relation between the 
number of particles and the radius of the surface.  

Simulation model and conditions 

In this study, completely spherical particles with uniform radius r are considered. These 
particles are adhered on a convex surface of a sphere of radius R. The particles are assumed to 
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have interaction to the other particles with strong repulsion and weak attraction, and also 
elastic attraction on the spherical surface. The optimum arrangement of the particles is 
numerically searched by moving the particles. This procedure is similar to that of molecular 
dynamics method, and hence the algorithm is employed. The interaction between two 
particles are represented by Lennard-Jones type potential function, φ = 4ε ((σ /r)12−(σ /r)6), 
and linear spring connection with the sphere surface is assumed. The interacting forces 
between particles and the elastic force from the central sphere are calculated, and every 
particle is moved depending on the force vector. The interacting force is relaxed as repeating 
the motion, and finally stable arrangement is expected to be obtained.  
 
The initial positions of particles are randomly 
provided, while the center of the large sphere on 
which particles are adhered is set as the origin of the 
coordinate system. Standardized dimension is 
employed so that the particle diameter r = 1.0, and the 
radius R of the large sphere are varied. L-J parameters 
are taken as σ = 0.893 and ε = 0.002, where the value 
in σ is taken as the equilibrium inter-particle distance 
to be 1.0. The elastic force on the surface is assumed 
to be F = k (d – d0) where d is the distance from the 
center of the large sphere, and d0 = r + R (see Fig. 1).  
 
Total number of particles, N, to be put on the surface is varied. Theoretical maximum number 
is defined for a planar problem as follows. The area of the unit hexagon in Fig. 2 is calculated 
as Shex = (6/√3) r2 ≈3.46 r2, and hence the maximum number of particle can be calculated as  
S/Shex, while some influence of the considering domain area should be taken into account 
especially when S is relatively small. Anyway, in the spherical case, the area of the surface is 
represented as S = 4π (R+r)2 , and hence the optimum number of particles is derived as  
 

Nopt = 4π (R+r)2 / (√3 r2) = 3.63 ((R+r)/r)2 .            (1)  
 
In the present model, r = 1.0 and hence it is represented as  
 

Nopt = 3.63 (R+1)2.                                                   (2) 
 
When the number of particle N is given, on the other hand, 
the optimum radius Ropt is provided as  
 

Ropt = (0.275 N)1/2 – 1.                                               (3) 
 
These values indicate the ideal structure under hexagonal 
packing, but it is impossible to achieve on the spherical surface due to the effect of curvature 
and periodicity. Additionally, soft-core particle is assumed instead of hard sphere, and hence 
these values are used only as a referential one.  
 
From a different viewpoint, geometric feature of regular polyhedron is helpful for predicting 
the particle packing structure on the spherical surface. Regular polyhedron consists of regular 
polygonal planes, and the surface of a sphere can be approximated to be consisting of these 
planes. Then the particle packing manner is similar to those in the planar problem, i.e. 
honeycomb arrangement on each polygon. In this context, it is not necessarily regular 
polyhedron, but semi-regular polyhedron consisting of two or more types of polyhedra is 
regarded. This procedure is not complete because the irregularity on the edges and vertexes 
are unavoidable, but the similarity will be worth noting.  

 
Figure 1. Particles on a large 

sphere surface. 

 
Figure 2. Hexagonal close 

packed structure. 
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Total number of particles N and the radius R of the sphere on which the particles are adhered 
are employed as the simulation parameters. The particle radius r is kept constant to be r = 1.0 
for all cases. The simulations are carried out for a given radius R with various numbers of 
particles N. The initial positions of particles are set randomly, and hence several trials are 
demonstrated. The optimum configuration of particles are selected from all data for the given 
R and presented in the following sections.   

Results and discussion − Case 1: relatively large particles 

Firstly, the results for the cases when the radius R is relatively small, i.e. the particle radius is 
relatively large, are shown in this section. Figure 3 (a) shows the particle arrangement for R = 
2.0 obtained by N = 32. Color indicates the number of particles in the nearest-neighbor 
distance, nd, which is 6 for ideal hexagonal arrangement. In Fig. 3, blue and red represents nd 
= 5 and 6, respectively. The particles are arranged regularly; every red particle is connected 
by three red particles and three blue ones, and every blue particle is surrounded by five red 
ones. The predicted optimum number for this radius is calculated as Nopt = 32.7 from Eq. (2), 
and actually the result shows the optimum structure for this radius. If taking these particles on 
the center of certain polyhedra, the red and blue particles are corresponding to regular 
hexagons and pentagons, respectively; i.e. the sphere corresponds to be approximated by a 
truncated icosahedron, and the number of particles N = 32 is identical to the number of plane 
of the truncated icosahedron. This structure is similar to that observed as fullerene C60 or 
well known as soccer ball pattern.   
 
Figure 3 (b) shows the result for R = 2.5, for 
which Nopt = 44.5, and a regular pattern is 
observed when N = 44. The blue particles 
(nd = 5) are assembled together making 
square arrangement, and red particles (nd = 
6) surround the squared four blue particles. 
Also the number of square assembly is 6, 
and they are disposed in the orthogonal 
orientation, like the Cartesian x, y and z 
axes. This structure seems on the basis of a 
cube; four particles in each 6 square face, 
one on each 8 vertex, and one on each 12 
edge of the cube.  
 
In this way, the optimum packing structure is observed on regular polyhedron or some other 
regular pattern, when the relative particle radius is large.  

Results and discussion − Case 2: relatively small particles 

Next, in this section, the results for the case when the particle radius is relatively small and 
many particles are adhered on the sphere surface. Both Figs. 4 (a) shows the result for R = 4.0, 
for which Nopt = 90.8, and Figs. (i) and (ii) show the result for N = 90 and 100, respectively. In 
these figures, blue, green, and red particles represent nd = 4, 5, and 6, respectively. Generally, 
as the number of particles becomes larger, it becomes more difficult to explore the completely 
optimum structure. Nevertheless, candidate structures can be found. In Fig. 4 (a)(i) for N = 90, 
most particles have 5 neighbors (nd = 5), and regularity in the arrangement cannot be 
observed. The value of 5 in nd indicates less density than the ideal packing, and more particles 
should be adhered on the surface. Then the result for N = 100 shows better results with more 
number of ideal density. The regularity of the particles are not perfect but it shows similar 
tendency to that in Fig. 3(b); six particles of nd = 5 depicted in green color assembled together 
making rectangular shape, and each assembly is surrounded by red particles.  

      
(a) R = 2.0, N = 32         (b) R = 2.5, N = 44 

Figure 3.  Simulation results obtained for 
relatively large particles.  
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For the case of R = 8.0 (Nopt = 294.0), the result for N 
= 294 is shown in Fig. 4(b)(i). A few particles have 
only four neighbors, and some vacant spaces are also 
observed, while the ratio of the particles of nd = 6 is 
higher than that shown in Fig. 4(a)(i). This feature 
implies that the formation of local defects tends to be 
unavoidable. In this case, the better regularity was 
found for N = 325, as shown in Fig. 4(b)(ii). Many 
particles have 6 neighbors, and some particles with 5 
neighbors are scattered. Characteristic feature in this 
case is that the particles surrounding the vacancy form 
pentagonal assembly of particles with nd = 5, and the 
vacancy sites are regularly dispersed.  
 
As the radius of the particles becomes much smaller and the number of particles gets larger, it 
becomes more difficult to obtain the complete regularity and resultant optimum structure. For 
example, Figure 5 represents the result for R = 16.0 (Nopt = 1049.1) by N = 1120. Several 
vacancy and pentagonal arrangement can be observed, but the regularity in their arrangement 
was not clarified so far, and further analysis will be reported in the near future.  

Conclusions 

In this paper, numerical scheme for analyzing the optimum structure when small particles are 
adhered on a spherical surface was presented. A simple model with inter-particle interaction 
and adhesion with a simple elastic connection was assumed, and the effectivity was shown. In 
the case that the particle radius is relatively small, regular pattern was obtained. The 
geometrical similarity to the polyhedral structure was also found. When the particle radius is 
relatively small and number of particles is large, then it was difficult to find absolutely 
optimum structure, but it revealed that several specific local structures are formed. As a 
conclusion, the method presented in this paper is effective for exploring the optimum particle 
packing structures, and further analysis is to be continued.  
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R = 16.0, N = 1120 

Figure 5.  Simulation results for 
very small particles.  

 

           
(i) N = 90              (ii) N = 100                   (i) N = 294                 (ii) N = 325 

(a) R = 4.0                                                     (b) R = 8.0 

Figure 4.  Simulation results obtained for relatively small particles.  
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Abstract

A parameter based set of third order iterative method and the semilocal convergence analysis
of this methods using majorizing sequence approach for solving nonlinear equations in Banach
spaces is investigated by Ezquerro and Hernandez [4]. This method is a weighted mean between
the Chebyshev and the Halley methods, the weight being α and 1−α, where α ∈ R. A conver-
gence theorem and corresponding error bounds provided. We have recurrence relation approach
to discuss the semilocal convergence of iterative methods. This is motivated us to discuss the
semilocal convergence. In this paper, mainly we focus on to discuss the semilocal convergence
of parameter based iterative method developed by [4] using recurrence relations approach under
the assumption that F ′′ is bounded and a punctual condition. Also, we established the R-order
of convergence and provided some a priori error bounds. Finally, we discuss some numerical
examples that where the Smale-like theorem fails but our bounded condition satisfy. We cal-
culate the existence and uniqueness region for the Numerical examples. Also, we calculate the
error bounds for parameter α = 0, 1, 2. We observed that the existence region obtained by our
approach is superior than Ezquerro and Hernandez [4] for each value of parameter α = 0, 1, 2.

Keywords: The Halley’s method, The Convex acceleration of Newton’s method, A Continua-
tion method, Banach space, Lipschitz condition, Fréchet derivative.
Introduction

Let F : Ω ⊆ X → Y be a nonlinear twice Fréchet differentiable operator in an open convex
domain Ω andX, Y Banach spaces. In many years passed, one of the main problem in numerical
analysis is to solve the nonlinear equation

F (x) = 0. (1)

Many scientific and engineering problems, Kinetic theory of gases, elasticity, applied math-
ematics can be brought in the form of a nonlinear equation (1) and solved by using iterative
methods. Newton in 1669 and Raphson in 1690 was proposed a procedure for solving nonlin-
ear equation (1). Now, this method is called Newton’s method or Newton-Raphson method and
it is a central technique for solving nonlinear equations. The Newton’s method is quadratically
convergent. Basic results concerning that the semilocal convergence of Newton’s method, the
error estimates and the existence and uniqueness of solution are given by Kantorovich theorem.
Kantrovich [9] established two different approaches to provide the proof of his theorem. Those
are majorizing sequences and recurrence relations approaches.

Methods using higher order derivatives may be advantageous for special types of problems, if
it is not particularly expensive to evaluate the involved derivatives in these methods. The well-
known third-order methods of this type are Chebyshev, the Halley and the Super-Halley meth-
ods. These methods are of third order and can be successfully applied to solve (1). We have
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three different ways to study the convergence analysis of iterative methods. In the first tech-
nique, the convergence analysis have been studied under the assumption that first/second order
Fréchet derivative satisfies Lipschitz/Hölder/ω-continuity conditions. This type of convergence
analysis discussed by [2][3][7] using recurrence relations approach. This technique developed
by these authors is an extension of technique followed by kantorovich and other authors [9][12]
to study the Newton’s method. In second technique, Smale [13] obtained the convergence of
Newton’s method for analytic maps from data at one point instead of Lipschitz continuity con-
dition. Another technique is to discuss the convergence of (1) assume that F ′′ is bounded and
a punctual condition, instead of Lipschitz continuity condition. Gutierrez and Hernandez [8]
discussed the convergence analysis of third order iterative method under the assumption that F ′′

is bounded and a punctual condition.

Continuation, embedding or homotopy methods have long served as useful theoretical tools in
modern mathematics. According to the basic idea of continuation methods [10][1], a homotopy
αG(x) + (1 − α)H(x), where α ∈ [0, 1], can be defined between two operators G(x) and
H(x). Prashnath and Gupta [11] studied the semilocal convergence of continuation method
between the Chebyshev and the Super-Halley methods by using recurrence relations approach.
J.A.Ezquerro et.al [4][5][6] discussed the convergence analysis of continuation method between
different third order iterative methods namely the Chebyshev, the Halley and the Super-Halley
methods using majorizing sequence approach. Based on this idea, uniparametric family of
iteration between the Chebyshev and the Halley’s method derived by Ezquerro and Hernandez
[4] is

xα,n+1 = xα,n − [I + 1
2LF (xα,n)Gα(xα,n)]F ′(xα,n)−1F (xα,n)

Gα(xα,n) = I + α
2LF (xα,n)J(xα,n)

J(xα,n) = (I − 1
2LF (xα,n))−1

LF (xα,n) = F ′(xα,n)−1F ′′(xα,n)F ′(xα,n)−1F (xα,n).

 (2)

This method (2) is parameter based method of order three which contain both methods for spe-
cific choice of the parameter. For α = 0 the family mentioned above reduces to the Chebyshev
method and for α = 1 we get the Halley method. Ezquerro and Hernandez [4] discussed the
convergence of this method using majorizing sequence approach under the assumptions that the
second order Fréchet derivative satisfies Lipschitz continuity condition. Until now, we know
that convergence of these methods is established assuming that the second order derivative F ′′

satisfies a Lipschitz continuity condition.

The main goal of this paper is to discuss the semilocal convergence of (2) using recurrence
relation approach. We assume that F ′′ is bounded and a punctual condition instead of Lipschitz
continuity condition. An existence-uniqueness theorem is given. We have also derived a closed
form of error bounds in terms of parameter α ∈ R. We given some numerical applications to
demonstrate our approach.

We end this section briefly by describing the organization of this paper. Section 1, is the intro-
duction. In Section 2, the recurrence relations are derived. The a convergence theorem with the
existence and uniqueness ball and error estimates for the solution is established in Section 3. In
Section 4, two numerical examples are worked out to demonstrate the efficacy of our approach
and the results obtained are compared with the results obtained in [4]. Finally, conclusions from
the section 5.
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Recurrence relations for the method

Let us suppose that Γα,0 = F ′(xα,0)−1 ∈ L(X, y) exists at some xα,0 ∈ Ω, where L(X, Y )
is the set of bounded linear operators from Y into X . Moreover, we assume that following
assumptions:

(i) ‖Γα,0‖ = ‖F ′(xα,0)−1‖ ≤ β,
(ii) ‖F ′(xα,0)−1F (xα,0)‖ ≤ η,
(iii) ‖F ′′(x)‖ ≤M, ∀ x ∈ Ω,

 (3)

Let us denote a = Mβη. Then for α ∈ R define the following real sequences for n = 0, 1, 2, . . .

a0 = 1, b0 = 1, c0 = a, d0 = (α− 1)a2 + 4
2(2− a)

an+1 = an
1− aandn

, bn+1 = aan+1d
2
n

2

[
1 + 4 + cn(2α− 4)− (α− 1)c2

n

(2 + cn + (α− 1)c2
n)2

]

cn+1 = aan+1bn+1, dn+1 =
(2 + cn+1 + (α− 1)c2

n+1
2− cn+1

)
bn+1.

Let {xα,n} a sequence of family. Based on these sequences, we now prove the following in-
equalities

(I) ‖Γα,n‖ = ‖F ′(xα,n)−1‖ ≤ anβ.

(II) ‖Γα,nF (xα,n)‖ ≤ bnη.

(III) ‖LF (xα,n)‖ ≤ cn.

(IV) ‖xα,n+1 − xα,n‖ ≤ dnη.

The conditions (I), (II) and (III) for n = 0 hold from the assumptions (i), (ii) and

‖LF (xα,0)‖ = ‖F ′(xα,0)−1F (xα,0)F ′(xα,0)−1F ′′(xα,0‖ ≤Mβη = a = c0 < 1.

Using Banach Lemma, this gives

‖(I − 1
2LF (xα,0))−1‖ ≤ 1

1− 1
2‖LF (xα,0)‖ = 1

1− c0
2

= 1
1− a

2
= 2

2− a.

From

Gα(xα,0) = I + α

2LF (xα,0)J(xα,0)

we get

‖Gα(xα,0)‖ ≤ 1 + α

2 ‖LF (xα,0)‖‖J(xα,0)‖ ≤ 2 + (α− 1)a
(2− a) .

Using (2) and condition (II) we get

‖xα,1 − xα,0‖ ≤
[4 + (α− 1)a2

2(2− a)

]
η ≤ d0η.
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Hence, the condition (IV) also hold true for n = 0. Let us assume that the conditions (I)-(IV)
hold true for n = k. To prove that they also hold true for n = k + 1, we use xα,k ∈ Ω, ck < 1
and aakdk < 1 to get ‖I − Γα,kF ′(xα,k)‖ ≤ aakdk < 1. Now, by using Banach’s theorem, we
find that Γα,k+1 = F ′(xα,k+1)−1 exists and

‖Γα,k+1‖ ≤
‖Γα,k‖

1− ‖I − Γα,kF ′(xα,k‖

≤ akβ

1− aakdk
= ak+1β. (4)

Now from (2),

F (xα,k+1) =
∫ 1

0
[F ′(xα,k + t(xα,k+1 − xα,k))− F ′(xα,k)](xα,k+1 − xα,k)dt

−1
2F
′′(xα,k)F ′(xα,k)−1F (xα,k)Gα(xα,k)F ′(xα,k)−1F (xα,k)

From this,

‖F (xα,k+1)‖ ≤ Mη2d2
k

2 + Mη2b2
k(2 + (α− 1)ck)
2(2− ck)

(5)

and

‖Γα,k+1F (xα,k+1)‖ ≤ ‖Γα,k+1‖‖F (xα,k+1)‖

≤ ak+1βMη2
[
d2
k

2 + b2
k(2 + (α− 1)ck)

2(2− ck)

]

= aak+1d
2
k

2

[
1 + b2

k(2 + (α− 1)ck)
d2
k(2− ck)

]
η

= aak+1d
2
k

2

[
1 + 4 + ck(2α− 4)− (α− 1)c2

k

(2 + ck + (α− 1)c2
k)2

]
η

This gives

‖Γα,k+1F (xα,k+1)‖ ≤ bk+1η. (6)

Also from,

‖LF (xα,k+1)‖ ≤ ‖F ′(xα,k+1)−1‖‖F ′(xα,k+1)−1F (xα,k+1)‖‖F ′′(xα,k+1)‖
≤ ak+1βbk+1ηM = Mβηak+1bk+1 = aak+1bk+1

we get

‖LF (xα,k+1)‖ ≤ ck+1 (7)
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Again using,

‖xα,k+2 − xα,k+1‖ ≤ [1 + 1
2‖LF (xα,k+1)‖‖Gα(xα,k+1)]‖Γα,k+1F (xα,k+1)‖

=
[2 + ck+1 + (α− 1)c2

k+1
(2− ck+1)

]
bk+1η

we get

‖xα,k+2 − xα,k+1‖ ≤ dk+1η. (8)

From (4),(6), (7) and (8) conclude that the conditions (I)-(IV) hold true for n = k + 1.
Convergence Analysis

In this section, discuss the properties of real sequences and establish a convergence theorem and
the existence and uniqueness region along with an estimation of the error bounds for the method
(2). First at all we give a technical lemma including the results concerning one and two variable
functions that we are going to need. We omit the proof to the reader could get it patiently but
without any difficulty.

Lemma 1 The following recurrence relation holds for the sequence {cn}.

cn+1 = c2
n

2

[
c4
n(α2 − 2α + 1) + c3

n(2α− 2) + c2
n(3α− 2) + 2cnα + 8

(2− 3cn − c2
n − (α− 1)c3

n)2

]

Lemma 2 Let a0 = 0.291481 be the smallest positive root of polynomial −2x6 + 5x5 + 8x4 −
22x3 − 10x2 + 32x− 8 = 0 and define the functions

h(x) = −2− 11a+ 10a2 + 6a3 − 4a4 +
√

4 + 76a− 111a2 + 52a3 − 8a4

2(a3 − a4) ,

H(x, y) = y4(x2 − 2x+ 1) + x3(2x− 2) + x2(3x− 2) + 2xy + 8
(2− 3y − y2 − (x− 1)y3)2 ,

gα(x) = (2− x)
2− 3x− x2 − (α− 1)x3 ,

fα(x) = 2 + x+ (α− 1)x2

(2− x) .

then

(i) h(x) is a decreasing function.

(ii) H(x, y) is increasing as a functions of y in (0, a0] and 0 ≤ x ≤ h(y).

(iii) fα(x) and gα(x) are increasing for all α ≥ 0.

Proof: This proof is simple then omitted for the readers.
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Lemma 3 Let 0 < a ≤ a0 and 0 ≤ α ≤ h(a), then the sequence {cn} is decreasing.

Proof. This Lemma can be proved by induction. From Lemma 2, cn+1 ≤ cn if

cn
2

[
c4
n(α2 − 2α + 1) + c3

n(2α− 2) + c2
n(3α− 2) + 2cnα + 8

(2− 3cn − c2
n − (α− 1)c3

n)2

]
≤ 1, n ≥ 0

for n = 0, we get

a5(α2 − 2α + 1) + a4(2α− 2) + a3(3α− 2) + 2a2α + 8a ≤ 2(2− 3a− a2 − (α− 1)a3)2

This gives,

(−2a6 + a5)α2 + (4a6 − 6a5 − 10a4 + 11a3 + 2a2)α− 2a6 + 5a4 + 8a4 − 22a3 − 10a2 + 32a− 8 ≥ 0

This hold true for, 0 ≤ α ≤ h(a). Hence c1 ≤ c0. Let us assume that ck ≤ ck−1 . . . ≤ c1 ≤ c0.
Since, h(x) is a decreasing function, so that α ≤ h(a) = h(c0) ≤ h(ck). Hence, ck+1 ≤ ck.

Lemma 4 Under the hypothesis of Lemma ,aandn < 1 for n ≥ 0 and {an} is an increasing
sequence.

Proof. We have,

aandn = cn(2 + cn + (α− 1)c2
n)

(2− cn) .

Then, aandn < 1 if α < q(cn), where q(x) = (x3 − x2 − 3x + 2)/x3. As q(x) is decreasing
and cn ≤ c0, q(cn) ≥ q(c0). Besides, α < h(a) for a ∈ (0, a0]. Indeed q(a) − h(a) > 0.
Hence, aandn < 1 for n ≥ 0. Finally, a0 = 1, a1 = a0

1−aa0d0
> a0 = 1 and inductively,

an+1 = an/(1− aandn) ≥ an ≥ an−1 ≥ . . . ≥ a1 ≥ a0.

Lemma 5 Under the assumptions, 0 < a ≤ a0 and 0 ≤ α ≤ h(a). Then cn+1 ≤ γ2n c0
γ

, where
γ = c1/c0. Also the sequence {cn} converges to 0 and

∑∞
n=0 cn <∞.

Proof. First we prove the first part of Lemma. Let c1 = γc0, with γ < 1. We prove that
cn ≤ γcn−1 implies cn+1 ≤ γ2cn. From Lemma 1 we get

cn+1 = c2
n

2 H(α, cn) ≤ γ2c2
n−1
2 H(α, cn).

As H(α, y) is increasing in the second variable and cn < cn−1, we get

cn+1 = c2
n

2 H(α, cn) ≤ γ2cn.

Then we have cn+1 ≤ γ2n
cn and using this inequality, cn ≤ γ2n

c0/γ. As γ < 1, the first part
proved. The second part of the proof is simple and omitted for readers. Hence the Lemma is
proved.

Lemma 6 The sequence {an} is bounded above, that is, there exists a constant M > 0 such
that an ≤M ∀n ∈ N
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Proof. From an+1 = an

1−aandn
and gα(cn) = (2−cn)

2−3cn−c2
n−(α−1)c3

n
which gives,

an+1 = an
[
1 + cngα(cn)

]
= Πn

k=0

[
1 + ckgα(ck)

]
Taking log on both sides, we get

log an+1 = Σn
k=0 log(1 + ckgα(ck)) ≤ Σn

k=0ckgα(ck) <∞.

Hence, {an} is a bounded sequence.

Lemma 7 The sequence {dn} is a cauchy sequence and satisfies the condition dn ≤ γ2n−1d0
for 0 < a ≤ a0.

Proof. From

dn = fα(cn) cn

aan
, where, fα(cn) = 2+cn+(α−1)c2

n

(2−cn) .

Since an > 1, so we get, dn ≤ cnfα(cn)/a ≤ γ2n−1d0 for γ < 1. Thus,the sequence {dn}
converges to 0. Hence it is a cauchy sequence.

Theorem 1 Let X and Y be two Banach spaces and let F : Ω ⊆ X → Y be a nonlinear twice
Fréchet differentiable on a non-empty open convex subset Ω. Assume that Γα,0 = F ′(xα,0)−1

exist at some xα,0 ∈ Ω and the assumptions (i)-(iii) are satisfied. Let us denote a0 = Mβη.
Suppose that 0 < a ≤ a0 = 0.291481 and 0 ≤ α ≤ h(a), where h(x) is the function defined in
Lemma 1. Then, if B(xα,0, rη) = {x ∈ X : ‖x− xα,0‖ ⊆ Ω, where, r = Σ∞n=0dn, the sequence
{xα,n} defined in (2) and starting at xα,0 converge to a solution x∗ of the equation (1). In this
case the solution x∗ and the iterates xα,n lies in B(xα,0, rη), and the solution x∗ is unique in
the open ball B(xα,0, 2/Mβ − rη). Further, the error estimate of the method in terms of real
sequence {dn} is given by

‖x∗ − xα,n+1‖ ≤
∞∑

k=n+1
dkη.

Proof. For 0 < a < a0, 0 ≤ α < h(a) and using above Lemmas, the sequence {xα,n} converge
to the solution. For α = h(a), we have cn = c0 = a, for n ≥ 0, From

an+1 = an
1− aandn

and

dn =
[2 + cn + (α− 1)c2

n

2− cn

]
cn
aan

we get

an+1 = an

[
1 + (2− c0)

2− 3c0 − c2
0 − (α− 1)c3

0

]
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Taking, w =
[
1 + (2−c0)

2−3c0−c2
0−(α−1)c3

0

]
. This can be written as an+1 = wan = wn+1a0. Since

a0 = 1, this gives an+1 = wn+1 and

dn =
[2 + cn + (α− 1)c2

n

2− cn

]
cn
aan

=
[2 + c0 + (α− 1)c2

0
2− c0

]
c0

aa0

= 1
wn

[2 + c0 + (α− 1)c2
0

2− c0

]
c0

aa0

Hence, lim
n→∞

dn = 0. Thus, {dn} is a cauchy sequence. From condition (IV), we get {xα,n}
is also a cauchy sequence and hence there exists a x∗ such that lim

n→∞
xα,n = x∗. Now from the

equation (5) , we get

‖F (xα,n+1)‖ ≤ Mη2

2

[
d2
n + b2

n(2 + (α− 1)cn)
2− cn

]
, (9)

the limit of the sequence {bn} and {dn} is 0 and the continuity of F , we prove that F (x∗) = 0.
Thus, x∗ is a solution of equation (1). Also

‖xα,n+1 − x0‖ ≤ ‖xα,n+1 − xα,n‖+ ‖xα,n − xα,n−1‖+ ......+ ‖xα,1 − xα,0‖

≤
n∑
k=0

dkη

≤ rη

This gives xα,n ∈ B(xα,0, rη). Now taking limit as n→∞, we get ‖x∗−xα,0‖ ≤ rη and hence
x∗ ∈ B(xα,0, rη). Also for every m ≥ n+ 1, we get

‖xα,m − xα,n+1‖ ≤ ‖xα,m − xα,m−1‖+ ‖xα,m−1 − xα,m−2‖+ ....+ ‖xα,n+2 − xα,n+1‖

≤
∞∑

k=n+1
dkη < rη

by taking m→∞, we get ‖x∗ − xα,n+1‖ ≤
∞∑

k=n+1
dkη < rη.

To prove the uniqueness of the solution, if y∗ be the another solution of (1) then we have

0 = F (y∗)− F (x∗) =
∫ 1

0
F ′(x∗ + t(y∗ − x∗))dt(y∗ − x∗)

Clearly, y∗ = x∗, if
∫ 1

0 F
′(x∗ + t(y∗ − x∗))dt is invertible. This follows from

‖Γα,0‖‖
∫ 1

0
[F ′(x∗ + t(y∗ − x∗))− F ′(xα,0]dt‖ ≤ Mβ

∫ 1

0
‖x∗ + t(y∗ − x∗)− xα,0‖dt

≤ Mβ
∫ 1

0
(1− t)‖x∗ − xα,0‖+ t‖y∗ − xα,0‖dt

≤ Mβ

2 (rη + 2
k1β
− rη) = 1
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and by Banach’s theorem. Thus, y∗ = x∗.
Numerical Examples

Example 1 Consider the function F (x) = 0, where,

F (x) = 9x7/3 + 4x2 − 36x+ 9, (10)

defined in X = [−1, 1] and initial approximation x0 = 0

Solution: From this, we observed that F (k)(x) does not defined at x0 for k ≥ 3. So Smale-like
condition do not work. Hence, Using the assumptions (i)-(iii) for the initial value x0 = 0, we
get β = 1/36, η = 1/4, and M = 36. Hence, a = Mβη = 0.25 < a0 and we can take the
real sequences defined in (2) for 0 ≤ α ≤ h(a) = 2.12382. We calculate the real sequences for
α = 0, α = 1 and α = 2 displayed in following Tables.

Table-1 : Real sequences for α = 0
n an bn cn dn

∑
dn

0 1.00000 1.00000 0.25000 1.12500 1.12500
1 1.39130 0.360978 0.125558 0.406302 1.53130
2 1.62029 0.0598264 0.024234 0.0612762 1.59258
3 1.66153 0.0015232 0.00063271 0.00152416 1.59410
4 1.66258 9.64964e-007 4.01083e-007 9.64964e-007 1.59410
5 1.66258 3.87031e-013 1.60868e-013 3.87031e-013 1.59410
6 1.66258 6.22607e-026 2.58784e-026 6.22607e-026 1.59410
7 1.66258 1.6112e-051 6.6969e-052 1.6112e-051 1.59410
8 1.66258 1.07901e-102 4.48484e-103 1.07901e-102 1.59410
9 1.66258 4.83917e-205 2.01138e-205 4.83917e-205 1.59410

10 1.66258 0. 0. 0. 1.59410

Table-2 : Real sequences for α = 1
n an bn cn dn

∑
dn

0 1. 1. 0.25000 1.14286 1.14286
1 1.40000 0.386596 0.135309 0.442702 1.58556
2 1.6567 0.0737824 0.0305588 0.0760721 1.66163
3 1.71059 0.00241948 0.00103469 0.00242198 1.66406
4 1.71237 2.50924e-006 1.07419e-006 2.50924e-006 1.66406
5 1.71237 2.6954e-012 1.15388e-012 2.6954e-012 1.66406
6 1.71237 3.11017e-024 1.33144e-024 3.11017e-024 1.66406
7 1.71237 4.141e-048 1.77273e-048 4.141e-048 1.66406
8 1.71059 7.34087e-096 3.14257e-096 7.34087e-096 1.66406
9 1.71237 2.30692e-191 9.87574e-192 2.30692e-191 1.66406

10 1.71237 0. 0. 0. 1.66406

Table-3 : Real sequences for α = 2
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n an bn cn dn
∑
dn

0 1. 1. 0.25 1.16071 1.16071
1 1.40881 0.411943 0.145087 0.48106 1.64177
2 1.69619 0.0906748 0.0384504 0.0942979 1.73607
3 1.76684 0.00385091 0.00170098 0.00385747 1.73993
4 1.76986 6.57829e-006 2.91066e-006 6.5783e-006 1.73993
5 1.76986 1.91473e-011 8.472e-012 1.91473e-011 1.73993
6 1.76986 1.62216e-022 7.17749e-023 1.62216e-022 1.73993
7 1.76986 1.1643e-044 5.15163e-045 1.1643e-044 1.73993
8 1.76986 5.99805e-089 2.65393e-089 5.99805e-089 1.73993
9 1.76986 1.59184e-177 7.04334e-178 1.59184e-177 1.73993

10 1.76986 0. 0. 0. 1.73993

From Table-1 for α = 0 we get r = ∑
dn = 1.59410. So the existence and uniqueness

solution of (10) are B(x0,0, 0.398525) ⊆ Ω , B(x0,0, 1.60148)⋂Ω. From Table-2 for α = 1
we get r = ∑

dn = 1.66406. So the existence and uniqueness solution of (10)respectively
are B(x1,0, 0.416015) ⊆ Ω, B(x1,0, 1.58399)⋂Ω. From Table-3 for α = 2 we get r = ∑

dn =
1.73993. So the solution of (10) exists inB(x2,0, 0.434983) ⊆ Ω and unique inB(x2,0, 1.56502)⋂Ω.
However, solving (10) by using majorizing sequence [4], for α ∈ (−15, 2) we find that the so-
lution exists in the ball B(xα,0, 0.292893) ⊆ Ω and unique in B(xα,0, 1.70711)⋂Ω. From this
result, we can easily conclude that our existence region of solution is greater than the existence
region obtained by majorizing sequences. Also, we calculated error bounds by our approach
and with majorizing sequence approach [4] given in Table-4.

Table-4:Error bounds for α = 0 and α = 1

n α = 0 α = 1 α = 0 by [4] α = 1 by [4]
0 0.11727600 0.13030000 0.292893 0.292893
1 0.01570000 0.01962400 0.0144311 0.00717893
2 0.00038100 0.00060600 2.91523e-6 1.82202e-007
3 2.41241e-007 6.27312e-007 2.47752e-017 3.02432e-021
4 9.67577e-014 6.7385e-013 1.52073e-050 1.3831e-062
5 1.55652e-026 7.77542e-025 3.5169e-150 1.32291e-186
6 4.02801e-052 1.03525e-048 4.3498e-449 1.157605e-558

Example 2 Let X = C[0, 1] be the space of all continuous functions on the interval [0, 1] and
consider the H-equation called integral equation of Chandrasekhar

F (x)(s) = 1− x(s) + 1
4x(s)

∫ 1

0

s

s+ t
x(t)dt (11)

If we choose x0 = x0(s) = s and the norm ‖x‖ = maxs∈[0,1] |x(s)|. Then we get, M =
0.3465, β = 1.5304 and η = 0.2652. Hence, we get a = Mβη = 0.1406312 < a0. Also,
we can take the real sequence (2) for 0 ≤ α ≤ h(a) = 46.1089. The real sequences for
α = 0, α = 1 and α = 2 is given in following Table-5, Table-6 and Table-7. For α =
0, from the Table-5 the solution of (11) exists in the ball B(x0,0, 0.330869) and is unique in
the ball B(x0,0, 3.4407). For α = 1, from the Table-6 the solution of (11) exists in the ball
B(x1,0, 0.33407) and is unique in the ball B(x1,0, 3.4375). For α = 2, from the Table-7 the
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solution of (11) exists in the ball B(x2,0, 0.337268) and is unique in the ball B(x2,0, 3.4343).
However, solving (11) by using majorizing sequence [4], for α ∈ (−15, 2 we find that the
solution exists in the ball B(xα,0, 0.287047) ⊆ Ω and is unique in B(x0, 3.48452). From this
result, we can easily conclude that our existence region of solution is greater than the existence
region obtained by majorizing sequences.

Table-5 : Real sequences for α = 0
n an bn cn dn

∑
dn

0 1.00000 1.00000 0.140631 1.07032 1.07032
1 1.17719 0.167709 0.0277641 0.172365 1.24268
2 1.21177 0.00492798 0.000839789 0.00493212 1.24762
3 1.21279 4.14542e-006 7.07026e-007 4.14543e-006 1.24762
4 1.21279 2.93093e-012 4.99887e-013 2.93093e-012 1.24762
5 1.21279 1.46513e-024 2.49887e-025 1.46513e-024 1.24762
6 1.21279 3.66117e-049 6.24435e-050 3.66117e-049 1.24762
7 1.21279 2.28616e-098 3.89919e-099 2.28616e-098 1.24762
8 1.21279 8.91419e-197 1.52037e-197 8.91419e-197 1.24762
9 1.21279 0. 0. 0. 1.24762

Table-6 : Real sequences for α = 1
n an bn cn dn

∑
dn

0 1.000000 1.000000 0.140631 1.07563 1.07563
1 1.17823 0.173644 0.028772 0.178713 1.25434
2 1.21418 0.00533859 0.000911574 0.00534346 1.25969
3 1.21529 4.87651e-006 8.33434e-007 4.87652e-006 1.25969
4 1.21529 4.06426e-012 6.94615e-013 4.06426e-012 1.25969
5 1.21529 2.8231e-024 4.8249e-025 2.8231e-024 1.25969
6 1.21529 1.36212e-048 2.32796e-049 1.36212e-048 1.25969
7 1.21529 3.17095e-097 5.41941e-098 3.17095e-097 1.25969
8 1.21529 1.71847e-194 2.937e-195 1.71847e-194 1.25969
9 1.21529 0. 0. 0. 1.25969

Table-7 : Real sequences for α = 2
n an bn cn dn

∑
dn

0 1. 1. 0.140631 1.08095 1.08095
1 1.17927 0.179515 0.029771 0.185021 1.26597
2 1.2166 0.00576852 0.0009869 0.005774 1.27175
3 1.2178 5.70729e-006 9.77435e-007 5.7073e-006 1.27175
4 1.2178 5.57852e-012 9.55382e-013 5.57852e-012 1.27175
5 1.2178 5.32961e-024 9.12754e-025 5.32961e-024 1.27175
6 1.2178 4.86462e-048 8.3312e-049 4.86462e-048 1.27175
7 1.2178 4.05281e-096 6.94088e-097 4.05281e-096 1.27175
8 1.2178 2.81301e-192 4.81759e-193 2.81301e-192 1.27175
9 1.2178 0. 0. 0. 1.27175

Conclusions

In this paper, we discussed the semilocal convergence of parameter based iterative method under
the assumption that second order Fréchet derivative satisfies bounded condition instead of Lip-
schitz continuity condition. The analysis discussed using recurrence relation approach. Based

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1264



on this approach, the existence and uniqueness region with priori error bounds established. Fi-
nally, Numerical examples are worked out to demonstrate our approach. we observed that our
approach have more superior error bounds than the other approach [4].
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Abstract

In this study, we design a new efficient families of sixth-order iterative methods for solving
scalar as well as system of nonlinear equations. The main beauty of the proposed family is that
we have to calculate only one inverse of the Jacobian matrix in the case of nonlinear system
which reduce the computational cost. The convergence properties are fully investigated along
with two main theorems describing their order of convergence. In addition, we also presented
a numerical work which confirm the order of convergence of the proposed family is well de-
duced for scalar as well as system of nonlinear equations. Further, we have also shown the the
implementation of the proposed techniques on real world problems like, Van der Pol equation,
Hammerstein integral equation, etc.

Keywords: Nonlinear equations and systems, iterative methods, Newton’s method, order of
convergence.
Introduction

Construction of higher-order multi-point iterative methods which provide the accurate and effi-
cient approximate solution to the form of

F (x) = 0, (1)

(where F : I ⊂ Rn → Rn is a univariate function when n = 1 or multivariate function when
n > 1 on an open domain I .) is one of the most basic and important problem of the numerical
analysis.

The reason behind the importance of this topic is the applicability of these iterative methods
in the real world and applied science problems. In the literature, we can find several examples
where we can see the applicability of these iterative methods to the real world problems and
nonlinear models can be transformed in to the system of nonlinear equations. For example,
More presented the set nonlinear model like variational inequalities, the Bratu problem, a shal-
low arch, etc. in his paper [17]. However, most of them are pharased in the terms of system
of nonlinear equations of the form (1). Recently, Rangan et al. [23] discussed the applicability
of the nonlinear system on the problem of investigating coarse-grained dynamical properties
of neuronal networks in kinetic theory. In addition, Nejat and Ollivier-Gooch [18] presented
the problem to study the effect of discretization order on preconditioning and convergence of
high-order Newton-Krylor unstructured flow solver in computational fluid dynamics. On the
other hand, Grosan and Abraham [11], also shown the applicability of the system of nonlinear
equations in neurophysiology, kinematics syntheses problem, chemical equilibrium problem,
combustion problem and economics modeling problem. Very recently, Awawdeh [3] and Tsou-
los and Stavrakoudis [29], solved the reactor and steering problems by phrasing them in the
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system of nonlinear equations. Moreover, Lin et al. [16] also discussed the applicability of the
system of nonlinear equations in transport theory.

There are two main ways to develop new iterative methods for system of nonlinear equations.
Firstly, researchers proposed new iterative methods in order to approximate the zeros of uni-
variate function. Then, they tried to extend the same scheme to the multidimensional case pre-
serving the same order of convergence. For example, Cordero et al. [5], proposed the extension
of the classical fourth-order Jarratt’s method [13] for scalar equations to system of nonlinear
equations. In addition, Abad et al. [1], Cordero et al. [6], Ren et al. [24] and Wang et al. [30],
proposed some higher-order extension for systems of nonlinear equations of the previously pub-
lished work for the scalar equations. Moreover, Sharma and Arora [25] and Hueso et al. [12],
also proposed the extension of higher-order Jarratt like method for scalar equation to nonlinear
system. We can say that it is one of simple way to develop new scheme for system of nonlinear
equations. But, it is not always possible to retain the same order of convergence and the same
form of body structure. One of the main reason behind this is that in the case of scalar func-
tional evaluation of the involved function and its derivative consume the same computational
cost. However, this is not true in the multidimensional case.

Secondly, researchers tried some other approaches and procedures to develop new and higher-
order methods for system of nonlinear equations. In 2010, Sharma et al. [26] proposed fourth
and six-order iterative methods based on weighted-Newton iteration. On the other hand, Arti-
diello et al. [2] proposed fourth-order methods based on the weight function approach. More-
over, Noor et al. [19] also presented several higher-order iterative methods for system of non-
linear with the aid of decomposition technique. We can also use the different approaches like
quadrature formulae, Adomian polynomial, divided difference approach, etc. for constructing
iterative schemes to solve nonlinear systems. For the details of the other approaches one refers
some standard text books [20, 22, 28].

In the earlier proposed schemes by some scholars like Ren et al. [24], Alicia et al. [5], Sharama
and Arora [25], Noor et al. [19], Artidiello et al. [2] and Hueso et al. [12], required the
evaluation of more than one inverse Jacobian matrix. It is not an easy task to find the inverse
of the complicated Jacobian matrix because it requires a lot of computational work. Therefore,
we need the higher-order families of iterative methods which require only one evaluation of the
Jacobian matrix. Because, it will be very beneficial from the computational point of view.

The principal aim of this study is to propose a new efficient family of sixth-order iterative
methods which required only one inverse of the Jacobian matrix for the system of nonlinear
equations. Therefore, we propose firstly a new family of sixth-order iterative methods for a
scalar equation. Then, we extend this family for the multidimensional case preserving the same
order of convergence. The convergence behavior of the proposed methods is tested on a concrete
variety of nonlinear equations with same initial guess as other scholars mentioned in their own
papers (for the more details please see the section 4). Further, we observed that our proposed
methods perform better than the existing ones. Further, we have also shown the applicability of
our proposed schemes in the multidimensional case on some real world problems like, Van der
pol equation, Hammerstein integral equations and etc.
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Development of the scheme for scalar equations

In this section, we propose a new sixth-order family of iterative methods, which is defined as
follows:

yn = xn −
2
3
f(xn)
f ′(xn) ,

zn = xn −

θ1 + θ2
f ′(yn)
f ′(xn) + θ3

(
f ′(yn)
f ′(xn)

)2
 f(xn)
f ′(xn) ,

xn+1 = zn −

θ4 + θ5
f ′(yn)
f ′(xn) + θ6

(
f ′(yn)
f ′(xn)

)2
 f(zn)
f ′(xn) ,

(2)

where θi ∈ R, i = 1, 2, . . . , 6 are free disposable parameters. The following result demon-
strates that the order of convergence reaches sixth-order with some conditions on the disposable
parameters.

Theorem 1 Let f : I ⊆ R → R be a sufficiently differentiable function in an interval D
containing a simple root α of the equation f(x) = 0. Further, we also assume that an initial
guess x0 is sufficiently close to α. Then, the family of iterative methods (2) reaches a sixth-order
convergence when

θ1 = θ3 + 7
4 , θ2 = −2θ3 −

3
4 , θ3 = 9

8 , θ4 = 1− θ5 − θ6, θ5 = −2θ6 −
3
2 , (3)

where θ6 ∈ R, is a free disposable parameter.

Proof. Let us assume that en = xn − α be the error in the nth iteration. Further, let us also
expand the functions f(xn) and it’s first order derivative f ′(xn) around the point x = α by using
Taylor’s series expansion with the assumption f ′(α) 6= 0, which are defined as follows:

f(xn) = f ′(α)
(
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n +O(e7

n)
)
, (4)

where ck = f (k)(α)
k!f ′(α) for k = 2, 3, . . . and

f ′(xn) = f ′(α)
(
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n +O(e7

n)
)
, (5)

respectively.
With the aid of the expressions (4) and (5), we get

f(xn)
f ′(xn) = en − c2e

2
n + 2(c2

2 − c3)e3
n − (4c3

2 − 7c3c2 + 3c4)e4
n + (8c4

2 − 20c3c
2
2 + 10c4c2 + 6c2

3

− 4c5)e5
n +

(
52c3c

3
2 − 16c5

2 − 28c4c
2
2 +

(
13c5 − 33c2

3

)
c2 + 17c3c4 − 5c6

)
e6
n +O(e7

n).
(6)

By inserting the above expression (6) in the first sub step of scheme (2), we further obtain

yn − α = 1
3en + 1

3c2e
2
n −

4
3(c2

2 − c3)e3
n + 2

3(4c3
2 − 7c3c2 + 3c4)e4

n −
4
3

(
4c4

2 − 10c3c
2
2 + 5c4c2 + 3c2

3

− 2c5

)
e5
n + 2

3
(
16c5

2 − 52c3c
3
2 + 28c4c

2
2 +

(
33c2

3 − 13c5
)
c2 − 17c3c4 + 5c6

)
e6
n +O(e7

n).

(7)
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Now, we expand the Taylor series expansion of the function f ′(yn) = f ′
(
xn − 2

3
f(xn)
f ′(xn)

)
about

the point x = α by using (6), which is given as follows:

f ′(yn) = f ′(α)
[
1 + 2c2en

3 + 1
3
(
4c2

2 + c3
)
e2
n +

4∑
i=1

Pie
i+2
n +O(e7

n)
]
, (8)

where Pi = Pi(c2, c3, . . . , c6).
Now, by using the above expressions namely, (4), (5), (6) and (8) in the second sub step, we get

zn − α = (1− θ1 − θ2 − θ3)en + 1
3c2(3θ1 + 7θ2 + 11θ3)e2

n +
4∑
l=1

Qje
j+2
n +O(e7

n), (9)

where Qj = Qj(θ1, θ2, θ3, c2, c3, . . . , c6).
It is clear from the above equation that for obtaining at least cubic convergence the coefficient
of en and e2

n should be zero simultaneously. Therefore, we have

θ1 = θ3 + 7
4 , θ2 = −2θ3 −

3
4 . (10)

Using the above values of θ1 and θ2 in Q1 = 0, we obtain the following independent relation

8θ3 − 9 = 0, (11)

which further yields

θ3 = 9
8 . (12)

By inserting the values of θ1, θ2 and θ3, in the expression (9), we get

zn − α =
(

5c3
2 − c3c2 + c4

9

)
e4
n +

(
−36c4

2 + 32c3c
2
2 −

20c4c2

9 − 2c2
3 + 8c5

27

)
e5
n

+ 2
27
(
2295c5

2 − 3537c3c
3
2 + 633c4c

2
2 + 9

(
99c2

3 − 5c5
)
c2 − 99c3c4 + 7c6

)
e6
n +O(e7

n).
(13)

In this way, we obtain a new optimal fourth-order iterative method. In order to obtain sixth-
order convergent family of iterative methods, we expand the Taylor’s series expansion of the
function f(zn) about a point x = α with the aid of expression (13), we obtain

f(zn) = f ′(α)
[(

5c3
2 − c3c2 + c4

9

)
e4
n +

(
−36c4

2 + 32c3c
2
2 −

20c4c2
9 − 2c2

3 + 8c5
27

)
e5
n

+ 2
27
(
2295c5

2 − 3537c3c
3
2 + 633c4c

2
2 + 9

(
99c2

3 − 5c5
)
c2 − 99c3c4 + 7c6

)
e6
n +O(e7

n)
]
.

(14)
By using the equations (4), (5), (8), (13) and (14), in the last sub step of (2), we obtain

en+1 = −1
9(45c3

2 − 9c3c2 + c4)(θ4 + θ5 + θ6 − 1)e4
n +

2∑
l=1

Rle
l+4
n +O(e7

n), (15)

where Rl = Rl(θ4, θ5, θ6, c2, c3, . . . , c6).
In order to obtain at least fifth-order of convergence, we have to substitute the following value
of the disposable parameter θ4

θ4 = −θ5 − θ6 + 1. (16)
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Now, we will use the above value of θ4 in R1 = 0, we have

2θ5 + 4θ6 + 3 = 0, (17)

which further yields

θ5 = −2θ6 −
3
2 . (18)

By using the values of θ4 and θ5 in the expression (15), we get

en+1 = − 1
81(45c3

2 − 9c3c2 + c4)
(
2c2

2(8θ6 − 27) + 9c3
)
e6
n +O(e7

n), θ6 ∈ R. (19)

Hence, it is straightforward to say from the above error equation that the proposed scheme (2)
reaches the sixth-order convergence. This completes the proof. �

Development of the scheme for multi-dimensional case

The previous scheme (2) for scalar equation can be written for the multi-dimensional case as
follows:

y(n) = x(n) − 2
3F
′(x(n))−1F (x(n)),

z(n) = y(n) −
[
θ1I + θ2F

′(x(n))−1F ′(y(n)) + θ3
(
F ′(x(n))−1F ′(y(n))

)−2
]
F ′(x(n))−1F (x(n)),

x(n+1) = z(n) −
[
θ4I + θ5F

′(x(n))−1F ′(y(n)) + θ6
(
F ′(x(n))−1F ′(y(n))

)−2
]
F ′(x(n))−1F (z(n)),

(20)
where I is the identity matrix of order n and θi, i = 1, 2, . . . , 6 are free disposable parameters.
With the values of the parameters obtained in Theorem 1 we design a parametric family of sixth-
order iterative methods for solving nonlinear systems as shows the following theorem. In the
proof of this result we use the tools and procedure introduced in [5].

Theorem 2 Let F : D ⊆ Rn → Rn be a sufficiently differentiable function in an open neigh-
borhood D of its zero α. Suppose that F ′(x) is continuous and nonsingular in α and the initial
guess x(0) is close enough to α. Then, the iterative schemes defined by (20) have order of
convergence six when

θ1 = θ3 + 7
4 , θ2 = −2θ3 −

3
4 , θ3 = 9

8 , θ4 = 1− θ5 − θ6, θ5 = −2θ6 −
3
2 ,

where θ6 is a free disposable parameter.

Proof. Let us assume that e(n) = x(n)−α be the error in the nth-iteration. Further, by developing
F (x(n)) in a neighborhood of α, we have

F (x(n)) = F ′(α)
[
e(n) + C2(e(n))2 + C3(e(n))3

]
+O((e(n))4), (21)

Ck = 1
k!F

′(α)−1F (k)(α), k ≥ 2.
Similarly, we obtain

F ′(x(n)) = F ′(α)
[
I + 2C2e

(n) + 3C3(e(n))2 + 4C4(e(n))3
]

+O((e(n))4). (22)
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By using the above expression (22), we further obtain

F ′(x(n))−1 =
[
I − 2C2e

(n) + (4C2
2 − 3C3)(e(n))2

]
F ′(α)−1 +O((e(n))3), (23)

With the help of equation (21) and (23), we have

F ′(x(n))−1F (x(n)) = e(n) − C2(e(n))2 + 2
(
C2

2 − C3
)

(e(n))3 +O((e(n))4), (24)

By using the above expression (24) in the first step of (20), we get

y(n) − α = 1
3e

(n) + 2
3C2(e(n))2 − 2

3(2C2
2 − 2C3)(e(n))3 +O((e(n))4). (25)

With aid of the expression (25), we further obtain

F ′(y(n)) = F ′(α)
[
I + 4

3C2e
(n) + 1

3(4C2
2 + C3)(e(n))2

]
+O((e(n))3) (26)

By using the equations (23) and (26), we further yield

F ′(x(n))−1F ′(y(n)) = I − 4C2

3 e(n) +
(

4C2
2 −

8C3

3

)
(e(n))2

− 8
27(36C3

2 − 45C3C2 + 13C4)(e(n))3 +O((e(n))4).
(27)

By using equations (24), (27) and the values of disposable parameters θ1, θ2 and θ3, in the
second sub step of the scheme (20), we obtain

z(n) − α = A1(e(n))4 + A2(e(n))5 +O((e(n))6), (28)

where A1 and A2 depend on constants Cj .

Now, we want to prove that the proposed scheme will reach sixth-order convergence when we
will use the previous values of the disposable parameters (which are mentioned in the previous
theorem). For this, we develop F (z(n)) in a neighborhood of α

F (z(n)) = F ′(α)
[
A1(e(n))4 + A2(e(n))5

]
+O((e(n))6). (29)

With the aid of expressions (23), (24), (27), (29) and the values of disposable parameters θ4 and
θ5 (which are display in the previous theorem), we have[(

θ6 + 5
2

)
I +

(
−2θ6 −

3
2

)
F ′(x(n))−1F ′(y(n)) + θ6

(
F ′(x(n))−1F ′(y(n))

)−2
]
F ′(x(n))−1F (z(n))

= A1(e(n))4 +A2(e(n))5 + A1
9
(
2C2

2 (8θ6 − 27) + 9C3
)

(e(n))6 +O((e(n))7)
(30)

Finally, by using (28) and (29) in the last sub step of the proposed scheme (20), we obtain

x(n+1) − α = z(n) − α−
[
A1(e(n))4 +A2(e(n))5 + A1

9
(
2C2

2 (8θ6 − 27) + 9C3
)

(e(n))6 +O((e(n))7)
]

= A1
9
(
2C2

2 (8θ6 − 27) + 9C3
)

(e(n))6 +O((e(n))7).
(31)

Therefore, (20) is a new family of sixth-order iterative methods. �
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Numerical experiments

This section is devoted to verify the convergence behavior and computational efficiency of
the proposed family of iterative methods which we have proposed in the earlier sections.

Most of the times, some researchers who want to claim that their methods are superior than
other existing methods available in the literature. They consider some well-known or standard
or self-made examples and manipulate the initial approximations to claim that their methods
are superior than other methods. To halt this practice, we consider six numerical examples; first
one is chosen from Guem et al. [7]; second one is chosen from Grau and Dı́az-Barrero [8];
third one is chosen from Parhi and Gupta [21], fourth one is chosen from Soleymani [27] and
fifth one is consider from Ren et al. [24], with same initial guesses which are mentioned in their
papers. Further, we also want to see what will happen if we consider different examples and with
different initial guesses, which are not mentioned in their papers. Therefore, we consider one
more nonlinear equation from Behl et al. [14]. The details of chosen examples or test functions
are available in Table 1. Moreover, the considered test functions with their corresponding zeros
and initial guesses are also displayed in the same table.

Now, we employ the new sixth-order scheme (2)
(
for θ6 = 0, 27

8 and θ6 = 55
16

)
denoted by

(PM1), (PM2) and (PM3), respectively to see the convergence behavior and effectiveness.
We shall compare our methods with a higher-order family of double-Newton methods with a
bivariate weighting function that is very recently presented by Guem et al. [7], out of them we
choose one of their best method (3.8), called by (GKN). In addition, we consider a sixth-order
variants of Ostrowski’s method proposed by Grau and Dı́az-Barrero [8], out of them we choose
expression (4–6), described as (GB). Further, we also compare them with a sixth-order multi-
point iterative method (2.7) proposed by Parhi and Gupta [21], called by (PG). Moreover, we
will compare them with a sixth-order Jarratt method presented by Soleymani [27], out of which
we consider method (10), denoted by (SM). Finally, we also compared our methods with some
new sixth-order variants of Jarratt’s method designed by Ren et al. [24], out of them we choose
method (54) (for α = 5

10 , β = 12
10 , γ = 2

10 , δ = 2
10 ), described as (RWB).

For better comparisons of our proposed methods, we have displayed the errors between the two
consecutive iterations |xn+1 − xn|, the estimation of the computational order of convergence
ρ = log |(xn−xn)/(xn−1−xn−2)|

log |(xn−1−xn−2)/(xn−2−xn−3)| or log |(xn−α)/(xn−1−α)|
log |(xn−1−α)/(xn−2−α)| and residual error of the corresponding

function (|f(xn)|), corresponding to each test function in Tables 2 and 3.

Further, we also consider a variety of applied examples to further check the validity of theo-
retical results for nonlinear system. Therefore, we employ the new sixth-order scheme (20) for
θ6 = 0, 27

8 and θ6 = 55
16 denoted by (P̂M1), (P̂M2) and (P̂M3), respectively, to verify the

performance of these methods on the examples 1–3. We shall compare them with a fourth-
order Jarratt’s method [5] for system of nonlinear equations, denoted by (JM). In addition, we
shall compare them with a method (61) that is recently presented by Ren et al. [24], denoted
by (RWB). Further, we also compared our methods with Ostrowski type methods for solving
systems of nonlinear equations designed by Grau et al. [9], out of them we consider methods
namely, method (5) and method (7), denoted by (GM1) and (GM2), respectively. Moreover, we
also compared our methods with sixth-order family of iterative method designed by Cordero et
al. [5], out of them we choose method (6), denoted by (CM). Finally, we compare our methods
with an efficient Jarratt-like methods presented by Sharma [25], we consider method (13) called
by (SA).
In the following Tables 4, 5, 7–10, we have displayed the error between two consecutive error in
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the iterations ‖x(n+1)−x(n)‖, the computational order of convergence ρ = log[‖x(n+1)−x(n)‖/‖x(n)−x(n−1)‖]
log[‖x(n)−x(n−1)‖/‖x(n−1)−x(n−2)‖]

and residual error of the corresponding function (‖F (x(n))‖).
During the current numerical experiments with programming language Mathematica (Version
9), all computations have been done with multiple precision arithmetic with 1000 digits of
mantissa, which minimize round-off errors. Let us remark that, in all tables, a e(±b) denotes
a× 10(±b).

Table 1: Test problems

f(x) Zeros(α) x0

f1(x) = 2 cos(x2)− log(1 + 4x2 − π)−
√

2; [7]
√

π
4 1

f2(x) =
[
1 + (1− γ)4]x− (1− γx)4 [γ = 5]; [8] 0.003617108178904063540768351 . . . 0.05

f3(x) = x2 − ex − 3x+ 2; [21] 0.2575302854398607604553673 . . . 2
f4(x) = tan x; [27] 0 1.2
f5(x) = e−x + cosx; [24] 1.746139530408012417650703 . . . 2
f6(x) = x3 + sin x+ 2x; [14] 0 1

Table 2: Comparison of |xn+1 − xn| for the functions fi(x), i = 1, 2, . . . , 6 among listed methods

fi x0 |xn+1 − xn| GKN GB PG SM RWB PM1 PM2 PM3
\ρ

f1 1
|x2 − x1| 1.3e(−4) 1.5e(−5) 1.2e(−4) 1.1e(−5) 9.7e(−6) 2.4e(−6) 2.0e(−5) 2.0e(−5)
|x3 − x2| 1.1e(−28) 3.2e(−28) 7.7e(−22) 1.9e(−28) 5.1e(−29) 3.2e(−32) 1.1e(−26) 1.3e(−26)
|x4 − x3| 3.1e(−167) 3.7e(−164) 6.4e(−125) 3.6e(−165) 9.9e(−169) 2.1e(−187) 3.5e(−154) 9.4e(−154)

ρ 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000

f2 0.05
|x2 − x1| 8.0e(−9) 6.8e(−9) 1.6e(−8) 5.0e(−9) 4.5e(−9) 3.0e(−106) 7.9e(−10) 7.9e(−10)
|x3 − x2| 3.5e(−49) 9.3e(−50) 4.5e(−47) 1.8e(−50) 8.4e(−51) 4.1e(−60) 1.6e(−56) 1.8e(−56)
|x4 − x3| 2.6e(−291) 6.3e(−295) 2.2e(−278) 4.5e(−299) 3.3e(−301) 2.3e(−359) 1.3e(−336) 2.2e(−336)

ρ 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000

f3 2
|x2 − x1| 3.5e(−2) 9.4e(−2) 7.6e(−2) 9.8e(−15) 3.4e(−1) 5.2e(−3) 1.4e(−2) 1.5e(−2)
|x3 − x2| 9.3e(−13) 1.4e(−10) 9.2e(−11) 1.8e(−4) 5.4e(−7) 3.1e(−19) 13e(−15) 1.5e(−15)
|x4 − x3| 3.2e(−76) 1.1e(−63) 2.9e(−64) 1.4e(−26) 9.0e(−42) 1.3e(−116) 7.5e(−94) 2.1e(−93)

ρ 6.0005 6.0054 6.0004 5.9147 6.0008 6.0039 5.9979 5.9979

f4 1.2
|x2 − x1| 2.7e(−1) 6.4e(−1) 4.4e(−1) 3.4e(−1) 3.7e(−1) 4.2e(−1) 3.2e(−1) 3.2e(−1)
|x3 − x2| 6.0e(−6) 3.5e(−3) 3.4e(−4) 4.8e(−5) 7.6e(−5) 7.3e(−7) 9.7e(−6) 9.6e(−6)
|x4 − x3| 1.6e(−38) 5.0e(−19) 4.3e(−26) 3.6e(−32) 9.1e(−31) 6.9e(−45) 5.1e(−37) 4.6e(−37)

ρ 7.0150 7.0180 7.0244 7.0436 7.0359 6.6011 6.9218 6.9244

f5 2.0
|x2 − x1| 2.9e(−6) 1.9e(−6) 4.9e(−7) 6.1e(−7) 1.0e(−6) 1.e(−5) 8.2e(−7) 6.5e(−7)
|x3 − x2| 9.2e(−37) 1.9e(−37) 2.2e(−41) 9.2e(−41) 3.0e(−39) 1.2e(−32) 1.3e(−39) 2.8e(−40)
|x4 − x3| 9.4e(−220) 1.4e(−223) 2.2e(−247) 1.1e(−243) 1.9e(−234) 2.1e(−194) 1.6e(−236) 2.1e(−240)

ρ 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000

f6 1
|x2 − x1| 3.7e(−3) 1.8e(−3) 1.8e(−2) 4.3e(−2) 1.8e(−2) 1.0e(−2) 2.2e(−4) 4.1e(−4)
|x3 − x2| 2.9e(−19) 3.1e(−21) 3.1e(−14) 1.1e(−11) 2.4e(−14) 4.7e(−16) 9.2e(−28) 7.9e(−26)
|x4 − x3| 5.3e(−132) 1.3e(−145) 1.3e(−96) 1.1e(−78) 2.2e(−97) 2.0e(−109) 2.3e(−191) 8.0e(−178)

ρ 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000
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Table 3: Comparison of resiual error |f(xn)| in among listed methods

fi x0 |xn+1 − xn| GKN GB PG SM RWB PM1 PM2 PM3

\ρ

f1 1
|f(x1)| 1.3e(−5) 1.4e(−4) 1.1e(−3) 1.1e(−4) 9.3e(−5) 2.3e(−5) 1.9e(−4) 2.0e(−4)
|f(x2)| 1.0e(−27) 3.1e(−27) 7.4e(−21) 1.8e(−27) 4.8e(−28) 3.1e(−31) 1.1e(−25) 1.3e(−25)
|f(x3)| 3.0e(−166) 3.6e(−163) 6.1e(−124) 3.4e(−164) 9.5e(−168) 2.0e(−186) 3.3e(−153) 9.0e(−153)

f2 0.05
|f(x1)| 2.2e(−6) 1.9e(−6) 4.5e(−6) 1.4e(−6) 1.3e(−6) 8.4e(−8) 2.2e(−7) 2.2e(−7)
|f(x2)| 9.7e(−47) 2.6e(−47) 1.3e(−44) 5.1e(−48) 2.3e(−48) 1.1e(−57) 4.5e(−54) 4.9e(−54)
|f(x3)| 7.1e(−289) 1.7e(−292) 6.1e(−276) 1.2e(−296) 9.1e(−299) 6.4e(−357) 3.7e(−334) 6.2e(−334)

f3 2
|f(x1)| 1.3e(−1) 3.5e(−1) 2.9e(−1) 4.2 1.3 2.0e(−2) 5.4e(−2) 5.5e(−2)
|f(x2)| 3.5e(−12) 5.2e(−10) 3.5e(−10) 6.8e(−4) 2.1e(−6) 1.2e(−8) 4.9e(−15) 5.8e(−15)
|f(x3)| 1.2e(−75) 4.3e(−63) 1.1e(−63) 5.1e(−26) 3.4e(−41) 4.8e(−116) 2.8e(−93) 7.8e(−93)

f4 1.2
|f(x1)| 2.7e(−1) 7.5e(−1) 4.8e(−1) 3.6e(−1) 3.9e(−1) 4.5e(−1) 3.3e(−1) 3.3e(−1)
|f(x2)| 6.0e(−6) 3.5e(−3) 3.4e(−4) 4.8e(−5) 7.6e(−5) 7.3e(−7) 9.7e(−6) 9.6e(−6)
|f(x3)| 1.6e(−38) 5.0e(−19) 4.3e(−26) 3.6e(−32) 9.1e(−31) 6.9e(−45) 5.1e(−37) 4.6e(−37)

f5 2.0
|f(x1)| 3.4e(−6) 2.3e(−6) 5.6e(−7) 7.0e(−7) 1.2e(−6) 1.2e(−5) 9.6e(−7) 7.5e(−7)
|f(x2)| 1.1e(−36) 2.1e(−37) 2.6e(−41) 1.1e(−40) 3.5e(−39) 1.3e(−32) 1.5e(−39) 3.3e(−40)
|f(x3)| 1.1e(−219) 1.6e(−223) 2.5e(−247) 1.3e(−243) 2.2e(−234) 2.5e(−194) 1.9e(−236) 2.4e(−240)

f6 1
|f(x1)| 1.1e(−2) 5.5e(−3) 5.4e(−2) 1.3e(−1) 5.3e(−2) 3.0e(−2) 6.5e(−4) 1.2e(−4)
|f(x2)| 8.7e(−9) 9.4e(−21) 9.3e(−14) 3.4e(−11) 7.3e(−14) 1.4e(−35) 2.8e(−27) 2.8e(−27)
|f(x3)| 1.6e(−131) 3.8e(−145) 4.0e(−96) 3.2e(−78) 6.6e(−7) 6.1e(−109) 7.0e(−191) 2.4e(−177)

Example 1 Let us consider the Van der Pol equation [4, 19], which is defined as follows:

y′′ − µ(y2 − 1)y′ + y = 0, µ > 0, (32)

which governs the flow of current in a vacuum tube, with the boundary conditions y(0) =
0, y(2) = 1. Further, we consider the partition of the given interval [0, 2], which is given by

x0 = 0 < x1 < x2 < x3 < · · · < xn, where xi = x0 + ih, h = 2
n
.

Moreover, we assume that

y0 = y(x0) = 0, y1 = y(x1), . . . , yn−1 = y(xn−1), yn = y(xn) = 1.

If, we discretized the above problem (32) by using the numerical formula for the first derivative
and second derivative, which are given by

y′k = yk+1 − yk−1

2h , y′′k = yk−1 − 2yk + yk+1

2h , k = 1, 2, . . . , n− 1,

then, we obtain a (n− 1)× (n− 1) system of nonlinear equations

2h2xk − hµ
(
x2
k − 1

)
(xk+1 − xk−1) + 2 (xk−1 + xk+1 − 2xk) = 0.

Let us consider µ = 1
2 and initial approximation y(0)

k =
(

1
2 ,

1
2 , . . . ,

1
2

)
. In this problem, we

consider the value of n = 7 so that we can obtain a 6 × 6 system of nonlinear equations. The
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Table 4: (Comparison of ‖x(n+1) − x(n)‖ among listed methods in the Van der Pol equation )

‖x(n+1) − x(n)‖ JM RWB GM1 GM2 CM SA P̂M1 P̂M2 P̂M3

\ρ

‖x(2) − x(1)‖ 1.4e(−3) 1.7e(−5) 7.0e(−4) 7..7e(−4) 1.7e(−5) 8.5e(−5) 6.4e(−5) 1.7e(−5) 1.5e(−5)

‖x(3) − x(2)‖ 3.0e(−15) 2.2e(−34) 4.4e(−17)6.5e(−17) 2.2e(−34) 1.1e(−29) 2.0e(−30) 2.2e(−34) 1.4e(−34)

‖x(4) − x(3)‖ 1.2e(−61)7.9e(−208)9.3e(−70)4.8e(−69)7.9e(−208)2.8e(−179)6.3e(−183)2.3e(−206)9.3e(−208)

ρ 3.9826 6.0017 3.9883 3.9874 6.0017 6.0153 5.9768 5.9551 5.9989

Table 5: (Comparison of residual error ‖F (x(n))‖ among listed methods in the Van der Pol equation )

‖F (x(n))‖ JM RWB GM1 GM2 CM SA P̂M1 P̂M2 P̂M3

‖F (x1))‖ 1.4e(−4) 2.0e(−5) 5.6e(−4) 6.0e(−4) 2.0e(−5) 8.9e(−5) 9.2e(−5) 2.3e(−5) 2.2e(−5)

‖F (x(2))‖ 5.1e(−15) 3.4e(−34) 7.0e(−17) 1.1e(−16) 3.4e(−34) 2.8e(−29) 6.0e(−30) 1.1e(−33) 7.2e(−34)

‖F (x(3))‖ 1.5e(−61) 1.1e(−207) 1.5e(−69) 7.8e(−69) 1.1e(−207) 5.5e(−179) 1.2e(−182) 3.5e(−206) 2.4e(−207)

solutions of this problem is

α = (0.3822666 . . . , 0.6911725 . . . , 0.9234664 . . . , 1.076325 . . . , 1.143815 . . . , 1.118869 . . . )t.

Example 2 In this example, we consider one of the famous applied science problem which is
known as Hammerstein integral equation (see [20, pp. 19-20] to check the effectiveness and
applicability of our proposed methods as compared to the other existing methods, is given as
follows:

x(s) = 1 + 1
5

∫ 1

0
F (s, t)x(t)3dt

where x ∈ C[0, 1]; s, t ∈ [0, 1] and the kernel F is

F (s, t) =
{

(1− s)t, t ≤ s,

s(1− t), s ≤ t.

To transform the above equation into a finite-dimensional problem by using Gauss Legen-
dre quadrature formula given as

∫ 1
0 f(t)dt ' ∑8

j=1 wjf(tj), where the abscissas tj and the
weights wj are determined for t = 8 by Gauss Legendre quadrature formula. Denoting the
approximations of x(ti) by xi(i = 1, 2, ..., 8), one gets the system of nonlinear equations
5xi − 5−∑8

j=1 aijx
3
j = 0, where i = 1, 2, ..., 8

aij =
{
wjtj(1− ti), j ≤ i,

wjti(1− tj), i < j.

Where the abscissas tj and the weights wj are known and given in following table for t = 8.
The convergence of the methods towards the root

X = (1.00209 . . . , 1.00990 . . . , 1.01972 . . . , 1.02643 . . . , 1.02643 . . . , 1.01972 . . . , 1.00990 . . . , 1.00209 . . . )t,
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Table 6: (Abscissas and weights of Gauss Legendre quadrature formula for t = 8 )

j tj wj

1 0.01985507175123188415821957... 0.05061426814518812957626567...
2 0.10166676129318663020422303... 0.11119051722668723527217800...
3 0.23723379504183550709113047... 0.15685332293894364366898110...
4 0.40828267875217509753026193... 0.18134189168918099148257522...
5 0.59171732124782490246973807... 0.18134189168918099148257522...
6 0.76276620495816449290886952... 0.15685332293894364366898110...
7 0.89833323870681336979577696... 0.11119051722668723527217800...
8 0.98014492824876811584178043... 0.05061426814518812957626567...

Table 7: (Comparison of ‖x(n+1) − x(n)‖ among listed methods in the Hammerstein integral equation )

‖x(n+1) − x(n)‖ JM RWB GM1 GM2 CM SA P̂M1 P̂M2 P̂M3

\ρ

‖x(2) − x(1)‖ 1.2e(−4) 5.7e(−6) 5.7e(−6) 5.7e(−6) 5.7e(−6) 5.7e(−6) 5.7e(−6) 5.7e(−6) 5.7e(−6)

‖x(3) − x(2)‖ 4.3e(−20) 6.5e(−38) 6.5e(−38) 8.7e(−38) 6.5e(−38) 1.7e(−37) 1..7e(−37) 7.8e(−38) 7.8e(−38)

‖x(4) − x(3)‖ 8.1e(−82)1.6e(−229)1.6e(−229)1.2e(−228)1.6e(−229)1.4e(−226)1.4e(−226)5.5e(−229)5.5e(−229)

ρ 3.9983 5.9987 5.9987 5.9987 5.9987 5.9989 5.9989 6.0067 5.9989

Table 8: (Comparison of residual error ‖F (x(n))‖ among listed methods in the Hammerstein integral
equation )

‖F (x(n))‖ JM RWB GM1 GM2 CM SA P̂M1 P̂M2 P̂M3

‖F (x(1))‖ 5.4e(−4) 2.7e(−5) 2.7e(−5) 2.7e(−6) 2.7e(−5) 2.7e(−5) 2.7e(−5) 2.7e(−5) 2.7e(−5)

‖F (x(2))‖ 2.0e(−19) 3.1e(−37) 3.1e(−37) 4.1e(−37) 3.1e(−37) 8.0e(−37) 8.1e(−37) 3.6e(−37) 3.6e(−37)

‖F (x(3))‖ 3.8e(−81)7.6e(−229)7.6e(−229)5.7e(−228)7.6e(−229)6.5e(−226)6.5e(−226)2.6e(−228)2.6e(−228)

is tested in the following Tables 4 and 5 on the basis of the initial guess
(
−1

2 , −
1
2 , −

1
2 , −

1
2

)
.

Example 3 Let us consider the following nonlinear system of nonlinear equation [10]

fi(x) = xi − cos
2xi −

4∑
j=1

xj

 , (33)

where i = 1, 2, 3, 4. We choose the initial guess x(0) = (1, 1, 1, 1)t for this problem for obtain-
ing the required solution α = (0.5149333 . . . , 0.5149333 . . . , 0.5149333 . . . , 0.5149333 . . . )t.

Concluding remarks

The main beauty of the proposed family of iterative methods for the system of nonlinear equa-
tions is that we have to calculate only one inverse of the Jacobian matrix (i.e. F ′(x(n))) in the

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1276



Table 9: (Comparison of ‖x(n+1) − x(n)‖ among listed methods in example (3) )

‖x(n+1) − x(n)‖ JM RWB GM1 GM2 CM SA P̂M1 P̂M2 P̂M3

\ρ

‖x(2) − x(1)‖ 3.7e(−3) 3.6e(−4) 3.5e(−4) 3.5e(−4) 3.6e(−4) 3.9e(−4) 3.9e(−4) 3.6e(−4) 3.6e(−4)

‖x(3) − x(2)‖ 4.6e(−12) 9.3e(−24) 8.3e(−24) 1.4e(−23) 9.3e(−24) 5.5e(−23) 5.6e(−23) 1.2e(−23) 1.2e(−23)

‖x(4) − x(3)‖ 1.2e(−47)2.8e(−141)1.6e(−141)5.4e(−140)2.8e(−141)4.9e(−136)4.9e(−136)2.0e(−140)1.4e(−140)

ρ 4.0004 6.0000 5.9987 6.0000 6.0000 6.0000 6.0000 6.0000 5.9989

Table 10: (Comparison of residual error ‖F (x(n))‖ among listed methods in example (3) )

‖F (x(n))‖ JM RWB GM1 GM2 CM SA P̂M1 P̂M2 P̂M3

‖F (x(1))‖ 1.0e(−2) 9.7e(−4) 9.4e(−4) 9.6e(−4) 9.7e(−4) 1.0e(−3) 1.1e(−3) 9.8e(−4) 9.8e(−4)

‖F (x(2))‖ 1.3e(−11) 2.5e(−23) 2.3e(−23) 3.8e(−23) 2.5e(−23) 1.5e(−22) 1.5e(−22) 3.4e(−24) 3.2e(−23)

‖F (x(3))‖ 3.2e(−47)7.7e(−141)4.2e(−141)1.5e(−139)7.7e(−141)1.3e(−135)1.3e(−135)5.3e(−140)3.9e(−140)

case of nonlinear system which reduce the computational cost. The convergence properties are
fully investigated along with two main theorems describing their order of convergence. We also
tested the order of convergence of our proposed families on a concrete variety of numerical ex-
periments and it is found that the order of convergence of the proposed family is well deduced
for scalar as well as system of nonlinear equations. Further, our proposed methods perform bet-
ter than the existing methods on the mentioned numerical examples even though if we choose
the same problems with same initial guesses.

Further, the computational accuracy of the iterative methods dependent on several factors like;
body structures of the iterative methods, initial guesses, test functions and the sought zeros. We
have shown in the numerical experiments that our proposed iterative methods perform better
than the existing ones of the same order. But, these results are not always expected because there
is no iterative methods till date which shows best accuracy for every test functions. Further, it
is also important to note that the behavior of iterative methods for convergence to the required
root is depend on asymptotic error constant cj , test function f(x) and the required root α.
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Abstract 
In order to secure the future generations from energy crisis, it is widely accepted that 
implementation of renewable energy resources is the urgent need of the day. Renewable 
energy resources, e.g. wind, ocean wave and geothermal energy provide substantial benefits 
towards our climate, health, and economy. Heat exchanger piles are deep foundations that 
combine the structural function as a foundation with a heat exchanger for extracting heat from 
the earth’s crust. In the proposed study, a novel concept of combined offshore wind turbine-
heat exchanger pile foundation technology will be investigated. Coupled temperature-
displacement analysis of geothermal energy pile foundations will be carried out using finite 
element (FE) software ANSYS to understand the interaction between geothermal pile and the 
surrounding soil subjected to random wave loading and thermal loading-unloading cycles. In 
this paper, thermal characteristics are evaluated in the ground thermal energy system with 
steel foundation pile. The average effective thermal conductivity of the surrounding offshore 
soil is estimated by conducting an extensive literature survey. Pile will be modeled using the 
linear elastic model where as the soil is modeled using Drucker Prager constitutive model. 
The thermal loading-unloading cycle will be applied on the pile using temperature cycles. The 
random wave loading on the pile would be modeled using the Pierson-Moskowitz spectrum. 
The results of the analyses will be studied for stress, strain and displacement response of the 
heat exchanger pile foundation for offshore wind turbine and the surrounding soil. 
Temperature changes in steel and surrounding soil during thermal pile operation will lead to 
additional steel stresses and displacements within the pile-soil system. Hence proper care has 
to be taken that the temperatures remain within acceptable limits, while the pile geotechnical 
analysis should demonstrate that any adverse thermal stresses are within design safety factors 
and that any additional displacements do not affect the serviceability of the offshore structure. 

Keywords: ANSYS, Coupled temperature-displacement analysis, Drucker Prager Cap Model, 
Offshore Wind Turbine. 

1.  Introduction 

 Renewable energy is derived from natural sources that are replenished constantly. In its 
various forms, the renewable energy may be derived directly from the sun, wind or from heat 
generated deep within the earth. Moreover, electricity and heat may be generated from 
different types of renewable energy, e.g. solar, wind, ocean wave, hydropower, biomass, 
geothermal resources and biofuels. As per the world energy consumption report [1], the 
consumption of wind energy is only 0.51% and the consumption of geothermal energy is only 
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0.12%. The energy consumption from ocean wave is even lesser, only 0.001%. Thus there is 
lot of scope in increasing the consumption of these energy resources.  

In offshore environment, the wind energy may be captured through offshore wind 
turbines whereas the geothermal energy may be extracted from the heat stored in the earth’s 
crust and sea water. Thus, the total world energy consumption combining wind, ocean wave 
and geothermal energy comes down to a value which is even lesser than 1% of the total 
energy consumption. Hence, it is necessary to explore the possibilities of deriving electricity 
and heat from the renewable energy. In the proposed work, the possibility of using both the 
offshore wind turbine and its foundation in deriving energy from wind, ocean wave and 
geothermal resources will be investigated. A combined offshore wind turbine-geothermal pile 
technology will be studied for its response under random wind and wave loading on the 
turbine along with thermal loading-unloading of the geothermal energy pile foundation. 

2. Combined Offshore-Geothermal-Wind Turbine System 

A mono-pile foundation consists of a large-diameter steel pile, which is in principle 
simply a prolongation of the tower shaft into the ground. The mono-pile must be able to 
transfer both lateral and axial loads from the structure into the seabed. The steel piles are of 
simple tubular construction which is inexpensive to produce and provide a low cost 
fabrication option. In the present work, mono-pile foundation in form of energy pile extracts 
the geothermal heat from the sea crust and the heat is utilized in generating electricity. Energy 
piles in general contain high-density polyethylene pipes for carrying the fluid used for heat 
transfer as shown in Figure.2. The pipes circulate the geothermal fluid from the surface to the 
targeted depth and brings the heated fluid back to surface where a heat exchanger converts the 
temperature difference between the fluids and finally goes into a thermoelectric generator 
which works on the principle of Seebeck effect [2] and converts this temperature difference to 
power as shown in Figure.3. In the present study, a single tube is considered instead of a U-
tube loop used in conventional energy piles for simplicity as shown in Fig.2 and the thermal 
loading is applied on the tube. Finally Lot of research has been reported in the literature [3-8] 
related to the response of the geothermal energy piles under heating and cooling operations. It 
is observed that the use of geothermal energy piles affect the load-displacement response of 
the piles, the axial stresses generated in the pile and the relative displacement at the pile-soil 
interface. Also, these piles may undergo significant uplift when subjected to heating. However, 
none of these studies have focused on the dynamic stress-strain response of the geothermal 
piles used in offshore applications. 

3. Modeling of the Structure 

3.1 Steel-Monopile-Heat Exchanger 

A steel hollow monopile of diameter 7.5 m with 9 cm thickness is embedded 30 m below sea 
bed as shown in Fig. 1 has been considered as the energy pile. The steel hollow casing 
overlies the concrete grout with its mechanical properties shown in Table 1. The soil bed is 
considered to be heated upto 200oC which is the minimum temperature required for extracting 
heat out of a geothermal reservoir and then cooled as the fluid is removed from the system. 
More details about the heating- cooling cycle has been discussed in section 4 of the paper. 
The time history of heating - cooling cycle has been presented in Figure 3. Assuming a water 
depth of 30 m and a maximum design wave height of 14.5 m, the design horizontal load for a 
monopile with a diameter of 7.5 m amounts to about 8 MN, the resultant horizontal force 
acting about 30 m above sea level, i e. nearly at still water level. Additionally a vertical load 
of 10 MN representing the own weight of the turbine, the blades and the tower was assumed. 
Such loads have to be considered analyzing the behaviour of monopiles. The current model 
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which involves characteristics of both offshore monopile and an energy pile has arrived after 
the successful validation of two separate models by Laloiu [3] and Achmus [9]. Appropriate 
offshore soil thermal parameters have been chosen after devoting significant amount of time 
in going through a large number of parameters of sea sediments.  
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Figure 1. Schematic representation of offshore wind turbine geothermal system. 
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3.2 Finite Element Modelling 

To simulate the behavior of the heat exchanger pile and the surrounding saturated soil, a 
numerical model, coupling the mechanical behavior to the thermal and hydraulic phenomena 
is needed. Here, a thermo-hydro-mechanical (THM) model for saturated porous media is used. 
Fully-coupled equations govern the evolution of pore water pressure, solid displacement and 
heat flow under mechanical, hydraulic and thermal loading. This can be implemented in 
ANSYS using the coupled poro-pressure element CPT215 which is based on Biot's theory of 
consolidation. The pile is modeled as a thermo-elastic solid using an eight noded SOLID185 
brick elements. The thermo-mechanical data of steel has been presented in Table 4. Soil is 
assumed to have the thermo-poro-elastic properties of sand. The software used for model 
simulations in thermo-hydro-mechanical analysis is able to calculate simultaneously heat 
transfer from the grout to steel pile shaft and surrounding soil and the mechanical behavior of 
domains. An initial value of 80oC was selected based on the ambient ground temperature at 
the targeted depth of geothermal energy heat extraction. Infinite boundary is simulated using 
spring and dashpots derived from Lysner[10] to simulate radiation damping of the soil. Only 
half of the pile and soil domain was considered as axi-symmetric condition. Soil and the pile 
domain is meshed using an element size of 0.75 m. The soil layer below the pile is modeled 
using a finer element size of 0.5 m. Element sizes coarser than 0.75 m gives an element shape 
distortion error. The structural and thermal properties of the steel pile has been presented in 
Table 1. 

 Initial stresses are generated in the soil medium using the INISTATE command in 
ANSYS. The computations were done using the finite element program system ANSYS .In 
order to carry out many calculations for loading conditions, a large computer system with 
parallel processor technology was used to minimize the time effort. The aim of the 
investigation was to analyse the behaviour of a large monopile under thermal loading-
unloading cycle for energy storage. 
 

 
Figure 2. Finite element model in ANSYS. 
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Table.1 Summary of properties. 
Steel density ρ  7850 kg/m3  
Thermal expansion coefficient steel 1.6 × 10-4  
Specific Heat Steel 419 J/kgK  
Thermal conductivity  43 W/mK  
Foundation radius r0  3.75  m  
Foundation depth z0  40 m  
Moment of inertia I0  4.1368 m4  
Thermal expansion coefficient of sand 3.33 × 10-5  
Specific Heat of Sand 1090 J/kgK  
Thermal conductivity of Sand 6 /mK  

4. Thermal Loading  

The load-settlement behavior of foundation piles directly impacts on the serviceability and 
safety of the structure above it. To determine the amount of pile displacement associated with 
cyclic thermal loading of energy piles, finite element simulation of an energy pile has been 
performed. The validity of the numerical analysis has been ensured by comparing the 
numerical simulation results with the field pile load test data and the results of numerical 
simulations performed by Laloui et al.[3]. Axisymmetric finite element analysis of piles in 
marine sand have been performed in two steps - (i) a static step to apply the gravity loading 
and to bring the model in geostatic equilibrium and (ii) a coupled temperature-displacement 
step to apply the thermal loading (iii) pore pressure loading. The thermal load is applied on 
the steel pile is generated by convection load due to fluid circulating through pipes. The 
heating-cooling load applied to the steel pile has been presented in Fig.3a. 

5. Results and Discussion 

Results are presented in the form of plots predicting changes in displacement, radial strain and 
axial stress in the steel pile under heating-cooling period. 
Analysis has been carried out in three parts, where firstly an initial state load has been applied. 
Secondly a thermal loading has been applied for a duration of 16 days of heating and cooling 
cycle as shown in Fig.3a. Thirdly the pore pressure load has been applied on the steel pile 
structure. It is seen from Fig.3b that under thermal loading, the pore pressure keeps 
fluctuating with the highest value at the beginning of the heating period and then it keeps 
decreasing. The value of the pore pressure increases again in the beginning of the cooling 
period. After the initial loading has been applied, thermal load is applied on the structure and 
the thermal strain is shown in Fig.3c. The minor fluctuations in the curve shows the expansion 
and contractions throughout the heating and cooling period in the steel pile. Fig.3d shows the 
axial stress in the steel pile at three different depths of 0 m (pile head), 9 m and 36 m. It is 
seen from the figure that the highest axial stress occurs at the base of the pile. Fig.3e and 3f 
shows the translational and axial displacement in the steel pile throughout the heating and 
cooling period. The axial displacement at a depth of 9 m is almost half of that at the base of 
the steel pile. The axial displacement at the base of the pile follows a negative pattern as 
compared to that at the depth of 9m and that at the pile head. The radial displacement shown 
in Fig.3e shows that the displacement is almost same without too much of change for all the 
different depths. 
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Figure 3. Results of (a) thermal load, (b) pore pressure under heating-cooling cycle , (c) thermal strain, (d) axial 
stress, (e) radial displacement, and (f) axial displacement. 
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Abstract

This paper reviews progress in Deep Learning and the successful Application of Deep Q Networks to 
Competitive Games. The basis of the method is Watkins' Deferred Rewards Learning[1]. However its 
implementation in its current form is due to D. Hassabis et al [2]. In its current form the technology is 
heavily dependent on image processing. This suggests that the method may be adapted for the establish 
ment of Optimal Maintenance Policies for Complex systems such as Airliners and/or racing cars with 
the addition of monitoring of Sound.

Keywords : deep learning, Deferred Rewards Learning, game theory, maintenance of complex systems.

Introduction

The authors started off by investigating the recent explosive growth of the GPU in numerical 
processing. We soon discovered that the Deep Learning Community provided the largest growth in 
using the GPU. In fact it may be said that progress in Deep Learning owes its recent progress to 
massive computing which was able to achieve the scale necessary to solve problems in imaging. Two 
programs that enabled this was Theano [3] from the University of Montreal and the recent open source 
system from Google, Tensor Flow [4]. Theano may be looked upon as a system for  code optimization 
and deployment on GPUs. The program was developed and used for neural network problems. The 
Tensor Flow program achieves the same means by allowing itd users to make use of a data flow model. 
Once users cast their algorithms in data flow format. The program will allow the user to bring all the 
available computing power to bear on the data flow object to be completed. The goal of massive 
parallelization has been elusive. For a long time the people in this audience have tried to apply it to  
FEM for example. The existence of multiple core machines have sped up the solution of our problems. 
However the Artificial Neural  Network Community has shown us that concurrency is much simpler 
when problems are increased by two orders of magnitude. It is interesting to speculate that the FEM 
community may be able to take advantage of the two programs for FEA. In order to achieve our 
objective of explaining the technology behind the success of  DQN [2] and its spectacular achievement 
of beating the world Go Champion, we will start introduce the three technologies behind it. We should 
also note that one of us (ADR) has spent considerable time and effort downloading and installing 
Theano and Tensor Flow on local computers as well as on the Cloud.

Theoretical Considerations.

Deep Learning
Nielsen [5] has pre-released the first Chapter of a book in preparation by Bengio et al [6] that explains 
the theory of deep learning applies it to decyphering handwritten numbers The exposition is 
particularly instructive because of the demonstration of the theory in the form of a Python computer 
program.
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Following [5] we start by defining a sigmoid network.

 Fig. 1 Sigmoid neuron

The neuron has 3 inputs x and a bias b (scalar) with weights w.
The input to the neuron is w.x+ b. The output is modified by the sigmoid or logistic function written as,

Fig.2 Sigmoid function 

The sigmoid function σ (z) has the desirable property of small input changes resulting in small and 
smooth changes in output.
In deep networks, we introduce additional layers between the input and output.

Fig. 3 Deep network with hidden layers (2).
 We introduce an additional index to indicate the layer, then the input to a neuron in a hidden layer is 
 zij =Σ xij .wij  + bij  and its output is σij (z) for j= 0 to d layers where d is the output layer.
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Hence an input xi0  results in a nonlinearly mapped output σid (z).
The network is defined by a number of training inputs x  with n outputs y(x).
We define a cost function C(w,b)= 1/2 n .  Σ (yid-σid (z))2

then the objective is to vary the weights w and biases b to reduce the value of C for all the members of 
the training set. So we see the training problem as the minimization  of the quadratic function C. The 
numerical procedure for solving such problems is well known. However the most used method is that 
of back propagation of errors. As mentioned earlier, we are at a stage where the combined power of 
software and hardware can be applied to large problems with many layers  (typically up to 10). I think 
of this process as building a large interpolation function so that any other input x will result in an 
output that conforms to the output function defined by the input output set x, y respectively. This 
concludes our brief discussion of deep learning.

Learning With Delayed Rewards
In his thesis[1], Watkins investigated animal behavior in both the wild and under  lab controlled 
condition. There is a rich set of experiences and theories. One may view an animal's reaction as an 
intelligent response to a set of stimuli as an immediate as well as a long term reaction with a view to  
survival, (the ultimate response). Watkins framed the problem as a number of variables x i with state ait 

at time t. At any stage the problem was assumed to be a Markov process. The problem is framed in 
turns of a cycle or epoch in terms of which all the states are changed in sequence according to some set 
policy. Initially this could even be a random one. The time step within the epoch is assumed to take n 
steps. At a step t we assume that some action Q( ait) results in some reward rit at every time step but 
depreciated by a factor γ. Because  γ < 1 the return tends to 0 with n the number of steps being large. 
Hence we have the n-step truncated return given by a change in ai at time t.

The rewards for actions Q( ait) over n steps is given by the shifted n-step rewards

Rn= Σ  rit
[n]t

At this stage the framing of the problem has introduced a further number of unknowns. We note that the 
state a changes with every action Q. The reward function r is not known and the policy for selecting Q 
is also not known.The problem is however given specificity by selecting the changes Q( ait) by the 
principle of dynamic programming(DP).[7]. Watkins showed that with DP the action Q can be achieved 
iteratively and Watkins and Dayan[8] gave further proof governing the iterative procedure. Watkins 
also assumed that the reward function could also be defined by repeated observation of the actual game 
over time. The thesis did not go into the application of the theory. One must assume that a large amount 
of numerical calculations must have been performed for Watkins to be able to speak so authoritatively 
on the problem. The reader is referred to [9] to see a tutorial on learning with deferred rewards.

Theory of Games with deep learning and DQN.
It was up to Hassabis and his colleagues at Deep Mind[2] to bring substance to Watkins' methods.
Hassabis reformulated the problem in neural network terms. This was demonstrated by applying it to a 
whole set of Atari Games. In many ways the Atari games were the perfect form as a project. The games 
already had a scoring system that provided the Reward Function R and the games were built for a user 
to specify an action Q at any stage. The pixels on the screen were used as input. They were turned into 
values by applying a convolution mapping to the screen. The input state a i0 were defined by the screen 
image. The Q function was defined as a square matrix giving all the possible combination of the 
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changes in the state a sequence with time. The preprocessing for input to the neural net is shown in Fig. 
6. The Q functions were given by the coding on the right while the conversion to convolutions were 
obtained on the left side. Both results were fed into the neural network.

Fig. 6 Schematic for preprocessing raw input for input to the neural net.
The project proceeded in two phases. In the first training phase the program was set to collect a 
massive amount of data resulting from changes in the Q functions for different starting state values a.
The program stores all the experiences in a database De where e is the total sum of  recordings for 
training a particular game. The training of DQN networks is known to be unstable. In the second phase 
the database D was used to train the neural net in what is known as a experience replay developed in 
[2] and using a biologically inspired mechanism that randomizes over the data, thereby removing 
correlations in the observation sequence and smoothing over changes in the data distribution. The 
second improvement used an iterative update that adjusts Q towards targets that are only periodically 
updated.
Results
Here we show the results for the Space Invader game using the two useful metrics of average score and 
averagepredicted action-value Q.
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Fig. 7 Scores for space invader.

We conclude by noting that the results for all the Atari Games beat the results obtained by specialized 
computer playing games (tailored to one game).Hence the project even at this first step, proved the 
power of the method for implementing the DQN as a deep learning network.

Possible Applications in Complex Engineering Systems.
Such a general approach to applying DQN to Model Free problems has many potential applications. So 
we should pick the more important problems. One such problem that requires little alteration in the Lua 
Open Source program provided by the authors could be in the study of the maintenance problem in 
Airlines. Currently the fleet is overhauled and serviced on a regular basis. At such times parts are 
examined and sometimes replaced. The maintenance actions have an impact on the performance of an 
aircraft. Perhaps this improvement can be detected by video cameras that record the visual performanc 
of the plane during taxiing and parking.  Such records could replace those captured for the Atari 
Games. In another similar vein, we could probably also record the roar of the racing car engines and 
add this to figure out the best maintenance policy.
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Abstract

Over the last decade, Sudoku, a combinatorial number-placement puzzle, has become a fa-
vorite pastimes of many all around the world. Recently it is shown that this concept has many
mathematical and computational relations and applications. In this puzzle, the task is to com-
plete a partially filled 9 by 9 square with numbers 1 through 9, subject to the constraint that
each number must appear once in each row, each column, and each of the nine 3 by 3 blocks.
Sudoku squares can be considered a subclass of the well-studied class of Latin squares. Actu-
ally a Sudoku square of order n = k2 is a Latin square of order n such that every element in
[n] = {1, . . . , n} appears exactly once in each block. A partial Sudoku square P is a defining
set for a Sudoku square S if S is the unique Sudoku square that is an extension of P . A central
problem is to determine the size of the smallest defining set for Sudoku squares of order n. For
n = 9 (regular Sudoku) extensive computer search showed that this number is 17 (McGuire
et al, 2014), but the asymptotics of this value is unknown. For Latin squares, this number is
conjectured to be ⌊n2/4⌋ (Mahmoodian 1995, Van Rees and Bates 1999). A construction based
on back-circulant Latin squares shows that this number is at most ⌊n2/4⌋, but the best proven
lower bound is just slightly superlinear. Also, the ⌊n2/4⌋ conjecture is proved if “defining set”
is replaced by a more strict notion called “forcing set”.

For Sudoku squares, we show that the same construction (with a permutation on the rows of
the matrix) works, giving an upper bound of ⌊n2/4⌋. We also show that the size of the smallest
forcing set for Sudoku squares of order n is at least Θ(n2). Our conjecture is that the size of
the smallest defining set for Sudoku squares of order n is also Θ(n2). Finally, we discuss open
problems related to Sudoku squares, their defining sets, and the computational complexity of
Sudoku completion.

Keywords: Computation, Sudoku, Latin squares, defining set, forcing set, extension.
Introduction

A Latin square of order n is an n × n matrix with entries from [n] = {1, . . . , n} such that every
element in [n] appears exactly once in each row and in each column.

A partial Latin square of order n is an n × n matrix with entries from [n] ∪ {∗} such that every
element in [n] appears at most once in each row and in each column. A partial Latin square
P1 is an extension of a partial Latin square P2 if for every (i, j) ∈ [n]2, if P2(i, j) ̸= ∗, then
P1(i, j) = P2(i, j).
A partial Latin square P is a defining set for a Latin square L if L is the unique Latin square
that is an extension of P . A critical set is a minimal defining set. A forcing set (also called a
strong critical set) is a partial Latin square P such that there is a sequence P = P0, P1, . . . , Pℓ

such that Pℓ is a Latin square and for every r,

• Pr is a partial Latin square and an extension of Pr−1,
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• the difference between Pr and Pr−1 is in precisely one entry, i.e., there is (x, y) ∈ [n]2
such that Pr(i, j) = Pr−1(i, j) for every (i, j) ̸= (x, y) and Pr−1(x, y) = ∗ and Pr(x, y) ̸=
∗, and

• for every z ∈ [n] and z ̸= Pr(x, y), the matrix obtained from Pr by setting Pr(x, y) to z
is not a partial Latin square.

In a Latin square of order n = k2, the (i, j)’th block (for i, j ∈ [k]) is the set of entries with
coordinates in ((i−1)k+x, (j −1)k+y) for x, y ∈ [k]. We say that (i, j) are the coordinates of
this block. These blocks partitions the set of entries in the matrix into n blocks, each containing
n entries. A Sudoku square of order n = k2 is a Latin square of order n such that every element
in [n] appears exactly once in each block. We say that the (i, j)’th block belongs to the i’th row
block and the j’th column block.

Notions of partial Sudoku square, extensions of a partial Sudoku square, defining sets, critical
sets, and forcing sets for Sudoku squares can be defined similarly.

A central problem is to determine the size of the smallest defining set for Sudoku squares of
order n. For n = 9 (regular Sudoku) extensive computer search showed that this number is 17
(McGuire et al [6]), but the asymptotics of this value is unknown. For Latin squares, this number
is conjectured to be ⌊n2/4⌋ (Mahmoodian [5], Bate and Van Rees [1]). A construction based
on back-circulant Latin squares shows that this number is at most ⌊n2/4⌋, but the best proven
lower bound is just slightly superlinear. Also, the ⌊n2/4⌋ conjecture is proved if “defining set”
is replaced by “forcing set”. For Sudoku square, we show that the same construction (with a
permutation on the rows of the matrix) works, giving an upper bound of ⌊n2/4⌋. We also show
that the size of the smallest forcing set for Sudoku squares of order n is at least Θ(n2). Our
conjecture is that the size of the smallest defining set for Sudoku squares of order n is also
Θ(n2). We conclude with the discussion of many Sudoku-related problems that remain open.
Lower bound on the size of forcing sets

In this section, we prove the main result of this paper, which is the following lower bound on the
size of the smallest forcing set in Sudoku squares. This result, combined with the observation
that essentially the same construction as the one for back-circulant Latin squares gives us a
forcing set of size ⌊n2/4⌋ for an equivalent Sudoku square, shows that the smallest forcing set
of Sudoku squares of order n is precisely Θ(n2).

Theorem 1 For every n, the size of the smallest forcing set for Sudoku squares of order n = k2

is at least Ω(n2).

Proof. Let F be a partial Sudoku square that is a forcing set, and consider the forcing order on
the entries not specified by F . Let S denote this ordering, i.e., S1 is an entry that is forced by
F , S2 is an entry that is forced by F ∪ {S1}, and so on.

We start by defining a subsequence S ′ of S as follows: S ′
1 = S1, and for every i > 1, S ′

i is the
first element in S after S ′

i−1 that is not in the same row, the same column, or the same block as
any of S ′

1, S ′
2, . . . , S ′

i−1. In other words, S ′ is obtained from S by removing elements that are in
the same row, same column, or same block. Therefore, the sequence S ′ has at most n elements,
and contains at most one element from each row, each column, and each block of the Sudoku
square.

We now transform S ′ into an ordering of a k×k square. More formally, we define a permutation
π of the set [k]2 as follows: for every i where S ′

i is defined, πi is the coordinates of the block
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containing S ′
i. Since S ′ contains at most one element from each block, the πi’s defined based

on S ′
i’s are distinct. There can be blocks with no element present in S ′; we add the coordinates

of such blocks in an arbitrary order to the end of π. This completes the definition of the permu-
tation π of [k]2. The proof of the theorem is based on two lemmas. The first lemma bounds the
size of the forcing set in terms of a quantity associated with the permutation π, and the second
lemma bounds this quantity for every such permutation.

To state the first lemma, we need a few notations. For every permutation π of [k]2 and every
u, v ∈ [k]2 (u ̸= v), we say u ≺π v if u comes before v in π. Let Br

π(v) denote the number of
u ∈ [k]2 such that u ≺π v and u and v are in the same row (i.e., u = (i, j) and v = (i, j′) for
i, j, j′ ∈ [k]). Similarly, let Bc

π(v) denote the number of u ≺π v that are in the same column as
v. Finally, let Bπ(v) = Br

π(v) + Bc
π(v). We are now ready to state the first lemma.

Lemma 1 Let π be the permutation defined based on a forcing set F using the above procedure.
Then,

|F | ≥
n∑

i=1
max(0, n + 1 − 2i − (2k − 2)Bπ(πi)).

Let L(π) denote the quantity on the right-hand side of the inequality in Lemma 1. The second
lemma bounds this quantity for every permutation π.

Lemma 2 There is a constant c such that for every permutation π of [k]2, we have L(π) ≥ cn2.

We start by proving the first lemma.

[Proof of Lemma 1] Let i ∈ [n] be an index for which S ′
i exists. Therefore, πi is the coordinates

of the block containing S ′
i. We argue that to uniquely force S ′

i, we need at least n + 1 − 2i −
(2k − 2)Bπ(πi) new elements in F (i.e., elements other than the ones needed to force S ′

j for
j < i).

Let Ai denote the set of entries of the Sudoku square that are in the same row, same column, or
the same block as S ′

i. The following lemma bounds the cardinality of the intersection of these
sets.

Lemma 3 For every i, j, j ̸= i, if S ′
i and S ′

j are not in the same row block or the same column
block, then |Ai ∩ Aj| = 2. If they are on the same row block or same column block, then
|Ai ∩ Aj| = 2k.

Proof. Proof is easy. Omitted for now.

Since F is a forcing set, by the time S ′
i is forced, there must be at least n−1 entries in Ai whose

values are uniquely specified. We argue that out of these n−1, at most 2(i−1)+(2k−2)Bπ(πi)
are either forced in previous steps or already counted in F , and therefore there must be at least
n + 1 − 2i − (2k − 2)Bπ(πi) of them that are in F and are not previously counted in F . Note
that any entry that is either forced in previous steps or already counted in F must be in Aj for a
j < i. This is because any entry that is forced before S ′

i must either be present in the sequence
S ′

1, . . . , S ′
i−1, or be in the same row, same column, or same block as one of the elements of

this sequence. Either way, this element belongs to
∪

j<i Aj . Also, in each step j < i, we
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count elements of F that are used to force S ′
j , and these elements belong to Aj . Therefore, the

number of elements in Ai that either forced before S ′
i or are already counted in F is at most

|Ai ∩ (∪
j<i Aj)|. To bound this cardinality, we use Lemma 3. By this lemma and the definition

of Bπ(πi), the value of |Ai ∩ Aj| is equal to 2k for precisely Bπ(πi) values of j and is equal to
2 for the remaining i − 1 − Bπ(πi). Therefore,

|Ai ∩ (
∪
j<i

Aj)| ≤
∑
j<i

|Ai ∩ Aj| = 2kBπ(πi) + 2(i − 1 − Bπ(πi)).

Therefore, there must be at least max(0, n + 1 − 2i − (2k − 2)Bπ(πi)) elements in F that are
used to force S ′

i and are not counted in previous steps.

Next, we consider i’s for which S ′
i does not exist. Recall that when the length of S ′ is less than

n, we append a list of block coordinates that contain no element of S ′ at the end of π in an
arbitrary order. Therefore πi is the coordinate of a block none of whose elements appears in
S ′. This means that all of the n elements of the block at coordinates πi must either be in F , or
in the same row, column, or block as an element of S ′, since otherwise they would have been
included in S ′. We can now repeat the same argument with Ai replaced by the set of entries in
the block at coordinates πi.

Putting these cases together, we get that in total F must contain at least
∑n

i=1 max(0, n + 1 −
2i − (2k − 2)Bπ(πi)) elements.

Next, we prove Lemma 2, which gives a bound on the quantity L(π) for every permutation π of
[k]2.

[Proof of Lemma 2] Let α ∈ [0, 1] be a parameter that will be fixed later. For convenience we
assume that (1 − α)k/2 (and therefore (1 − α)n/2) is an integer. We use the following lower
bound on L(π):

L(π) ≥
(1−α)n/2∑

i=1
max(0, n + 1 − 2i − (2k − 2)Bπ(πi)).

Since for every i ≤ (1 − α)n/2, we have n + 1 − 2i > αn, the above inequality implies:

L(π) ≥
(1−α)n/2∑

i=1
max(0, αn − (2k − 2)Bπ(πi)).

For every i, we define

L(π, i) =

0 if max{Br
π(πi), Bc

π(πi)} > αn
4k−4

αn − (2k − 2)Bπ(πi) otherwise.

It is easy to see that max(0, αn − (2k − 2)Bπ(πi)) ≥ L(π, i) for every i. Therefore,

L(π) ≥
(1−α)n/2∑

i=1
L(π, i).

Let L′(π) denote the right-hand side of the above inequality. We will show how the permuta-
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tion π can be transformed into a structurally simpler permutation π′ such L′(π) ≥ L′(π′). Let
t = ⌊ αn

4k−4⌋. Consider the smallest index i such that max{Br
π(πi), Bc

π(πi)} = t, and assume,
without loss of generality, that Br

π(πi) = t. This means that there are t indices i1, i2, . . . , it = i
such that πiℓ

’s, for all ℓ = 1, . . . , t, are on the same row in [k]2. It is not hard to see that moving
all these πiℓ

’s to the beginning of the permutation does not change the value of L′(π). Further-
more, all other elements of the same row can be added after these elements without increasing
L′(π). Therefore, by moving all entries that are on the same row as πi to the beginning of the
permutation, we obtain another permutation whose L′ value is not more than the L′ value of
the original permutation. We can continue this process, by finding the first index i′ such that
max{Br

π(πi′), Bc
π(πi′)} = t and πi′ is not on the same row as πi. Using the same argument,

depending on whether Br
π(πi′) = t or Bc

π(πi′) = t, elements of the row or column of πi′ (except
possibly the ones that were on the same row as πi) can be moved right after the elements of the
row of πi. Continuing with this process, we can build a permutation π′ such that L′(π) ≥ L′(π),
and π′ has the following structure: it starts with the list of all elements of a row/column of [k]2,
then all elements of another row/column of [k]2 except the ones that have appeared before, and
so on.

What remains is to prove that for a permutation π′ that has the above structure, L′(π′) = Ω(n2).
Using the structure of π′, we can decompose it into segments, where each segment lists all ele-
ments of a row/column of [k]2 except the ones that are listed that are listed in previous segments.
We call a segment a row/column segment, depending on whether it is a list of elements in a row
or a column of [k]2. The value of a segment is the sum of L(π′, i) for all i that belong to that
segment. Let ℓr

j (ℓc
j , respectively) denote the number of row (column, respectively) segments

before the j’th segment. Therefore, if the j’th segment is a column segment, its value can be
written as:

Vj = (αn − (2k − 2)ℓr
j) + (αn − (2k − 2)(ℓr

j + 1)) + · · · + (αn − (2k − 2)t)
= (t − ℓr

j + 1)(αn − (k − 1)(t + ℓr
j)), (1)

if ℓr
j ≤ t. We also have Vj = 0 if ℓr

j > t. If the j’th segment is a row segment, we get a similar
expression for Vj , with ℓr

j replaced by ℓc
j .

Since each segment contains at most k elements, there are at least (1−α)n
2k

= (1−α)k/2 segments
that are entirely contained in the first (1 − α)n/2 elements of π. Therefore, L′(π′) is at least
the sum of the values of the first (1 − α)k/2 segments, i.e., L′(π′) ≥ ∑(1−α)k/2

j=1 Vj . We let
L′′(π′) := ∑(1−α)k/2

j=1 Vj .

The final step is to change π′ to another permutation π′′ (with a similar segmented structure)
such that L′′(π′) ≥ L′′(π′′). We do this as follows: assume, for some j, ℓr

j > ℓc
j and the j’th

segment is a row segment. Find the smallest index j′ ∈ [j, (1 − α)k/2] such that the j′’th
segment is a column segment, if such an index exists. We can write down the difference in the
total L′′ value if we replace the order of the segments j′ and j′ − 1 (i.e., first list all elements
in the column corresponding to segment j′ and then list all elements in the row corresponding
to segment j′ − 1). It is easy to see that the inequality ℓr

j > ℓc
j implies that this swap cannot

increase the L′′ value of the permutation. If such an index j′ does not exist, we can change
the last segment to a column segment. Again, it is not hard to see that the assumption ℓr

j > ℓc
j

implies that this change does not increase the L′′ value of the permutation. Similar statements
hold if we switch the role of row segments and the column segments. By repeatedly using this
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procedure, we get a permuation π′′ that consists of alternating row and column segments, and
satisfies L′′(π′) ≥ L′′(π′′).
All that remains is to write down the value of L′′(π′′). This permutation satisfies ℓr

j = ℓc
j =

⌊j/2⌋ for j odd and ℓr
j = ⌊j/2⌋ = ℓc

j + 1 for j even. Using Equation (1), the value of L′′(π′′)
can be written as follows:

L′′(π′′) =
p∑

s=0
(t − s + 1)(αn − (k − 1)(t + s)) +

p∑
s=0

(t − s + 1)(αn − (k − 1)(t + s))

≥ 2
p∑

s=0
(t − s + 1)(αn − (k − 1)(t + s)),

where p = min{t, ⌊(1 − α)k/4⌋}. Recall that t = ⌊ αn
4k−4⌋. Therefore,

L′′(π′′) ≥ 2(k − 1)
p∑

s=0
(t − s)

(
αn

k − 1
− t − s

)

≥ 2(k − 1)
p∑

s=0
(t − s)2 .

If we pick α in such a way that t ≤ ⌊(1 − α)k/4⌋, we have p = t and therefore,

L′′(π′′) ≥ 2(k − 1)t3

3
≥ 2α3k4

3 · 43 .

Now, it suffices to pick any α < 1/2. It is easy to see that this satisfies the inequality t ≤
⌊(1 − α)k/4⌋, and gives us L′′(π′′) ≥ 1

3.44 n2.

The theorem follows by putting Lemmas 1 and 2 together.
Conclusions (Open Problems and Future Directions)

Sudoku is a fascinating source of new interesting open questions in combinatorics. The obvious
open question is whether the result in this paper can be strengthened to defining sets. Our
conjecture is that this is true, i.e., the size of the smallest defining set of Sudoku squares of
order n is Θ(n2). If true, this is probably a difficult problem, since the similar question for
Latin squares has been open for years.

A simpler problem is to strengthen the result to a notion like “semi-strong critical set” ([1]), as
defined similarly to Latin squares. Also, finding any super-linear lower bound is an interesting
open question. Note that in the case of Latin squares, the best lower bounds we know are just
barely superlinear.

As mentioned earlier in the paper, for Latin squares, there is a construction for a defining set of
size ⌊n2/4⌋. This defining set has a unique extension to a back-circulant Latin square. In fact,
it is proved that for even n, this is the smallest defining set of a back-circulant Latin square. It is
not hard to show that by permuting rows and columns of a back-circulant Latin square, one can
obtain a Sudoku square. This gives a construction for a defining set of size ⌊n2/4⌋ for Sudoku.
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Two questions remain open: Are there Sudoku squares with smaller defining sets, and are there
smaller defining sets for this particular Sudoku squares. The answer to both of these questions
are conjectured to be negative in the case of Latin squares (and proved to be so in the case of the
second question for n even). For Sudoku, however, these conjectures might not be true, since
the block constraint could reduce the size of the smallest defining set.

There are also many computational open questions arising from the Sudoku puzzle. The first
question is whether the problem of Sudoku completion (given a partial Sudoku square, is there
a completion to a Sudoku square) is NP-hard. Our conjecture, of course, is that it is. A more
difficult problem is the complexity of completing a defining set (i.e., a set that is guaranteed to
have a unique completion) to a full Sudoku square. As a less mathematical problem, it would be
interesting if one can define a measure of difficulty for Sudoku puzzles that roughly correspond
to how hard the puzzle is for humans. An online search reveals many 9 × 9 Sudoku puzzles
that are claimed to be the hardest Sudoku puzzle. It would be interesting to have a quantitative
measure of such puzzles.

Finally, there are many open combinatorial conjectures for Latin squares for which the corre-
sponding Sudoku problem might be more approachable. Two example are two long-standing
conjectures of Brualdi-Stein and Ryser.

Conjecture 1 ([3, 8]) Every Latin square of even order n contains a partial transversal of
length n − 1.

Conjecture 2 ([7]) Every Latin square of odd order contains a transversal.

Another interesting question is whether Galvin’s theorem about list colorability of the Latin
squares ([4]) to Sudoku squares.
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Abstract

It is known that Selective ES/NS-FEM-T4 and F-barES-FEM-T4 show far better results than standard FEM with first-

order tetrahedral elements in static analysis. These formulations resolve the pressure oscillation and locking problems

in finite element (FE) analysis for nearly incompressible materials without increasing DOF. In this paper, we apply these

formulations to modal and dynamic analysis and evaluate the accuracy and stability. Some demonstration analyses confirm

these methods can show the as good accuracy in dynamic and modal analysis as in static one. They reveal that the time

evolution of total energy of F-barES-FEM-T4 diverge exponentially due to the asymmetric components of the stiffness

matrices of this formulation.

Keywords: Smoothed finite element method, F-bar method, Large deformation, Pressure oscillation, Locking-free, Modal

analysis, Dynamic analysis.

Introduction

Tetrahedral elements are commonly used in practical FE analyses because arbitrary shapes cannot be meshed into hex-

ahedral elements automatically. Additionally, because intermediate nodes easily pop out in large deformation problems,

second or higher-order elements are not preferable[8, 9, 3, 10]. However, T4 elements suffer from pressure oscillation and

locking in the FE analysis for nearly incompressible materials. Therefore, high-accuracy FE analysis with T4 elements

have been in demand.

Recently, Smoothed Finite Element Method (S-FEM) have been proposed. This technique is known for the high-accuracy

FE formulations with T4 elements. Edge-based S-FEM (ES-FEM-T4)[4, 1] has good accuracy in isovolumetric defor-

mation without shear locking. However, it suffers from pressure oscillation and volumetric locking, as well as Standard

FEM-T4, in the analysis for nearly incompressible materials[4, 6]. Node-based S-FEM (NS-FEM-T4)[4] has good ac-

curacy in volumetric deformation without locking nor strong pressure oscillation. However, it has spurious low energy

modes; therefore, it may cause instability in large strain problems[4].

Considering these features, Selective ES/NS-FEM-T4[4, 5] and F-barES-FEM-T4[7], which combine some classical S-

FEMs, have been proposed. In Selective ES/NS-FEM-T4, the hydrostatic part of Cauchy stress tensor is evaluated by using

NS-FEM-T4 and the deviatoric part of that is calculated by using ES-FEM-T4. On the other hand, in F-barES-FEM-T4,

the isovolumetric part of deformation gradient is derived from that of ES-FEM-T4 and the volumetric part is derived

through the multiple smoothing among nodes and elements. It is known that these two methods have good accuracy in

static analysis.

In this paper, we evaluate the accuracy and stability of NS-FEM-T4, Selective ES/NS-FEM-T4 and F-barES-FEM-T4 in

modal and dynamic analysis. A modal analysis of a multi-material cylinder and a dynamic bending analysis of a cantilever

are performed with these formulations.

Methods

In this section, we describe the way to calculate the nodal internal force of F-barES-FEM-T4. That of the other methods

is referred to in papers of Liu[4] and Onishi[4, 5].
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Concept of F-barES-FEM-T4

It is known that NS-FEM-T4 can suppress pressure oscillation to a certain degree in FE analysis for nearly incompressible

materials. This implies that the node-based smoothing of the relative volume change J have the effect of low-pass filter

for the pressure distribution. Then, in F-barES-FEM-T4, it is expected that a repetitive node-based smoothing suppresses

the pressure oscillation more strongly.

Figure 1 illustrates the outline of F-barES-FEM-T4 in 2D problem (i.e., F-barES-FEM-T3) for simplicity. In F-barES-

FEM-T4, the deformation gradient F at each edge is divided into the isovolumetric part F̃
iso and the volumetric part J.

The isovolumetric part F̃
iso at each edge is calculated as weighted mean of only the adjacent elements in the same manner

as ES-FEM-T4. The volumetric part J at each edge is calculated as weighted mean of the relative volumetric changes of

some surrounding elements which are defined by cyclic smoothings. The smoothed deformation gradient F is calculated

with F̃
iso and J in the manner of F-bar method[2]. Thus, a good accuracy of ES-FEM-T4 in isovolumetric part and stronger

suppression of pressure oscillation than NS-FEM-T4 are expected.

Cyclic Smoothings

In this section, we describe the way to calculate the deformation gradient of volumetric part J with cyclic smoothings.

1. Calculate the relative volume change at each element ElemJ in the same manner as Standard FEM-T4.

2. Calculate the smoothed relative volume change at each node ElemJ̃ in the same manner as NS-FEM-T4:

Node
n J̃ =

∑
k∈Node

nE

Elem
k
JElem

k
V ini/4

∑
k∈Node

nE

Elem
k
V ini/4

, (1)

where Elem
k
V ini is the initial volume of element k, Node

nE is the set of elements attached to node n.

3. Calculate the smoothed relative volume change at each element ElemJ̃ in the same way as NS-FEM-T4:

Elem
e J̃ =

1

4

∑

k∈Elem
eN

Node
k J̃, (2)

where Elem
eN is the set of nodes attached to element e.

4. Repeat step 2. and 3. as necessary to calculate multi-smoothed relative volumetric change ElemJ. In the second or

later evaluation of Eq. (1), ElemJ̃ is substituted for ElemJ.

Use 
adjacent elements 

to calculate

Use some 
neighbor elements 

to calculate

F
iso

J

F

Figure 1. Outline of F-barES-FEM in 2D for simplicity.
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5. Calculate the relative volume change at each edge EdgeJ in the similar way to ES-FEM-T4:

Edge

h
J =

∑
k∈

Edge

h
E

Elem
k
J̃ Elem

k
V ini/6

∑
k∈

Edge

h
E

Elem
k
V ini/6

, (3)

where
Edge

h
E is the set of elements attached to edge h.

These process means the relative volumetric change EdgeJ is calculated as the weighted mean of that of the surrounding

elements ElemJ.

Smoothed Deformation Gradient and Nodal Internal Force

We describe the way to calculate the smoothed deformation gradient Edge
F and the nodal internal force. The isovolumetric

part Edge
F̃

iso is the same with that of ES-FEM-T4 Edge
F

iso:

Edge
F̃

iso = Edge
F

iso =

(
1

EdgeJ

)1/3

Edge
F, (4)

where the relative volume change at an edge EdgeJ is det(Edge
F). The volumetric part Edge

F
vol is calculated by using EdgeJ

denoted in previous section:

Edge
F

vol = EdgeJ1/3
I, (5)

where I is the second-order identity tensor. Smoothed deformation gradient Edge
F is calculated by using these two part in

the same manner of F-bar method as follows:

Edge
F = Edge

F̃
vol · Edge

F
iso =

(
EdgeJ

EdgeJ

)1/3

Edge
F. (6)

The smoothed Cauchy stress tensor T is derived from a material constitutive model and Edge
F.

The nodal internal force vector at an edge Edgef int is calculated as follows:

Edge

h
f int
P:p =

∂
Edge

h
Di j

∂u̇P:p

Edge

h
Ti j

Edge

h
V, (7)

where �P:p means the p-th component of node P, u̇ is the nodal velocity and
Edge

h
D is the stretching tensor derived in the

same way as ES-FEM-T4.

Results

Modal Analysis of Multi-Material Cylinder

Figure 2 illustrates the outline of the modal analysis of a multi-material cylinder. The analysis domain is a quarter of the

cylinder of φ 2 × 6 m; its bottom is fixed completely. The upper part of the cylinder is made of steel and the bottom one

is made of rubber. The material constitutive model for the analysis domain is linear elastic material. The density, Young’s

modulus and Poisson’s ratio of the steel are 7800 kg/m3, 200 GPa and 0.3 respectively, and those of the rubber are 920

kg/m3, 5.0 MPa and 0.499, respectively. The analysis with F-barES-FEM-T4, Selective ES/NS-FEM-T4, NS-FEM-T4 and

ABAQUS C3D4 (4-node tetrahedral elements) are performed with unstructured tetrahedral elements of 0.2 m global mesh

seed size. The analysis with ABAQUS C3D8 (8-node hexahedral elements with selective reduced integration method) of

0.2 m global mesh seed size is performed to obtain reference solutions. The number of cyclic smoothings for the steel part

is 0 and the one for the rubber part is 1 or 2, in the analysis with F-barES-FEM-T4. The results of F-barES-FEM-T4 are

labeled with ‘c‘, which is the number of cyclic smoothings for the rubber part.

Figure 3 shows the comparison of the natural frequencies between various S-FEMs and two ABAQUS elements. The

natural frequencies of ABAQUS C3D4 are far higher than reference solution, the result of ABAQUS C3D8, because of
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the volumetric locking, and those of NS-FEM-T4 are far lower because of spurious low energy modes. F-barES-FEM-T4

and Selective ES/NS-FEM-T4 show good accuracy of natural frequencies without locking and spurious mode.

Figure 4 and 5 show the mode shapes of the 1st and 11th modes. NS-FEM-T4 shows strange mode shape due to the

spurious low energy modes in 11th mode. F-barES-FEM-T4 and Selective ES/NS-FEM-T4 show the similar shapes to

ABAQUS C3D8 without locking and spurious modes.

It is known that the stiffness matrix of F-barES-FEM-T4 is asymmetric. The asymmetric property cause complex eigen-

value in modal analysis. Figure 6 shows the distributions of natural frequency of F-barES-FEM-T4(1) and (2).

2 m

6 m

1/8

Model Steel with

E = 200 GPa, ν = 0.3

x

y
z

Rubber with

E = 5.0 MPa, ν = 0.499

4 m

fixed

Figure 2. Outline of the modal analysis for a multi-material cylinder.
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Figure 3. Comparison of the natural frequencies vs. mode numbers. The frequencies of

ABAQUS C3D4 are higher than those of the others because of the volumetric locking.
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Figure 4. Mode shapes of the 1st mode.
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Figure 5. Mode shapes of the 11th mode.
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Dynamic Bending Analysis of Cantilever

Figure 7 illustrates the outline of the dynamic bending analysis of a cantilever. The analysis domain is a cuboid of 10×1×1

m; its left side is perfectly constrained; a uniform initial velocity of 2.0 m/s in −z direction is applied. The material

constitutive model for the analysis domain is Neo-Hookean hyperelastic model. The density, initial Young’s modulus and

initial Poisson’s ratio are 10000 kg/m3, 6.0 MPa and 0.499, respectively. The analysis with F-barES-FEM-T4, Selective

ES/NS-FEM-T4, NS-FEM-T4 and ABAQUS/Explicit C3D4 are performed with unstructured tetrahedral elements of 0.2

m global mesh seed size. The analysis with ABAQUS/Explicit C3D8 of 0.2 m global mesh seed size is also performed to

obtain a reference solution. The number of cyclic smoothings is 1 to 3, in the analysis with F-barES-FEM-T4. The results

of F-barES-FEM-T4 are labeled with ’c’, which is the number of cyclic smoothings. In this analysis, the time integration

scheme is Velocity Verlet, and the time increment is 1.0 × 10−4 s.

The comparison of the vertical displacements (uz) at one of the corner node (© in Figure 7) is shown in Figure 8. The

results of ABAQUS/Explicit C3D4 and NS-FEM-T4 differ from the reference solution due to the locking and spurious

low energy modes, respectively. Those of F-barES-FEM-T4s and Selective ES/NS-FEM-T4 agree with the reference;

therefore, these formulations have good accuracy without locking in dynamic analysis.

Figure 9 shows the pressure distributions at 1.5 s. In these figures, the value above the range is colored dark red, the one

below the range is colored in dark blue and the contour range is [-0.223, 0.2813] (MPa). The results of NS-FEM-T4,

Selective ES/NS-FEM-T4 and F-barES-FEM-T4(1) are different from ABAQUS/Explicit C3D8 at a certain level. Those

of F-barES-FEM-T4(2) and (3) agree with the reference; therefore, F-barES-FEM-T4 with sufficient number of cyclic

smoothings have good accuracy without pressure oscillation in dynamic analysis.

Figure 10 illustrates the comparison of time-histories of total energy among several formulations. The results of F-barES-

FEM-T4s diverge exponentially, and the divergence speeds decrease as the number of cyclic smoothings increasing. This

is caused by the imaginary part of the natural frequencies of F-barES-FEM-T4s. As shown in Figure 6, F-barES-FEM-T4

causes complex natural frequencies due to the asymmetric component of the stiffness matrix unlike other methods. When

the k-th natural frequency is a complex number, ωk = a + ib (a, b ∈ R), time evolution of the k-th mode shape uk(t) is

expressed as

uk(t) = Re[{uk0} exp(−iωkt)] (8)

= Re[{uk0} exp(−iat)] exp(bt), (9)

where the constant vector {uk0} is defined by initial conditions. If b > 0, exp(bt) part diverges with time evolution and that

is why the results of F-barES-FEM-T4s diverge exponentially. The long time analysis with F-barES-FEM-T4 requires

more ingenuity and it is our future work.

10 m

        Neo-Hookean Hyperelastic Material1 m

initial condition:    = - 2.0 m/s  (uniform)

1 m

x

yz

u̇z

Figure 7. Outline of the dynamic bending analysis of a cantilever. The initial uniform velocity is

−2.0 m/s in z direction.
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Figure 9. Deformed shapes and pressure distributions of the dynamic cantilever bending analy-

sis at 1.5 s.
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Conclusions

We adapted NS-FEM-T4, Selective ES/NS-FEM-T4 and F-barES-FEM-T4 to the modal and dynamic analysis. The fea-

tures of these formulations are summarized as follows.

• NS-FEM-T4

◦ Modal analysis: low accuracy due to the spurious low energy modes.

◦ Dynamic analysis: slightly soft solution in displacement; a little pressure oscillation; no divergence of energy.

• Selective ES/NS-FEM-T4

◦ Modal analysis: good accuracy without locking nor spurious modes.

◦ Dynamic analysis: good accuracy in displacement; a little pressure oscillation; no divergence of energy.

• F-barES-FEM-T4

◦ Modal analysis: good accuracy without locking nor spurious modes.

◦ Dynamic analysis: good accuracy in displacement; no pressure oscillation with sufficient number of cyclic

smoothings; divergence of energy due to the asymmetric property of the stuffiness matrix.

The long time analysis with F-barES-FEM-T4 is our future work.
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Abstract 

Large-eddy simulation (LES) of open channel flow driven by an oscillating pressure gradient 
with zero surface shear stress was performed. The flow is representative of an oscillating tidal 
boundary layer. Under neutrally stratified conditions, during certain phases of the oscillating 
pressure gradient corresponding, for example, to peak tide, the flow develops secondary 
structures, characterized by coherent, full-depth, streamwise-elongated counter-rotating cells. 
These structures are similar to the classical Couette cells found in Couette flow driven by 
parallel no-slip plates moving in opposite direction. A constant cooling flux at the surface 
with an adiabatic bottom wall leads to more intense and coherent streamwise-elongated cells 
characterized by greater crosswind width, which we term convective supercells. The signature 
of the convective supercells is observed even during times when the oscillating mean flow is 
decelerating, unlike in cases without surface cooling. Investigation of these coherent 
structures (with and without surface cooling) is deemed important due to their strong 
influence on vertical mixing and their potential role in determining the wake behind tidal 
turbines. 

Keywords: Large-eddy simulation, oscillating boundary layer flow, tidal flow, surface 

cooling, convective supercell, vertical mixing of momentum 

Introduction 

Large-eddy simulation (LES) of neutrally stratified open channel flows driven with either a 

constant [1] or oscillating [2] pressure gradient have revealed the presence of secondary, 

coherent, streamwise-elongated roll cells occupying the full-depth of the water column. These 

cells, sketched in Figure 1, are similar nature to the well-known Couette cells occurring in 

channel flow driven by no-slip plates moving in opposite direction [4]. Furthermore, in [1], 

application of a surface cooling flux to the initially neutrally stratified  open channel flow 

driven by constant pressure gradient led to an unstably stratified flow characterized by wider, 

intensified streamwise-elongated roll cells. The latter were termed convective supercells due 

to their greater intensity and cross-stream size resulting in greater vertical mixing (e.g. of 

momentum) throughout the water column.  

 

The goal of the present work is to re-visit open channel flow with an oscillating pressure 

gradient and to apply, for the first time, a surface cooling flux in order to understand its effect 

on the structure of the cells throughout the pressure gradient cycle. The pressure gradient is 

chosen so as to drive an oscillating boundary layer flow with period characteristic of tidal 

boundary layers. Results will be analyzed via visualizations of the coherent cells revealed by 

the averaging of instantaneous velocity fluctuations over the streamwise direction (x1). 

Additional analysis is presented in terms of the instantaneous streamwise velocity averaged 

over x1 and x2 (the cross-stream direction) at various instances during the tidal cycle in order 

to understand the vertical mixing of momentum induced by the cells. More in-depth analysis 

of the flows, for example in terms of their turbulent structure as revealed through Lumley 

invariant maps [5] at different phases of the tide, will be reserved for a more in-depth journal 

article. 
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Figure 1.  Sketch of streamwise-elongated counter-rotating cells occurring secondary to 

the mean flow in open channel flow driven by a pressure gradient. In the field such roll 

cells, characterizing boundary layer flow, could potentially lead to accumulation of lines 

of floating material along the surface convergence of the cells, as depicted above, similar 

to the action of Langmuir circulations [3]. 
 
In addition to enhancing vertical mixing of momentum and scalars, the previously discussed 

coherent structures (with and without surface cooling) could potentially have a strong impact 

on the wake behind a tidal turbine. From a computational engineering analysis perspective, 

the modeling of the tidal flow and the turbulent wake generated by the turbine are equally  

important. The most sophisticated simulations of turbines without an accurate model of the 

tidal flow become as limited as much simpler turbine models. In a similar fashion to wind 

energy, wake meandering is caused by the large eddies of the ambient flow, such as the 

coherent cells studied here. Therefore, an accurate model of these large eddies is the most 

accurate way to capture wake meandering [6] and should be pursued in the future.  

Governing LES equations 

The spatially filtered or LES equations consisting of conservation of momentum, continuity 

and temperature (scalar) transport are given by Eqns. (1)-(3), respectively, as 

 
𝜕𝑢𝑖

𝜕𝑡
+

𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
=
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+

1
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2 +
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𝑢
𝜏
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𝜕𝑢𝑖

𝜕𝑥𝑖
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𝜕𝜃̅

𝜕𝑡
+

𝜕𝜃̅𝑢𝑗

𝜕𝑥𝑗
=

1

𝑃𝑟𝑅𝑒𝜏
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𝜕𝑥𝑗
2 +

𝜕𝜆𝑗
𝑆𝐺𝑆

𝜕𝑥𝑗
                                           (3)   

 

In these equations, an over-bar denotes a filtered quantity with 𝑢̅𝑖,  𝑝̅ and 𝜃̅ being the filtered 

velocity, pressure and temperature, respectively. Time and the spatial coordinates in the 

streamwise, cross-stream and vertical (depth) directions are given by 𝑡, 𝑥1, 𝑥2  and 𝑥3 , 
respectively.  The third term on the right hand side of Eqn. (1) is comprised of the LES 

subgrid-scale (SGS) stress, 𝜏𝑖𝑗
𝑆𝐺𝑆, modeled here through a dynamic Smagorinsky model (not 

shown). The fourth term on the right side of Eqn. (1) represents buoyancy acting on the 
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vertical (𝑥3) momentum equation and the fifth term is an oscillating pressure gradient (or tidal 

body force) driving the mean flow in the positive or negative 𝑥1 direction. Note that the body 

force has been defined to drive a maximum dimensional free stream velocity 𝑈𝑂
𝑚𝑎𝑥 following 

the formulation in [2]. The second term on the right hand side of Eqn. (3) contains the SGS 

scalar flux 𝜆𝑗
𝑆𝐺𝑆 modeled in terms of an eddy diffusivity taken as the dynamic Smagorinsky 

eddy viscosity (not shown) divided by turbulent Prandtl number, the latter set to 1. 

 

Equations (1)-(3) have been made dimensionless with characteristic velocity and length scales 

given by the maximum wall friction velocity 𝑢𝜏
𝑚𝑎𝑥  and water column half-depth 𝛿 , 

respectively. Temperature has been non-dimensionalized via the magnitude of the vertical 

temperature gradient at the surface (i.e. at the top of the water column) defined as 𝑄/𝑘 where 

𝑄 is the surface cooling flux and 𝑘 is the thermal conductivity. Specifically, the characteristic 

temperature is taken as  𝑄𝛿/𝑘. 

 

Non-dimensionalization of the governing equations gives rise to the Reynolds, Rayleigh, 

Rossby and molecular Prandtl  numbers defined as 𝑅𝑒𝜏 = 𝑢𝜏
𝑚𝑎𝑥  𝛿 𝜈⁄ ,  𝑅𝑎𝜏 = 𝑔𝛽𝛿2𝑄/

(𝑢𝜏
𝑚𝑎𝑥 2𝑘 ), 𝑅𝑜 = 𝑈𝑂

𝑚𝑎𝑥/(𝛿 𝜔)  and 𝑃𝑟  = 𝜈 𝜅⁄ , respectively. In these definitions, 𝜈  is 

kinematic viscosity, 𝛽 is the coefficient of thermal expansion,  𝜔 is tidal frequency and κ is 

thermal diffusivity in water. Note that the Rayleigh number is indicative of the strength of 

surface buoyancy forcing relative to wall shear forcing. The Rossby number is proportional to 

the oscillatory boundary layer thickness relative to the water column half-depth.  

Computational setup 

Figure 2 shows a sketch of the computational domain for the LES. The domain consists of an 

open channel with periodic boundary conditions in the streamwise (𝑥1) and cross-stream  

(𝑥2) (i.e. the horizontal) directions. The top surface of the channel is open with imposed 

shear-free and cooling boundary conditions. The bottom of the channel consists of an 

adiabatic wall. The channel is 4𝜋𝛿  long in the streamwise direction and 8𝜋𝛿/3 wide in the 

cross-stream direction. The latter length was chosen so as to resolve one pair of convective 

supercells, as sketched in Figure (1), in simulations with surface cooling.    

 

 

 
Figure 2.  Sketch of computational domain displaying boundary conditions, the driving 

oscillating pressure gradient (or tidal force), the resulting mean velocity vectors and the 

secondary general circulation associated with convective supercells (red circles). 
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The pressure gradient (tidal force) frequency has been set such that the Rossby number 𝑅𝑜 is 

equal to 878, following the tidal boundary layer simulations in [1]. This Rossby number value 

was obtained for a water column 10 meters deep (corresponding to 𝛿 = 5 m) with 𝑈𝑂
𝑚𝑎𝑥 = 0.5 

m s
-1

 and frequency 𝜔 corresponding to a tidal period of approximately 12.5 hr. Furthermore, 

in the oscillating pressure gradient on the right hand side of Eqn. (1), the ratio  𝑈𝑂
𝑚𝑎𝑥/𝑢

𝜏
𝑚𝑎𝑥 

has been set equal to the corresponding value obtained in a preliminary open channel 

simulation with constant pressure gradient prescribed such that Reynolds number  𝑅𝑒𝜏  is 

equal to 395. Simulations with either Raleigh number 𝑅𝑎𝜏 set to 0 or 250 were performed. 

𝑅𝑎𝜏 = 0 corresponds to zero surface heat flux 𝑄 and 𝑅𝑎𝜏 = 250 corresponds to 𝑄 of about 200 

Watts m
-2

. Molecular Prandtl number 𝑃𝑟 was set to 1.  

  

The computational domain was discretized with 32 uniformly spaced points in the 

streamwise, 64 uniformly spaced points in the cross-stream direction and 65 uniformly spaced 

points in the vertical direction. The vertical distribution of grid points is such that the viscous 

and buffer wall sublayers are not resolved, and thus a wall model was used.  The numerical 

discretization consisted of the finite volume method along with time integration implemented 

in the popular open source code openFOAM [7].  

 

 

Results 

 

First we take a look at results for the flow with 𝑅𝑎𝜏 = 0. In Figure 3, on the panel on the right 

we can see the instantaneous velocity profiles averaged over the streamwise and crosswind 

directions at various instances during the tidal cycle. Velocity profiles in the LES are shown 

in solid and log-law fits of the LES solution through the first 6 grid points from the wall are 

shown with dots. Throughout the instances during the tidal cycle being shown, it is seen that 

the LES velocity is well-approximated by a log law.  

 

On the panels on the left, in Figure 3, we can see instantaneous velocity fluctuations averaged 

over the streamwise direction. On the panels on the left the vertical axis covers the vertical 

extent of the water column and the horizontal axis covers the crosswind extent of the domain.  

 

 
Figure 3. Panel on right: Depth profiles of instantaneous streamwise velocity averaged 

over horizontal directions (panel on right) in flow with 𝑅𝑎𝜏  = 0. Panels on left: 

Instantaneous, streamwise-averaged velocity fluctuations at the time corresponding to 

the velocity profile colored in red on the panel on the right.   
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The instantaneous snapshot of the velocity fluctuations seen on the left corresponds to the 

peak tide mean velocity profile shown in red on the panel on the right. At peak tide, the flow 

with 𝑅𝑎𝜏 = 0 is characterized by Couette-like cellular structures spanning the entire depth of  

the water column, as described earlier. For example, full-depth regions of negative and 

positive vertical velocity fluctuations can be seen on the lower panel on the left. The full-

depth regions of negative vertical velocity fluctuations correspond to the downwelling limbs  

of the cells being resolved. These dowelling limbs of the cells generally coincide with a full-

depth region of positive downwind velocity fluctuations as seen on the top panel on the left. 

 

As the tidal current decelerates, the structures previously described become weaker, which 

can be seen in Figures 4 and 5. Furthermore, note that during the acceleration stage the cells 

are not as coherent (i.e. visible) as those during the deceleration stage. These less coherent 

cells are not shown here for brevity. 

 

 
Figure 4. Same as caption of Figure 3 but for flow during deceleration stage. 

 

 

 
Figure 5. Same as caption of Figure 3 but for flow during deceleration stage. 
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Figure 6. Panel on right: Depth profiles of instantaneous streamwise velocity averaged 

over horizontal directions (panel on right) in flow with 𝑅𝑎𝜏  = 250. Panels on left: 

Instantaneous, streamwise-averaged velocity fluctuations at the time corresponding to 

the velocity profile colored in red on the panel on the right.   

 

Next we explore the flow with 𝑅𝑎𝜏 = 250. Throughout the cycle, the mean velocity is well 

homogenized and thus deviates from the classical log-law as seen on the panel on the right in 

Figure 6. Recall that the log-law is given by the dots and the LES velocity is given by the 

solid lines. In Figure 6, on the panels on the left we now see the presence of one cell, more 

coherent and wider (over the crosswind direction) than the cells described earlier with 𝑅𝑎𝜏 = 

0.  We term this cell as a convective supercell, due to its greater intensity. 

 

The surface convergence of the convective supercell resolved is indicated by the black arrows 

appearing on the middle left panel in Figure 6. These arrows follow the orientation of the 

partially averaged crosswind velocity fluctuation. The surface convergence of the supercell 

leads into the full-depth downwelling limb of the cell characterized by negative vertical 

velocity fluctuation shown in the lower panel on the left indicated by the downward pointing 

black arrow. The increase in strength of the cellular structure resolved with surface cooling is  

 

 
Figure 7. Same as caption of Figure 6 but for flow during deceleration stage. 
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Figure 8. Same as caption of Figure 6 but for flow during deceleration stage. 

 

responsible for the greater homogenization of the velocity profiles shown on the right panel of 

Figure 6 (i.e. greater vertical mixing of momentum), with respect to the velocity profiles for 

the flow without surface cooling in Figure 5.  

 

In Figures 7 and 8, it can be seen that despite losing some strength as the flow decelerates, the 

convective supercell resolved remains visible and significantly serves to increase vertical 

mixing of momentum throughout the entire tidal cycle, relative to the flow without surface 

cooling. 

 

As the flow transitions from deceleration to acceleration, remnants of the convective supercell 

can be observed in Figure 9, regaining strength as the flow accelerates back towards peak tide 

(Figure 10). 

Conclusions 

Unstratified open channel flow driven by an oscillating pressure gradient tidal (body) force 

and zero surface heat flux was shown to be characterized by weakly coherent streamwise-

elongated counter-rotating cells occupying or engulfing the bulk of the water column. Surface 

 

 
Figure 9. Same as caption of Figure 6 but for flow during acceleration stage. 
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Figure 10. Same as caption of Figure 6 but for flow during acceleration state. 

 

cooling with a heat flux of about 200 Watts m
-2

 led to convective supercells characterized by 

greater crosswind width and greater intensity and coherency. These cells are able to 

homogenize the depth profile of the mean velocity, causing deviation from the classical log-

law velocity profile, throughout the entire tidal cycle. Although it was not shown here, the 

surface cooling and associated convective supercells are able to alter the turbulence structure 

throughout the water column. For example in flow without surface cooling, the middle of the 

water column is characterized by shear-dominated turbulence throughout the tidal cycle. In 

the flow with surface cooling of about 200 Watts m
-2

, the stronger cells are able to induce 

higher vertical velocity fluctuations in the middle of the water column leading towards an 

isotropic turbulence structure as the flow transitions from deceleration to acceleration. In a 

future journal article we will explore the changing turbulence structure throughout the tidal 

cycle with and without surface cooling with the aid of Lumley invariant maps [5] in addition 

to the effects of Reynolds, Rossby and Raleigh number on the structure of the convective 

supercells and the turbulence. 
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Abstract 
In this work, effect of using an adaptive central-upwind (ACU) interpolation on weighted 
compact non-linear scheme (WCNS) is investigated. Based on the smoothness of solution, 
this type of interpolation adapts between central and upwind stencils by a weighting relation 
and combination of smoothness indicators of the optimal high-order stencil and its sub-
stencils. The coefficients of sixth to tenth order ACU-WCNS are calculated. To evaluate basic 
numerical characteristics of this new schemes truncation error analysis and wavenumber 
analysis is performed and by applying ACU-WCNS on several benchmark problems, its 
shock-capturing abilities, its behavior in presence of severe discontinuity and its numerical 
resolution in shock-entropy interaction are investigated. 
Keywords: High-order numerical method; Weighted compact nonlinear scheme; Shock-
capturing; Compressible flow. 

Introduction 
Over past three decades there were many efforts for development of high-order numerical 
methods that simultaneously have the capability to capture flow discontinuity and resolve 
small-scale features of flow. Weighted Essentially Non-oscillatory (WENO) [1] scheme and 
Weighted Compact Nonlinear Scheme (WCNS) [2] scheme are two families of such 
numerical methods. 
 
The WENO scheme is based on Essentially Non-oscillatory (ENO) scheme [3], but instead of 
using only one of sub-stencils, it uses a weighted combination of all sub-stencils. This scheme 
was developed in finite volume framework by Liu et al. [4]. Jiang and Shu [1] extended the 
WENO scheme to finite difference framework and proposed a new formulation for nonlinear 
weights to increase order of accuracy and later Balsara and Shu [5] and Gerolymos et al. [6] 
studied the high order behavior of the WENO scheme. 
 
Despite having high order of accuracy and good shock capturing capabilities, the WENO 
scheme also has some shortcomings. One of the problems with the original WENO scheme of 
Jiang and Shu [1] is loss of accuracy near critical points. Analysis of Henrick et al. [7] showed 
this loss of accuracy is because of nonlinear weights and they purposed a mapping method for 
computation of nonlinear weights to prevent loss of accuracy. Borges et al. [8] also purposed 
a new method for computation of nonlinear weights of fifth order WENO to avoid loss of 
accuracy and later expanded it for higher order of accuracy [9], their method has lower 
computational cost in comparison to Henrick et al. [7] mapping method. 
 
There are several ways to reduce numerical dissipation of the WENO scheme. One them is 
hybrid methods which only use the WENO scheme in vicinity of discontinuities and use 
another scheme with lower or no numerical dissipation in smooth regions [10]-[12]. Another 
way is to optimize dissipation and dispersion error [13]-[15], this usually achieved by finding 
optimal coefficients or linear weights by minimizing integral error following optimizing 
procedures of Tam and Webb [16] and Zhuang and Chen [17]. A more recent way for 
reduction of numerical dissipation of the WENO scheme is adaptive central-upwind WENO 
(ACU-WENO) scheme [18]-[20]. Based on smoothness of solution, this new family of 
WENO scheme can adapt between central and upwind stencils and achieves higher order of 
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accuracy, numerical resolution and lower dissipation by using a central stencil in smooth 
regions of solution. 
 
The WCNS was originally developed by Deng and Zhang [21] and later extended to higher 
order of accuracy by Nonomura et al. [22] and Zhang et al. [23]. This scheme is a 
combination of compact scheme [24] and WENO interpolation [25]. This scheme includes a 
node-to-midpoint weighted interpolation and a midpoint-to-node differencing and has three 
advantages over finite difference WENO scheme [26]: 

1- Slightly higher numerical resolution; 
2- Compatibility with different flux treatments; 
3- Better performance on general curvilinear grids [27]. 

Nonomura and Fujii [28] studied effects of different types of midpoint-to-node differencing 
methods on WCNS and they showed it does not significantly change numerical resolution and 
shock capturing capabilities of WCNS. Nonomura and Fujii [26] proposed a new formulation 
for midpoint-to-node differencing, which significantly increases robustness of WNCS. 
Recently Sumi and Kurotaki [29] used a sixth order adaptive central-upwind interpolation 
with robust formulation of a tridiagonal midpoint-to-node differencing to improve numerical 
resolution and robustness of original WCNS [21]. Some studies [22][30]-[32] showed 
increasing the order of accuracy of numerical method, will increase computational efficiency. 
Therefore in this paper we intend to study ACU-WCNS with order of accuracy higher than 
sixth.  
 

Construction of the Numerical Scheme 

For numerical solution of a conservation law as 

    ( ) 0,u f u
t x

∂ ∂
+ =

∂ ∂
     (1) 

where t  is time, x  is a spatial dimension, u  is function of x  and t  and f  is flux function, 
Eq. (1) can be written in a semidiscretized form as 

    ,i
i

u f
t

∂  ′= − ∂ 
     (2) 

where if ′  is an approximation of spatial derivative of f  on grid point ix . Following Lele 
[24], for computation of if ′  in Eq. (2) we can use a linear formulation as 

    ( ) 1 1
1 1 2 2

1 ,
M N

i j i j i j l i k i kj k
f a f f b f f

h+ −
+ − − += =

 
′ ′ ′+ + = − 

 
∑ ∑      (3) 

where M  and N  are positive integers. We can derive the coefficients ja  and lb  by matching 
the Taylor series coefficients [24]. The robust formulation of Nonomura and Fujii [26], which 
uses a midpoint-and-node-to-node differencing, can be written in a general form as 

    ( )
1 1 2 2

1 ,
M N

i j i j i j k k ki ij k
f a f f c f f

h+ −
+ −= =

 
′ ′ ′+ + = − 

 
∑ ∑      (4) 

Following Nonomura and Fujii [28] we only use explicit form of Eq. (3) and Eq. (4) (i.e. 
0ja = ). For explicit form of these equations, the coefficients are listed in [28] and we list 

them again in Table 1 and Table 2, respectively for Eq. (3) and Eq. (4). 
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Table 1. Coefficients for Eq. (3) [28] 

  Coefficients                           1b                 2b                 3b                 4b                 5b  
 

  Fourth-order explicit             9
8

                1
24

−             0                 0                   0                 

  Sixth-order explicit               75
64

              25
384

−           3
640

            0                   0  

  Eighth-order explicit             1225
1024

          245
3072

−         49
5120

          5
7168

−           0  

  Tenth-order explicit               19845
16384

        735
8192

−        567
40960

         405
229376

−     35
294912

  

     
 

Table 2. Coefficients for Eq. (4) [28] 

  Coefficients                           1c                 2c                 3c                 4c                 5c  
 

  Fourth-order explicit             4
3

                1
6

−             0                 0                   0                 

  Sixth-order explicit               3
2

                 3
10

−           1
30

             0                   0  

  Eighth-order explicit             8
5

                 2
5

−            8
105

            1
140

−            0  

  Tenth-order explicit               5
3

                 10
21

−          2
42

             5
252

−           1
630

 

 
 
To interpolate midpoint values from node values (to save space we only write formulation for 
left-biased interpolation, which is shown by superscript L and the right-biased interpolation 
could be derived by mirroring the left-biased interpolation around 1

2
i

x
+

), in a stencil 

( ) ( )2 1
1 1,...,r

i r i rS x x−
− + + −=  with ( )2 1r −  points and r substencils as ( ) ( )2 1

1,...,
r

k i k r i kS x x−
+ − + += , we 

can use a linear formulation as 

    
1
2

1

1

ˆ ,
i

r
L

k i k
k r

f d f
+

+

+
=− +

= ∑      (5) 

where kd  is constant coefficient. If we consider r substencils as ( ) ( )2 1
1,...,

r
k i k r i kS x x−

+ − + +=  in 
( )2 1rS − , we can use a linear formulation as 

    
1
2

1

1,0 2

ˆ ˆ ,
i

r
L r r

k k ik
f d f

+

−

+=

=∑      (6) 
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where r
kd  is linear weight and 1,

2

ˆ r

k i
f

+
 is the interpolated value for each substencil. We can 

write 1,
2

ˆ r

k i
f

+
 as 

    
1

1 ,, 02

ˆ ,
r

r r
k l i k jk i l

f a f
−

− +
+ =

=∑      (7) 

where ,
r
k la  is constant coefficient. The linear relation in Eq. (6) cannot capture discontinuities 

accurately. To solve this problem we can combine the substencil values of Eq. (7) by a 
nonlinear formulation as 

    
1
2

1

1,0 2

ˆ ˆ ,
i

r
L r r

k k ik
f fω

+

−

+=

=∑      (8) 

where r
kω  is nonlinear weight and is given by 

    1

0

,
r

r k
k r

r
l

l

αω
α

−

=

=

∑
     (9) 

    
( )

, 0,..., 1,
r

r k
k pr

k

d k r
IS

α
ε

= = −
+

     (10) 

where ε  is small positive value to avoid division by zero, p  is a positive integer and r
kIS  is 

smoothness indicator and is given by 

    1
2

1
2

2( )1
2 1

1

( ) .i

i

l rr xr l
k lx

l

f xIS x dx
x

+

−

−
−

=

 ∂
= ∆  ∂ 
∑∫      (11) 

 
Hu et al. [19] proposed an alternative procedure for the WENO scheme which smoothly 
adapts between central and upwind stencils. According to this concept, to interpolate midpoint 
values from node values, instead of using biased stencil ( )2 1rS − , we use a central stencil 

( ) ( )2
1,...,

r
i r i rS x x− + +=  with ( )2r  points and 1r +  substencils. To include the new substencil, 

we should rewrite Eq. (5) to Eq. (8) as 

    
1
2 1

ˆ ,
i

r
L

k i k
k r

f d f
+

+
=− +

= ∑      (12) 

    
1
2

1,0 2

ˆ ˆ ,
i

r
L r r

k k ik
f d f

+ +=

= ∑      (13) 

    
1
2

1,0 2

ˆ ˆ .
i

r
L r r

k k ik
f fω

+ +=

=∑      (14) 

the nonlinear weight is given by 
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0

,
r

r k
k r

r
l

l

αω
α

=

=

∑
     (15) 

    2 , 0,..., ,r r r
k k r

k

d C k r
IS

τα
ε

 
= + = + 

     (16) 

where C  is a constant and 1C � . 2rτ  is a new reference smoothness indicator. To avoid 
oscillations near discontinuities, instead of using r

rIS  in Eq. (16), we use 2rIS  which is 
smoothness indicator of the complete stencil. To increase numerical resolution Hu and Adams 
[20] proposed a new formulation for computation of r

kα  

    
2

2
2 2 , 0,..., ,

qr
r r aver
k k q r r

k k

IS xd C k r
IS x IS x

χτa
e χ

 + ∆
= + = + ∆ + ∆ 

     (17) 

where qC  is a constant and qC C� . 1χ
ε

=  and r
aveIS  is an average of smoothness indicator 

of different substencils and there is a relation between 2rτ , 2rIS  and r
aveIS  as 

    2 2 .r
r r aveIS ISτ = −      (18) 

Some values and formulas for r
kd , 1,

2

ˆ r

k i
f

+
, r

kIS , 2rIS  and r
aveIS  are given in appendix A. 

 

Truncation Error Analysis 

Following Hu et al. [19], in this we perform a truncation error to find sufficient condition for 
ACU-WCNS to achieve the designed order of accuracy. We can write below relations 
between 1

2
i

f
+

 and interpolated values 1
2

ˆ
i

f
+

 from Eq. (13) and 1,
2

ˆ r

k i
f

+
 from Eq. (7) 

    2
1 1
2 2

ˆ ( ),r

i i
f f O x
+ +
= + ∆      (19) 

    1
1 1,
2 2

ˆ ( ).r r r r
kk i i

f f A x O x +

+ +
= + ∆ + ∆      (20) 

We can rewrite Eq. (14) as 

    ( )
1
2

1 1, ,0 02 2

ˆ ˆ ˆ ,
i

r r
r r r r r
k k kk i k ik k

f d f d fω
+ + += =

= + −∑ ∑      (21) 

Using the first linear term on the right-hand-side of Eq. (21) in Eq. (3) or Eq. (4) leads to 
derivative of 2( )rO x∆ . Therefore the sufficient condition for Eq. (3) or Eq. (4) to be of 

2( )rO x∆  is that the term on the right-hand-side of Eq. (21) is at least 2 1( )rO x +∆ . Using Eq. (20) 
we can expand this term as 

    ( ) ( ) ( ) ( )1
1 1,0 0 0 02 2

ˆ ( ) .
r r r r

r r r r r r r r r r r r
k k k k k k k k kk i ik k k k

d f f d A x d O x dω ω ω ω+

+ += = = =

− = − + ∆ − + ∆ −∑ ∑ ∑ ∑      (22) 
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The first term on the right-hand-side of Eq. (22) is zero because of normalization of the 
weights, therefore the sufficient condition for having a 2( )rO x∆  derivative is 

    1( ).r r r
k kd O xω +− = ∆      (23) 

Numerical Examples 

In this section, we provide some numerical examples to show shock-capturing capabilities and 
numerical resolution of the proposed ACU-WCNS scheme. These problems are described by 
compressible Euler equations 

    
( )

2 0,
u

u u p
t x

E E p u

ρ ρ
ρ ρ

  
∂ ∂    + + =  ∂ ∂    +   

     (24) 

where ρ  is density, p  is pressure, u  is x  component of velocity vector, E  is total energy 

and related to pressure as 21
1 2

pe uρ
γ

= +
−

 and 1.4γ =  is the ratio of specific heats. To 

reduce numerical oscillations we use local characteristic decomposition by Roe averaged 
variables and we use the Lax-Friedrichs method for flux vector splitting. For time integration 
we use a third order TVD Runge-Kutta method [33]. We used Eq. (4) for midpoint-and-node-
to-node differencing and Eq. (17) for calculation of r

kα , 1000qC =  and 2( 1)q r= − . 
 
In a series of benchmark problems, results of ACU-WCNS with six, eight and ten point 
stencils are compared with ninth order WENO-Z [9]. The first problem is Sod shock tube [34] 
and initial condition is defined as 

    ( ) ( )
( )
1,0,1 0 0.5,

, ,
0.125,0,0.1 0.5 1.

if x
u p

if x
ρ

< <=  < <
 

The second problem is Lax shock tube [35] and initial condition is 

    ( ) ( )
( )
0.445,0.698,0.3528 0 0.5,

, ,
0.5,0,0.571 0.5 1.

if x
u p

if x
ρ

< <=  < <
 

The third problem is 123 shock tube [36] with initial condition as 

    ( ) ( )
( )
1, 2,0.4 0 0.5,

, ,
1, 2,0.4 0.5 1.

if x
u p

if x
ρ

− < <=  < <
 

We choose the fourth problem from Nonomura and Fujii [26]. This shock tube has a very 
high pressure ratio and includes a severe shock. Initial condition is 

    ( ) ( )
( )
1,0,10000 0 0.5,

, ,
0.125,0,0.1 0.5 1.

if x
u p

if x
ρ

< <=  < <
 

The fifth problem is from Toro [37] and this problem also includes a severe shock. Initial 
condition is 

    ( ) ( )
( )
1, 19.59745,1000 0 0.5,

, ,
1, 19.59745,0.01 0.5 1.

if x
u p

if x
ρ

− < <=  − < <
 

The last problem is the Shu-Osher problem [38] and initial condition is 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1321



    ( ) ( )
( )
3.857,2.629,10.333 0 1,

, ,
1 0.2sin(5 ),0,1 1 10.

if x
u p

x if x
ρ

< <=  + < <
 

 
Fig. (1) and Fig. (2) respectively show density distribution for the Sod and the Lax problems. 
All ACU-WCNS show good capturing abilities and there are no visible numerical 
oscillations. It should be noted some adaptive central-upwind [18] or optimized [15] WENO 
schemes have numerical oscillations in these problem and therefore we could conclude Hu et 
al [19] adaption mechanism also works well in ACU-WCNS.  
 

 
Figure 1.  Density distribution for the Sod problem with 100 grid points at t=0.25 s 
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Figure 2.  Density distribution for the Lax problem with 100 grid points at t=0.1 s 

 
The third to fifth problems are cases with severe conditions and Fig. (3) to Fig. (5) show their 
density distribution. The 123 problem contains a near-vacuum condition and is suitable for 
assessment of numerical methods in low pressure and density situations. All ACU-WCNS 
show good results for this problem. The fourth and fifth problems contain strong shocks. All 
methods show good results except ACU-WCNS with ten points stencil, therefore this method 
is not as robust as other methods. 
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Figure 3.  Density distribution for the 123 problem with 100 grid points at t=0.1 s 

S 
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Figure 4.  Density distribution for the forth problem with 100 grid points at t=0.0035 s 

 
S 
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Figure 5.  Density distribution for the fifth problem with 100 grid points at t=0.012 s 

 
Fig. (6) shows the density distribution for the Shu-Osher problem. This problem includes an 
interaction between an entropy wave and a shock wave and resolution of density oscillations 
after the shock is a good criteria for investigate the resolution of a numerical method. The 
reference solution this problem is calculated by a fifth order WENO-JS [1] scheme. All ACU-
WCNS show good numerical resolution and their resolution is superior to that of ninth order 
WENO-Z. 
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Figure 6.  Density distribution for the Shu-Osher problem with 200 grid points t=1.8 s 

Conclusions 
In this paper we developed an adaptive interpolation procedure for WCNS scheme which 
adapts between upwind and central stencil based on smoothness of solution. The shock-
capturing capabilities of the new scheme and its robustness was tested by solving several 
benchmark problems. The results of benchmark problems shows the new scheme has good 
shock capturing capabilities and high numerical resolution.  
 

Appendix A 

To avoid exceeding the limit for number of pages in a paper, we omitted the values and 
formulas for r

kd , 1,
2

ˆ r

k i
f

+
, r

kIS , 2rIS  and r
aveIS  are given for 3r =  and 4r =  and only give these 

values and formulas for 5r = . 
 

    5 5 5 5 5 5
0 1 2 3 4 5

1 45 105 105 45 1, , , , , .
512 512 256 256 512 512

d d d d d d= = = = = =      (A11) 
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5
1 4 3 2 10,
2

5
1 3 2 1 11,
2

5
1 2 1 1 22,
2

5
1 1 13,
2

35 45 189 105 315ˆ
128 32 64 32 128

5 7 35 35 35ˆ
128 32 64 32 128
3 5 45 15 5ˆ

128 32 64 32 128
5 15 45 5ˆ

128 32 64 32

i i i i ii

i i i i ii

i i i i ii

i i ii

f f f f f f

f f f f f f

f f f f f f

f f f f

− − − −
+

− − − +
+

− − + +
+

− +
+

= − + − +

= − + − + +

= − + + −

= − + + − 2 3

5
1 1 2 3 44,
2

5
1 5 4 3 2 15,
2

.
3

128
35 35 35 7 5ˆ

128 32 64 32 128
35 45 189 105 315ˆ

128 32 64 32 128

i i

i i i i ii

i i i i ii

f f

f f f f f f

f f f f f f

+ +

+ + + +
+

+ + + + +
+











 +


 = + − + −

 = − + − +

     (A12) 
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2
4 3 4 2 4 1 4 3

2
3

5
0

2 3 1 3 2 2 1

2569471 1501039 3568693 1076779 5951369
60480 20160 60480 60480 60480

1751863 8405471 5121853 2085371 2536843
5040 30240 60480 6720 504

i i i i i i i i

i i i i i i i i i

f f f f f f f f f

f f f f f f f

S

f

I

f

− − − − − − − −

− − − − − − − −

= − + − + +

− + − + −

5
1

2 2 2
2 1 1 4

2
3 1 2 1 1 1 1 1

0
3141559 12627689 8055511 668977 139567

20160 60480 60480 30240 30240
221869 1079563 671329 1714561 139567

60480 60480 20160 60480 30240
20591

i i i i i i i

i i i i i i i i i

i

f f f f f f f

f f f f fIS f f f f

f

− − − −

− + − + − + + +

−

+ + − + +

− + − +

+

=

2 2
3 3 2 3 1 3 2

2 2
2 1 2 1 1

2
2 25

2

725461 395389 847303 1650569
15120 60480 20160 60480 60480

57821 2027351 539351 306569 2932409
630 30240 6720 2520 60480

20591 98179
15120

i i i i i i i

i i i i i i i i

i i i

f f f f f f f

f f f f f f f

fIS

f

f f

− − − − − −

− − − − −

+ −

− + − +

− +

+=

+ − +

2 1 2 2 1 2

2 2
2 1 1 1 1 1 2

2 1 2

461113 266659 601771
60480 60480 20160 60480

461113 1050431 291313 1228889 20591
60480 30240 5040 60480 15120

601771 266659 1228
60480 20160

i i i i i i

i i i i i i i i

i i i i

f f f f f f

f f f f f f f f

f f f f

+ − + + + +

− + − + + + −

− − −

− + −

− + − + +

− + +
2 2

1 1

2
1 3 3 1 35

3
2 3 3

2
2 1 2 2

889 291313 299531
60480 5040 6720

221869 847303 395389 725461 20591
60480 60480 20160 60480 15120

1650569 1079563 2027351
60480 60480 30240

i i i i

i i i i i i i i i

i i i i i

f f f

IS

f

f f f f f f f f f

f f f f f

− −

− + + + + + + +

+ − + +

− +

− + − +

+ −

=

+ 1 2 1 1

2 2 2
1 1 1 1

2
3 1 3 2 3 35

4

57821 671329
630 20160

306569 539351 139567 1714561 2932409
2520 6720 30240 60480 60480

5121853 8405471 1751863 5951369
60480 30240 5040

i i i i

i i i i i i i

i i i i i i i

f f f f

f f f f f f f

f fI f f f fS f

+ + − +

+ + − −

+ + + + + +

− +

− + + − +

+ − += − 4

2 2
1 4 2 4 3 4 4 2

2
2 1 2 1 1

1076779
60480 60480

3568693 1501039 2569471 139567 2085371
60480 20160 60480 30240 6720

3141559 2536843 8055511 12627689 6
20160 5040 60480 60480

i i

i i i i i i i i

i i i i i i i

f f

f f f f f f f f

f f f f f f f

+

+ + + + + + + +

+ + + + +

+

− + − + +

+ − − + +
2

2
1 3 2 3 3 1 4 2 4

2
3 4 4 1 5 2 5

5
5

68977
30240

14813989 2982247 9836471 24804943 40203671
20160 1260 6720 60480 30240

4166159 28344089 5324029 17334403
2520 60480 60480 604

i

i i i i i i i i i

i i i i i i i

f

f f f f f f f f f

f f f f f f

S

f

I + + + + + + + + +

+ + + + + + +

− + − +

+

=

− + − 3 5

2 2 2
4 5 5 2 1 2 1

7212409
80 20160

12302761 668977 58316969 36559021 724873
60480 30240 60480 6048 7560

.

0

i i

i i i i i i i

f f

f f f f f f f

+ +

+ + + + + + +


















































+

− + + −






+

    (A13) 
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1 3 3

1 3 2

10

3

625652246900527564859 9505458619090627988189
72844785274060800 728447852740608000

9507517967943533533133 3130783545165186871223
728447852740608000 364223926370304000

130

i i i i

i i i i

f fI f f

f f f

S

f

− + +

+ + + +

= −

+ −

+
2

3 4

1 4 2 4

9941690301995642707 8872052170732477009253
728447852740608000 2913791410962432000

8969401895441394272981 271588474424379185741
2913791410962432000 132445064134656000

25300800689

i i i

i i i i

f f f

f f f f

+ +

+ + + +

+

− +

−
2

3 4 4

1 5 2 5

5196306959 1236790723120202233859
291379141096243200 11655165643849728000

932643697717251472957 3875228907897276887
2913791410962432000 17986366734336000

10340996628529541551

i i i

i i i i

f f f

f f f f

f

+ + +

+ + + +

+

+ −

+ 3 5 4 5

2
5 4 1

4 2

4927899975011358913
112068900421632000 215836400812032000

3955591957604159659 103423663953276096967
3178681539231744000 264890128269312000

5299705740000020791
224137800

i i i i

i i i

i i

f f f

f f f

f f

+ + + +

+ − +

− +

−

+ −

+ 4 3

4 4 4 5

3 2

14827167383164575419
84326400 161877300609024000

120149298543363679627 35955217360537490537
5827582821924864000 17482748465774592000

247931172477585703451
11206890042163200

i i

i i i i

i i

f f

f f f f

f f

− +

− + − +

− +

−

+ −

− 3 3

3 4 3 5

2 3

96931229378392762439
0 112068900421632000

1143858248597364187859 114940848321150183083
5827582821924864000 5827582821924864000

26682911293005738323 3683521
7433141354496000

i i

i i i i

i i

f f

f f f f

f f

− +

− + − +

− +

+

− +

− + 2 4

2 5 1 4

1 5

346038177823
4482756016865280

121221573796778134643 222377682902720186747
1456895705481216000 112068900421632000

7567425717440384561 3955591957604159659
37356300140544000

i i

i i i i

i i i

f f

f f f f

f f f

− +

− + − +

− +

− −

+ − 5

2
2 2 2

1 2 2

12613815631872000
98380484391016190071 3311611232916529587463

9460361723904000 364223926370304000
1120112685403347800557 3365674159325425003583

52031989481472000 10406397896

i

i i i

i i i i

f

f f f

f f f f

+

+ − +

− + +

+ +

− +

1 2 3 1

2 1 1 1

2944000
26614707594697398779 2106642936305224401793

832511831703552 582758282192486400
10702066665498073472573 3577106583060361769087

728447852740608000 104063978962944000

i i i i

i i i i

f f f f

f f f f

+ + − +

− + − +

− +

− +

−
2

1 1

2
4 4 3

10615118341597060366373 1479832118857263560579
208127957925888000 59465130835968000

7120487564252807947 44434030295325378143
3178681539231744000 1165516564384972800

i i i

i i i

f f f

f f f

+ +

− − −

+

+ −

     (A14) 
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4 2 4 1

2
4 3

5335640432737222309 450698762943845856103
37356300140544000 1456895705481216000

1244753877809442799517 1933473108524561292707
2913791410962432000 11655165643849728000

184615026

i i i i

i i i

f f f f

f f f

− − − −

− −

+ −

+ +

− 3 2 3 1

2
3 2

1009678724267 369540661282663048781
1456895705481216000 132445064134656000

11386002965532195365909 1795138265821207839347
2913791410962432000 728447852740608000

8036823462504383

i i i i

i i i

f f f f

f f f

− − − −

− −

+

− +

− 2 1 2

2
1 1

2

88043 1631626449639313364747
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Abstract 
The techniques based on extensions of interval computations allow fast and accurate analysis 
of the behavior of complex systems. Some of the most recent works in this area have presented 
procedures to evaluate systems with smooth non-linearities. We take this approach a step 
further by introducing a methodology that combines Multi-Element Generalized Polynomial 
Chaos (ME-gPC) and Statistical Modified Affine Arithmetic (MAA). This methodology allows 
modeling systems with highly non-linear operators and/or control-flow structures. It has been 
implemented in our modular and automated analysis framework, HOPLITE, so that it can be 
used to estimate the dynamic range, quantization noise and sensitivity of systems containing 
the aforementioned control-flow blocks. With this approach we have obtained in case studies 
with non-linear operators a deviation of only 0.04% with respect to the simulation-based 
reference values, which proves the accuracy of our approach. 
 

Keywords: Interval Computation, Polynomial Chaos, Affine Arithmetic, Digital Signal 
Processing, Fixed-Point, Quantization, FPGA Implementation. 

Introduction 

In an industry where time-to-market is critical, the design and implementation of efficient and 
reliable Digital Signal Processing (DSP) systems can make the difference between success 
and failure. In addition, fixed-point computations are preferred when such systems are 
implemented on FPGAs and ASICs due to the lower implementation cost and power 
consumption, and higher performance with respect to its floating-point alternative. However, 
finding a fast and general way for transforming floating-point system descriptions to efficient 
fixed-point implementations remains an open issue. The analysis and selection of optimized 
word-lengths is an important and time-consuming step in the design of DSP and VLSI 
systems. Studies indicate that fixed-point refinement can take up to 25% to 50% of the overall 
development time [1]. Thus, automating and accelerating this process is strongly desirable. 
 
During the past decades there has been a lot of work on the analytical characterization of the 
different structures of the DSP subsystems using mathematical expressions [1-20]. These 
studies provide guidelines to optimize these blocks, but they fail to provide results for the 
newly-developed (typically complex) structures, as well as for the complete (large) systems. 
To try to overcome this issue, a number of proposals has recently appeared. They are aimed at 
developing fast and accurate computation models aimed at providing the optimized word-
lengths for the specific system that will be implemented. 
 
Figure 1 outlines the main parts of this Word-Length Optimization (WLO) process [16]. 
Three major areas are easily identified: (i) Determining the dynamic range of the signals of 
the system, in order to allocate the integer word-length of each variable; (ii) assigning the 
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number of bits of the fractional word-lengths; and (iii) obtaining the statistical deviation 
(quantization noise) and determining the validity of the results. None of these three areas is 
trivial, and each of them is a large field of research on its own. 
 
 

 
Figure 1. Fixed-point word-length optimization flow 

 
In practice, the WLO process is commonly split in two parts: First, a computational accuracy 
constraint is determined according to the application performance, and then a WLO technique 
is applied using this constraint. Such modern WLO techniques are classified in two groups: 
simulation-based approaches, and analytical (or hybrid) ones.  
 
Simulation-based techniques [2, 3] for modeling the quantization are the most reliable and 
general approaches, but also the slowest. In order to obtain accurate models, large input data 
sets are usually required. This makes simulation-based methods impractical for WLO, since 
estimations must be repeated many times with different combinations of word-lengths as the 
optimization progresses.  
 
Modern analytical or hybrid techniques are several orders of magnitude faster than the 
simulation-based ones, but they are limited a given type of systems [4-7]. They perform 
separate analysis of the word-lengths required for the integer part (to represent the dynamic 
range of the signals) and the fractional one (to comply with the specified round-off 
constraint). The integer word-lengths are determined using range propagation or interval 
arithmetic. The fractional word-lengths are determined using a number of techniques, such as 
the Perturbation Theory [4], System Transformations [7], Arithmetic Transformations [17], 
and Handelman Representations [18]. Different Extensions of Interval Computations based on 
Affine Arithmetic (AA) [5, 6] have also provided very fast and accurate results, but they must 
be applied according to the characteristics of the system to be evaluated (linear, quasi-linear, 
polynomial, or strongly non-linear) [16].  
 
The structure of the full version of the paper will be as follows: The models based on 
extensions of AA used to evaluate the different types of systems will be explained in separate 
subsections of Section 2. It will also be shown that the non-linear computations need the 
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application of Polynomial Chaos techniques to provide accurate results. Section 3 will explain 
some of the main applications that can be performed using our AA-based analysis, such as the 
sensitivity-driven optimization. The tool used for the propagation and computation of the 
results will be briefly desbribed in Section 4. Two of its main features will be highlighted: its 
modular implementation and the gradual computation of the results, since they are of 
particular importance for High Performance Computing (HPC) and the analysis of big data 
applications. Finally, Section 5 will provide the conclusions and summarizes this work. 

Theoretical background on Extensions of Interval Computations  

The evaluation of the quantization techniques using Extensions of Interval Computations has 
been rapidly progressing during the past years, and different new methodologies have been 
suggested to improve the quality and accuracy of the solutions, as well as to broaden the 
scope of the systems that can be addressed using them.  
 
The first of such extensions is Affine Arithmetic (AA). AA has been originally suggested for 
the evaluation and characterization of the linear systems, and has shown to provide among the 
fastest computation times [10, 11]. However, AA is not able to capture of the correlations of 
the nonlinear operations. To overcome this fact, Modified Affine Arithmetic (MAA) has been 
proposed instead [5, 11, 19]. MAA contains higher-order terms that keep track of the results 
of the non-linear operations. However, these higher-order terms are not orthonormal, so the 
propagation of the affine terms provides misleading results.  
 
A key feature for the accurate propagation of the higher-order terms is the incorporation of the 
Polynomial Chaos Expansions (PCE) techniques. The intervals of AA are included in the 
computation as parameters of the orthonormal polynomials of PCE, thus allowing easy 
propagation of the coefficients through the nonlinear system [16, 20]. This approach has been 
applied to dynamic range estimation [20], and to the analysis of the quantization noise for 
small, sequential systems [16]. However, PCE still fails to efficiently handle systems with 
discontinuities, and is not capable of modeling control-flow operations. Multi-Element 
generalized Polynomial Chaos (ME-gPC) is able to produce accurate models for 
discontinuous systems [16], as will be explained below. In this Section the mathematical 
background for AA, MAA, PCE and ME-gPC is given. 
 

Affine Arithmetic (AA) 

An affine form is defined as a polynomial expansion of order one where the independent 
variables are uniformly distributed in the interval [−1, 1]. Affine arithmetic is capable of 
capturing the correlation between intervals after affine operations (i.e. linear). A first-order 
affine form is expressed as [6]: 

∑
=

+=
an

i
iiaaâ

1
0 ε  (1) 

The mean value is given by a0, the terms εi are the independent sources of uncertainty and the 
coefficients ai are the amplitudes of these uncertainties. The uncertainty sources can represent 
the variations of the signal or the RON. The basic operations between two affine forms â y b 
are summarized in Table 1 [5, 6]. The instructions supported by this methodology are either 
linear [5, 6] or smooth non-linear [9], meaning that their behavior can be approximated by 
linear models. The terms nmax refer to the maximum number of noise terms present in the 
affine forms.  
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Table 1. Coefficient propagation rules of Affine Arithmetic 

 
Linear operations (addition, subtraction and constant multiplication) are executed in a precise 
manner. However, after performing the nonlinear operations the temporal correlations of the 
input signals are lost [5]. The result of executing non-linear operations over uniform 
distributions is typically non-uniform so it is theoretically impossible to represent it as a linear 
combination of uniform distributions. In order to alleviate this shortage, MAA [21] introduces 
higher order polynomials to capture the correlations among the signals. 
 

Modified Affine Arithmetic (MAA) 

MAA was initially used for polynomial evaluation and algebraic curve plotting in 2D [21]. 
Given two affine forms: 

aaaâ ε10 += , bbbb ε10
ˆ +=  (2) 

εa and εb are the noise terms bounded in the interval [−1, 1], a0 and b0 are the means of both 
variables and a1 and b1 represent the variations of the signals over the mean values. The 
simplest nonlinear operation is a multiplication of both affine forms: 

baab babababababaf εεεε 11011000
ˆˆ)ˆ,ˆ( +++=⋅=  (3)  

Generalizing for any order, the centered form of the output polynomial is given by: 

∑∑
−

=

−

=

=
1

0

1

0
)ˆ,ˆ(

n

i

m

j

j
b

i
ajibabaf εε  (4) 

It can be seen that this solution is an extension of AA in which all the high-order terms are 
taken into account [5]. In [21], this technique is just applied in the case of multiplications and 
other non-linear operations are obviated. Nevertheless, since the monomials of MAA are not 
orthonormal, the incorporation of the PCE techniques that take into account higher order 
terms when considering different types of operations is also required. Without them, the 
propagation of the gains throughout the system under analysis would not be accurately 
performed. 
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Polynomial Chaos Expansions (PCE) 

Given a set of independent random variables of dimension N, { }Nφφφ ,,, 11 =Φ , and another 
random variable Y, square integrable, such that Y = f(Φ), then Y can be expressed as a 
weighted sum of polynomials as 

)(Φ=∑
∞

i
iiY ψα  (5)  

where each αi is a constant coefficient and each ψi is the i-th polynomial from an orthogonal 
basis [20]. The terms αi are the spectral coefficients of the expansion, and the terms ψi(Φ) are 
the orthonormal polynomial basis, which satisfy the condition 





≠
=

=><
jiif
jiifi

ji 0
,

2ψ
ψψ   (6) 

In practice, the number of terms of the PCE is truncated to a finite number. It depends on the 
dimension of the expansion n (number of independent variables in vector Φ) and the 
maximum order of the polynomials used, p. The selection of the basis depends on the 
probability density functions (gaussian, uniform, gamma, beta, etc.) of the RVs present in the 
system. In particular, for the analysis of a given system with gaussian random variables, 
Hermite basis polynomials provide the most accurate results [22].  
 
The coefficients of the expansion αi in Eq. (5) are computed by applying a Galerkin 
projection operation [16, 19], and solved by applying Monte-Carlo techniques with a small 
number of samples. 
 
Once the random input signals have been defined, and expressed as a function of the ψi(Φ) 
basis polynomials, the next step is to propagate the coefficients through the data flow graph. 
This procedure is exploits the orthogonality properties of the polynomials. The basic 
operations are performed as follows.  
 
Consider two input RVs x̂  and ŷ  expanded in a PCE, 

∑
=

=
m

i
iixx

1
·ˆ ψ , ∑

=

=
m

i
iiyy

1
·ˆ y  (7) 

The computation of the linear operations is straightforward, i.e.: 

iii

m

i
iii byaxzbyaxybxaz ±=⇒±=±= ∑

=1
)·(ˆˆˆ y  (8) 

 
The propagation through the non-linear operations such as the multiplication is not so direct. 
Considering that ẑ  = x̂ · ŷ  and substituting each variable by its correspondent PCE: 

∑∑∑
===

==
m

j
jj

m

i
ii

m

k
kk yxzz

111
···ˆ yyy  (9) 

The coefficients zk are calculated by performing a Galerkin projection [19]:  
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which constitutes a linear system of m equations. It can be expressed in matrix form as: 

Z = A·X,  with A = C·Y (11)  

where A is an m×m matrix and X, Y and Z are the column vectors that correspond to the x̂ , ŷ  
and ẑ  coefficients, respectively. Tensor C(i, j, k) is the same for a given dimension and order, 
so it only has to be calculated once (for instance in a pre-processing stage), and afterwards 
reused when needed, thus notably reducing the required computation time [16]. In addition, a 
number of techniques for accelerating the computation of the C matrix can be applied, 
speeding the overall process even further. The interested reader may find detailed examples of 
the propagation of affine forms using combined PCE + MAA in [16, 19]. 
 

Multi-Element generalized Polynomial Chaos (ME-gPC) 

In many cases, PCE requires an excessively large basis to accurately represent the set of 
values. This happens particularly in the presence of discontinuities, or when many non-linear 
operations appear following each other. To overcome this, ME-gPC is formulated [WK05]. 
This technique partitions the input domain in smaller sub-domains, decomposing the complex 
functions into a set of simpler ones. This enables the efficient use of lower PCE orders to 
model the sub-domains, while still providing very accurate results [16]. 
 
Being B = [−1, 1]n the domain in which Ξ = [ 1ξ , 2ξ , …, nξ ] is defined, the ME-gPC method 
proposes its decomposition in a regular set of non-overlapping elements. Each element will be 
now contained in the domain Bk = ),[ 11

kk ba  × ),[ 22
kk ba   × … × ],[ k

n
k
n ba , where ai and bi are 

respectively the upper and lower bounds of the i-th local random variable. 
 
From this decomposition of the global domain, a local random vector for each element is now 
defined as kζ  = [ k

1ζ , k
2ζ , …, k

nζ ]. Next, in order to take advantage of the properties of the 

Legendre Chaos, each kζ  is re-scaled into a new random vector kξ  = [ k
1ξ , k

2ξ , …, k
nξ ]. This 

vector is equivalent to kζ  but in the domain [−1, 1]n, instead of Bk. 
 
Once a dimension has been partitioned, the new PCE expansions for each sub-domain are 
generated. Each of these expansions has the form 

∑
=

Φ=
m

i
iiuu

1
)~(~)~(~ ξξ   (12) 

where ξ~  is defined [−1, 1]d. To calculate the coefficients iu~  of each new expansion, a linear 
system of equations is solved. This system is generated by choosing m+1 uniform grid points 

iξ
~  in [−1, 1]d. 

 
With the expansions )~(~ ξu  obtained with this method, PCE can be locally applied to the 
different elements. Once the expansions have been computed, the statistical global moments 
can be reconstructed applying Bayes' theorem and the law of total probability. 
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Figure 2 shows an example of the domain decomposition using ME-gPC for the conditional 
inequality x2 ≥ y. 
 

 
Figure 2. Example of domain decomposition using ME-gPC. 

 
So far MEgPC has only been used to estimate the dynamic range in systems without control-
flow structures, and it has been only applied to numerical procedures. In the following 
Sections we will combine MEgPC and MAA to estimate the sensitivity and the quantization 
noise in fixed-point digital systems with control-flow structures, extending the initial analysis 
carried out for linear systems in [6] to non-linear operations and control structures in the Data 
Flow Graph. 
 
This largely broadens the applicability of the probabilistic interval analysis in word-length 
optimization, as it allows for an entire new class of systems to be targeted for modelling and 
optimization [16]. 

DSP Applications of the Extensions of Interval Computations  

Some of the main applications of the Extensions of Interval Computations will be explained 
here, in different subsections, such as Dynamic Range Estimation, Quantization Noise, and 
Sensitivity Analysis in the different types of structures, including systems with discontinuities 
and control-flow structures. 
 

The HOPLITE framework 

In this Section a modular automated word-length optimization tool, HOPLITE, is introduced. 
One of its main objectives is to provide designers flexibility to perform modelling and search 
policies that best suit their objectives [16]. In the different subsections a general overview of 
the HOPLITE work flow will be provided, some of the implementation decisions, modules 
and interfaces of the framework, and a detailed execution example.  
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Table 2 provides a preliminary analysis of the languajes evaluated for its implementation, and 
Figure 3 shows a general overview of the functions included in the HOPLITE framework. 
 

 
Figure 3. The HOPLITE framework work flow 
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Table 2. Language selection: requisites and availability 
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Abstract

We are going to talk about axial Green’s function methods (AGMs) on free grids called axial
lines. These are novel approaches in numerical computations. AGMs that we have developed
for elliptic boundary value problems [3] and the steady Stokes flows [2] in complicated ge-
ometry use axial lines for discretization. These axial lines are parallel to axes and there is
no restriction on their distribution. The salient feature of the methods is that not only one-
dimensional Green’s function for the axially split differential operators is sufficient to solve the
multi-dimensional problems but also the free grids are available. In this talk, short introduction
to AGMs is presented and then we show that the localization [1] of axial lines enables us to
enforce Neumann boundary condition, and refinement of axial lines on separated regions are
readily available as well.

Keywords: Axial Green’s function, Free grids, Axial lines, One-dimensional Green’s function,
Multi-dimensional problem, Boundary condition, Refinement.
Introduction

By the axial Green’s function, we mean that it is one-dimensional Green’s function of an ordi-
nary differential operator defined on lines parallel to axis, belonging to the multi-dimensional
domain. In general, the finite difference method uses this kind of lines, called the grids, but
the admissible grids in this method are so restrictive that the method cannot work unless the
domain is simple or the grids are gradually changing in space. The axial Green’s function meth-
ods(AGM) we have developed work fine in arbitrary domains without deterioration of accuracy,
and furthermore they do even in randomly spacing axial lines.

The use of Green’s function take place in the boundary element(BEM) method, which can re-
duce the dimension of the problem by discretizing the boundary of the domain. This is possible
only when finding the fundamental solution or Green’s function of the multi-dimensional dif-
ferential operator, called partial differential operator. The BEM has been successful in Laplace
operator, Lame operator in linear elasticity, Stokes operator in fluid mechanics, Helmholtz op-
erator, and so on. However, if the material coefficients are functions of space variable, then
the BEM suffers from finding the multi-dimensional Green’s function in the domain or even a
fundamental solution in entire space.

The advantages of AGMs are obvious in two points: (1) Arbitrarily distributed axial lines are
available, which is inconvenient in FDMs, and (2) It is much easier than BEMs to find one-
dimensional Green’s functions. Based on these facts, we are able to implant these advantages
to the refinements of axial lines in some regions of interest. The refined regions can be inde-
pendently handled by using the representation formula for the solution in terms of axial Green’s
functions.
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Axial Green’s function method

For the sake of simplicity, we consider the Poisson problem in 2-dimensional domain Ω as an
example:

−∆u = f, in Ω, (1)

u = u∂Ω, on ∂Ω. (2)

Our interest is laid on the point that this multi-dimensional problem can be reformulated by
one-dimensional problems. First of all, decomposing the multi-dimensional operator −∆ as
two parts by introducing a new variable ϕ(x, y) as follows:

−uxx = ϕ, in Ω, (3)
−uyy = f − ϕ, in Ω, . (4)

From the first equation in (3), we find one-dimensional Green’s functions to represent the

axial line

axial line

x

y

y−

(x̄, ȳ)

Y x̄

X ȳ

x−

Figure 1: Axial lines for AGMs

solution u(x, y) on x−axial line X ȳ and y−axial line Y x̄ associated with a given cross point
(x̄, ȳ) ∈ Ω as shown in Fig. 1:

u(ξ, x̄) =
∫

X ȳ
G(x, ξ; X ȳ)ϕ(x, ȳ) dx + u(x−, ȳ)BX

− (ξ) + u(x+, ȳ)BX
+ (ξ), (ξ, ȳ) ∈ X ȳ, (5)

u(x̄, η) =
∫

Y x̄
G(y, η; Y x̄)(f − ϕ)(x̄, y) dy + u(x̄, y−)BY

−(η) + u(x̄, y+)BY
+(η), (x̄, η) ∈ Y x̄.

(6)

In this case, these representations can be unified in the following form:

u(τ) =
∫ t+

t−
G(t, τ)g(t) dt + u(t−)B−(τ) + u(t+)B+(τ), τ ∈ (t−, t+), (7)

where G(t, τ) is the corresponding one-dimensional Green’s function and B±(τ) is the func-
tion related to the boundary values u(t±). Instead of directly attacking the multi-dimensional
problem in (1) with boundary condition (2), we pay attention to the equations of integral form
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in (3) and (4). That is, after discretizing these integral equations for the unknown ϕ and u, we
can solve the resultant system of equations well using GMRES.

In an analogous way, AGM can be applied to more general problems, for instance, general
elliptic problem with function coefficient, the Stokes flow, and the convection-diffusion problem
with variable coefficients, etc. For more effective computations, we need grid refinements in
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Figure 2: (left) Split domains Ω1 and Ω2 and (right) Interfacial configutration between
split domains for refinement

different subdomains of interest. Let us consider the following problem:

−∇ · (ϵ∇u) + U · ∇u = f, in Ω, (8)

u = u∂Ω, on ∂Ω. (9)

In this case, of course, we can find the axial Green’s function associated with the convection
operator in (8) and thus AGM can be applied on it. If we split domain Ω into Ω1 and Ω2 as
in the left panel in Fig. 2, then the axial lines can be distributed as the right panel in Fig. 2
near the interface between two domains. Since we have the best approximations (5) and (6) of
the solution, these equations enable us to merge the AGM solutions on both domains, Ω1 and
Ω2. It is in fact an obvious advantage that there is no need for the conformity to axial lines
across the interface. Assume U = (2, 3) and the exact solution u(x, y) satisfying (8) and (9) in
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Figure 3: (left) O(h2)-convergence for uh in L2-sense and (right) O(h2)-convergence for
the derivative of uh in L2-sense

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1345



Ω = [0, 1] × [0, 1] as follows:

u(x, y) = 16x(10x)y(1 − y)
(1

2
+ 1

π
tan−1(2/

√
ϵ(0.252 − (x − 0.5)2 − (y − 0.5)2)

)
which has interior steep layer. On the axial lines in Fig. 2, we obtain the second order con-
vergence for the numerical solution uh and its x−derivative uh

x which are illustrated in Fig. 3.
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Figure 4: (left) Refined axial lines and (right) the corresponding numerical solution

In Fig. (4), two types of axial lines are drawn in the left panel, one is refinement near the steep
interior layer of the solution and the other is coarse in a slowly varying region. Both the exact
solution u and the computed solution uh are depicted in the right panel of Fig. 4.
Conclusions

We present the axial Green’ function method called the AGM which has two marked features.
Firstly, arbitrarily distributed axial lines are available for the numerical computation without
any degradation of accuracy. Second, the axial Green’s function can be found easily compared
to the multi-dimensional one. Using these features, we can devise an adaptive refinement of
axial lines for the purpose of the effective computations. We expect that it can be applied to
3-dimensional problems as well.
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Abstract 
Representation is an open issue in GP (Genetic Programming) research area, having close 
relationships with its performance improvements. This paper introduces a novel GP 
framework called model-based grammatical evolution (MGE) as well as the principle it obeys. 
In MGE, individuals take the form of sequences of productions, therefore providing means for 
structural analysis and semantic reuses. To certify the effectiveness of MGE, comparisons 
with some other GP variants like classical grammatical evolution (CGE), integer 
representation GE are also conducted.  
 
Keywords: Genetic Programming, Grammatical Evolution, Model, Finite Sate Automaton. 

Introduction 

Genetic Programming (GP) [1] as one of the most important automatically programming 
approaches constructs programs by means of evolution principle. It generates populations of 
chromosomes in terms of genetic algorithm (GA) [2], chooses at last the fittest individual from 
the final population for the desired solution. So, GP could be recognized as a GA variant, but it 
is much simpler than GA in delineating complex structures, therefore having been applied in a 
wide range of fields like mathematical modeling, circuit design, pattern recognition, and 
financial prediction, etc. [1][3]-[8].  
Up to now, GP grows up into a big family comprising of a large number of variants such as 
classical GP, gene expression programming (GEP), multi-expression programming (MEP), 
grammatical evolution (GE), and so on [4]-[8]. However, while using them extensively, we 
should take notice of the following deficiencies. 

• Many GPs like tree based GP and grammar based GP are difficult to use for the sake of 
their complex representations.   

• Most of existing GPs are devised from the principle of software testing, providing few 
means dealing with semantics.  

• Some GP variants like GEP are easy to use, but their expressiveness is very limited. For 
instance, GEP, as far as the expressiveness is concerned, can essentially be described by 
GE.  

In view of these, we will provide a novel GP framework, which was called model based GE, 
for coping with the abovementioned problems.  It borrows some ideas of model checking. We 
will introduce the principle abided by and a sample model-based GE in the following parts. 
Finally, to demonstrate the effectiveness of the present approach, comparisons with some other 
GP variants like IGE (Integer representation GE) [7], PIGE and CGE (Classical GE) [4][5][8] 
are conducted.  
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Modeling Principle 

Model approach has long been regarded as a powerful solution to system representation, 
system analysis, and software development. GP as program generation tool can naturally 
benefit from using of model approach. By model approach, we mean [9]:  
1. Delineating both the problem and property of concern, say M and ϕ , in the context of some 

description model;  
2. Establishing that ϕ=|M holds. When M is a transition system, our goal is to prove 

ϕ=|, SM holds for some special state S in M. 

Consequently, GP can be modeled as follows based on the above model checking strategy.  
1. Constructing a finite state transition system M for the concerned GP; 
2. Delineating what we are interested; 
3. Designing an algorithm suitable to check the satisfaction of ϕ=|, SM .   

Model-based GP 

So far, we have obtained two model-based GP variants called HGP (Hoare Logic-based 
Genetic Programming) [10][11] and MGE (Model-based Grammatical Evolution) [12]-[14] in 
terms of the principle of part II. The unified method is summarized as the following steps. If 
having further interest, one can refer to [12] [13] for the details.  
1. Constructing a transition diagram G= <V, E> with some vertex Vv0 ∈ as the start symbol 

by steps 2 through 5. Here V and E are sets of vertices and edges, respectively.  
2. Regarding the states of V either as sets of logic formulas or as sets of sentential forms;  
3. Regarding e in E either as programs or as productions of some context-free grammar. In this 

case, both states and edges could be used to define Hoare triples or grammatical deviations. 
4. Defining relations among states to be connected.  
5. The formal framework obtained from steps 2 through 4 is suitable for either verifying and 

generating the desired programs or deriving programs grammatically;  
6. Constructing genetic operations over the formal framework of step 5, we obtain either HGP 

or MGE [10]-[13].  
For instance, the transition matrix given in table 1 is the model of languages of the grammar in 
Figure 1. This model covers all the leftmost derivations of the concerned grammar. According 
to the matrix, we can solve certain regression problems (see the following part) as shown in 
Figure 2.  
 

 
 

(1) <expr>::= <expr><op><expr>            (11)         (3) <pre_op>::= sin                            (31) 
                       |  (<expr><op><expr>)       (12)                                    |cos                           (32) 
                       | <pre_op> (<expr>)            (13)                                    | exp                         (33) 
                       | <var>                                 (14)                                    | log                          (34)  
(2) <op>::= +                                              (21)         (4) <var>::= y                                     (41) 
                   |-                                               (22)                             |1.0                                  (42) 
                   | *                                             (23) 
                   | /                                              (24) 
 

Figure 1   grammar of expression 
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Table 1  Transition Matrix 

S 1 2 3 4 5 6 7 8 9 10

ε 1 1,2 3,4 4 5,6 6 1,7 8,9 9 1,10

11 2  

12 2  

13 8  

14 3  

21   7

22   7

23   7

24   7

31   10

32   10

33   10

34   10

41   5

42   5

 

 

Figure 2 Screenshot of the method with population size=100, generation size=100.  

Experiments 

In this part, we will demonstrate the performance improvement of the present approach 
through comparisons of it with CGE[5], IGE [7] and PIGE in solving regression problems. 
The grammar used here is given in figure 1, and the objective is to find Eq. 1 based on 20 
sample input values {-1, -0.9, -0.8, -0.76, -0.72, -0.68, -0.64, -0.4, -0.2, 0, 0.2, 0.4, 0.63, 0.72, 0.81, 0.90, 
0.93, 0.96, 0.99, 1} in the range [-1…1].  

f(y)= yyyy +++ 234                          (Eq. 1)  

The method is as follows: constructing the grammar model as shown in table 1; analyzing the 
structure of the model, and constructing building-block based GE; running the obtained GE 
over sample input values will result in figures 3 to 4 [12].  It follows from these figures that 
the present approach has advantages over the other GE variants in efficiency.  
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Figure 3   Average fitness of 100              Figure 4   Time used of 100 individual 
runs of the four GEs in Eq. 1                     runs of the four GEs in Eq. 1                                                                        

Conclusions 

This paper introduces the principle MGE abides by, and application method in solving real-
world problems. Experiment demonstrates that MGE has advantage over classical GE, integer 
representation GE, and PIGE in performance improvement. Our future work will focus deeply 
on its semantic computing, and unifications with other GP variants.  
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Abstract

In this paper, transient dynamic analysis of micro-cracks of arbitrary shape in two-dimensional,
linear piezoelectric fiber reinforced composite materials is presented. Interface cracks between
fiber and matrix as well as cracks inside the matrix and fibers are analyzed. A symmetric
Galerkin time-domain boundary element method in conjunction with a multi-domain technique
is developed for this purpose. The time discretization is performed by a collocation method and
time-domain fundamental solutions for piezoelectric materials are applied. An explicit time-
stepping scheme is obtained to compute the discrete boundary data including the generalized
crack-opening-displacements (CODs). Iterative solution algorithms are implemented to treat
the non-linear semi-permeable electrical crack-face boundary conditions and for a crack-face
contact analysis at time-steps when a physically unacceptable crack-face intersection occurs.
Numerical examples are presented to reveal the effects of the micro-cracks, the material com-
binations and the dynamic loading on the intensity factors and the scattered wave fields.

Keywords: piezoelectric fiber composites, interface cracks, impact loading, complex intensity
factors, time-domain BEM.
Introduction

Piezoelectric materials are widely applied in smart structures like transducers, actuators and
sensors by utilizing the property of converting electrical energy into mechanical energy and
vice versa. In recent years piezoelectric fiber reinforced materials have received increasing
attention. A special class of such composites combines piezoelectric ceramics or polymers
as active fibers with passive non-piezoelectric materials as matrix. Fiber reinforced materials
can be optimized to satisfy the high performance requirements by taking advantages of the
most beneficial properties of each constituent. Piezoelectric ceramics are very brittle with low
fracture toughness and micro as well as macro cracks may be induced during the manufacturing
and under the in-service condition. Beside cracks inside the homogeneous matrix and fibers,
interface cracks play an important role for the design and safety of real structures. Since the
electrical permittivity of the crack medium has a significant influence on the intensity factors the
crack-face boundary conditions have to be described properly. Although the analysis of cracks
in homogenous piezoelectric solids under static and dynamic loadings has been presented by
many authors the corresponding analysis of interface cracks in piezoelectric fiber reinforced
materials is rather limited due to the problem complexity. This paper presents such an analysis
by using a hypersingular symmetric Galerkin boundary element method (SGBEM) for crack
problems in two-dimensional (2D), fiber reinforced and linear piezoelectric solids.
Problem statement and numerical solution algorithm

We consider a piecewise homogeneous linear piezoelectric fiber-matrix structure with cracks of
arbitrary shape. In the absence of body forces, free electric charges and using quasi-electrostatic
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assumption, the cracked solid satisfies the generalized constitutive equations

σiJ(x, t) = Cλ
iJKluK,l(x, t) (1)

and the generalized equations of motion

σiJ,i(x, t) = ρλδ∗JK üK(x, t), δ∗JK =
{
δjk, J = j; K = k,
0, otherwise, (2)

the initial conditions
uI(x, t = 0) = u̇I(x, t = 0) = 0, (3)

the boundary conditions
uI(x, t) = ūI(x, t), x ∈ Γu, (4)

tI(x, t) = t̄I(x, t), x ∈ Γt, (5)

and the continuity as well as the equilibrium conditions on the interface between the fiber and
the matrix except the crack-faces

uII(x, t) = uIII (x, t), x ∈ Γif , (6)

tII(x, t) = −tIII (x, t), x ∈ Γif , (7)

with the lower case letter subscripts j ∈ {1, 2} and the capital letter subscripts J ∈ {1, 2, 4},
respectively. The generalized displacements uI , the generalized tractions tI , the generalized
stresses σiJ and the generalized elasticity tensor Cλ

iJKl for a homogenous domain Ωλ (λ =
1, 2, ..., N) are defined by

uI =
{
ui, I = i (mechanical displacements)
ϕ, I = 4 (electrical potential) , (8)

σiJ =
{
σij, J = j (mechanical stresses)
Di, J = 4 (electrical displacements) , (9)

CiJKl =


cijkl, J = j; K = k (elasticity tensor)
elij, J = j; K = 4 (piezoelectric tensor)
eikl, J = 4; K = k (piezoelectric tensor)
−κil, J = K = 4 (electrical permittivity tensor)

, (10)

tI(x, t) = σjI(x, t)ej(x). (11)

In the Eqs. (1)-(11), ej , ui, σij , ϕ and Di are the outward unit normal vector, the mechanical
displacements, the stresses, the electrical potential and the electrical displacements. Further, ρ,
Cijkl, eijk and κij represent the mass density, the elasticity tensor, the piezoelectric tensor and
the dielectric permittivity tensor. Γt and Γu define the external boundaries where the tractions
tI and the displacements uI are prescribed, while Γif is the interface between the homogenous
domains Ωλ (λ = 1, 2, ..., N).

On the crack-faces three different electrical boundary conditions are considered. As an exten-
sion of the mostly applied traction-free crack-face boundary condition in linear elastic fracture
mechanics it has been suggested in [4] to consider the crack as impermeable for the electrical
field

D2(x ∈ Γc+ , t) = D2(x ∈ Γc− , t) = 0. (12)
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Γc± denotes the upper and the lower crack-faces. Another in [5] introduced model treats the
crack as fully electrical permeable

D2(x ∈ Γc+ , t) = D2(x ∈ Γc− , t), ϕ(x ∈ Γc+ , t)− ϕ(x ∈ Γc− , t) = 0. (13)

This implies identical potentials on both crack-faces or in other words the crack exists only for
the mechanical and not for the electrical field. In both models, the limited dielectric properties
of the interior of the crack are not taken into account. Due to this fact a more realistic semi-
permeable crack-face boundary condition has been introduced as [2]

D2(x ∈ Γc+ , t) = D2(x ∈ Γc− , t) = −κc
ϕ(x ∈ Γc+ , t)− ϕ(x ∈ Γc− , t)
u2(x ∈ Γc+ , t)− u2(x ∈ Γc− , t) , (14)

where κc = κrκ0 is the product of the relative permittivity of the considered crack medium
κr and the permittivity of the vacuum κ0 = 8.854 · 10−12C/(V m). D2 and u2 are the normal
components of the electrical displacements and the mechanical displacements on the crack-
faces. This crack-face boundary condition has been further improved by including electrostatic
tractions [3], [1]. The generalized crack-opening-displacements (CODs) are defined by

∆uI(x, t) = uI(x ∈ Γc+ , t)− uI(x ∈ Γc− , t). (15)

Throughout the paper, a comma after a quantity represents spatial derivatives while a dot over
the quantity denotes time differentiation. Lower case Latin indices take the values 1 and 2 (elas-
tic), while capital Latin indices take the values 1, 2 (elastic) and 4 (electric). Unless otherwise
stated, the conventional summation rule over repeated indices is implied.
Time-domain boundary integral equations and fundamental solutions

A spatial Galerkin-method is implemented to solve the initial-boundary value problem with the
boundary element method. This demands that the time-domain boundary integral equations
(BIEs) are treated in a weighted residual sense. The generalized time-domain displacement and
traction BIEs can be written as [8]∫

Γ

ψ(x)uJ(x, t)dΓx =

∫
Γ

ψ(x)
∫
Γb

[
uGIJ(x, y, t) ∗ tI(y, t)− tGIJ(x, y, t) ∗ uI(y, t)

]
dΓydΓx

+
∫
Γ

ψ(x)
∫

Γc+

tGIJ(x, y, t) ∗∆uI(y, t)dΓydΓx, (16)

∫
Γ

ψ(x)tJ(x, t)dΓx =

∫
Γ

ψ(x)
∫
Γb

[
vGIJ(x, y, t) ∗ tI(y, t)− wGIJ(x, y, t) ∗ uI(y, t)

]
dΓydΓx

+
∫
Γ

ψ(x)
∫

Γc+

wGIJ(x, y, t) ∗∆uI(y, t)dΓydΓx, (17)
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where ψ(x) is the weight or test function, Γb = Γu + Γt + Γif , an asterisk denotes the Riemann
convolution

g(x, t) ∗ h(x, t) =
t∫

0

g(x, t− τ)h(x, τ)dτ (18)

and the dynamic displacement, traction and higher-order traction fundamental solutions are
defined by

tGIJ(x, y, t) = CqIKreq(y)uGKJ,r(x, y, t), (19)

vGIJ(x, y, t) = −CpIKsep(x)uGKJ,s(x, y, t), (20)

wGIJ(x, y, t) = CpIKsep(x)CqJLreq(y)uGKL,sr(x, y, t). (21)

The fundamental solutions possess the following spatial symmetry properties

uGIJ(x, y, t) = uGJI(y, x, t), (22)

tGIJ(x, y, t) = −vGIJ(x, y, t) = vGJI(y, x, t), (23)

wGIJ(x, y, t) = wGJI(y, x, t). (24)

These symmetry properties (22)-(24) can be used to derive a spatial symmetric Galerkin-method.
This is achieved if the displacement Galerkin-BIEs (16) are applied on the external boundary
Γu where the generalized displacements are known and the interface Γif for the generalized
tractions, while the traction Galerkin-BIEs (17) are used on the external boundary Γt where the
generalized tractions are prescribed and the interface Γif for the generalized displacements.

The time-domain fundamental solutions for homogeneous linear piezoelectric solids [7] are
implemented in this work. They are expressed in the 2D case by a line integral over a unit circle
as

uGIJ(x, y, t) = H(t)
4π2

∫
|n|=1

3∑
m=1

Pm
IJ

ρcm

1
cmt+ n · (y− x)dn, (25)

where H(t), n, cm and Pm
IJ denote the Heaviside step function, the wave propagation vector,

the phase velocities of the elastic waves and the projector. By integration by parts and applying
the properties of the time convolution the time-domain generalized displacement fundamental
solutions can be divided into a singular static and a regular dynamic part as

uGIJ(x, y, t) ∗ f(t) = uSIJ(x, y)f(t) + uDIJ(x, y, t) ∗ ḟ(t). (26)

In the same way, the traction and the higher-order traction fundamental solutions can also be
divided into their singular static and regular dynamic parts [8].
Numerical solution algorithm

To solve the time-domain BIEs (16) and (17) a numerical solution procedure is presented in the
following. The Galerkin-method is used for the spatial discretization while a collocation method
is utilized for the temporal discretization [9]. The piezoelectric solid is divided into several sub-
domains with homogeneous material properties and to each sub-domain the time-domain BIEs
(16) and (17) are applied. For the spatial discretization, the crack-faces, the external bound-
ary of each homogeneous sub-domain and the interfaces of the cracked solid are discretized
by linear elements. Linear shape functions are also used for the temporal discretization in the
present analysis. At the crack-tips inside a homogeneous sub-domain, special crack-tip ele-
ments are applied to describe the local behaviour of the generalized CODs near the crack-tips
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properly. This ensures an accurate and a direct calculation of the intensity factors from the nu-
merically computed CODs. On the other hand, the asymptotic crack-tip field in the case of an
interfacial crack between two dissimilar piezoelectric materials shows different oscillating and
non-oscillating singularities in the generalized stress field [6], which makes an implementation
of special crack-tip elements quite cumbersome. For this reason, only standard elements are
applied at the crack-tips for interface cracks. The strongly singular and hypersingular boundary
integrals can be computed analytically. By using linear temporal shape-functions, time integra-
tions can also be performed analytically. Only the line integrals over the unit circle arising in
the regular parts of the dynamic fundamental solutions have to be computed numerically by the
standard Gaussian quadrature.

After temporal and spatial discretizations and considering the initial conditions the following
systems of linear algebraic equations can be obtained for each sub-domain Ωζ (ζ = 1, 2, ..., N)

CζuKζ = US
ζ tKζ − TS

ζ uKζ + TS
ζ ∆uKζ

+
K∑
k=1

[
UD;K−k+1
ζ tkζ − TD;K−k+1

ζ ukζ + TD;K−k+1
ζ ∆ukζ

]
, (27)

DζtKζ = VS
ζ tKζ −WS

ζ uKζ + WS
ζ ∆uKζ

+
K∑
k=1

[
VD;K−k+1
ζ tkζ −WD;K−k+1

ζ ukζ + WD;K−k+1
ζ ∆ukζ

]
. (28)

By invoking the continuity conditions (6) and (7) on the interface Γif as well as (12), (13) or
(14) on the crack-faces Γc+ and Γc− and by considering the boundary conditions (4) and (5),
the following explicit time-stepping scheme can be obtained

xK = (Ξ1)−1

Υ1yK +
K−1∑
k=1

(
ΛK−k+1tk −ΘK−k+1uk

), (29)

where Ξ1 and Υ1 are the system matrices, yK is the vector of the prescribed boundary data while
xK represents the vector of the unknown boundary data, which can be computed time-step by
time-step.

The dynamic intensity factors for a crack-tip inside a homogeneous domain or on the interface
are defined in [6] and [8]. They are obtained directly from the numerically computed general-
ized CODs.
Numerical examples

In the following, numerical examples are presented and discussed. To measure the intensity of
the electrical loading the parameter

χ = e22

κ22

D0

σ0
(30)

is introduced, with σ0 and D0 being the mechanical and electrical loading amplitudes. For
convenience, the mode-I, the mode-II and the mode-IV dynamic intensity factors for crack-tips
inside a homogeneous sub-domain are normalized by

K∗I (t) = KI(t)
K0

, K∗II(t) = KII(t)
K0

, K∗IV (t) = e22

ε22

KIV (t)
K0

. (31)
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In the same way, the real part K1 and the imaginary part K2 of the complex dynamic stress
intensity factor and the electrical displacement intensity factor K4 for interface cracks are nor-
malized by

K∗1(t) = K1(t)
K0

, K∗2(t) = K2(t)
K0

, K∗4(t) = eI22
εI22

K4(t)
K0

, (32)

with K0 = σ0
√
πa and a is the half length of an internal crack.

A fiber reinforced plate with a crack near the fiber

In the first example as shown in Fig. 1, we consider a fiber reinforced plate with a crack of
length 2a near the fiber. The geometry of the cracked plate is determined by h = 16.0mm,
w = 20.0mm, r = 5.0mm and a = r.

)(t

h
a2

w

r

ATip BTip

II

I

Figure 1: A fiber reinforced plate with a crack near the fiber

A tensile impact loading of the form σ(t) = σ0H(t) is applied on the upper boundary, where
H(t) denotes the Heaviside step function. The normal components of the mechanical displace-
ments are fixed on the left, right and lower boundary. As material for the matrix Epoxy is
chosen, which has the following material parameters

C11 = 8.0GPa, C12 = 4.4GPa, C22 = 8.0GPa, C66 = 1.8GPa,
κ11 = 0.0372C/(GVm), κ22 = 0.0372C/(GVm) (33)

and the mass density ρ = 1260kg/m3. For the fiber three different configurations are investi-
gated. In the first case we consider a circular hole. In contrast, a piezoelectric Zirconate Titanate
(PZT-5H) with the material constants

C11 = 126.0GPa, C12 = 84.1GPa, C22 = 117.0GPa, C66 = 23.0GPa,
e21 = −6.5C/m2, e22 = 23.3C/m2, e16 = 17.0C/m2,

κ11 = 15.04C/(GVm), κ22 = 13.0C/(GVm) (34)

and the mass density ρ = 7500kg/m3 is applied in the second case for the fiber. To point out
the influence of the hole and the piezoelectric fiber on the dynamic intensity factors Epoxy is
chosen for the fiber in the third computation. This corresponds to a crack in a homogeneous
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plate. The spatial discretization of the external boundary is performed by an element-length of
1.0mm. The circular interface and the upper crack-face are approximated by 20 elements. A
normalized time-step of cL∆t/h = 0.06 is chosen, where cL is the longitudinal wave velocity.
The numerical results of the time-domain BEM are shown in Fig. 2.
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Figure 2: Normalized dynamic stress intensity factors of the three investigated configura-
tions

The normalized dynamic mode-I and mode-II stress intensity factors of both crack-tips show a
similar behavior. The curves of the homogeneous case are between the corresponding results of
the fiber and hole configuration. The peak values of the left and the right crack-tip are nearly
identical. In contrast, the mode-I stress intensity factors of the plate with the fiber and the
hole show significant differences between both crack-tips. The right crack-tip is shielded by
the hole which results in the lowest maximum peak value of all normalized dynamic mode-I
stress intensity factor curves. On the other side the highest dynamic mode-II stress intensity
factor is obtained. As clearly seen in Eqs. (33) and (34) the piezoelectric Zirconate Titanate
has significant higher elastic constants than Epoxy. As a consequence the fiber increases the
stiffness of the whole rectangular plate. Nevertheless the highest normalized dynamic mode-I
stress intensity factor is obtained at the right crack-tip for the fiber configuration.
A square plate with a crack across the interface between the fiber and the matrix

In the next example a square plate with a crack across the interface between the fiber and the
matrix is investigated. As depicted in Fig. 3 the cracked plate is subjected to an impact tensile
loading σ(t) = σ0H(t) normal to the crack-faces on the upper and the lower boundary. On
the left and the right boundary the mechanical stresses are zero. The geometrical data are
h = 20.0mm, r = h/2 and 2a = 4.8mm.

As in the first example the material properties given in Eqs. (33) and (34) are considered for
the matrix and the piezoelectric fiber. For spatial discretization the external boundary and the
interface are discretized by a uniform mesh with an element-length about 1.0mm. The upper
crack-face is divided into 16 elements. A normalized time-step cL∆t/h = 0.06 is used. The
crack-faces are treated as electrically impermeable described by Eq. (12). The normalized
dynamic intensity factors obtained by the time-domain BEM are given in Fig. 4.

As clearly observed the normalized dynamic stress intensity factors for the left and the right
crack-tip show a quite different behavior. The dynamic stress intensity factor for the right
crack-tip is considerably larger than that for the left crack-tip. This is very interesting since the
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Figure 3: A crack across the interface between the fiber and the matrix in a square plate
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Figure 4: Normalized dynamic intensity factors of the left (A) and the right (B) crack-tip

elastic constants of the piezoelectric fiber (PZT-5H) are much higher than those of the matrix
(Epoxy). The left crack-tip is inside the passive non-piezoelectric matrix and as a consequence
the electrical displacement intensity factor is zero. Although the cracked plate is subjected to a
pure mechanical impact loading a significant electrical displacement intensity factor is obtained
at the right crack-tip. This is mainly induced by the coupling between the mechanical and the
electrical field as well as the transient dynamic effects.
Interface crack in a square plate between the fiber and the matrix

In the last numerical example, we consider an interface crack in a square plate between the
central fiber and the matrix as shown in Fig. 5. The geometry is prescribed by h = 20.0mm,
r = h/2 and 2a = 14.0mm. On the upper and the lower boundary an impact tensile loading
σ(t) = σ0H(t) is applied.
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Figure 5: An interface crack in a square plate between the central fiber and the matrix

PZT-5H with the material properties given in Eq. (34) is used for the fiber (domain II). Barium
Titanate (BaTiO3) with the material constants

C11 = 150.0GPa, C12 = 66.0GPa, C22 = 146.0GPa, C66 = 44.0GPa,
e21 = −4.35C/m2, e22 = 17.5C/m2, e16 = 11.4C/m2,

κ11 = 9.87C/(GVm), κ22 = 11.2C/(GVm) (35)

and the mass density ρ = 5800kg/m3 is chosen for the matrix (domain I). The external bound-
ary and the interface are divided into elements with a length about 1.0mm. The interface crack
is divided into 20 elements. A normalized time-step cL∆t/h = 0.06 is used.
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Figure 6: Normalized dynamic intensity factors of the interface crack

The normalized dynamic intensity factors for the impermeable (ip.), permeable (p.) and semi-
permeable (sp.) crack-face boundary conditions (12)-(14) are shown in Fig. 6. The relative
permittivity κr = 40 is used in the computations for the semi-permeable crack-face conditions.
The elastic waves induced by the mechanical impact need some time to reach and excite the
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crack. The global behavior of the dynamic intensity factors is very similar. It can be clearly
seen, that the electrical permittivity of the medium inside the crack has a significant influence.
Here again a high electrical displacement intensity factor is obtained even for a pure mechanical
impact loading.
Conclusions

The transient dynamic analysis of piezoelectric fiber composites with cracks of arbitrary shape
is presented in this paper. The developed symmetric Galerkin time-domain BEM is an attractive
tool to compute the dynamic intensity factors. The formulation is general without limitations
on the crack geometry, loading configuration and poling directions. The investigated numerical
examples indicate a significant influence of the piezoelectric fiber and the transient dynamic
loading on the normalized intensity factors.
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Abstract

In this paper, the values of Beta function B(x, y) at (−n, y), (x,−m), (−n,−m) for n,m =
0, 1, 2, · · · , x, y 6= 0, 1, 2, · · · are redefined and some recurrence formulas on the partial deriva-
tives Bp,q(x, y) = ∂q+p

∂xp∂yq
B(x, y) of the Beta function are established in Mathematica,where p, q

are the positive integers, and x, y are complex numbers, When x = n, n+ 1
2 , y = m,m+ 1

2 and
n,m = 0,±1,±2, · · · , Bp,q(x, y) can be expressed as Riemann zeta function. We provide a fast
algorithm, give its implementation in Mathematica, obtain closed forms of many generalized
integrals and achieve high-precision calculation of these integrals.

Keywords: Riemann zeta function; Beta Function; Partial derivatives of the Beta Function;
high-precision.
Introduction

In Mathematical software such as Mathematica, Maple and Matlab there are special functions,
and the Beta function is one of them. By partial derivatives of the Beta function some general-
ized integral can be calculated. For example∫ 1

0
tx−1(1− t)y−1lnpt lnq(1− t)dt =Bp,q(x, y), (1.1)

where Bp,q(x, y) = ∂p+q

∂xp∂yq
B(x, y). However, we note that although the following integral exists

∫ 1

0
t−2(1− t)−2lnpt lnq(1− t)dt (1.2)

for integer p, q ≥ 2, but Bp,q(−1,−1) =∞(D[D[Beta[xx, yy], {xx, p}]/.xx→ −1{yy, q}]/.
yy → −1) in Mathematica. By Mathematica symbolic integral, the closed form of the integral
(1.2) can also be obtained for smaller p, q, but very time consuming, and the closed form of
the integral (1.2) are difficult to obtain for larger integer p, q. By closed form, we mean that the
integral can be expressed analytically in terms of a finite number of Riemann zeta functions and
some constant π and the Euler-Mascheroni constant γ, etc.

The Beta function was the first known scattering amplitude in string theory, first conjectured by
Gabriele Veneziano. It also occurs in the theory of the preferential attachment process, a type
of stochastic urn process[1,2], the supersymmetric gauge theories[3] and other physical[4-5].

For Bp,q(x, y) we have established a recurrence formula by the neutrix calculus[6-8]. In this
article, in Mathematica, we give the function DBeta of the calculating Bp,q(x, y) for positive
integers p and q and complex numbers x and y. Through a number of examples show that
our program is very effective is better in the calculation of the closed form and the numerical
integration.
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In the following sections, we introduce additional definitions of the Beta function, some re-
currence formulas and an algorithm for calculating the values of partial derivatives of the Beta
function.
Software Summary

Manuscript title: Remark on Beta Function and it’s Partial Derivatives in mathematca.

Authors: Huizeng Qin, Youmin Lu Nina Shang

Title of program: BetaAll (for computing the Beta Function B(x, y) in all complex values of
x and y), DBeta (for computing partial derivatives ∂p+q

∂xp∂yq
B(x, y) of the Beta Function in all

complex values of x and y).

Licensing provisions: None

Computer: ACPI Multiprocessor PC.

Operating system: Microsoft windows XP, but does not depend on the particular operating
system.

Programming language used: Mathematica 9

Memory required to execute with typical data: 2 Megabytes.

CPC Library Classification: 6.5 Software including Parallel Algorithms

Solution method: For the partial derivatives of the Beta Function, the recurrence formulas
(2.5),(2.6), (2.7)-(2.9) and (2.12) in this paper are employed. BetaAll is composed of the fol-
lowing five key subprograms: DBeta, PolyGammaAmend, DPochhammer, DBeta1 and DBeta2.
BetaAll is based on the formulas (2.2)-(2.4) and Beta in Mathematica. PolyGammaAmend is
based on the formulas (2.13)-(2.20). DPochhammer is based on the formula (2.11). DBeta1 is
based on the formulas (2.5) and (2.6) for x and x+ y 6= 0,−1,−2, · · · . DBeta2 is based on the
formulas (2.7)-(2.9) and (2.12) for x = −1,−2, · · · or y = −1,−2, · · · or x+y = −1,−2, · · · .
Nature of the problem: The Beta function B(x, y) is a very important special function. Many
mathematical softwares have defined inherent function (for exampleBeta[x, y] in Mathematica)
for computing the Beta function B(x, y). However, wnen x = −1,−2, · · · or y = −1,−2, · · · ,
Beta[x, y] is not defined in Mathematica, and similar problem exists in other mathematics soft-
ware. In addition, it is possible to use symbolic deferentiation and integration in Mathematica
to obtain the partial derivatives of the Beta function, but it is very inefficient in speed and can
rarely get the closed forms(it cannot get the closed form although it exists). Therefore, we
give an algorithm that calculates the values of Beta function and its partial derivetives in the
entire complex plane. In this way, one can obtain the closed forms of all integrals that can be
expressed in terms of partial derivatives of Beta function.

Typical running time: The running time of BetaAll depends strongly on p, q, x, y and the number
of bits required by computation precision. BetaAll is 30-10000 times faster than Integrate in
Mathematica. As the number of bits for precision increases, the advantage of BetaAll becomes
more significant.

The purpose of the program design: This process is designed to calculate the values of the
partial derivatives of the Beta function. Thus, it can be used to achieve fast and high-precision
calculation of generalized integrals that can be represented in terms of partial derivatives of
the Beta function, regardless of computing power. The speed of this process is far superior to
Integrate and NIntegrate in Mathematica.
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Additional Definition and a Recurrence Formula of Partial derivatives of the Beta Func-
tion

The values of x and y must be real and non-negative for the Beta function B(x, y) in Matlab.
Although they may be complex in Mathematica and Maple, the definitions there

B(−n, y) =∞, B(x,−m) =∞, B(−n,−m) =∞, n,m = 0, 1, 2, · · · , (2.1)

where x and y is not an integer, lead to the following unreasonable results:

B(−1, 1
2) =∞, B(−3

2 ,
1
2) = 0, B(−1, 5

2) =∞, B(−3
2 ,

5
2) = π.

To remedy this problem, it is necessary to modify (2.1). For this reason, we do give some
additional definitions and results[9-12].

For B(x, y) the following definitions are given for x > 0, y > 0 and n,m = 1, 2, · · · :

B(n,−m) = B(−m,n) =
n−1∑

l=0,l 6=m
C l
n−1

(−1)l
l −m

,m = 0, 1, 2, · · · , n = 1, 2, · · ·

=


(−1)m(m−1)!(n−m)!

n! , n = 1, 2, · · · ,m,m = 1, 2, · · ·
(−1)n(m−1)!(Hn−Hm−n−1)

n!(m−n−1)! , n = m+ 1,m+ 2, · · · ,m = 1, 2, · · · , n (2.2)

B(−n, y) = (−1)nCn
y−1 ((y − n− 1)B0,1(y − n− 1, 1) +Hn) ,
y 6= 0,−1,−2, · · · ,

B(x,−m) = B(−m,x), x 6= 0,−1,−2, · · · ,
(2.3)

where Hn =
n∑
l=1

1
l
, and

B(−n,−m) = −
m−1∑
i=0

(
n+ i
i

)
1

m−i −
n−1∑
j=0

(
m+ j
j

)
1

n−j . (2.4)

We obtain the following three groups of recurrence formulas of Bp,q(x, y).
I. For integers q, p ≥ 1 and complex numbers x, y satisfying x, y, x+ y 6= 0,−1,−2, · · · ,

B0,q(x, y) =
q−1∑
j=0

Cj
q−1

(
ψ(q−1−j) (y)− ψ(q−1−j) (x+ y)

)
B0,j(x, y),

Bp,q(x, y) =
q−1∑
j=0

Cj
q−1

(
ψ(q−1−j) (y)− ψ(q−1−j) (x+ y)

)
Bp,j(x, y)

−
p−1∑
k=0

Ck
p

q−1∑
j=0

Cj
q−1ψ

(p+q−1−k−j) (x+ y)Bk,j(x, y).

(2.5)

or
Bp,0(x, y) =

p−1∑
k=0

Ck
p−1(ψ(p−1−k)(x)− ψ(p−1−k)(x+ y))Bk,0(x, y),

Bp,q(x, y) =
p−1∑
k=0

Ck
p−1(ψ(p−1−k)(x)− ψ(p−1−k)(x+ y))Bk,q(x, y)

−
q−1∑
j=0

Cj
q

p−1∑
k=0

Ck
p−1ψ

(p+q−1−k−j)(x+ y)Bk,j(x, y)

(2.6)
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where ψ(x) is the digamma function defined by

ψ(x) = d

dx
ln Γ(x) = −γ − 1

x
+
∞∑
l=1

(1
l
− 1
l + x

)
.

II. For integers q, p, n,m ≥ 0 and complex numbers x, y satisfying x, y 6= 0,−1,−2, · · · ,

Bp,q(−n, y) = 1
(p+1)an+1,1(−n)

p+1∑
u=0

Cu
p+1

q∑
v=0

Cv
q an+1,p+q+1−u−v(y − n)Bu,v(1, y)

− 1
(p+1)an+1,1(−n)

p−1∑
u=0

Cu
p+1an+1,p+1−u(−n)Bu,q(−n, y).

(2.7)

Bp,q(x,−m) = 1
(q+1)am+1,1(−m)

p∑
u=0

Cu
p

q+1∑
v=0

Cv
q+1am+1,p+q+1−u−v(x−m)Bu,v(x, 1)

− 1
(q+1)am+1,1(−m)

q−1∑
v=0

Cv
q+1am+1,q+1−v(−m)Bp,v(−m, y)

. (2.8)

and

Bp,q(−n,−m) = (−1)n+m

(q+1)(p+1)n!m!

p+1∑
u=0

Cu
p+1

q+1∑
v=0

Cv
q+1an+m+2,p+q+2−u−v(−n−m)Bu,v(1, 1)

− (−1)n
(p+1)n!

p−1∑
u=0

Cu
p+1an+1,p+1−u(−n)Bu,q(−n,−m)

− (−1)m
(q+1)m!

q−1∑
v=0

Cv
q+1am+1,q+1−v(−m)Bu,v(−n,−m)

− (−1)n+m

(q+1)(p+1)n!m!

p−1∑
u=0

Cu
p+1

q−1∑
v=0

Cv
q+1an+1,p+1−u(−n)am+1,q+1−v(−m)Bu,v(−n,−m).

(2.9)
where

an,i(x) = di

dxi
(x)n = i!

n∑
k=i

Ci
k(−1)n−ks(n, k)xk−i, i = 1, 2, · · · , (2.10)

(x)n = x(x+ 1) · · · (x+ n− 1) =
n∑
k=1

(−1)n−ks(n, k)xk, (2.11)

and s(n, k) is the Stirling number of the first kind.

III. For integers q, p, n,m ≥ 0 and complex numbers x, y satisfying x+y = 0,−1,−2, · · · , Rex 6=
0,−1,−2, · · · , we have the following recurrence relations

Bp,q(x, y) = 1
(x)n(y)m

p∑
u=0

Cu
p

q∑
v=0

Cv
q an+m,p+q−u−v(x+ y)Bu,v(x+ n, y +m)

− 1
(y)m

q−1∑
v=0

Cv
q am,q−v(y)Bp,v(x, y)− 1

(x)n

p−1∑
u=0

Cu
p an,p−u(x)Bu,q(x, y)

− 1
(x)n(y)m

p−1∑
u=0

Cu
p

q−1∑
v=0

Cv
q an,p−u(x)am,q−v(y)Bu,v(x, y).

(2.12)

Now we are ready to consider the closed form of Bp,q(x, y). It is well-known that the digamma
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function ψ(x) has the following identities:

ψ(n+ x) = ψ(x) +
n−1∑
l=0

1
(l + x) , ψ(x− n) = ψ(x) +

n∑
l=1

1
(l − x) , (2.13)

ψ(k)(x) = k!(−1)k+1ζ(k + 1, x), k > 0, (2.14)

and
ψ(k)(n+ x) = k!(−1)k+1ζ(k + 1, x) + (−1)kk!

n−1∑
l=0

1
(l+x)k+1 , k > 0

ψ(k)(x− n) = k!(−1)k+1ζ(k + 1, x) + k!
n∑
l=1

1
(l−x)k+1 , k > 0,

(2.15)

where ζ(s, x) is the Hurwitz zeta function defined by

ζ(s, x) =
∞∑
l=0

1
(l + x)s , ζ(s, 0) = ζ(s, 1).

The Hurwitz zeta function ζ(s, x) also has the following identity

ζ(s, n+ x) = ζ(s, x)−
n−1∑
l=0

1
(l+x)s ,ζ(s,−n+ x) = ζ(s, x) +

n∑
l=1

1
(x−l))s ,

ζ(s,12) =(2s − 1)ζ(s).
(2.16)

particularly[13],

ζ(k, 0) =
{

γ, k = 1
ζ(k), k > 1 , ζ(k,12) =

{
γ + 2 ln 2, k = 1(

2k − 1
)
ζ(k), k > 1 , (2.17)

and

ζ(2n+ 1, 1
3)

ζ(2n+ 1, 2
3)

}
= 32n+1−1

2 ζ(2n+ 1)

±
√

3
2π

(
(2n+ 2 + 32n+2) ζ(2n+ 2)− 2

n−1∑
l=0

32n−2lζ(2n− 2l)ζ(2l + 2)
) (2.18)

ζ(2n+ 1, 1
4)

ζ(2n+ 1, 3
4)

}
= 22n(22n+1 − 1)ζ(2n+ 1)

± 1
2π (2n+ 2 + 42n+2) ζ(2n+ 2)− 2

n−1∑
l=0

42n−2lζ(2n− 2l)ζ(2l + 2)
(2.19)

ζ(2n+ 1, 1
6)

ζ(2n+ 1, 5
6)

}
= 62n+1−32n+1−22n+1+1

2 ζ(2n+ 1)

± 1
2
√

3π (62n+2 − 32n+2) ζ(2n+ 2)− 2
n−1∑
l=0

(
62n−2l − 32n−2l

)
ζ(2n− 2l)ζ(2l + 2)

(2.20)

where ζ(1) =γ.

Remark If x = ±n, 1
2 ±n, y = ±m, 1

2 ±m,n,m = 0, 1, 2, · · · , Bp,q(x, y) certainly has closed
form. If x, y = 1

3±n,
1
4±n,

1
6±n, n = 0, 1, 2, · · · , Bp,q(x, y) may have closed form. Otherwise,

Bp,q(x, y), p, q > 1 does not seem to have closed form.
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Algorithms for Calculating Bp,q(x, y) and comparison with the symbolic(numerical) inte-
gration in Mathematica

Algorithm

The source code BetaAll[x, y] and DBeta[x, y, p, q, all] that calculates the values of B(x, y)
and Bp,q(x, y) is placed in the file beta.nb(Mathematica file format). DBeta[x, y, p, q, all]
calls five key subprograms BetaAll[x,y], PolyGammaAmend[k,x], DPochhammer[k,x], DBe-
ta1[x,y,p,q,all] and DBeta2[x,y,p,q,all]. The following is our specific algorithm.

1) To obtain closed form, PolyGammaAmend performs the calculation of (2.13)-(2.18) when
x is a real number or x = a ± n, a = 0, 1

2 ,
1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
6 ,

5
6 , n = 0, 1, 2, 3, · · · . Otherwise,

PolyGamma from Mtathematica replaces PolyGammaAmend.

2) BetaAll does the calculation of (2.2)-(2.4) when xor y = 0,−1,−2. Otherwise, Beta from
Mtathematica replaces BetaAll.

3) DPochhammer[k, x] does calculation of (2.10).

4) DBeta1[x, y, p, q, all] is to calculate the values of Bp,q(x, y) by using (2.5) and (2.6) when
x, y, x+y 6= 0,−1,−2, · · · . The parameter all indicates whether all the values ofBi,j(x, y), i =
0, 1, 2, · · · , p, j = 0, 1, 2, · · · q are displayed or only the value ofBp,q(x, y) is displayed depend-
ing on all is positive or zero.

5) DBeta[x, y, p, q, all] calls BetaDl[x, y, p, q, all] directly when x, y, x + y 6= 0,−1,−2, · · · .
Otherwise, DBeta[x, y, p, q, all] calls DBeta2[x, y, p, q, all] that calculates the values ofBp,q(x, y)
by using (2.7)-(2.9) and (2.12) and calling two subprograms BetaAll[x, y, p, q, all] and DPochha-
mmer[k, x].

The above algorithm is run in the mathematics symbolic computation system. If the numerical
calculation, we will be in front of the source code to add a ”N”, for example, change BetaAll to
NBetaAll and the above algorithm is run in the specified precision Prec. Therefore, in beta.nb
there are a public constants: Prec, which is for the calculation precision.

Comparison with the symbolic(numerical) integration in Mathematica

In order to show how much more efficient of DBeta and NDBeta is than the corresponding
programs of Mathematica, we apply it, the Mathematica symbolic integration (Integrate) and
the Mathematica numerical integration (NIntegrate) to a couple more integrals with different
parameters and display the running results in Tables 1 and 2.

Table 1. Comparison of Several Algorithms
x, y p, q Time p, q Time p, q Time

2, 2 4, 4
I
B
BD

113.1787
0.046800
0.873606

6, 4
I
B
DB

137.9672
0.078001
2.199614

6, 6
I
B
DB

159.0118
0.156001
6.162039

2,− 5
2 3, 3

I
B
BD

57.08076
0.483603
6.162039

4, 5
I
B
BD

87.87536
1.341609
80.32491

5, 5
I
B
BD

123.6307
5.132432
187.9500

−1, 5
2 3, 4

I
B
BD

106.6266
1.887612
∗0.031200

4, 5
I
B
BD

126.7664
5.226033
∗0.062400

5, 5
I
B
BD

127.8272
17.61251
∗0.046800

−1,−1 2, 2
I
B
BD

59.29598
0.062400
∗0.046800

3, 2
I
B
BD

69.42044
0.312002
∗0.031200

4, 4
I
B
BD

161.2114
3.915625
∗0.078001

In Table 1, letters I, B and BD represent Integrate[tx−1(1−t)y−1Log[t]pLog[1−t]q, [t, 0, 1}],DBeta-
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[x, y, p, q, 0] and D[D[Beta[xx, yy], {xx, p}]/.xx → x, {yy, q}]/.yy → y], respectively. The
data shows that B is much more efficient in time than I and BD, and the rate ranges from 7 to
2400. An asterisk in front the time consumed indicates that the algorithm is valid.

Table 2 Comparison of NDBeta[x, y, p, q, 0] and
NIntegrate[tx-1(1− t)y−1Log[t]pLog[1-t]q, {t, 0, 1},WorkingPrecision− > Prec]

x, y p, q T32, rr T64, rr T128, rr T256, rr

2, 2 6, 6 NI
NB

0.046800, 10−32

0.015600, 10−47
0.156001, 10−65

0.031200, 10−100
0.499203, 10−129

0.015600, 10−207
1.856412, 10−257

0.015600, 10−420

− 5
2 ,−

7
3 6, 6 NI

NB
0.062400, 10−32

0.031200, 10−34
0.280802, 10−65

0.031200, 10−87
0.795605, 10−129

0.031200, 10−194
2.761218, 10−257

0.031200, 10−407

−4,− 5
2 6, 6 NI

NB
0.062400, 10−32

0.062400, 10−39
0.202801, 10−65

0.062400, 10−92
0.717605, 10−117

0.062400, 10−199
2.511616, 10−257

0.062400, 10−412

−4,−5 6, 6 NI
NB

0.046800, 10−32

0.093601, 10−38
0.187201, 10−64

0.093601, 10−91
0.577204, 10−129

0.093601, 10−198
2.402415, 10−257

0.093601, 10−411

In this table, NI and NB represent

NIntegrate[tx−1(1− t)y−1Log[t]pLog[1− t]q, {t, 0, 1},WorkingPrecision→ Prec]

and NDBeta[x, y, p, q, 0], respectively. In order to reduce the accumulated calculation accuracy
take [5Prec/3]. The subindex of T indicates the computing accuracy requirement and rr is
the relative error. From Table 2, we see that the running time of NDBeta[x, y, p, q, 0] is not
substantially affected by the specified accuracy and much smaller than NIntegrate[tx−1(1 −
t)y−1Log[t]pLog[1− t]q, [t, 0, 1},WorkingPrecision-¿Prec] and its efficiency is more significant
especially in high-precision. It is noteworthy that the relative error of the BetaD[x, y, p, q, 0] is
always less than the specified one.
Partial derivatives of the Beta Function used in some generalized integral calculation

Many generalized integrals can be expressed in terms of Beta function and its partial derivatives.
Thus, a faster and high accuracy algorithm for calculating the values of the Beta function and
its partial derivatives can speed up and increase the accuracy of the calculation of generalized
integrals. There are many identities in this respect. For Example [14],

∫ 1
0 t

x−1(1− t)y−1dt = B(x, y) [Rex,Rey > 0]∫∞
0

tx−1

(1+t)x+y dt = B(x, y) [Rex > 0, Rey > 0]∫ 1
−1

(1+t)2x−1(1−t)2y−1

(1+t2)x+y dt = 2x+y−2B(x, y) [Rex > 0, Rey > 0]∫ 1
0
tx−1+ty−1

(1+t)x+y dt =
∫∞

1
tx−1+ty−1

(1+t)x+y dt = B(x, y) [Rex,Rey > 0]∫ 1
0

(1+t)x−1(1−t)y−1+(1+t)y−1(1−t)x−1

2x+y−1 dt = B(x, y) [Rex > 0, Rey > 0]∫ π
2

0 sin2x−1 t cos2y−1 tdt = 1
2B(x, y) [Rex,Rey > 0]∫∞

−∞
e2iyt

(2 cosh t)2xdt = B(x+iy,x−iy)
2 [Rex > 0, y is a real]∫∞

−∞
e−2yt

(2 cosh t)2xdt = B(x−y,x+y)
2 [Rex > 0, Rex > |Rey|]∫∞

0
cosh 2yt

(2 cosh zt)2xdt = B(x+ y
z
,x− y

z
)

4z [Rex > |Rey|]∫ 1
0 (1− tz)x−1ty−1dt = 1

z
B(x, y

z
)
[
Rey

z
, Rex > 0

]
∫∞

0 e−xt sinhy ztdt = 1
2y+1z

B( x2z −
y
2 , y + 1) [Rez > −1, Rezy > 0]∫∞

0
e−xt

cosh2y+1 xt
dt = 22y−2

x
B(y, y)− 1

2xy [x, y > 0]∫∞
0 e−xt(cosh zt− 1)ydt = B(x

z
−y,2y+1)
2yz

[
Rey > −1

2 , Rex > Rezy,Rez > 0
]

(4.1)
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and

∫ 1
0

( t
t+z )

x( 1−t
t+z )

y

t(1−t) dt =


B(x,y)
zy(1+z)x , Rex,Rey > 0, Re(x+ y) < 1,−1 < z < 0(

1
z

)y ( 1
1+z

)x
B(x, y), Rex,Rey > 0, z /∈ [−1, 0]

∫ π
2

0

(
cos2 t

cos2 t+z

)x(
sin2 t

cos2 t+z

)y
sin t cos t dt =


B(x,y)

2zy(1+z)x , Rex,Rey > 0, Re(x+ y) < 1,−1 < z < 0
1
2

(
1
z

)y ( 1
1+z

)x
B(x, y), Rex,Rey > 0, z /∈ [−1, 0]

(4.2)

By the means of (4.1) and (4.2), we can express many generalized integrals in terms of partial
derivatives of the Beta function. We give several examples here.

1) When p and q are non-negative integers, p+Rey > 0 and q +Rex > 0, we have

∫ 1

0

(
(−1)qtx−1(1 + t)−x−y lnp t

1+t lnq(1 + t)
+(−1)pty−1(1 + t)−x−y lnq t

1+t lnp(1 + t)

)
dt = Bp,q(x, y), (4.3)

and ∫ 1

0

tx−1

(1 + t)2x lnp t

1 + t
lnp(1 + t)dt = (−1)p

2 Bp,p(x, x). (4.4)

2) When p and q are non-negative integers,we have

∫ 1
0

1
t(1−t)

(
t
t+z

)x (1−t
t+z

)y
lnp t

t+z lnq 1−t
t+zdt

=
(

1
z

)y ( 1
1+z

)x p∑
j=0

Cj
p lnp−j( 1

1+z )
q∑

k=0
Ck
q lnq−k 1

z
Bj,k(x, y). (4.5)

for Rex,Rey > 0, z /∈ [−1, 0].
3) When p and q are non-negative integers, and Rex > |y| , y is real, we have

∫∞
0

t2q cosh 2yt lnp cosh t
(2 cosh zt)2x lnp (2 cosh zt) dt

= 1
2p+2q+2z2q+1

p∑
j=0

Cj
p

2q∑
k=0

(−1)kCk
2qBj+2q−k,p−j+k(x+ y

z
, x− y

z
)

(4.6)

and ∫∞
0

t2q+1 sinh 2yt lnp(2 cosh zt)
(2 cosh zt)2x dt

= 1
2p+2q+3z2q+2

p∑
j=0

Cj
p

2q+1∑
k=0

(−1)kCk
2q+1Bj+2q+1−k,p−j+k(x+ y

z
, x− y

z
).

(4.7)

4) When p and q are non-negative integers, α > 0 and Rex > |Imy| , we have

∫∞
−∞

tqe−2yt lnp(2 cosh t)
(2 cosh t)2x dt = (−1)p+q

2p+q+1

p∑
j=0

Cj
p

q∑
k=0

(−1)kCk
qBk+j,p+q−k−j(x− y, x+ y)

p, q are integer, p, q ≥ 0, Rex > |Rey| .
(4.8)

5) When p and q are non-negative integers, Rez > 0, p+Rey
z

and q +Rex > 0, we have

∫ 1

0
(1− tz)x−1ty−1 lnp(1− tz) lnq tdt = 1

zq+1Bp,q(x,
y

z
). (4.9)
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6) Letting t = sin2 u or cos2 u in (4.5), we have

∫ π
2

0

(
cos2 t

cos2 t+z

)x(
sin2 t

cos2 t+z

)y
sin t cos t lnp cos2 t

cos2 t+z lnq sin2 t
cos2 t+zdt

= 1
2

(
1
z

)y ( 1
1+z

)x p∑
j=0

Cj
p lnp−j( 1

1+z )
q∑

k=0
Ck
q lnq−k 1

z
Bj,k(x, y),

(4.10)

for integer, p, q ≥ 0, Rex,Rey > 0, z /∈ [−1, 0].
7) When p and q are non-negative integer, q +Rex > 0 and Rey > 0, we have∫ ∞

0
tx−1(1 + t)−x−y lnp t

1 + t
lnq(1 + t)dt = (−1)qBp,q(x, y). (4.11)

For x = ±n, 1
2 ± n, y = ±m, 1

2 ± m,n,m = 0, 1, 2, · · · , Bp,q(x, y) and Bp,q(x + y, x − y)
always exists closed form, so the generalized integral (4.3)-(4.11), which also exist closed form.
However, the use of symbolic integration (Integrate) in Mathematica, closed forms of these
integrals are difficult to obtain. For example, in Mathematica we have the following results for
the generalized integral (4.3).

x = 2; y = 1/2; p = 1; q = 1;
Timing[s1 = Integrate[ tˆ(x−1)Log[ t

1+t ]ˆp∗Log[ 1
1+t ]ˆq

(1+t)ˆ(x+y) + p∗tˆ(y−1)Log[ t
1+t ]ˆq∗Log[ 1

1+t ]ˆp
(1+t)ˆ(x+y) , {t, 0, 1}]]

Timing[s2 = Simplify[DBeta[x, y, p, q, 0]]]
N [s1− s2, P rec]

{96.736220, 1
27(320− 116

√
2]− 30π2 + 72ArcSin[

√
2]2 − 72ArcSinh[1]− 27Log[2]2−

4i
√

2HypergeometricPFQ[{−3
2 ,−

3
2 ,−

3
2 ,

1
2}, {−

1
2 ,−

1
2 ,−

1
2}, 2]−

12iπ(−13 + Log[8])− 64Log[8]− 72IArcSin[
√

2](1 + Log[4] + 2Log[4− 2
√

2])−
96Log[−1 +

√
2] + 108Log[2]Log[1 +

√
2] + 144Log[1 +

√
2]2 −

144Log[1 +
√

2]Log[2 +
√

2]− 216PolyLog[2,− 1√
2 ] +

288Log[1 +
√

2] + 216PolyLog[2, 1−
√

2] + 72PolyLog[2,−3 + 2
√

2])}
{0.,− 2

27(9π2 + 16(−10 + Log[64]))}
0. ∗ 10−111 + 0. ∗ 10−112i

When p, q > 1, the use of the symbolic integration even above complex can not be obtained.

However, the right-hand sides((4.*)R) of the equations (4.3)-(4.11) give a high accuracy and
fast algorithm to calculate the integrals of the left-hand side((4.*)L). In order to verify the
correctness of the formulas (4.3)-(4.11) and further show the high accuracy and time efficiency
of our algorithm, the following numerical results are given in Mathematica.

Table 3 Comparison of numerical integration for (4.3)-(4.5)
p, q, x, y T32, rr T64, rr T128, rr Integral value

(4.3)L

(4.3)R
4, 4, -2, i− 3 0.1716, 10−32

0.0156, 10−46
0.5616, 10−64

0.0156, 10−99
1.5600, 10−128

0.0156, 10−206
−1.554939 · · ·
+1.779627 · · · i

(4.4)L

(4.4)R
4, 4, - 5

2 +i, -3+i
0.1404, 10−32

0.0156, 10−50
0.3900, 10−64

0.0156, 10−102
1.2636, 10−128

0.0156, 10−210
−2.114631 · · ·
−2.863698 · · · i

(4.5)L

(4.5)R
, z= 1

2 3, 2, 1
3 ,

1
5

0.1248, 10−14

0., 10−51
0.2028, 10−23

0.0156, 10−104
0.4836, 10−27

0.0156, 10−211 −279.808345 · · ·

(4.5)L

(4.5)R
, z=− 2 3, 3, 1

3 ,
1
4

0.1872, 10−13

0., 10−51
0.4056, 10−18

0.0156, 10−104
0.7800, 10−27

0.0156, 10−211
−54904.915 · · ·
+28376.28 · · · i
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In particular, for the left integral((4.5)L) of the formula (4.5), the error of numerical integration
always exists regardless of the calculation precision. When the numerical computation in Math-
ematica is used for calculating values of integrals, the error does not much improve no matter
how the accuracy requirement is increased.

It is noteworthy that we found symbol integration and numerical integration of inconsistent
results in Mathematica.

z = −1/2;x = 1/4; y = 1/5;Prec = 32;
Timing[s1 = NIntegrate[

(
t
z+t

)
ˆx
(

1−t
z+t

)
ˆy 1

t(1−t) , {t, 0, 1},WorkingPrecision− > Prec]]
Timing[s2 = N [Integrate[

(
t
z+t

)
ˆx
(

1−t
z+t

)
ˆy 1

t(1−t) , {t, 0, 1}], P rec]]
Timing[s0 = 1

zˆy

(
1

1+z

)
ˆy ∗NBetaAll[x, y]]

{s1− s0, s2− s0, s3− s0}
{0.124801, 9.3442494430451904923601953855976 + 6.7887335956884325541842812213085I}
{1.419609, 9.3462960217122886259805243287725− 6.7904815391012934935031911000193I}

{0., 9.3462960217122886259805243287725073193521592331001509−
6.7904815391012934935031911000192799983188576389449694I}

{−0.0020465786670981336203289431749 + 13.5792151347897260476874723213278i,
0.× 10−32 + 0.× 10−32}

Conclusions

By giving additional definition of the Beta function, the domain of the Beta function has been
extended to the entire complex plane. In the entire complex plane, we have established recursive
formulas on the partial derivatives of the Beta function. Applying these recursive formulas, we
give the conditions of the closed form of the generalized integral, which are expressed in terms
of partial derivatives of the Beta function. And for the numerical calculation, calculation speed
and accuracy have some improvements.
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Abstract

The deformable image registration (DIR) is a medical imaging device which is used to
assess the growth of tumor and adjust the target region in radiotherapy treatment ac-
cordingly. During the treatment, the patient could suffer a significant weight loss, and the
shrinkage of tumor could also bring a mass transformation over the target region. These
anatomical changes could affect the medical outcome.

The satisfactory treatment results could be achieved if the exact location and the spatial
extent of target region are accurately measured. Thus the surrounding health organs
could suffer less impact.

The DIR has been studied over 30 years in the discipline of biomedical science. Over
these years, the progress of deformable image models has achieved a diversity develop-
ment. However, the human body is quite complicated and its complexity obstructs the
development of a precision scheme. In order to accomplish the clinically satisfactory level,
a high level of accuracy is indispensable in delivering right medical dose to radiotherapy
treatment.

This paper adopts the meshless kernal-based collocation method together with the Demo’s
iterative algorithm to solve the concerned DIR model. The formulation to the classical
model of DIR algorithms are outlined. The proposed algorithm is applied to a real-life
data from a patient who suffered liver cancer. The aim of study is to trace the growth of
the tumor of liver cancer.

Keywords: Deformable image, Meshless, Kernel-based collocation.

Introduction

Cancer is a fatal disease in and is one of leading killers in the world. Many cancer patients
were treated with external beam radiotherapy treatment during diseases management.
Identifying the target region of tumor accurately can avoid damages to healthy organs.
This can inhibit the tumor growth and minimize the side effects to the patient. This
can be done by Image Guided Radiation Therapy (IGRT). In order to optimize IGRT, a
segmentation and registration method has to be used to delineate the clinically critical
objects in the computed tomography images obtained from the radiation treatment.

Deformable image registration is a process in medical image analysis. Even though there
has been a good progress in the development of deformable registration image methods,
this topic remains a challenging problem in the field of radiotherapy.

Usually image registration is formulated as an optimization problem. Given that the
static image s(x, y) and deformed image m(x, y) were taken at time t0 and t1 respectively,
the target object had undergone some changes from time t0 to t1. We want to find the
spatial displacement between the static image s(xi, yi) and the deformed image m(xi, yi).
An example of 2D deformable transformation mapping is illustrated in Figure 1.
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Figire 1 An example of 2D deformable transformation mapping

In this paper, the meshless scheme based on the kernel collocation will be used to approx-
imate the displacements between the two images. Radial basis function (RBF) is a well
known meshless algorithm and had been proved to be effective in solving various kinds
of partial differential equations. RBF was first used in neural network and later used
for multivariate interpolation. Osorio et al [1] combined the feature matching and RBF
interpolation in registration for radiotherapy; the numerical approximation was obtained
iteratively by using the so called thin plate spline robust point matching technique.

Reference case study

A real-life deformable image registration from a patient with liver cancer is used as a
reference case study. One of the original static registered images is depicted in Figure (2)
at time t1 and the deformed images are obtained from two different treatment periods at
time t2 and t3.

time = t
3

time = t
2

time = t
1

Figure 2 The growth of tumor of liver cancer as indicated by an arrow from different time

t1< t2< t3.(The local ethics committee approval was obtained for a waiver of informed consented for
retrospective analysis. The CT images were collected from collaborative hospital in year 2010.)

The computational region is set up according to the original registered image. The geo-
metrical structure of the original static image contains 512 × 512 pixels. In the sug-
gested algorithm, the computational region is simplified by removing the insignificant
backgrounds. These include the air with intensity equals to 0, and the bone with inten-
sity equals to 1. After removing the insignificant pixels, the study region contains 82, 776
valid pixels.

The objective of the present study is to use a global kernel-based approximation method
to predict the progression of tumor changes in a future time t3 by using the known
information given by the deformable image registration obtained from t1 and t2. Similarly,
the subsequent changes of tumor can be predicted by using the deformed relationship
obtained in t2 and t3. Our model aims to give a prediction to the changes of tumor
so that an appropriate medical treatment can be applied according to the stage of the
cancer. For example, the cancer is at early stage, say at stage A when diagnosed, a
complete medical treatment may be possible by means of liver transplation, resection of
liver using radiotherapy treatment.
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Deformable Image Registration Model

This section introduces the basic deformable image registration problem which was first
proposed by Broit [2] in 1981. The image is modelled as a 2D homogeneous infinite
elastic medium under the influence of some forces. It is assumed that the external forces
are applied at every control point, where the strengths, directions and influence areas of
the forces as well as the positions of the control points are considered.

Several forms of deformable image registration models are established in different numer-
ical methods. One of the classical DIR models is called Demon’s algorithm developed by
[3] in 1996. The displacement function D = (ux, uy)

T between the static and deformed
images is derived from Navier nonlinear equation as given by

D =
(m− s)∇s

|∇s|2 + (m− s)2
, (1)

where m is moving image and s is the static image, (m − s) is the differential forces
between the moving and deformed images. ∇ is the gradient operator of the static image
defined by

∇s(x, y) =
(
∂s(x,y)
∂x

, ∂s(x,y)
∂y

)
.

The equation in (1) can be rearranged to a homogeneous PDE

D
(
|∇s|2 + (m− s)2

)
− (m− s)∇s = 0

subject to the given initial conditions s0 = 0 and m0 = 0.

Cachier et al [4] in 1999 revised model to improves the registration convergence speed
and stability. The revised equation is

D =
(m− s)∇s

|∇s|2 + ξ2 |(m− s)|2
+

(m− s)∇m
|∇s|2 + ξ2 |(m− s)|2

. (2)

The revised mode includes the image edge forces of the deformed image. The normal-
ization factor ξ is added to adjust the force strengths. This attempts to normalize the
relations between the moving and static images so as to improve the registration.

The classical demon’s algorithm is an iterative finite difference scheme. The incremental
displacement matrix D in equation (1) is simulated by equation (3)

Dj(x, y) = Dj−1(x, y)− (mj−1(x, y)− s0(x, y))∇s0

|∇s0|2 + [mj−1(x, y)− s0(x, y)]2
(3)

for the jth iteration, j = 1, 2, . . . n. The initial values of D0 and the initial moving image
m0 and statics image s0 are given as

D0(x, y) = 0,

m0(x, y) = m̃0(x, y),

s0(x, y) = s̃0(x, y).

The deformed image resulted at the jth iteration can be determined by substituting Dj−1
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and m∗j−1 into the following equation

m∗j(x, y) = m∗j−1(x, y) +Dj−1(x, y)∇s0.

The spatial gradients ∇s0 = (∇0sx,∇0sy) is the coeffi cient matrices computed only once
by using the original static image s0. The result of Dj(x, y) will be continuously updated
until the estimated displacements reaches the following preset stopping criteria:∥∥Dj(x, y)−Dj−1(x, y)

∥∥ < ε,

where ε is the upper bound of iterative error. The present study will use the results from
the classical Demon’s iterative algorithm as a reference guide for the radial kernel-based
collocation algorithm.

Kernel-based RBF Collocation Method

This paper focuses on kernel approximations in the form of radial basis function. It
will be used to solve the differential equation involved in the deformable image model.
The method of kernel radial approximation method have been refined and diversified for
facilitating the needs of various types of differential equations. The radial basis functions
were originally devised for scattered geographical data interpolation by Hardy [5], who
introduced a class of functions called multiquadric function in the early 1970’s.

In this study, the basic idea of the radial kernel-basis interpolation is used to approximate
an unknown displacement function {D(x) : x ∈ Ω} by a RBF interpolant, say {s(x) : x ∈
Ω} at a given set of N distinct nodal points X = {xi ∈ Ω : i = 1, 2, · · · , N}.
Let Φ : R2 → R2 be a set of positive definite radial basis functions defined by

Φ = {φ (‖x− x̃i‖)} x, x̃i ∈ Ω,

on a fixed space on Ω. Here φ refers to a specific choice of RBF functions that is solely
dependent on the Euclidean distance ‖x− x̃i‖ between x and a fixed centre x̃i ∈ Rd. A
suitable choice of the function for {D(xi), i = 1, 2, · · · , N} can ensure the interpolation
smoothly passing through the given nodal points in X.

The chosen RBF interpolant for D can be expressed as a finite linear combination by the
following equation

D(x) =
N∑
i=1

αiφ(‖x− x̃i‖), x and x̃i ∈ Ω. (4)

The unknown coeffi cients {αi : i = 1, 2, · · · , N} can be determined by collocating

s(xi) = D(xi), for i = 1, 2, . . . , N, (5)

at a set of N distinct nodal points {xi ∈ Ω, 1, 2, · · · , N}. This yields a system of linear
equations which can be expressed in the following matrix form

Aφα = D, (6)

where α = [α1, α2, . . . , αN ]T are the unknown coeffi cients and

D = [D(x1), D(x2), . . . , D(xN)]T .
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Both α and D are N × 1 column matrices, and Aφ = [φ (‖xj − x̃i‖)]1≤i,j≤N is an N ×N
coeffi cient matrix.

Generally, the interpolation points in interior and boundaries are distinct and the chosen
radial basis function φ ∈ Rd is positive definite, the matrix Aφ is always non-singular, so
the linear system in (6) has a unique solution as proved by [6]. The unknown coeffi cients
α can then be obtained uniquely by solving the system of linear equations as

α = A−1
φ D.

The approximated displacement matrixD can be evaluated once the unknown coeffi cients
{αi | i = 1, · · · , N} are found.
A classical theory on the existence, uniqueness and convergence of the RBF interpolation
was proved by Micchelli [7] in 1986. Later, Powell [6] and Madych et al [8] extended
the study and developed the important non-singularity properties of the RBF interpola-
tion. Their analysis proved that the RBF interpolation methods hold a truly mesh-free
algorithm and a super-convergent property. The accuracy of the RBF interpolant has an
order of convergence O

(
hd+1

)
, where h is the density of the collocation points and d is

the spatial dimension.

The most popular types of radial basis functions are listed below:

φ(rj) =


(r2j ) log rj, Thin plate splines in R2 (a)

e−σr
2
j , Gaussian, σ > 0 (b)

(r2j + δ2)
1
2 , Multiquadric, δ ∈R (c)

(r2j + δ2)−
1
2 , Reciprocal multiquadric, δ ∈R (d)

 (7)

where {rj = ‖x− xj‖ , j = 1, 2, · · · , N} is the Euclidean distance between x and xj ∈ Rd,
and δ2 ∈ R is called the shape parameter of the multiquadric functions in (c) & (d). This
shape parameter uses to control the fitting of a smooth surface to the data.

To avoid having singularity, the radial kernel approximation is formulated by adding
a finite polynomials {qk(x), k = 1, 2, · · · ,M} into the interpolation system in (4). The
RBFs interpolant D(x) in (4) is extended to the following equation:

D(x) =
N∑
i=1

αiφ (‖x− x̃i‖) +
M∑
k=1

bkqk(x), x ∈ R2, 0 ≤M < N, (8)

where φ (‖x− x̃i‖) is a class of chosen radial kernel functions, {αi} and {bk} are the coeffi -
cients to be determined. Given a set of N distinct nodes X = {xi ∈ Ω, i = 1, 2, · · · , N} ⊆
Rd, the approximation function in (8) will produce a unique solution if the system satisfies
the following condition

s(xi) = D(xi), i = 1, 2, · · · , N (9)

and the constraints

N∑
i=i

αiqk(x) = 0, k = 1, 2, · · · ,M and i = 1, 2, · · · , N.

The resulting system can be written concisely in matrix form,
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[
Aφ Q
QT 0

] [
a
b

]
=

[
c
0

]
(10)

where Aφ = φ(‖xi − xj‖) is a square matrix , a and c are column vectors. Q = [qk(xi)]
is an N ×M matrix and the unknown coeffi cients [b] is an M × 1 matrix:

Q =


q1(x1) q2(x1) · · · qM(x1)
q1(x2) q2(x2) · · · qM(x2)
...

...
. . .

...
q1(xN) q2(xN) · · · qM(xN)

 , [b] =


b1
b2
...
bM

 .
The interpolation problem in equation (9) is solvable if the matrix of this system is

[Φ̃] =

[
Aφ Q
QT 0

]
is non-singular. In the application of deformable image registration models, the concerned
displacement matrix D can then be determined by the above basis function subject to
the given initial conditions for D, m and s:

D0(x, y) = 0,

m0(x, y) = m̃(x, y),

s0(x, y) = s̃0(x, y).

We choose one of the radial kernel functions listed in (7) for the interpolant D(x) in (8).
From our numerical experiences presented in the paper [9] , using multiquadric function
φ(rj) = (r2j + δ2)

1
2 usually results in a higher degree of accuracy and stability in similar

studies. According to the classic literature written by Micchelli’s [7] in 1986, it have been
shown that the multiquadric interpolation is always solvable for distinct dataset, owing
to the fact that multiquadric possess an exponentially convergent property.

We use the Demon algorithm (3) in the image registration process but use the radial
kernel interpolation instead of using the finite difference method. The Demon algorithm
radial kernel-based interpolation for the displacement matrix D is formulated as

Dj(x, y) =
N∑
i=1

αjiφ(‖r‖) +
M∑
k=1

bkq
j
k(x)

is the displacement at jth iteration, and

Dj(x, y) =
N∑
i=1

αj−1i φ(||r||)+
M∑
k=1

bkq
j−1
k (x)− ([mj−1(x, y)− s0(x, y)]∇s(x, y)

‖∇s0(x, y)‖2 + [mj−1(x, y)− s0(x, y)]2
, (11)

where ‖r‖ = ‖x− x̃i‖. In order to determine the deformable imagemj at the jth iteration,
the forward iterative scheme is applied according to the following equation

m∗j(x, y) = m∗j−1(x, y) +Dj−1(x, y)∇s0.
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The required stopping criteria is∥∥Dj(x, y)−Dj−1(x, y)
∥∥ < ε,

where ε is the preset upper bound of iterative error.

Conclusions

In this report, we developed a radial basis function Demon’s scheme to approximate
the deformation image registration in medical fields. The proposed model combined the
RBF scheme and the classical demon’s algorithm. The method was applied to simulate
a 2D deformable image registration in tracing the growth of tumor of liver cancer. The
numerical investigations and the performance using this kernel-based collocation. Further
investigations on the computational effi ciency and accuracy as well as support sizes of the
kernel-based RBFs will be explored and discussed in the future report.
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Abstract  
Stiffened composite plate has been widely used in many braches of engineering area and the 
demand of optimizing the cost of manufacturing is also very high. One of many approaches to 
minimize the cost is to optimize the weight of the structure. In this paper, an improved version 
of the Differential Evolution (DE) algorithm is adopted to solve for suitable values of the fiber 
angle and the thickness of the stiffened composite plate to achieve the structure with 
minimum weight. For computing the constrained conditions of stress and strain in the 
optimization process, the finite element analysis using the CS-DSG3 element is used. To 
verify the accuracy and the effectiveness of the algorithm, the numerical solutions obtained 
from the proposed method are compared with those of other available approaches. 
Keywords: Stiffened composite plate, Differential Evolution (DE), Cell-based smoothed 
discrete shear gap method (CS-DSG3), Optimization analysis. 

1. Introduction  
Nowadays, stiffened composite plates have been widely used in many branches of structural 
engineering such as aircraft, ships, bridges, buildings, etc. For its advantages in both bending 
stiffness and the amount of material in comparison with common bending plate structures, 
stiffened composite plate usually has higher economic efficiency in practical applications. 
However, choosing the best design that satisfies the working requirement is difficult. In 
addition, the complex mechanical behavior of composite materials also increases the 
difficulty of the problems related to their design [1]. In this case, the design optimization tools 
combined with numerical methods must be utilized. Design optimization is one of the most 
interesting research directions that brings a lots of profits in both life and industry. And so, 
methods for design optimization are also quickly developed. The optimization methods can be 
classified into two main groups: gradient-based and popular-based approach. Methods based 
on gradient information is fast but usually stuck in local solution and depended too much on a 
good initial point to obtain global optimal solution. T. Nguyen-Thoi et al [2] used SQP to find 
the optimal fiber orientations for stiffened composite plate, but the results still depend on the 
initial point to get the exact solution. To deal with such disadvantages, population-based 
global optimization methods are utilized alternatively. Marin et al. [3] used the genetic 
algorithm, including the application of elitism, which preserved the use of the Pareto front to 
optimize the design of a composite material-stiffened panel. Falzon and Faggiani [4] applied 
the genetic algorithm to improve the post-buckling strength of stiffened composite panels. 
And among many proposed global optimization algorithms, Differential Evolution (DE) 
firstly introduced by Storn and Price in 1997 [5] was one of the most potential algorithms. 
The DE has demonstrated excellently performance in solving many different engineering 
problems. Wang et al. [6] applied the DE for designing optimal truss structures with 
continuous and discrete variables. Wu and Tseng [7] applied a multi-population differential 
evolution with a penalty-based, self-adaptive strategy to solve the COP of the truss structures. 
Le-Anh et al. [8] using an adjusted Differential Evolution algorithm and a smoothed 
triangular plate element for static and frequency optimization of folded laminated composite 
plates. Ho-Huu et al. [9] proposed a new version of the DE to optimize the shape and size of 
truss with discrete variables. However, using the method in finding the global optimum 
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solution still gets highly computational cost. Hence, many approaches have been proposed to 
increase the effectiveness of the algorithm. Most recently, Ho-Huu et al. [10] also introduced 
two new improvement steps to increase the convergence of DE algorithm based on roulette 
wheel selection (ReDE). The new modified DE algorithm is applied for solving shape-and-
size optimization problem of truss structure with frequency constraints and show its high 
effectiveness.  
 
In this paper, this new improved version of the Differential Evolution (ReDE) algorithm is 
adopted to solve for suitable values of the fiber angle and the thickness of the stiffened 
composite plate to achieve the structure with minimum weight. For computing the constrained 
conditions of stress and train in the optimization process, the finite element analysis using the 
cell-based smoothed discrete shear gap technique with triangular elements (CS-DSG3) 
proposed by T. Nguyen-Thoi et al [11,12] is used. The numerical solutions obtained from the 
method are compared with references to show the effectiveness and the accuracy of the 
algorithm. 

2. Theory Fundamental 

An optimization problem can be expressed as follows:  

 
( ) 0 1,...,

min ( ) s.t.
( ) 0 1,...,

i

j

h i l
f

g j m
= =

 ≤ =x

x
x

x
  (1) 

where x is the vector of design variables; ( ) 0ih =x  and ( ) 0jg ≤x  are inequality and equality 
constraints; l, m are the number of inequality and equality constraints, respectively; ( )f x  is 
the objective function which can be the function of weight, cost, etc.  
 
Design optimization of a structure is to find optimal values of design variables in design space 
such that the objective function is minimum [2]. Dealing with such problems, many 
optimization methods are used including gradient-based and population-based approach to 
find the solution. In this paper, the Differential Evolution is utilized to solve the problem of 
finding optimal fiber orientations and thickness of the stiffened composite plate. 
2.1 Brief on the differential evolution algorithm [10,9] 
The original differential evolution algorithm firstly proposed by Storn and Price [5] has been 
widely used to solve many kinds of optimization problems. The scheme of this algorithm 
consists of four main phases as follows: 
 
Phase 1: Initialization  

Create an initial population by randomly sampling from the search space 
Phase 2: Mutation  

Generate a new mutant vector vi from each current individual xi based on mutation 
operations. 

Phase 3: Crossover  
Create a trial vector ui by replacing some elements of the mutant vector vi via 
crossover operation. 

Phase 4: Selection  
Compare the trial vector ui with the target vector xi. One with lower objective function 
value will survive in the next generation 
 

To improve the effectiveness of the algorithm, the Mutation phase and the Selection phase are 
modified to increase the convergence rate as follow: 
 
In the mutation phase, parent vectors are chosen randomly from the current population. This 
may make the DE be slow at exploitation of the solution. Therefore, the individuals 
participating in mutation should be chosen following a priority based on their fitness. By 
doing this, good information of parents in offspring will be stored for later use, and hence will 
help to increase the convergence speed. To store good information in offspring populations, 
the individuals is chosen based on Roulette wheel selection via acceptant stochastic proposed 
by Lipowski and Lipowska [13]  instead of the random selection. 
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In the selection phase, the elitist operator introduced by Padhye et al. [14] is used for the 
selection progress instead of basic selection as in the conventional DE.  In the elitist process, 
the children population C consisting of trial vectors is combined with parent population P of 
target vectors to create a combined population Q. Then, best individuals are chosen from the 
combined population Q to construct the population for the next generation.  By doing so, the 
best individuals of the whole population are always saved for the next generation.   
The modified algorithm Roulette-wheel-Elitist Differential Evolution is then expressed as 
below: 
 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 

Generate the initial population 
Evaluate the fitness for each individual in the population 
while <the stop criterion is not met> do 
     Calculate the selection probability for each individual 
     for i =1 to NP do {NP: Size of population} 
          Do mutation phase based on Roulette wheel selection 
          jrand = randi(1,D) {D: number of design variables} 
         for j =1 to D do 
               if rand[0,1] < CR or j == jrand then {CR: crossover control parameter} 
                         ui,j = xr1,j + Fx(xr2,j - xr3,j) {F:randomly chosen within [0,1] interval} 
              else 
                        ui,j = xi,j 
              end if 
         end for 
         Evaluate the trial vector ui 
end for 
Do selection phase based on Elitist selection operator 
end while 

2.2 Brief on the behavior equation of stiffened composite plate [2] 
Stiffened composite plate can be seen as the combination between composite plate elements 
and the stiffening Timoshenko composite beam elements, as illustrated in Figure 1. The 
stiffening composite beam is set parallel with the axes in the surface of plate and the centroid 
of beam has a distance e from the middle plane of the plate. The plate-beam system is 
discretized by a set of node. The degree of freedom (DOF) of each node of the plate 
is [ , , , , ]T

x yu v w β β=d , in which , ,u v w  are the displacements at the middle of the plate and 
,x yβ β  are the rotations around the y-axis and x-axis. The DOF of each node of the beam is 

[ , , , , ]T
st r s z r su u u β β=d . The centroid displacements of beam are expressed as 
                         ( ) ( ) ; ( ) ; ( )β β= + = =r r s zu u r z r v z r w u r   (2) 

where , ,r s zu u u are respectively centroid displacements of beam and ,r sβ β  are the rotations of 
beam around r-axis and s-axis. 

 
Figure 1. A plate composite stiffened by an r-direction stiffener 

 
* Energy equation of stiffened composite plates  
 
The strain energy of composite plate is given by 
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 ( )0 0 0 0
1 d
2

T m T mb T mb T b T s
P b b b bA

U A= + + + +∫∫ ε D ε ε D κ κ D ε κ D κ γ D γ   (3) 

where 0 , ,bε κ γ  are respectively membrane, bending and shear strains of composite plate and 
are expressed as follows 
 0 , , , , , , , , , ,[ , , ] ; [ , , ] ; [ , ] .T T T

x y y x b x x y y x y y x x x y yu v u v w wbbbbbb     = + = + = + +ε κ γ   (4) 
m mb b sD ,D ,D ,D  are material matrices of plate  

 
The strain energy of composite stiffener is given by 

 ( )1
2 ( ) ( ) d= +∫ b T b b s T s s

st st st st st st stl
U xε D ε ε D ε   (5) 

where ,b s
st stε ε  are respectively bending, shear strain of beam and are expressed as follows 

 , 0 , , , ,[ , , ] ; [ ]b T s T
st r r r r r r s r st z r ru z ubbbb   = + = +ε ε   (6) 

,b s
st stD D  are material matrices of composite beam  
 

Using the superposition principle, total energy strain of stiffened composite plate is obtained 
by 

 
1

siN

P st
i

U U U
=

= +∑   (7) 

where stN  is the number of stiffeners. 

For static analysis, the global equations for the stiffened composite plate [ ]{ } { }∆ =K F  can 
found in [16] for detail. 

3. Numerical Results 

3.1 Unconstrained problem for fiber angle optimization 
Consider an optimization analysis of a composite plate stiffened by a composite beam 
according to x-direction as in Figure 2 under simply-supported condition. The parameters of 
the problem are given by a = 254 mm, h = 12.7 mm, cx = 6.35 mm and dx = 25.4 mm. The 
analysis is carried out with two cases of square (b = 254 mm) and rectangular (b = 508 mm) 
plate.  

 
Figure 2. Model of a stiffened composite plate 

Both plate and beam have four symmetric layers. The fiber orientation for layers of the plate 
is a set [θ1 θ2 θ2 θ1], and for the layers of the beam is [θ3 θ4 θ4 θ3]. The plate and beam are 
made by the same materials with 1 144.8GPaE = , 2 3 9.65GPaE E= = , 12 13 4.14GPaG G= = , 

23 3.45GPaG = , 12 13 23 0.3υ υ υ= = = . The plate is subject to a uniform load f = 0.6895 (N/mm2). 
 
The optimization problem is now expressed as: 
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1min
2

subject to 0 180,

T

i i = 1,...,4θ

 =

 ≤ ≤

θ
U d Kd

 
where U is strain energy and θI  is fiber orientation of ith layer. 
 
Firstly, static analysis for the case of square plate is carried out to verify the reliability of the 
finite element solution using CS-DSG3 [15]. The results compared with those by Li Li [17] 
and M. Kolli [16] are presented in Table 1 and show good agreement. 
 
Table 1. Comparison of central deflection (mm) of the simply-supported square stiffened 

composite plates subjected to a uniform load f = 0.6895 N/mm2 

Orientation angle for 
both beam and plate 

0 0 0 0[0 / 90 / 90 / 0 ]  0 0 0 0[45 / 45 / 45 / 45 ]− −  

Method CS-DSG3 [16] [17] CS-DSG3 [11] 

Central deflection 1.0917 1.0396 1.0892 2.5049 2.4912 

In Table 2, a comparison of different types of DE algorithm for the case of rectangular plate is 
presented. The first two versions are the original different evolution (DE) and the adjusted one 
(ReDE). Both of them are used with continuous variables. We can see that, the difference of 
computational cost between the two versions is rather big. The cost from DE is nearly double 
in comparison with that of ReDE algorithm. The third version is ReDE algorithm with integer 
variables. And the result obtained from this type just equals 43% of that of ReDE with 
continuous variables. However, the values of the solution are still nearly the same. Therefore, 
in this paper, the ReDE with integer variables is utilized for the optimization process for 
saving the cost. 

Table 2. Comparison of different types of DE 

Type of 
stiffened plate 

Method Optimal angle [Degree] Strain energy 
(N.m) 

Computational 
cost (seconds) 

θ1 θ2 θ3 θ4 
Rectangular 

(a = 254 mm,  
b = 508 mm) 

DE 159.2 37 0 179.9 30300 11223 
ReDE 159.2 37 0 179.9 30300 6787 

Int_ReDE 160 37 0 180 30366 2851 
 
Next, the optimization analysis for two cases of square plate and rectangular plate is carried 
out. The results of fiber orientations obtained from ReDE are presented in Table 3. In this 
analysis, the value of the design variables is chosen to be integer for saving the time of 
computing. The results from the Table 3 show that the solutions by the DE agree very well 
with those by the GA. However, the computational cost for the case of square plate with the 
mesh size of 20x20 is less than 188 seconds. And in the case of rectangular plate with the 
mesh size of 20x40, the cost from GA is nearly double in comparison with the one from DE. 
This shows a big difference and proves the effectiveness of the proposed method.  
 
It is also seen that the optimal fiber orientations of the square plate problem are quite different 
from those of the rectangular plate case under the same conditions. This implies that the 
geometric parameters of the structures also have influence to the results of the optimization 
problems.  
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Table 3. The optimal results of two problems 

Type of 
stiffened plate 

Method Optimal angle [Degree] Strain energy 
(N.m) 

Computational 
cost (seconds) 

θ1 θ2 θ3 θ4 
Square 

(a = b = 254 
mm) 

ReDE 135 48 0 180 6183.2 2065 

GA 135 48 0 180 6183.1 2253 

Rectangular 
(a = 254 mm,  
b = 508 mm) 

ReDE 160 37 0 180 30366 2851 

GA 159 37 0 180 30300 4995 

 

3.2 Constrained problem with thickness optimization 
Consider the same composite plate stiffened by a composite beam according to x-direction as 
in Figure 2 under simply-supported condition. But in this case, the fiber orientations for layers 
of the plate and the beam are given. The problem here is to find the optimal thickness of the 
plate (tp) and the beam (tb) to minimize the weight of the stiffened composite plate under the 
constraints of displacement and stress. The analysis is also carried out with two cases of 
square and rectangular plate. For both cases, the optimal fiber angles found in the above 
unconstrained problems are used, respectively. In particular, the fiber angles of [135 48 0 180] 
is used for the square plate case and the fiber angles of [160 37 0 180] is used for the 
rectangular plate. 
 
For composite materials, many failure criteria proposed to predict lamina failure. In this 
paper, the Tsai-Wu index defined below is used to predict the most likely failure point in a 
layer. 

2 2 2
11 22 12 11 22

11 222

1 1 1 1 1σ σ τ σ σ σ σ
   

= + + − + − + − ≤   
   

τw
τ c τ c τ c τ cτ c τ c

S
X X Y Y S X X Y YX X Y Y

                (8) 

The point with the highest Tsai-Wu index is the point that will most likely fail. And this is 
considered as the stress constraint in this problem. 
The optimization problem is then expressed as 

,

w

min Weight(t ,t )

subject to Displacement is les  than 1 mm
                        S   1




 ≤

p b
p bt t

t

s  

Table 4. The optimal results of two problems 

Type of stiffened 
plate 

Method Optimal thickness Weight  
(kg) 

Computational cost 
(seconds) 

tp tb 

Square 
(a = b = 254 mm) 

ReDE 13 83 1.5269 1065 

GA 13 83  3659 
Rectangular 

(a = 254 mm,  
b = 508 mm) 

ReDE 18 20 4.6593 2606 

GA 18 20  7482 
 
The results from the Table 4 show that the solutions by the ReDE agree very well with those 
by the GA. The objective function is almost the same but the computational costs from GA 
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are about 3 times bigger. This shows that the effectiveness of ReDE in comparison with GA is 
much better. 
 
It is also seen that the optimal thicknesses of the square plate are quite different from those of 
the rectangular plate under the same conditions. In the case of square plate, when the 
thickness of the plate decreases about 27% (from 18 to 13), the thickness of the stiffened 
beam increases 4 times (from 20 to 83). This implies that the thickness of the stiffened beam 
has not too much influence to the response of the whole structure as of the thickness of the 
plate. Therefore, in the problem of weight optimization, we can adjust the thickness of the 
plate and focus only on optimizing the thickness of the plate for saving the cost.  

4. Conclusion 

In this paper, the unconstrained and constrained optimization analysis with integer variables 
for the stiffened composite plate using new modified version of DE is presented. In both 
problems, the results obtained are agreed well with those of GA. However, the computational 
cost of ReDE algorithm is much cheaper than the one from GA. The results illustrated the 
efficiency and the accuracy of the adjusted Differential Evolution in solving the optimization 
problem of the stiffened composite plate. 
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Abstract 
In recent years, considerable attentions have been paid to research for the development of 
structural control devices, particularly focusing on the mitigation of wind and seismic’s 
effects. The use of water tanks at roof as resistant solutions, which are known as Tuned 
Liquid Dampers (TLD), for high-rise buildings is considered in this paper. In the literature, 
TLD has shown significant advantages and can be one of excellent methods to control high-
rise building’s vibration. Liquid storage tank is designed to achieve its natural frequency same 
as that of the building. As a result, the resonant phenomenon will occur and contribute to the 
building’s balance. 
Besides using TLD to analyze the seismic resistance for high-rise buildings, this paper is also 
considered the interaction between the liquid and tank wall for with/without using water tank 
at roof as seismic resistance devices. Results showed that the maximum displacements at the 
top of buildings can be decreased from 50% to 80% and internal stresses are also reduced 
meaningfully.  
 
Keywords:  Tuned Liquid Dampers, sloshing, dynamic control, finite element method, liquid-
structure interaction. 

Introduction 

In general, TLD is a tank with a part of liquid inside relied on liquid sloshing to dissipate 
vibration energy (Figure 1, 2). In fact, the liquid is employed to provide all of the necessary 
characteristics of a secondary system. Meanwhile, its gravity provides the required restoring 
mechanism. Therefore, the secondary system has characteristic periods that can be tuned for 
optimal performance, in the same way as a tuned mass damper (TMD). TLD is a passive 
mechanical damper and has been used in marine for centuries, and in the 20th it was applied 
in aerospace. The advantages of TLD are low cost, easy install & maintenance and the most 
advantage is that it can apply for almost kind of structure including existing building or tower.  

A liquid storage tank on a fixed offshore platform was first used as a TLD to suppress the 
wind-induced vibration of the platform structure by Vandiver et al. (1979) [17], and was 
shown to be effective. Yozo Fujino (1989) [7] was one of the first researching TLD’s wind 
resistance with full scale testing. Sun LM (1992) [8] analyzed TLD’s capacity under wind and 
earthquake by theory and compared with experiment but in his research, the amplitude of 
liquid sloshing is not large. Bui Thanh Tam (1997) [2], showed that TLD can reduced 60% of 
the vibration of structure by using finite element method (FEM). Dorothy Reed (1998) [15] 
published his research about TLD under very large liquid sloshing’s amplitude and Jin Kyu 
Yu (1999) [5][6]  modeled TLD as an equivalent TMD with non-linear stiffness and damping. 
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In mechanical, civil and aerospace engineering, fluid-structure interactions with a moving free 
surface can have significant influence on the dynamic behavior of the structure and needs to 
be properly taken into account. Large amounts of work deal with linearization on the free 
surface, or other simplifications because of the complexity of the problem. However, for 
fluid-structure interactions including large scale sloshing motion of the fluid and large 
displacement motion of the structure, advanced theory and numerical methods are required [5] 
[6]. In recent years, advances have been made in this respect. In some circumstances, 
especially when the deformations of the container are small compared to its displacements, it 
is reasonable to simplify the structure as a rigid container supported by a system consisting of 
elastic springs and dashpots. Typical situations include TLD to passively suppress vibrations 
of high-rise buildings or towers of cable-suspension bridges, and liquid-loaded vehicle 
systems. In these fluid structure interaction problems involving large-amplitude sloshing, the 
nonlinear characters caused by the free surface motion and the dynamic boundary conditions 
need to be considered. The nonlinearity can also be inherited from the dynamics of the 
structure. 
 

  
Figure 1. Mechanism of building with TLD Figure 2. Inside a liquid tank as TLD 

All of previous TLD’s design assumed that the tank’s wall or TLD is rigid to ignore tank’s 
flexibility in that the complicate at the liquid-tank interface. In fact, there are many tank’s 
failures (Figure 3, 4) because of this assumption so that it is attracted researchers and 
engineers in the last few years (Praveen K. Malhotra et al. (2000)[5]; M. Gradinscak 
(2009)[10] to study. Andersson (2001)[16] first investigated the possibility of using container 
flexibility for control of liquid sloshing. Recently, M. Gradinscak (2009)[10] presented that 
flexible container partially filled with water, as the sloshing absorber, and it can be 
advantages over a rigid container for effective control. However, in this study the building is 
modeled as a single degree of freedom, and the mass ratio of TLD over structure is 10% (this 
ratio is too much to practically apply especially in high rise building). 

  
Figure 3. Sloshing damage to upper shell of tank 

(courtesy of UC Berkeley) 
Figure 4. Elephant-foot buckling of a 
tank wall (courtesy of UC Berkeley) 
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The work in this paper is to analyze building under harmonic load and earthquake with and 
without TLD. Addition, the effects of flexible tank’s wall is considered throught several main 
parameters in container such as natural frequency of liquid sloshing, shear forces, moments in 
tanks wall or in building for instance column’s moments, top displacements. In this work, 
Ansys V.11 is used to model the hold structure and investigate the thick of tank wall to 
describe the relation of the rigid and flexible tank. 

The liquid-tank’s wall interaction in TLD 

The TLD is designed to have the same natural frequencies with structure and achieved the 
resonant phenomenon. One side helps to promote maximum ability of the damper but the 
other side it changes the TLD’s dynamic properties through the liquid-tank’s wall interaction. 
The main problem in studying of the liquid-structure interaction is solving the boundary 
condition at tank’s wall. The equations described this condition is re-written by Biswal 
(2003)[18] as:  

 
[ ] [0] [ ] [ ] 0

[ ] [ ] [0] [ ] 0

T
s s

f f f

M K S dd
S M K ppρ

 −      
+ =       
          




 (1) 

with: 
• ,s fM M  are mass matrices of structure and liquid 
• ,s fK K  are stiffness matrices and liquid 

• ,d d are acceleration and deformation of the structural boundary 
• p is the liquid hydro-dynamic pressure. 

Equation (1) leads to a non-standard, unsymetric eigenvalue. It is more difficult to find the 
eigenvalue for large size matrices. Many studies were presented to deal with this problem, and 
Ansys V.11 can be used to model liquid, container and main structure. The natural 
frequencies, amplitude of liquid sloshing are selected to emphasize the importance of the 
interaction. The tank’s wall, columns and beams were modeled by using “Beam3” element, 
liquid by “Fluid 79” element. The liquid–container interaction was achieved by coupling the 
displacements of the liquid and container walls in the normal direction to the container walls. 

The effect of tank’s wall to natural frequency  

Four types of containers with different thickness of tank’s wall, t, from thin to thick are 
analyzed to find the natural frequencies and then compared with Housner’s formulation 
(1967)[1] for rigid container. The containers are 0.59 0.03T × (container’s width is 0.59m, 
height of liquid is 0.03m), 1.00 0.10T × , 3.00 0.20T × , 6.00 0.50T × . The natural frequency of 
tank [5]: 

 
1 tanh

2 2 2
fhgf

a a
ππ

π
 

=  
 

 (2) 

The relation between flexible tank and rigid tank can be set up though ψ  by Duc Tuong et al 
(2010)[1] as the flexibility parameter which is depended on thickness of tank wall, height and 
modulus of liquid: 

 
3
tank
3
liquid

tE
h

ψ = ×  (3) 
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Figure 5. Frequency of 0.59 0.03T ×  Figure 6. Frequency of 1.00 0.10T ×  

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25

Frequency (Hz)

Fl
ex

ib
ili

ty
 P

ar
am

et
er

Flexibility Tank Rigid Tank

 

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2

Frequency (Hz)

Fl
ex

ib
le

 P
ar

am
et

er

Flexible Tank Rigid Tank

 
Figure 7. Frequency of 0.59 0.03T ×  Figure 8. Frequency of 1.00 0.10T ×  

 

Figure 5, 6, 7, 8 showed that the container is rigid if ψ  is more than 100 otherwise it is 
flexible. And easily see that the thicker tank’s wall, the higher frequency of TLD. 

The effect of tank’s wall to sloshing amplitude 

To see clearly the effect of the liquid–tank’s wall interaction, a numerical example is 
considered. A rectangular concrete container has the sections 6.0 1.0 0.5m m m t× × × , in length, 
height, liquid height and wall’s thickness, and is applied harmonic load  sinox A tω= with 

5( )oA mm= . The properties of concrete are: 32400 /kg mρ = , 22.65 10( / )E e kN m= , 0.2υ = . 
The mass of the structure was 28.941kN. From (2), tan 0.18582( )rigid

kf Hz= and in Ansys V.11 

tan 0.18250( )rigid
kf Hz= . Based on the flexibility parameter ψ  [1], this container is rigid when 
100 1.78t mmψ ≥ ⇔ ≥ . 

 
Figure 9. Container 6.0 1.0 0.5T m m m t× × ×   
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Under harmonic loading sinox A tω=  with 5( )oA mm=  and 0.25f Hz= . The sloshing can be 
expressed as Figure 10 and 11, it is clear to see that when t is rigid or near rigid ( 100)ψ ≥ , 
sloshing amplitude is merely the same (Figure 10) and the amplitude in flexible container is 
much more than in rigid one (Figure 11).                           
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Figure 10. Sloshing amplitude in near rigid 

container 
Figure 11. Sloshing amplitude in flexible 

container 
 

Come to conclusion, the liquid-tank’s wall interaction is important in container design 
because of two reasons: (1) the interaction leads to change the dynamic properties of tank and 
the natural frequencies of container can adjust easily by increasing or reducing the tank wall’s 
thickness; (2) under the same load, sloshing amplitude in flexible tank is higher in rigid tank. 
This implied flexible tank is carried more load than in the rigid one so that when design TLD 
the flexibility should be checked by parameter ψ  to protect the stability of container. Because 
of the rigid tank wall assumption, there are a lot of failure containers especially with the 
dynamic loads.   

Numerical Example in Designing TLD Considering Liquid-Tank’s Wall Interaction 

Two examples are analyzed to investigate the seismic resistance of TLD for high-rise 
building. The first one presents the main point in designing damper and the second shows the 
TLD’s capacity and emphasize the importance of liquid-container interaction. 

Example 1  

Design TLD for a steel building 70m in height under harmonic and seismic load, El-Centro 
earthquake data is used to analyze the seismic resistance of the building in Ansys V.11 and 
Newmark’s method is used to predict sloshing and top building’s deformation. Building has 
14 storeys with each storey 5m in height and one span 3m in length. All of beams and 
columns section are the same and the tank is 0.6 0.8T m m×  with 11 22.1 10 /steelE N m= × , 

37800 /steel kg mρ = , 0.3υ = . Mass of structure is 6685000 6685buildingP N kN= = . 
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Figure 12. 14-storeys building with TLD Figure 13. 14-storeys building in Ansys 

 

The TLD is designed based on Sun LM’s guides (1992) [8], that is: TLD structuref f≈  and 
1 6685

100TLD structureP P N≈ = . And two conditions can be described as: 

 

9810 6650

1 tanh 0.70873
2

TLD t f t f

f
TLD s

t t

P g b h b h

hgf f
b b

γ

ππ
π

= × × × = × × =


 
= ≈ = 

 

 (4) 

Where tb  and fh are tank’s width and liquid height. The liquid in TLD is water 

with 9 22.2 10 /waterE N m= × , 31000 /water kg mρ = , 0.5υ = . Withdraw from(4), we 
have 1.2 , 0.5t fb m h m≈ = . Then the natural frequency of TLD followed (2) is 

0.749TLDf Hz= , the building is under harmonic load 0 sin 1000sin ( )P P t t Nω ω= =  with 
frequencies of load from 0 1.2Hz→ and El-Centro earthquake. Figure (14) and (15) shows 
the response of structure with and without TLD.                       
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Figure 14. Structure under harmonic load Figure 15. Structure under El-Centro 

In Figure (14) the top building’s deformation reduces 4 times when using TLD and the 
resonant occurs at frequency 0.94f Hz=  . Figure (15) shows that the building’s vibration 
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reduced 80% under seismic load if TLD is used. Beside, the moments in the left column of 
the structure with TLD are less than without TLD 25%. 
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Figure 16. Moments in left column of the building 

Example 2 

An eight storeys steel building has one span 3.0m in length and each storey is 3.0m in height 
with 11 22.1 10 /steelE N m= × , 37800 /steel kg mρ = , 0.3υ = . Mass of structure is 

881762.8 881.763 .buildingP N kN= ≈  Figure 17 showed the natural frequency of 

structure 1 0.29( )buildingf Hz= . The transient analysis is carried out to find the response 
vibration of the building with the frequencies of load from 0 1( )Hz→  and Figure 18 
illustrated the maximum response vibration of the structure without TLD is 1.8m 
at 0.29( )f Hz= . 
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Figure 17. 8-storeys building’s frequency 

in Ansys 
Figure 18. Response vibration of building 

without TLD 

The TLD is designed by the same progress with Example 1 in Ansys V.11 to suppress the 
vibration and its section is 2.0 0.2TLD liquidL h m m× = × , 0.277( ) 0.95rigid

TLD buildingf Hz f= ≈  and 
10079 1.13%TLD tank water buildingP P P N P= = ≈+ . The thickness t of container is changed from thin to 

thick to investigate the effective of liquid–tank’s wall interactions. The thickness t of 
container is separated in two types which are rigid and flexible. Figure 19 described the 
response vibration of building with rigid TLD that means 100ψ ≥  is reduced 50% and the 
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resonance was occurred at 0.29( )f Hz= , the same with the natural frequency of the building. 
But in the Figure 20, the resonance was occurred uncontrollably and at the undefined value. 
Thus, the flexibility of TLD must be checked when designed.   
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Figure 19. Top displacement with rigid TLD Figure 20. Top displacement with flexible TLD 

To continue this part, the seismic resistance of TLD is analyzed. El-Centro and Newmark is 
used as data and tool to track liquid sloshing and displacements of building. When occurred 
earthquake, TLD is activated and the liquid sloshing is oscillated as shown in Figure 21, and 
contributes to reduce 67% the vibration of building as shown in Figure 22. However, with the 
different container’s thickness, there were various top deformations as illustrated in Figure 23. 
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Figure 21. Sloshing at top building Figure 22. Top building with & without TLD 
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Figure 23. Top building with flexible TLD 
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To see more clearly the seismic resistance capacity of the damper, the moments in column of 
the building are illustrated in the Figure 24 and 25 in cases with and without TLD. That figure 
showed TLD can reduced from 50 to 75% moment in column (good agreement with Sun and 
Fujino’s experiment in 1989 [7]). 
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Figure 24. Moment in left column of building Figure 25. Moment in left column of building 

Conclusions 

The seismic resistance capacity of TLD is enough good if the ratio of TLD over the 
suppressed modal mass of the structure is 1-3%. With 1-3%, the TLD’s weight does not 
significant affect the dynamic characteristics of the structure. Then, the vibration at the top of 
the building is reduced from 67% to 75% based on TLD. This leads to the moment in columns 
also reduced meaningfully up to 80% (good agreement with Fujino’s results (1988) [13]). 
When TLD is activated, there is no different of the building’s internal forces between rigid 
and flexible tank’s wall as showed in Figure 24 and 25. So the recommendation is that TLD 
should be designed to have a rigid wall to avoid the tank’s deformation because of the 
interaction. 

Using TLD to seismic resistance will re-distribute the internal forces so that the maximum 
moment may be not appear at the column base at Figure 16 and 25. 
The interaction at liquid-tank’s wall is very important so that it must be considered carefully. 
The interaction can change the dynamic properties of container wall then the water tank could 
not be TLD. Otherwise, one can use the flexibility to control the natural frequency of the tank 
[10]. 

The TLD can be designed easily as in example 1 by adjust the size of tank and height of 
liquid. It also can be applied for almost structure. 
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Abstract 
This article examines the current research in nano communication networks specifically 
Molecular Communication (MC).Molecular Communication is an emerging communication 
paradigm where molecules are used to exchange information. Unlike traditional 
communication paradigms, molecules are transmitted as messages between biological nano 
machines. Key research challenges in molecular communication include design of system 
components and mathematical modeling of each system component as well as entire systems. 
Recent research in molecular communication and its propagation medium has been reviewed 
in this article.    
 
Keywords: Nano machine; Nano communication networks; Nano communication networks 
applications; Molecular communication; Molecular Propagation Systems. 

Introduction 

Nanotechnology is miniaturization and fabrication of devices in a scale ranging from 1 to 100 
nanometers. The prefix nano means one billionth i.e., (1x10-9). Nanotechnology has been 
defined in a number of ways in literature. However according to [1] nanotechnology is “a 
branch of technology dealing with the manufacture of objects with dimensions of less than 
100 nano-meters and the manipulation of individual molecules and atoms”. Nano machines 
are fully functional devices and capable of performing trivial tasks like sensing, actuation, 
computing and data storage. Single nano machines are only capable of performing trivial 
tasks therefore to perform more complex tasks they must be interconnected to form a network 
[2], [24]. Nano-machines can be manufactured using three approaches top-down, bottom-up 
and bio-hybrid.  
Molecular communication (MC) is the paradigm in nano communication networks that 
utilizes molecules for communication among nano machine [2][3][20]. Molecular 
communication is biologically inspired i.e., it adapts the communication mechanisms already 
existent in nature for communication among living organisms. Human body is composed of a 
large scale heterogeneous network where molecular communication takes place for intra body 
communication [25].There are a number of intra body applications where small scale 
communication is necessary e-g targeted drug delivery, BMI (Brain Imaging Interface), tissue 
engineering and cell repair etc [2][20][25]. Various communication and networking aspects of 
MC are currently being explored by research community. We have investigated the current 
research in propagation medium of Molecular communication, after giving brief introduction 
of nano communication network. 
Section 2 discusses the current research in Molecular Communication. Section 3 defines the 
architecture of nano machines between which Molecular communication takes place. Section 
4 highlights the applications of nano networks. Section 5 discusses different communication 
mediums used for communication between nano machines. In Section 6 detailed architecture 
of Molecular communication has been discussed and in Section 7 is the conclusion.      
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Background Study 
Molecular communication is as old as the existence of nature, as communication has been 
taking place between living organisms since then. However with the advancement in 
computer networking the significance of Molecular communication has been brought to light 
all over. The research on molecular communication from the networking perspective is almost 
two decades old but still is immature. There are still a number of open issues regarding design 
and mathematical modeling of system components that needs to be addressed.  

Molecular communication is able to take place in three ranges according to [2]. (1) Short 
range communication using molecular motors is the mechanism where inter cell and intra cell 
communication takes place using molecular motors, which are carriers of information 
encoded molecule. (2)Short range communication using calcium ions is another mechanism 
of molecular communication where communication might take place either between 
physically adjacent cells or distant cells using calcium ions (Ca2+).(3)Long range 
communication using pheromones is the communication mechanism that takes place between 
sender and receiver nano machines that might be millimeters to kilometers apart. Application 
domains long range communication is military field and environmental applications [2].  
 
Architecture of Nano-machines 
Nano-machine consists of five components in its complete form.  In order to develop efficient 
and novel nano-machines and to understand the communication mechanism between nano-
machine, study of biological cell architecture and their interactions has been proved helpful. 
Following architectural components are included in most complete nano-machines and their 
biological cell counterparts are identified by [2], [6] and compared in the table below: 

 
Table 1. Mapping between synthesized nano-machines and nano-machines found in 

biological cells 

Synthesized nano-machines Biological nano-machines 
Control Unit. It contains the embedded 
software, which aims to perform the 
intended task of nano machine.    

Control Unit. Similar to software 
conditional expressions biological control 
unit encodes protein structures, data units 
and regulatory sequences.  

Communication Unit. Communication 
mechanism of nano machine is realized 
through transceivers. Transceivers allow 
the embedded system to exchange 
information by transmitting and 
receiving messages at nano level. 

Communication Unit. The inter-cellular 
communication is realized through the gap 
junctions, hormonal and pheromonal 
receptors placed on the membrane of cell.  
 

Reproduction unit. It contains the 
instructions to fabricate the components 
of nano-machines and then to replicate 
them. 
 

Reproduction. This process takes place 
when nano machines are replicated by saving 
the code of nano machine in molecular 
sequences . 

Power Unit. Power unit supplies stored 
energy to all the other components of 
nano-machines, to maintain the 
electrical current in embedded software.  
 

Power Unit. Mitochondrion, chloroplast and 
Adenosien Tri phosphate are some of the 
substances of cells that correspond to the 
external chemical reactions to produce 
energy. This chemical energy is stored in the 
cell reservoirs and supplied to regulate the 
other components of cell. 
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Sensor and Actuators. This unit 
provides interface between environment 
and nano machine.  
 

Sensors and Actuators. Sensing and 
actuation is the ability of biological cell to 
distinguish external molecules or stimuli e-g 
chloroplast of plants and flagellum of 
bacteria.    

 
The most complete nano machine consists of all the components described above. However 
according to application domain nano machines might be changed in shape such as nano 
robots in medical applications.  
 
Nano Network Applications 
Nanonetworks applications are unlimited and are used extensively in almost every field. 
However they are classified in following broad groups in [2]. 

Biomedical applications 
The size of nano devices makes them feasible for a number of bio medical and health 
monitoring applications including diagnostics, treatment and prevention of diseases. Another 
advancement in the field of healthcare is the nano machine deployed inside the human body 
which can remotely be controlled from the nanoscale and over the internet by an external user 
(healthcare provider) [7].  

 Industrial applications 
Nano devices are showing potential in a number of industrial and consumer good 
applications.  Interconnected nano-machines are used by video gaming industry for increased 
thrill and realistic gaming experience. It provides the functionality of transporting molecules 
from one location to another, mixing different types of molecules and separating specific kind 
of molecules from a mixture [10][11] . 

 
Military Applications 
Nanotechnology also has several applications in the military field. Nano devices such as 
imperceptible nano cameras, ultrasonic nano phones, and biological nano-sensors are devices 
that show potential in battlefield monitoring and actuation [2][7]. 
 
Environmental Applications 
The bio inspired nature of nano technology makes it feasible to detect and sense contaminated 
materials found in nature. The problem of handling and dumping garbage is increasing around 
the world; this problem can be dealt by biodegradation process that uses nano-networks [2].   
Nanonetworks can also be used to monitor air, thus controlling air pollution and nano filters 
can be developed to improve air quality and remove harmful materials from air [12]. 
 
Communication between Nano Machines 
Nano-machines are only able to perform trivial tasks on their own; therefore communication 
among nano-machines is very important to realize more complex tasks .Nano-machines can 
be interconnected to execute collaborative tasks in a distributed manner resulting in nano-
networks that expand the capabilities and applications of single nano-machines [2]. 
Nano-machine communication technologies are divided into four groups namely: 
• Electromagnetic communication 
• Acoustic Communication 
• Nano Mechanical Communication 
• Molecular Communication. 
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Electromagnetic communication 
This type of communication based on the transmission and reception of electromagnetic 
waves between novel nano materials such as carbon nanotubes and graphene based 
nanoribbons [2][13]. The traditional transceiver of classical wireless communication is not 
feasible for nano-scale communication, however novel graphene based nano-materials have 
shown potential to overcome this limitation [13].  
 
Acoustic Communication 
Acoustic communication is realized by the transmission of ultrasonic waves through nano 
machine integrated transducers .These transducers should be capable to sense the variety of 
pressure and then react accordingly. Currently the size of transducers is the major barrier to 
implement this communication mechanism at nano-scale [2]. 
 
Nano Mechanical Communication 
In nano mechanical communication, the information is sent through nano machines that are 
linked physically. One of the major drawbacks for this communication technique in nano 
communication context is physical connection between devices. Therefore it is not feasible 
for the applications where nano-machines have to be placed at distant locations [4]. 
 
Molecular Communication 
Molecular Communication (MC) is a molecule based communication paradigm that enables 
transmission of bio-chemical information (e.g. status of living organisms), which is not 
feasible using traditional communication [14]. Molecules encoded with information to be 
transmitted, are called information molecules. The information molecules activate bio-
chemical reaction at receiver and may recreate phenomena and/or chemical status, which 
sender then transmits [9][14]  Molecular communication (MC) is considered the most 
promising nano networking mechanism due to its nano-sized transceivers that can easily 
integrate into nano machine [2][15].  
 
Molecular Communication Architecture 
Molecular communication architecture consists of information molecules that contain 
information to be transmitted, sender bio-nano machines that send information molecules, and 
receiver bio-nano machines that receive information molecules. Other types of molecules 
might be included in the system such as transport molecules which move information 
molecules, guide molecules which guides the movement of transport molecules, interface 
molecules for selective transport of information molecules [17].MC communication 
architecture is presented in the figure below. Different phases of molecular communication 
are described below [2][17]:  
• Encoding in this phase sender nano machine encodes the information into the information 

molecules in various forms. 
•  Sending: In this phase sender bio nano machine releases information molecules in the 

environment.  
• Propagation: It is the phase in which molecules travel from sender nano machine towards 

receiver nano machine. This transport can be either passive or active. Passive transport is 
the through diffusion of molecules in the environment without chemical energy, where as 
in active transport information molecules bind to molecular motors. 

• Receiving: Transmitted molecules are received from the aqueous medium in this phase 
usually with the help of chemical receptors [38].  

• Decoding: In this phase the captured molecules are decoded by receiver nano-machines 
into the form of chemical energy. 
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Conclusion 

Molecular Communication is a novel communication paradigm which uses molecules for 
information transmission. Unlike traditional communication MC is capable to transmit 
information over short distances [22]. As MC is inspired from the communication among 
living cells and other biological materials it provides a number of biomedical and 
environmental applications. Nano Communication inside human body can poses a number of 
health applications e.g., targeted drug delivery, tissue engineering, BMI (Brain Machine 
Interface) and enhanced immune system [22].Interdisciplinary research is needed to develop 
theoretical and mathematical models for end-to-end communication between bio-nano 
machines. However authors in [18][24] have done wonderful work to explain layered and 
TCP like molecular communication. 
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Abstract 
 
The purpose of this paper is to develop an economic production quantity model (EPQ) in a 
coordinated supplier-produced supply chain. This collaborative supply chain accounts for the 
quality of both finished product and raw material used in the production process. It is assumed 
that the raw material acquired from the supplier contains a percentage of good quality items. 
These items are detected through a screening process at the beginning of the production 
period. The quality of the finished items produced is checked continuously throughout the 
production period. The imperfect quality items are either reworked or rejected. The nature of 
this production/inventory problem necessitates the consideration of shortages. The 
mathematical model is formulated and the supply chain is optimized by determining the order 
quantity that maximizes the collaborative profit function. Numerical examples are provided to 
illustrate the model and the collaborative and non-collaborative models are compared. 
 
Keywords: Inventory Control, Economic Production Quantity, Supply Chain, Quality, 
Screening, Rework, Reject. 
 

Introduction 
The two classical inventory control techniques known as economic order quantity (EOQ) and 
economic production quantity (EPQ) models have been widely used among researchers and 
industries (Bedworth and Bailey [1]) and (Simpson, [2]).  The EOQ model aims to optimize 
the order size by balancing or trading off the ordering and holding costs. The EPQ model 
seeks to determine the optimal lot size by minimizing the total setup and carrying costs. 
Despite of their widespread usage and implementation, these models are based on idealistic 
assumptions that are rarely met in real life situations. In the past few decades, considerable 
research has been published whereby the underlying assumptions are relaxed so that the 
EOQ/EPQ models are examined under situations that closely resemble the actual inventories 
encountered in real life. The modified models account for factors that influence the inventory 
costs. These factors include deterioration, shortages, probabilistic demand, order quantity and 
demand dependent costs, inflation, time discounting and credit facilities.  
One of the unrealistic assumptions of the classical EOQ/EPQ models is that all items received 
from the supplier and all items produced by the manufacturer are of a perfect quality. These 
assumptions initiated a new line of research in the field of inventory management that ensures 
quality. Porteus [3] studied the relationship between the lot size, process quality, and setup 
cost. Rosenblatt and Lee [4] examined a production system with defective finished items. 
Salameh and Jaber [5] introduced an EOQ model where each lot delivered by the supplier 
contains imperfect items, not necessarily defectives, which can be salvaged at a discounted 
price. This modeling approach has triggered numerous research papers extending this model. 
Hayek and Salameh [6] studied an EPQ model where the imperfect quality items are 
reworked. Chiu [7] considered a production process with random defective rate where the 
defective items are reworked and unsatisfied demand is backlogged. Ozdemir [8] proposed an 
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EOQ model with defective items where shortages are backordered. Khan et al. [9] presented 
an extensive survey of such articles.  
A typical supply chain consists of suppliers, producers, distributors and retailers. The 
inventory problems of partners in a supply chain have been treated separately. Recently, 
numerous studies have been published in the field of inventory management dealing with the 
interaction between partners in a supply chain and aiming for the improvement of their joint 
performance. Khan et al. [9] reviewed articles related to EOQ/EPQ models in supply chains 
with imperfect quality items. 
In a different direction, El-Kassar et al. [10] introduced an EPQ model with imperfect quality 
items of raw material used in the production process. El-Kassar et al. [11] examined the effect 
of time value of money on this model. The purpose of this paper is to examine the effects of 
the interaction between the supplier of raw material and the producer of the finished product 
on the joint performance of both partners in this supply chain. This is done by developing an 
EPQ model in a coordinated supplier-produced supply chain. This model accounts for the 
quality of both finished product and raw material in a collaborative supply chain. The raw 
material acquired from the supplier contains a percentage of good quality items. At the 
beginning of the production period, the good quality items are detected through a 100% 
screening process. Throughout the production period, the quality of the finished product is 
checked continuously. The imperfect quality items are either reworked or rejected. This 
model allows for shortages. The unsatisfied demand is assumed to be fully backordered.  
The rest of this paper is organized as follows. In section two, the needed assumptions and the 
used notations are presented and the mathematical model is formulated so that the supply 
chain is optimized by determining the order quantity that maximizes the collaborative profit 
function. In section three, a numerical example is provided to illustrate the model and the 
collaborative and non-collaborative models are compared. In section four, a conclusion and 
some managerial implications are provided. Also, future research suggestions are stated.  

The Mathematical Model 

Assumptions: 
 

1. Finished product items produced are checked for quality through a 100% error free 
screening process conducted throughout the production process.  

2. The production rate of perfect quality items is greater than the demand rate. 
3. Planned shortages are permitted and fully backordered. 
4. Rework process starts at the end of the production process with no setup time. 
5. Reworked items are processed at the same production rate. 
6. The percentage of good quality items of raw material, the percentage of perfect quality 

finished items, and the percentage of scrap items are known constants. 
 

 
Notation: 
 
P  Production rate  
D Demand rate 
x Raw material screening rate 
Q Order size of raw material  
S Maximum shortage per cycle   
T Cycle length 
t1 Time to fulfill the backorder of size S  
t2  Time to build up the maximum inventory of perfect quality finished items  
t3 Rework time  
t4  Time to deplete on-hand inventory after rework  
t5  Time to build up the maximum shortage level of size S  
ts   Raw material screening period  
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tp Production time (tp = t1+ t2) 
Ap  Producer’s fixed ordering cost of raw material  
As  Supplier’s fixed ordering cost of raw material  
K Production fixed setup cost  
cms  Supplier’s cost of one unit of raw material  
cmp  Producer’s cost of one unit of raw material  
cp   Cost of producing one unit of finished product 
cr   Cost of reworking one unit of finished product  
cd   Cost of disposing of one unit of scrap item of the finished product   
cs  Cost per unit shortage per unit time 
dm  Cost of screening one unit of raw material 
df   Cost of screening one unit of finished product  
r Selling price per unit of finished product 
rd   Discounted selling price per unit of raw material. 
hms  Supplier’s holding cost of raw material per unit per unit time 
hmp  Producer’s holding cost of raw material per unit per unit time  
hp   Holding cost due to production per unit per time 
hr  Holding cost due to rework per unit per time 
γ  Percentage of good quality items of raw material  
p  Percentage finished product that are of perfect quality  
r  Percentage of imperfect quality items that are reworked  
1− r  Percentage of imperfect quality items that are scrapped (defective) 
λ   Proportion of reworked items used to meet the demand  
Gs Supplier’s profit function per unit time 
Gp Producer’s profit function per unit time 
Gc Chain’s profit function per unit time 
N  Number of production cycles per one supplier’s inventory cycle 
 
In this coordinated two layer supply chain, the producer orders from the supplier Q units of 
raw material at the beginning of each production cycle. The raw material acquired contains a 
percentage γ of imperfect quality items. The γQ units of good quality items are detected 
through a 100% error free screening process and used in the production of the finished 
product. At the end of the screening period, the remaining (1−γ)Q units of raw material are 
returned to the supplier who sells the items at a discounted unit price rd. Since raw material is 
screened at rate of x units per unit time, the screening period is ts = Q/x. Also, the γQ units of 
good quality items of raw material are processed into finished product at a rate of P, where 
x>P, so that the production period is tp = γQ/P.  
Throughout the production period, the finished product is screened to detect perfect quality 
items. Since the percentage of perfect quality finished items is p, the number of perfect 
quality items produced is γpQ and the remaining (1−p)γQ finished items are of imperfect 
quality. A percentage r of the imperfect quality finished items are can be reworked into 
perfect quality finished items and the remaining 1−r are scraped. The number of reworked 
and scraped items are r(1−p)γQ and (1−r)(1−p)γQ, respectively.  
The γpQ perfect quality items are produced at a rate of Pp units per unit time. Since shortages 
are allowed, the perfect quality finished items produced at the beginning of the production 
period will be used to meet the demand, at a rate D, and to fulfill backorders at a rate Pp−D > 
0. Assuming that the inventory cycle begins with S units short, the time required to fulfill the 
backorders is t1 = S/(Pp−D). Once all backorders are fulfilled, inventory of perfect quality 
finished items is accumulated at a rate of Pp−D until a level of z1 = t2 (Pp−D), where t2 = tp−t1, 
is reached at the end of the production period.   
When regular production stops, the scraped items are disposed of at a unit cost of cd. The 
remaining imperfect quality finished are reworked into perfect quality items at the same 
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production rate P. During the rework period, from t = tp until t = tp + t3 = tp + r(1−p)γQ/P, 
the perfect quality finished items inventory increases at a rate of P−D until a maximum level 
of z2 is reached where z2 = z1 + (P−D)t3. This accumulated inventory will be used to meet the 
demand at a rate D so that the time required to deplete this inventory is t4 = z2/D. During the 
remainder of the inventory period, the demanded items are backordered. The time required to 
build up the maximum shortage level of size S is t5 = S/D. The inventory behavior of perfect 
quality items is depicted in Fig. 1. 
 
In order to calculate the inventory holding cost, the behavior of both imperfect quality items 
and reworked items inventories must be determined. Since imperfect quality items are 
reworked at the end of the production period, such items are accumulated throughout this 
period at a rate of (1−p)P until a maximum level of z3 = tp (1−p)P = (γQ/P)(1−p)P = (1−p)γQ 
is reached. After the disposal of scraped items, the imperfect quality items inventory drops to 
a level of z4 = r(1−p)γQ. During the rework period, between time t = tp and time t = tp + t3, 
these items are reworked into perfect quality items at a rate P. The inventory behavior of the 
imperfect quality items is illustrated in Fig. 2. 
In the following we construct the producer’s profit function by determining the relevant cost 
and revenue. At the beginning of each production/inventory cycle the producer places an 
order of size Q of raw material at a unit purchasing cost of cmp and an ordering cost of Ap. 
These items are screened to detect the good quality at a unit screening cost of dm. The γQ 
good quality items are used to produce γQ units of the finished product at a unit production 
cost of cp and a setup cost of K. The remaining (1−γ)Q items are returned to the supplier at the 
end of the screening period. Therefore, the purchasing cost of raw material is cmpγQ, the 
screening cost is dmQ, and the production cost is cpγQ. Throughout the production period, the 
finished items are screened to detect the perfect and imperfect quality items at a unit screening 
cost df so that the screening cost of items produced is df γQ. The perfect quality items pγQ are 
sold at a unit selling price of r. The remaining (1−p)γQ imperfect quality items are classified 
as scrap items or as items that be reworked into perfect quality. The (1−r)(1−p)γQ the scrap 
items are disposed of at a unit cost of cd. The remaining r(1−p)γQ items of imperfect quality 
are reworked at a unit cost of cr and sold at the same unit selling price of r. The shortage cost 
per cycle is obtained by multiplying the average number of units short per cycle by the cycle 
length by the cost of having of unit short per unit time. Similarly, the holding costs of the 
various types of items on hand are calculated by multiplying the average number of units on 
hand per cycle by the cycle length by the holding cost per unit per unit time. In summary, the 
revenues and cost components per cycle are: 
 

Sales of good quality items  = rpγQ + rr(1−p)γQ  
Ordering/Setup Cost   = Ap + K 
Purchasing cost of raw material  = cmp γQ 
Screening cost of raw material = dm Q 
Finished items production cost = cp γQ 
Screening cost of finished product = df γQ 
Disposal cost of scrap items   = cd (1−r)(1−p)γQ 
Imperfect quality items rework cost  = cr r(1−p)γQ 

 
 
In addition, the shortage cost is given by  
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From the above revenue and cost components as well as Eqs. (1) and (2), we have that the 
total profit per cycle function is  
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Dividing by the inventory cycle length T = Q(p+r−pr)/D, we obtain the producer total profit 
per unit time function Gp(Q,S). 
 
Next, all revenue and cost components for the supplier are determined by assuming that the 
supplier inventory cycle is a multiple of the producer production cycle T. Let N be the number 
of production cycles in one supplier’s inventory cycle. At the beginning of the cycle, the 
supplier orders NQ units of raw material at an ordering cost As and a unit cost of cms. These 
items will be delivered to the producer in batches each of size Q, where the first batch is 
delivered at the start of the supplier cycle so that the supplier maximum inventory level is 
(N−1)Q. The supplier inventory behavior is shown in Fig. 3. The producer keeps the γNQ 
good quality items and the producer sells the (1−γ)NQ returned items at a discounted price rd, 
where rd < cms. 
 
The supplier cost and revenue components per cycle are: 
 

Sales of good quality items   = cmp NγQ  
Sales of returned items   = rd N(1−γ)Q  
Ordering    = As  
Purchasing cost of raw material  = cms NQ 
Holding cost     = QT hms N(N−1)/2 
 

The supplier total profit per cycle function is 
 

     2/)1()1(),(),( −−−−γ−+γ== NNQThNQcAQNrQNcSQTPSQTP msmssdmp      (4) 

 
Dividing by the supplier inventory cycle length NT, we obtain the supplier total profit per unit 
time function Gs(Q,S). The supply chain total profit per unit time function is obtained by 
adding Eqs. (3) and (4) so that  

     ). (Q) + Gs(QGc(Q) = Gp      (5) 
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In a non-collaborative supply chain, the producer is the decision maker. In this case, the 
optimal solution Q* is determined by maximizing the function Gp(Q). The supplier then 
determines the integer N that maximizes Gs(Q*). In the case of a coordinated supply chain, the 
optimal solution is determined by maximizing the Gc(Q) for each value of N and selecting the 
value corresponding to the largest maximum total profit for the supply chain.   
 

Numerical Example 
Consider a production process where the demand rate for an item is 100 units per day and the 
production rate is 400 units per day. The raw material used in production is ordered from a 
supplier where 80% of the items received are of good quality. Screening for good quality 
items of the raw material is conducted at a rate of 1000 items per day and at a cost of $0.25 
per unit. The ordering cost for the raw material is $5,000 and the production setup cost is 
$5,000. The holding cost of raw material is $0.02 per unit per day while the holding cost due 
to production is $0.05 per unit per day. Hence, the holding cost of one unit of the finished 
product is $0.07 per day. 75% of the items produced are of perfect quality. 80% of the 
imperfect quality items produced can be reworked and the remaining 20% are scrap items. 
The screening cost for detecting imperfect quality finished items is $0.5 per unit. If an item is 
reworked, an additional holding cost of $0.01 per unit per day is incurred. The purchasing 
cost of one item of raw material is $10, the unit production cost is $20, and the rework cost 
per unit is $5. The selling price is $50 per unit. The scrap items are disposed of at the end of 
production period at a cost of $2 per unit. Planned shortages are permitted, where the cost of 
having one perfect quality finished short is $0.3 per day. The supplier cost of one item of raw 
material is $5. A returned item of raw material can be sold at a discount price of $2. The 
supplier holding cost of raw material is $0.01 per unit per day.  
The parameters of the problem are D = 100, P = 400, x = 1000, γ = 0.8, p = 0.75, r = 0.80, 
Ap = 5000, K = 5000, hmp = 0.02, hp = 0.05, hr = 0.01, Cmp = 10, Cp = 20, Cr = 5, Cd = 2, dm = 
0.25, df = 0.50, and r = 50, As = 3000, hms = 0.01, Cms = 10, and rd = 50.  
In a non-collaborative supply chain, the optimal solution obtained by maximizing the function 
Gp(Q,S) via a numerical search. The search resulted in the following:  

Optimal Order Size = Q* = 8000 
Optimal Planned Shortage = S* = 800 
Producer Total Daily Profit = $1318.77 

Using the optimal order size, the supplier determines the best value of N=3 with a supplier 
total profit of $64.43 per day so that the supply chain’s total profit is equal to $1383.20. 
On the other hand, if the supply chain is coordinated, the best value of N is found to be 1, and 
the optimal solution is:     

Optimal Order Size = Q* = 10,000 
Optimal Planned Shortage = S* = 1000 
Supply Chain Total Daily Profit =$1693.86 

  
Conclusion 
The effects of the interaction between the supplier of raw material and the producer of the 
finished product on the joint performance of both partners in this supply chain were 
examined. An EPQ model in a coordinated supplier-produced supply chain was developed. 
The model accounted for both the quality of finished product and raw material in a 
collaborative supply chain. A mathematical model was formulated so that the supply chain is 
optimized by determining the order quantity that maximizes the collaborative profit function. 
A numerical example was provided to compare the collaborative and non-collaborative 
models. This study showed how collaboration between supply chain members can increase 
their overall profits. 
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It is recommended that future research consider probabilistic percentages of good quality 
items in both raw material and finished products. In another direction, this model can be 
extended to incorporate other factors such as time value of money, and credit facilities. 
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Abstract 

A walking stick is an external help to maintain balance and maintain mobility during the walk 

of a person who is recovering from an injury to one of his legs. In this paper the analytical 

method is described for determining the length of pipe needed for the manufacture of a cane 

custom design, using basic math such as calculating perimeters and trigonometry, as a 

training exercise for students of mechanical engineering who take the course theoretical and 

practical manufacturing process because they start the course with deficiencies in basic math. 

It also briefly describes the use of Autocad software for this purpose. To design the stick, 

geometry and material commercial canes were considered, and anthropometric measurements 

of the palm of hand and height to the stick were taken. For a stick 800 mm height and 90 mm 

grip, a length of 937.14 mm tube is required. 

Keywords: Trigonometry, Drawing software, Length of Tube, Walking Stick, Personalized 

Dimensions. 

Introduction 

In the courses of Manufacturing Processes I and Workshop Manufacturing Processes I for 
students of mechanical engineering, is studied and applied the process of bending sheet and 
pipe, and for enabling the material in this process, it is necessary to use basic math such as 
calculating perimeters and trigonometry, or the use of engineering software such as Autocad. 
 
Because students who start these courses have gaps in knowledge of basic mathematics, this 
paper is intended that students see the practical use of basic math, or use Autocad if students 
already handle it, to determine the tube length required for manufacturing a cane custom 
dimensions. 

Function and correct use of a cane 

A cane (Fig. 1) is an external aid for balance and maintain mobility while driving when a 
person is recovering from an injury to one of his legs. The cane is lighter walking aid, which 
part of the body weight is transferred, wrist support him; a cane can not and should not hold 
most of the body weight [1]. 

The cane should be held with the hand that is on the same side of the functional leg: if the left 
leg is injured, then the stick must be held with the right hand, and vice versa (Fig 2). When 
step with the injured leg is given, you must move the stick forward at the same time, 
supporting part of the body weight on the leg but on his cane. 

Method 

For custom design cane is considered in principle the design and material of rods available 

commercially.  

Material Selection 

The material of commercial canes is aluminum tube of outer diameter 22.2 mm. This material 

is commercially available as extruded tube and calibrated tube, the tube length is 6.10 m and 
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the wall thickness of 1.24 mm [2]. The extruded tube was suitable for the bending process, as 

the calibrated tube fractured to start bending. 

 

 

Figure 1. Forearm position 

recommended for use cane  

 

Figure 2. Support on the pole on the 

right side, left foot injury. 

 

Design parameters 

Bending angles. The geometric contour of a commercial cane has five segments (Fig. 3); 

the internal angle between segments a and c is 60 ° and between the segments c and f is 150 ° 

(Fig. 3.a). For the initial design of cane, internal angles of 45° and 13° between the segments 

a and c, and between the segments c and f respectively, were considered (Figure 3.b). But 

with these angles about 2% over tube length is required (Fig. 3.c). 

 

Figure 3. Outline of a stick: a) commercial design and custom design, 

b) design initially considered, c) Overlapping designs. 
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Therefore, to our final design the bending angles of 

commercial sticks were considered (Fig. 3.a). The segment a 

is the segment in which the stick is held, and its length 

depends on the size of the hand palm of the person (Fig. 4). 

Bending radii. The internal radius R of bending of the two 

segments b and d was considered 46.2 mm (Fig. 5), which is 

the radius having the disk to bend tube 22.2 mm diameter, disk 

of the manual bender [3] with which practices account for 

students Manufacturing Process Workshop I. 

Cane height H. To determine the appropriate height H of 

the cane, the person standing still with your arms at his sides, 

to hold the stick (Fig. 1) forearm must be flexed between 15° 

and 20 ° to the vertical [1] so that the support on the stick to be 

effective.  

 

 

Figure 4. Width of the 

hand palm. 

Dimension A. For the calculation of the 

dimension A (Fig. 5), the length of the straight 

segment a, the radius R of arc b and the diameter F  

of the tube, are considered. Therefore, using vector 

algebra [ ], we have (Fig. 6): 

A = a + R + F        (1) 

Four dimensions are considered for segment a, 

according to hand measurements: 69.6, 79.6, 89.6 

and   99.6 mm.  R = 46.2 mm and F = 22.2 mm.  

Dimensions H and A can be checked after the 

manufacture of the cane.  

Dimension B. If one considers that the 

supporting force of the person (0.5P) is applied to 

the center of a, the line of action of the force must 

coincide with the longitudinal axis of the straight 

segment f to avoid unnecessary bending moments.  

To ensure the above, the dimension B must be 

checked after the manufacture of the cane. 

Therefore, using vector algebra (Fig. 6), we have: 

B = 0.5 ( a – F )         (2) 

Substituting values, we have (Fig. 7): 

B = 23.7, 28.7, 33.7 and 38.7 mm 

Calculation of the tube length 

For the calculation of the tube length, the analytical 

method or drawing software (Autocad) can be used.  

Analytical method 

This method involves applying basic math: trigo-

nometry, calculus of perimeters, and vector algebra. 

 

 

 
Figure 5. Dimension string for 

the vector calculation of A. 

 

 

 

Figure 6. Dimension string   

for the vector calculation of B. 
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Fig. 7. Custom dimensions for the cane. 

Fig. 8 shows the identification of the cane 

segments, considering the neutral axis of the 

tube (where no have any effort), to calculate 

the tube length L necessary for the manufacture 

of cane, given by Eq. ( 3): 

L = a + b + c + d + f   (3) 

a = data 

Calculation of the segment b: 

According to the calculation perimeters: 

b = 2 π.c3 / 3  (4) 

c3 = (R + 0.5F)    (5) 

Calculation of the segment c: 

First the length of its horizontal projection Ch 

is determined using vector algebra [4], the 

dimension string to calculate Ch is (Fig.8): 

Ch = (a – c2 ) + (c3 – c4 – c1) (6) 

c2 = B + 0.5 F        (7) 

Using vector algebra, Fig. 9 shows that: 

c4 = c3 – c5      (8) 

 

 
Fig. 8. Minimum dimension string Ch to 

calculate the cane segment c. 

* 

 

 
Fig. 9. Dimension string c4. 

 

By trigonometry , Figs. 8 and 9 show that: 
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c5 = c3.cos30°     (9) 

Fig. 8 shows that:  

c1 = c4                 (10) 

The value of the parameters c1, c3, c4 and c5 is constant 

for any size stick. 

Finally, also by trigonometry we have: 

c = Ch / cos60°                               (11) 

Calculation of the segment d: 

According to the calculation perimeters: 

d = 2 π.c3 / 12       (12) 

Calculation of the segment f: 

Using vector algebra, Fig. 10 shows that: 

f = h – c7         (13) 

where h is the height of cane considering the position of 

the neutral axis thereof: 

h = H - 0.5F           (14) 

Fig. 11 shows that: 

c7 = c6 + Cv + c6 + c3           (15) 

By trigonometry (Fig. 11): 

c6 = c3. Sen30°    (16) 

Observing Figs. 8 and 11: 

Cv = Ch.tan60°  . (17) 

Substituting Eq. 14 and c7 values in Eq. 13, the segment 

f have values dependent height H of the stick. 

 

Fig. 10. Dimension string f. 
 

 

 

Fig. 11. Dimension string c7.  

Autocad method 

Initially drawing stick to scale 1 is prepared (Fig. 12), with the measures corresponding to the 

palm (a) and height (H) of the stick, and the LIST command is used pointing each segments to 

display the value thereof, and having displayed the value of the length of each of the 
segments, the values are added and the tube length L necessary for the manufacture of the 

stick is obtained. They may also bind all segments to form a single identity and then applies 

LIST. 

Each student makes calculation for his cane, which will serve for one of their relatives. 

Results 

Analytical method 

As an example, for a = 89.6 mm and H = 830 mm, the the tube lenght L is 967.14 mm. See 

Table 1, that shows the value of each segment and the general dimensions of cane. 

Table 2 has been prepared to quickly verify that student calculations are correct. 
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Table 1. Calculation example: tube length  L  for  a = 79.6 mm  and  H = 830 mm.   
 

Segment Value (mm) Calculated with Equation 

A 158 1 

B 33.7 2 

B 120 5, 4 

C 173.49 9, 8, 10, 7, 6, and 11 

D 30 12 

F 554 17, 16, 15, 14 and 13 

L 967.14 3 

 

Table 2. Tube length L, dimensions for the cane, and values of each segment.  
 

Dimension or 

segment, and 

tube length 

(mm) 

Dimension a (mm) 

69.6 79.6 89.6 99.6 mm 

A 138 148 158 168 

B 23.7 28.7 33.7 38.7 

B 120.00 

C 153.49 163.49 173.49 183.49 

D 30.00 

F H – 258.63 H – 267.29 H – 275.95 H – 284.61 

L L = H + 114.5 H + 125.8 L = H + 137.14 L = H + 148.48 

Autocad method 

For the above analytical example, Fig. 12 shows the baston drawing scale and the Autocad 

text window, where the application of the LIST command can be observed, to display the 

value of segment c. As expected, the above value is the same as that obtained analytically.  
 

 

Fig. 12. Autocad text window showing the value of segment c of the cane. 
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Conclusions 

 

This paper presented two methods for calculating the length of pipe required for the 

manufacture of a cane custom dimensions. For the analytical method, equations have been 

deduced for calculating dimensions A and B of the cane, which can be verified after 

manufacture, and the height H depends on the stature of the person. Dimension A depends on 

the width of the palm of the person who will use the cane. 

 

The student must measure both the width of the palm as the appropriate cane height according 

to the stature of the person who will use the cane, and using this data, the student must 

establish the corresponding equations to calculate the value of each segment, applying the 

calculation of perimeters, trigonometry and vector algebra.  

 

Therefore, the analytical method is useful to the student to remember basic math, and with 

these, calculate the length of tube required to manufacture his own cane.  
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Abstract 
Average Nodal Pressure (ANP) is a simple and useful technique to alleviate the volumetric 
locking for all element types of standard FEM, including linear 3-node Triangles (T3) and 4-
node Tetrahedrons (T4). However, standard FEM using T3 and T4 elements has shown 
interior accuracy and convergence than FS-FEM using same elements in previous literatures. 
In this paper, we combine FS-FEM and ANP to propose FS-FEM/ANP using linear T4 
element for nearly-incompressible solids. The proposed FS-FEM/ANP-T4 is used to calculate 
a benchmark, 3D Lame problem. This 3D Lame benchmark proves that FS-FEM/ANP-T4 is 
free of volumetric locking, more accurate and converging faster than FEM/ANP-T4. 
Meanwhile, FS-FEM/ANP-T4 still possesses the remarkable endurance of mesh distortion. 
Also, a rubber beam applied with pressure is calculated to verify the good stability of FS-
FEM/ANP-T4 on large deformation. In addition, proposed FS-FEM/ANP-T4 is used to 
simulate an application, a rubber hanger loaded with exhaust gravity. Comparisons in these 
examples with analytical results and other methods results show FS-FEM/ANP-T4 is a better 
alternative of FEM/ANP-T4. 

Keywords: Average Nodal Pressure, FS-FEM, Nearly-incompressible, Tetrahedron. 

Introduction 

Linear 3-nodes triangles (T3) and 4-nodes tetrahedrons (T4) are simplest elements for 2D and 
3D problems. Because the piecewise linear shape function is used, the stress and strain are 
uniformly distributed within element. Consequently, gauss integration with one gauss point is 
enough. Therefore, T3 and T4 element have fastest speed. More importantly, T3 and T4 
elements can be automatic generated and h-adaptive mesh refined for any geometry. On the 
contrary, quadrilaterals and hexahedrons can only mesh certain topology types of geometry 
automatically. 
 
However, the over-stiff linear shape function of the standard FEM using T3 and T4 elements 
cause poor accuracy and convergence and volumetric locking issue. Therefore, linear T3 and 
T4 elements are not recommended by most FEM software packages. To safely use triangles 
and tetrahedrons for complex geometry, second-order 6-node Triangle (T6) and 10-node 
Tetrahedron (T10) are often suggested. But the much more Degrees Of Freedom (DOFs) of 
T6 and T10 than T3 and T4 cause much more memory usage and computation cost. Another 
approach to improve T3 and T4 element is to use the Smoothed Finite Element Method (S-
FEM), based on G-space theory and weakened weak form (W2) [1]–[3].  
 
S-FEM adopts the gradient smoothing to gain the improvement for T3 and T4 element. The 
gradient smoothing is a generalization of the strain smoothing technique for Element-Free 
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Galerkin (EFG) method [4]. Based on different gradient smoothing techniques applied to T3 
and T4 element, we will have different types of S-FEMs. For 3D compressible problem with 
T4 element, S-FEM is classified as cell-based S-FEM (CS-FEM) [5,6], face-based S-FEM 
(FS-FEM) [7], node-based S-FEM (NS-FEM) [8], alpha S-FEM (αS-FEM) [9] and 3D-edge-
based S-FEM (3D-ES-FEM) [10,11]. Among these variations of S-FEMs, FS-FEM and 3D-
ES-FEM have been demonstrated with better accuracy and convergence than FEM. 
Meanwhile, all these variations of S-FEMs are spatial stable and temporal stable, except for 
NS-FEM which is only temporal instable. However, due to the “sufficient softness”, only NS-
FEM is volumetric locking free. Hence, a selective S-FEM [12–14] is developed by 
combining advantages of FS-FEM or 3D-ES-FEM and NS-FEM to deal with volumetric 
locking of incompressible solids. The selective S-FEM is still temporal stable. Recently, some 
temporal stabilization techniques are also proposed for NS-FEM [15–18]. Also, a bubble 
enriched S-FEMs are also proposed to further alleviate pressure instability when solid has 
very high bulk modulus [19–21]. 
 
On the other hand, in FEM, many researchers endeavored to rectify the volumetric locking of 
linear T3 and T4 elements. In this paper, all these approaches are classified into six types, (1) 
Mixed-enhanced elements. Different approximations of displacement field and pressure field 
are used to yield more displacement Degrees Of Freedom (DOFs) than pressure DOFs, like 
MINI element enriched with “bubble function” [23] and element using Hu-Washizu three 
fields variational theorem [24]; (2) Pressure stabilizations. Additional stabilization term is 
applied to interpolated pressure field to satisfy the Babuška-Brezzi conditions, like Finite 
Increment Calculus (FIC) [25], Galerkin Least Square (GLS) method and direct pressure 
stabilization [26] and so on; (3) Composite pressure fields. Reduce the incompressible 
constraint by enforcing a constant pressure or strain on a patch of T3 or T4 elements, like F-
bar method [27] and so on; (4) Average nodal pressure/strain. Compute the pressure or strain 
at nodes by averaging pressure and strain of surrounding T3 and T4 elements [22,28–30]; (5) 
Fractional time stepping. Calculate an intermediate displacement field using governing 
equation without pressure term, then use the intermediate displacement to calculate pressure 
at current time step and correct the intermediate displacement field to obtain displacement at 
current time step, like Characteristic-based Split (CBS) method [31] and fractional time 
stepping [32]; (6) Selective S-FEM. Like selective integration for 4-node Quadrilaterals (Q4) 
and 8-node Hexahedrons (H8), Selective S-FEM [12–14,33] use NS-FEM to calculate 
volumetric part for T3 and T4 elements. 
 
Definitely, the most straightforward methods are definitely the Average Nodal Pressure/Strain 
(ANP/ANS). Meanwhile, ANP/ANS [30] can also cure the bending locking. Similar to the 
selective integration, the ANP/ANS can directly be used in explicit dynamic time stepping.  
 
In this paper, the ANP is applied to alleviate volumetric locking for FS-FEM with linear T4 
element. We named this method as FS-FEM/ANP-T4. Likewise, we named standard ANP as 
FEM/ANP-T4. Because FS-FEM/ANP inherits some merits of FS-FEM, a superior 
performance of FS-FEM/ANP-T4 than FEM/ANP-T4 can be expected. In addition, an 
Adaptive Dynamic Relaxation (ADRM) is also introduced to speed up the analysis of quasi-
static process using explicit time stepping.  
 
The rest sections of this paper are outlined as: section 2 presents the theoretical basis of FS-
FEM/ANP-T4; Section 3 mainly presents the computer implementations of explicit FS-
FEM/ANP-T4 and FS-FEM/ANP-T4 with ADRM; Section 4 provides examples for 
verification and performance test; Section 5 draws conclusions.     
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Theoretical Basis 

In this paper, proposed FS-FEM/ANP-T4 incorporates the gradient smoothing and the 
average nodal pressure. The gradient smoothing brings outperforming accuracy and 
robustness to S-FEM. But S-FEMs are still volumetric locking except for node-based gradient 
smoothing. On the other hand, average nodal pressure method [29] is able to cure t volumetric 
locking of S-FEMs for nearly-incompressible solids. 

Gradient Smoothing 

Although this paper use T4 element for 3D problem, we still illustrate the gradient smoothing 
in two dimensional systems. The extension of 2D gradient smoothing to three dimensions is 
straightforward and trivial. Give a 2D domain Ω  , the smoothing gradients of displacement 

( )iu x   in sub-domain  LΩ   of  Ω   are expressed as 

 ( ) ( ) ( ) .
L

i L i L
L

j j

u u w d
x xΩ

∂ ∂
≈ − Ω

∂ ∂∫
x x x x   (1) 

 
Use the Gauss-Green’s theorem to above equation, 

 ( ) ( )( ) ( ) ( ) .
L L

i L L
i L L L

j j

u wu w d u d
x x∂Ω Ω

∂ ∂ −
≈ − Γ − Ω

∂ ∂∫ ∫
x x xx x x n x


   (2) 

where w  is the smoothing function whose requirements will be described later, L∂Ω  is the 
outer boundary of sub-domain LΩ  which is also call smoothing domain here, and n  is the 
unit outward normal of L∂Ω , as illustrated in Figure 1. 

 
Figure 1 Generic smoothing domain. 

 
The smoothing function in Eq.(1) can be any derivable function. Here, we adopt the suggested 
piecewise constant function in references [5], 

 
1/ ,
0.

L L

L

A x
w

x
∈Ω

=  ∉Ω
   (3) 

where iA  is the area of smoothing domain. 
 
With the piecewise constant smoothing function in Eq.(3), the second domain integral will be 
zero as, 

 
( ) ( ) ( )

L

i L
i L L

j

u u w d
x ∂Ω

∂
≈ − Γ

∂ ∫
x x x x n   (4) 
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As we can see, the calculation of spatial derivatives of displacements is boundary integral 
now and only need the displacement value. If we further discretize the displacement by FEM, 
the displacements can be approximated by, 
 ( ) ( ) ( ), 1, 2,3.

L

i I i I
I G

u u i
∈

= Φ =∑x x x   (5) 

where ( )IΦ x  is the FEM shape function of node I, ( )i Iu x  is the value of displacement at 
node I. LG  means supporting nodes of the smoothing domain LΩ . 
 
Hence, the discretized gradient of displacement is derived as, 

 ( ) 1 ( ) ( ).
L

L

i I
j i I

I Gj L

u n d u
x A ∂Ω

∈

 ∂
≈ Φ G ∂  
∑ ∫

x x x   (6) 

where jn  is the j-th component of outward unit normal.  
 
Compare Eq.(6) with standard calculation of gradient of displacement, the smoothed 
derivatives of shape functions  ,I jΦ  are defined as, 

 ,
1 ( ) .

L

I
I j j

j L

n d
x A ∂Ω

∂Φ
= Φ = Φ Γ

∂ ∫ x   (7) 

where only shape function itself is used here, so corresponding mapping of standard FEM is 
no longer needed which will bring much better robustness of element distortion [6]. 
 
We have mentioned several S-FEMs for T4 element in introduction section, such as Cell-
based S-FEM (CS-FEM-T4), Node-based S-FEM, Face-based S-FEM (FS-FEM-T4), Edge-
based S-FEM (ES-FEM-T4) and alpha S-FEM (αS-FEM). In our previous experience, the FS-
FEM-T4 is more accurate and efficient than FEM-T4. The definition of smoothing domain of 
FS-FEM-T4 is drawn in Figure 2(a). Also, the node-based smoothing domain of NS-FEM-T4 
is also presented in Figure 2(b). 

 
Figure 2 Smoothing domains for FS-FEM-T4 (a) and NS-FEM-T4 (b). 

Average Nodal Pressure 

We have already mentioned many techniques to alleviate volumetric locking to make non-
locking FEM-T4 in introduction section.  Among them, the average nodal pressure (ANP) is 
the simplest [7]–[10]. 
 
In standard ANP formulation [7], [8], the pressure is assumed as a constant within the volume 
associated with one node. For T4 element case, the nodal volume of node I is computed by, 

abcdX

0 s
LΓ

t sn

0 s
LΩ

abceX

abcLX

0 s
LΓ

t sn
adcLX

adLX

abLX

0 s
LΩ

cdLX

cbLX
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1

.
4

eN e
I

I
e

VV
=

=∑   (8) 

where IV  is the nodal volume, eN  is the number of associated elements with node I, e
IV  is the 

volume of element which associate with node I. 
 
For geometric nonlinear problems, the nodal volumetric ratio can be calculated by, 

 
0

.I
I n

I

VJ
V

=   (9) 

in which, 0
IV  is the nodal volume at the initial configuration, n

IV  is the nodal volume at the 
current configuration. 

 

Then, if problem is homogeneous without other materials, the ANP is given as below, 
 ( 1).I Ip Jκ= −   (10) 
where κ  is the bulk modulus. 

 

Finally, we can use this ANP to get the pressure value at the Gauss points of T4 elements. The 
whole process will be demonstrated more clear in later sections. In fact, the further 
investigation about the selective S-FEM shows the NS-FEM has some similarities with ANP 
to achieve volumetric locking free. The reason is that node-based gradient smoothing also 
gives a constant strain in node-based smoothing domain which also overlaps the same nodal 
volume of ANP.  
 

Hyperelastic constitutive models 

In this section, we briefly review the finite deformed hyperelasticity. Consider a solid with 
domain 0Ω  at initial configuration, see Figure 3. Then after a large deformation, this solid 
moves and deforms to current configuration tΩ . The deformation is represented by the 
motion ( , )tχ=x X , where x  is the current coordinates and X  denotes initial or reference 
coordinates.  

 

Figure 3 Configurations and deformations of a solid. 

In finite deformation, the deformation gradient is important which is defined as, 

 0
1 1, sΩX



0
2 2, sΩX

0, s
L LΩX

t sn

( , t)=x χ X



, t s
L LΩx

1 1, t sΩx

2 2, t sΩx

1 1,X x
2 2,X x

3 3,X x

0 sn
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 .i i
ij ij ij

j j

x uF
X X

δ δ∂ ∂
= + = +
∂ ∂

  (11) 

 
After substituting smoothed strain of S-FEM, the smoothed deformation gradient is given as, 
 , ( ) .

L

ij I j L Ii ij
I G

F u δ
∈

= F +∑ X   (12) 

 
With Eq.(12), we can get the smoothed Green strain as follows, 

 ( )1 .
2ij ki kj ijE F F δ= −   (13) 

 
Meanwhile, the smoothed right Cauchy-Green tensor C  is calculated as below, 
 ij ki kjC F F=   (14) 
 
We can also get the three invariants of C  which are often treated as basic variables of 
hyperelastic material models, 

 ( ) ( )2 2
1 2 3

1, , det( ).
2ii ii ij ijI C I C C C I J = = − = =  

C   (15) 

where the third invariant 3I   of C  also relates to the volumetric ratio. 
 
The strain energy density of hyperelastic material is often decoupled into deviatoric and 
volumetric parts. Here the general isotropic strain energy density functions is expressed as, 
 1 2 1 2( , , ) ( , ) ( ).dev volI I J J J JΨ = Ψ +Ψ   (16) 
where dev and vol denote the deviatoric and volumetric part of strain energy, respectively. 
And 1/3

1 1 3J I I −=  is the first invariant of modified 2/3
3I −=C C


, 2/3

2 2 3J I I −=  is the modified 
second invariant of C . 

 

Although many isotropic hyperelastic strain energy density functions are proposed, the most 
widely used form of volΨ  is,  

 ( ) ( )21 1 .
2

vol J JκΨ = −   (17) 

where κ  is the bulk modulus and this part will be cared by ANP technique. 
 

For a given hyperelastic strain energy function, the second Piola-Krichhoff (PK2) stress 
tensor which is also the stress measure in Total Lagrangian formulation can be calculated by 
FS-FEM/ANP-T4 and ES-FEM/ANP-T4, 

 2/3 12 2 Dev + .
dev vol

ANP
FS ANP J Jp− −∂Ψ ∂Ψ

= + =
∂ ∂

S S C
C C

   (18) 

where S  is the smoothed PK2 stress tensor, the FS is short for FS-FEM-T4, operator 
( ) 1Dev( )=( ) 1/ 3 ( ) : .− • • − • C C  

   

In above equation, a new fictitious PK2 stress tensor is also introduced. It can be expressed as, 

 1 2( , )2 .
dev J J∂Ψ

=
∂

S
C

    (19) 
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Readers can find more details about calculating the PK2 stress tensor of hyperelastic material 
models in reference [11]. 
 

Total Lagrangian formulations of explicit S-FEM/ANP-T4 

For FEM discretization of finite deformation with Lagrangian mesh, we select the Total 
Lagrangian (T.L.) formulation. For temporal discretization, the explicit time integration is 
selected which only needs internal nodal forces. 
 
Still consider the domain 0Ω  in Figure 3 at reference configuration with boundary 0Γ . The 
density is 0ρ , and a body force is applied. On the velocity boundaries t

vΓ , ˆ( , ) ( , )i iv t v t=x x . 
On the traction boundaries, j ij in hσ =  is applied. And the initial conditions are 

0( ,0) ( )=v X v X  and 0( ,0) ( )=u X u X . 
 
The energy in T.L. formulation for explicit dynamic is expressed as follow (without damping), 

 ( ) ( ) ( ), .int ext kin int d
Ω

∏ = ∏ −∏ +∏ ∏ = Ψ Ω∫u u u   (20) 

where int∏  is the internal energy, ext∏  is the external energy and kin∏  is the kinetic energy. 
 
In this paper, because the ANP/S-FEM is used, the strain energy is split into deviatoric and 
volumetric parts like below, 
 , ,int int dev int vol∏ =∏ +∏   (21) 

 

We directly give the semi-discrete equations of Eq.(20) after taking variation with smoothed 
Galerkin weak form [3], 
 , , .ext int dev int vol= − −Mu f f f   (22) 
where, 

 
0 0= [ ( )] [ ( )] .T

IJ I J dρ
Ω

Ω∫M Φ X Φ X   (23) 

 { } ( ) ( ){ }0

, 0 .
T Tint dev FS dev FS dev s

I I I L L L
L

d A
Ω
   = Ω =   ∑∫f B P B X P X   (24) 

 { } ( ) ( ){ }0

, 0 .
T Tint vol ANP ANP ANP ANP s

I I I L L L
L

d A
Ω
   = Ω =   ∑∫f B P B X P X   (25) 

 ( ) { } ( ) { }0

T T
.

t

ext
I I II I

d d
Ω Γ

= Ω+ Γ      ∫ ∫f Φ X b Φ X h   (26) 

 
In above equations, M  can be lumped mass matrix or consistent mass matrix. ,int dev

If  is the 
smoothed deviatoric internal force vector which is calculated by FS-FEM-T4. ,int vol

If  is the 
volumetric internal force vector calculated by ANP method. P  is the first Piola-Krichhoff 
(PK1) stress tensor. FS

IB  is the strain-displacement relation matrix of I-th node using FS-
FEM-T4. ANP

IB  is the strain-displacement relation matrix of I-th node using ANP which is 
identical to corresponding matrix of FEM-T4. More detailed equations can be found in 
reference [12], [13]. 
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Then, we can use the explicit central difference scheme to implement the time integration. 
First, calculate the acceleration at step n using Eq.(22), 
 , ,( , ) ( , ) ( , ).n ext n n int dev n n int vol n nt t t= − −Mu f u f u f u   (27) 
 
Then, update velocity, 
 1/2 1/2 .n n n nt+ −= + ∆v v u   (28) 
where t∆  is the time step which is constant here. 

 

Finally, update displacement,  
 1 +1/2 .n n nu u v t+ = + ∆   (29) 

 

From the procedures of central difference scheme, it is no need to solve linear equations 
systems. And when lumped mass matrix is employed, the calculation of acceleration u  is 
purely element-by-element division of two arrays which is fast and also much lesser memory 
usage. However, we should satisfy the conditional temporal stability of explicit central 
difference scheme. In the whole analysis, time step must always smaller than the critical time 
step which is expressed below, 
 ( )min / .crit e et t l c∆ < ∆ ≤   (30) 
where, el  is the characteristic length of element, ec  is sound speed of this element. The 
calculations of these two quantities can be found in nonlinear FEM book [14]. 
 

Adaptive Dynamic Relaxation of ANP/S-FEM 

Explicit time stepping can simulate the quasi-static deformation by using a quite number of 
time steps. To accelerate the calculation, an adaptive dynamic relaxation (ADR) method in 
reference [15] are adopted by introducing the mass-scaling and mass-proportional artificial 
damping into governing equations. Meanwhile, the loads are divided into several load steps to 
apply. Furthermore, in every load step, the pseudo time stepping is used to achieve quasi-
static state. The equilibrium equation at m pseudo time step in n load step is given as, 
 , , ,( , ) ( , ) ( , ).fict n m ext n n int n m m damping n m mt t f t= − −M u f u f u u   (31) 
where fictM  is the fictitious mass matrix by scaling from original mass matrix, 

, 1/2( , ) ( )damping n m m fict m
df t c t −=u M v  is the damping force with mass-proportional damping 

coefficient dc , m  is counter for the pseudo time step in ADR. 
 
To check if system has reached the quasi-static state, the following criterion for displacement 
residual ur  is applied, 
 1( ) ( ) / ( ) .u n n n

admr u t u t u t e+= − <   (32) 

where adme  is a very small positive value which is set as 10-6 for all cases in this study, •  is 
the L2-norm. 
 
Theoretically, fictM  and dc  can be any values in calculation. However, there exist optimal 
values to achieve fastest convergence to quasi-static state. Many literatures provide massive 
methods to evaluate the desire fictM  and dc . In this paper, we select one of simplest ADR 
algorithm from reference [15]. This ADR only needs to scale the mass matrix to make the 
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critical pseudo time step always larger than 1 for every element，see Eq.(30). However, other 
ADRs scale the mass matrix based on the element tangent stiffness matrices [16], [17] which 
are not necessary for explicit dynamic FEM. 
 
When evaluating the optimal damping coefficient dc , this ADR is using a estimation of 
stiffness matrix. The calculation of optimal damping coefficient at m-th pseudo time step is 
given as below, 

 
1 1

1 1

[ ]2 .
[ ]

m T esti m

d m T fict mc
+ +

+ +=
u K u
u M u

  (33) 

where, estiK  denotes the estimation of stiffness which is calculated as below, 

 
1

1/2 .
m m

esti int int
ii m

i

F FK
t v

−

−

−
=

∆ ⋅
  (34) 

 

Implementation 

Flowchart of Explicit FS-FEM/ANP 

I. Initialization:  
A. Set initial conditions 

0v  and 
0u . 

B. 
0 0, 0, 0u n t= = =  

C. Compute lumped mass matrix M  
D. Calculate smoothed gradient of shape functions , ( )FS

I iF X . 

E. Assemble smoothed LB  using  , ( )FS
I iF X . 

F. Call subroutine Calculate_Nodal_Force_ANP to calculate nodal force vector 
( )0 ,0f u  

G. Calculate acceleration ( )0 1 0 ,0−=a M f u  . 
II. Temporal loop, n = 1: n_max 

A. ( )1 1/2 1/2 1, 1/ 2 .n n n n n nt t t t t t+ + + += + ∆ = +   

B. 
1/2 1/2 .n n n nt+ += + ∆v v a  

C. Impose velocity boundary conditions. 
D. 

1 1/2 1/2.n n n nt+ + += + ∆u u v  
E. Call subroutine Calculate_Nodal_Force_ANP to calculate nodal force vector 

( )1 1,n nt+ +f u . 

F. Calculate acceleration ( )1 1 1 1,n n nt+ − + +=a M f u . 

G. ( )1 1/2 1 1/2 1.n n n n nt t+ + + + += + −v v a  
H. Update the time step counter 1n n+ → ,

1n n+ →v v , 
1n n+ →u u , 

1n n+ →a a . 
 

Flowchart of FS-FEM/ANP with ADRM 

I. Initialization:  
A. Set initial conditions 0v  and 

0u . 
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B. 0 0, 0, 0u n t= = =  
C. Compute lumped mass matrix M .  
D. Calculate smoothed gradient of shape functions , ( )FS

I iF X . 

E. Assemble smoothed LB  using  , ( )FS
I iF X . 

F. Calculate original nodal volume 0
aV  for each node. 

G. Call subroutine Calculate_Nodal_Force_ANP to calculate nodal force vector 
( )0 ,0f u  

H. Change the density to make critical time step of every element as 1.05critialt∆ = . 
I. Calculate acceleration ( )0 1 0 ,0−=a M f u . 

II. Load step loop, nLS = 1 : nLS_max 
A. Calculate external nodal force ext

nLSf   at current load step. 
B. Check critical time step, if min( ) 1.001critial <Δt , change density to retain 

1.05critialt∆ = ; else, continue. 
C. Pseudo temporal loop, pn = 1 : pn_max 

1. ( )1 1/2 1/2 1, 1/ 2 .pn pn pn pn pn pnt t t t t t+ + + += + ∆ = +  

2. 1/2 1/2 1/2.pn pn pn pnt+ + += + ∆v v v  
3. Impose velocity boundary conditions. 
4. 1 1/2 1/2.pn pn pn pnt+ + += + ∆u u v  . 
5. Call subroutine Calculate_Nodal_Force_ANP to calculate internal nodal force 

vector ( )1 1,int pn pnt+ +f u . 

6. Calculate optimal damping coefficient dc  using Eq.(33)  and Eq.(34). 
7. Calculate the damping nodal force ( )1/2 1/2 1/2,damping pn pn pn

dt c+ + +=f v Mv . 

8. Calculate acceleration ( )1 1pn ext damping int+ −= − −a M f f f . 

9. ( )1 1/2 1 1/2 1.pn pn pn pn pnt t+ + + + += + −v v a  

10. Update pseudo-time step counter 1pn pn+ → , 1pn pn+ →v v , 1pn pn+ →u u , 
1, pn pn+ →a a . 

11. Check displacement residual, if d admr e< , back to step C; else, continue pseudo 
temporal loop. 

 

Flowchart of Subroutine Calculate_Nodal_Force_ANP in S-FEM (SD-by-SD) 

Deviatoric part: 
I. For each SD: calculate smoothed deformation gradient 1n

SD
+F . 

II. For each SD: Calculate smoothed right Cauchy-Green strain tensor 1n+C . 
III. For each SD: Calculate the invariants ( 1, 2,3)iI i =  of smoothed right Cauchy-Green 

strain tensor 1n+C . 
IV. For each SD: Calculate smoothed PK2 stress 1n+S  using selected hyperelastic strain 

energy density function. 
V. For each SD: Calculate ( )1 1,L NL n nu t+ += +B B B   . 
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VI. For each node: Calculate smoothed deviatoric internal force vector ( )1 1,int n n
dev u t+ +f . 

Volumetric part: 
I. For each element: Calculate volume eV  . 
II. For each node: Calculate nodal volume / 4.a a eV V V= +  . 

III. For each node: Calculate nodal pressure ( )0( 1) / 1a a a ap J V Vκ κ= − = −  . 

IV. For each element: Calculate element’s pressure 
4

1

1
e a

a
p p

n =

= ∑  . 

V. For each element: Calculate volumetric PK2 stress 1n+S , and ( )1 1,L NL n nu t+ += +B B B  
.
 

VI. For each node: Calculate smoothed volumetric internal force vector ( )1 1,int n n
vol u t+ +f .

 

VII. For each node: Calculate external force vector 1( )ext nt +f . 
VIII. For each node: Calculate ( ) ( ) ( ) ( )1 1 1 1 1 1 1, , , .n n ext n int n n int n n

dev volu t t u t u t+ + + + + + += − −f f f f   
 

Numerical Examples 

3D Lame problem 
 
The 3D Lame problem, a 1/8 sphere inflated with internal pressure, is widely used to validate 
and benchmark numerical methods for 3D solid mechanics. The accuracy and convergence of 
proposed FS-FEM/ANP with ADRM are tested by comparing with analytical solution. The 
inner radius 1a m=  and outer radius 2b m= . The internal pressure applied is 1P pa= . This 
small internal pressure applied here is to coincide with analytical solution from small 
deformation theory. The mesh of this 3D Lame problem with 2553 nodes is presented in 
Figure 4. The surfaces on the symmetry planes are all imposed with symmetrical boundary 
conditions. The material model in this example is the nearly-incompressible Neo-Hookean 
hyperelastic model with following strain energy density function, 

 1 2 2 11
2

10( , , ) ( , ) 1( 3) ( 1( .
2

) )dev volI I J J J JJ C J κΨ = Ψ − + −+Ψ =   (35) 

where 10 500C pa= , the value of κ  is calculated by user-defined Poisson’s ratio ν  as below, 

 10
4(1 ) .

3(1 2 )
Cνκ

ν
+

=
+

  

   

The analytical solution of 3D Lame problem with Neo-Hookean material is available in 
spherical coordinate system as below, 

 

3 3

3 3 3
10

3 3 3

3 3 3

3 3 3

3 3 3

(1 2 ) (1 ) ,
4 (1 )( ) 2

( ) ,
( )
( 2 ) .

2 ( )

r

r

Pa r bu
C b a r

Pa b r
r a b
Pa b r

r b aθ

ν ν
ν

σ

σ

 
= − + + + − 



 

−
=

−

+
=

−








  (36) 
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Validation 

 

Figure 4 3D Lame configuration and mesh with 2553 nodes. 

As a validation, proposed FS-FEM/ANP-T4 with the ADRM is used to solve the 3D Lame 
problem with Poisson’s ration 0.49. Two load steps are used for methods using ADRM. The 
steady state of each load step is reached when displacement residual is smaller than 1e-6. The 
radial displacement, radial and tangential stresses on (0.0,1.0)x∈  of FS-FEM/ANP-T4 are 
compared with analytical solution. Besides, displacement and stress solutions of FS/NS-FEM-
T4 with ADRM, FS/NS-FEM-T4 with static solver, FEM/ANP-T4 with DRM and FEM-T4 
with static solver are also compared in Figure 5 and Figure 6. 
 
FEM-T4 has the worst displacement and stresses accuracies. Besides, the radial and tangential 
stresses on (0.0,1.0)x∈ , S11 and S33 are components of pressure. Therefore, the oscillations 
of S11 and S33 are just the pressure check-board issue. On the other hand, methods with ANP 
and NS-FEM to deal with volumetric deformation show much better performances than FEM-
T4 on accuracy and stability of pressure.  

 

Figure 5 The radial displacements on line x =(0.0, 1.0) of different methods. 
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To further quantify the oscillation level of these methods, the absolute S33 errors on each 
node of line (0.0,1.0)x∈  are plotted in Figure 7. Proposed FS-FEM/ANP has smoother 
changes of S33 than the rest with averaged absolute errors as 0.02773.  The averaged absolute 
errors are 0.03701 for FEM/ANP and 0.0458 for FS/NS-FEM. Hence, our implementation of 
FS-FEM/ANP with ADRM is correct and ANP can obtain smoother pressure distribution than 
NS-FEM. 

 

Figure 6 The radial stress xxσ   (a) and tangential stress zzσ   (b) on line x = (0.0, 1.0) of 
different methods. 

 

Figure 7 Absolute errors of zzσ   on line x =(0.0, 1.0) of different methods, and average 
absolute errors of different methods are 0.02773 (FS-FEM/ANP), 0.03701 (FEM/ANP), 
and 0.0458 (FS/NS-FEM). 
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Figure 8 The displacement residual histories of Adaptive Dynamic Relaxation (ADRM) 
and Conventional Explicit Dynamic Relaxation (CEDRM) using FS-FEM/ANP-T4. 

 

We also tested presented ADRM using this 3D Lame problem. As mentioned before, three 
load steps are used here to gradually apply the external pressure loading. The Conventional 
Explicit Dynamic Relaxation (CEDRM) with different damping coefficients is also adopted 
as comparisons. The number of pseudo time steps of the first load step to reach the steady 
state is used as indicator of the performance of ADRM and CEDRM. The residual histories of 
different DRMs are plotted in Figure 8. CEDRMs with damping coefficient 10.0 and 100.0 are 
with over damping effects; the latter can’t satisfy the criterion even after 100,000 pseudo time 
steps. CEDRM with damping coefficient 1.0 reaches steady state much faster despite of the 
under damping effect. As supposed, ADRM can straightly reach steady state without need to 
tune damping coefficient.  

 

As Average Nodal Pressure (ANP) technique has been incorporated into FS-FEM, first time 
for S-FEM family, its endurance of volumetric locking is also tested, see 错误!未找到引用源。 
and Figure 9. Here, the L2-norm of relative radial displacement is used to indicate the 
accuracy, 

 2 2

1 1
( ) / ( ) .

n nN N
exact numerical exact

d i i i
i i

e
= =

= −∑ ∑u u u   (37) 

where exact
iu  is analytical displacement, numerical

iu  is the displacement obtained by given 

numerical methods. 
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Figure 9 Volumetric locking test for FS-FEM-T4, FEM/ANP-T4, FS-FEM/ANP-T4 and 
FS/NS-FEM-T4. 

 

Although the errors all tested methods are increasing when Poisson’s ratio increasing, they are 
still under control and less than 5% for all chosen Poisson’s ratios except for FS-FEM-T4. 
With ANP or NS-FEM, FS-FEM suffers a high volumetric locking with increasing Poisson’s 
ration. Another observation is that both FS-FEM/ANP and FS/NS-FEM has higher accuracies 
than FEM-ANP. It may be caused by the higher accuracy of FS-FEM for the deviatoric 
deformation. In fact, there lacks of such volumetric locking endurance test for ANP in 
previous literatures [7], [18].  
 
Table 1. Volumetric locking test: the radial displacement L2-norm ed of different 
methods versus several Poisson’s ratios.      

Poisson’s ratio FS-FEM/ANP FEM/ANP FS/NS-FEM FS-FEM 
0.4 0.0276 0.0296 0.0280 0.08337 
0.49 0.0326 0.0352 0.0331 0.14307 
0.499 0.0351 0.0381 0.0356 0.48062 
0.4999 0.0363 0.0394 0.0368 0.86474 
0.49999 0.0386 0.0414 0.0389 0.98159 

 
The convergences of displacement and strain energy of FS-FEM/ANP are also studied and 
compared with convergences of FEM/ANP and FS/NS-FEM. Here, the relations between 
number of nodes and radial displacement L2-norm error of tested methods are plotted in 
Figure 10(a). In Figure 10(a), all three methods can converge to analytical solution. Among 
them, FS-FEM/ANP and FS/NS-FEM get the almost identical convergence curves. This 
means that ANP has almost same performance to NS-FEM when selectively used for 
volumetric deformation. In addition, FS-FEM/ANP can always get smaller displacement error 
than FEM/ANP on all meshes. This comparison proves the higher displacement accuracy of 
FS-FEM than FEM again.  In Figure 10(b), strain energy convergence curves of three methods 
show same features of previous displacement convergence curves.  
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Figure 10 The radial displacement and strain energy convergences of FS-FEM/ANP, 
FEM/ANP and FS/NS-FEM. 

 

 
Figure 11 (a) The distorted mesh with distortion coefficient 0.5, (b) Radial displacement 
errors versus the distortion coefficient. 

 

Another extraordinary capability of S-FEM family is the remarkable mesh distortion 
robustness. Previous studies have shown tiny accuracy deterioration even when some 
elements are collapsed [12], [19]. For the first time of S-FEM family embracing ANP, the 
evaluation of FS-FEM/ANP mesh distortion robustness is necessary. Like previous works, the 
artificial distortion of mesh is conducted by updating node coordinates of the non-distorted 
mesh with following equation, 

 
'
'
'

c

c

c

x x h r
y y h r
z z h r

α
α
α

= + ⋅ ⋅
 = + ⋅ ⋅
 = + ⋅ ⋅

  (38) 

where α  is the distortion coefficient from 0 to 1, h is the characteristic length of initial 

element. cr  is a random number between -1 to 1. 
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As a further development upon FEM/ANP, we also evaluate the mesh distortion robustness of 
FEM-ANP with T4 element which is also never evaluated before. After cure the volumetric 
locking of FEM-T4 with ANP, we can expect the similar mesh distortion robustness of 
FEM/ANP-T4 to FS-FEM/ANP-T4 for nearly-incompressible solids. This expectation is 
based on the fact that FEM-T4 is just a special case of Cell-Based S-FEM (CS-FEM) for T4 
element [5]. In Figure 11 (a), one mesh of 3D Lame problem with distortion coefficient 0.5 is 
presented. We can see several elements are severe distorted. Then, to be a more 
comprehensive comparison, the mesh distortion robustness of FEM-T10 with Selective 
Reduced Integration (FEM/SRI-T10) is also evaluated. The relation between distortion 
coefficient and radial displacement L2-norm error of all evaluated methods is plotted in 
Figure 11(b). When mesh quality is good, the second-order FEM/SRI-T10 has smallest 
displacement error, then FS-FEM/ANP–T4 and FEM/ANP-T4. However, the increasing 
distortion coefficients aggravate the error of FEM/SRI-T10 much faster than FS-FEM/ANP-
T4 and FEM/ANP-T4. Therefore, we conclude that ANP has no influence on extraordinary 
mesh distortion robustness of S-FEM. By the way, due to random element distortion, the mesh 
with distortion coefficient 0.5 for FS-FEM/ANP-T4 may locally more severe than the mesh 
with distortion coefficient 0.5 for FEM/ANP-T4. Therefore, the error of FS-FEM/ANP-T4 
may be slightly larger than FEM/ANP-T4. In summary, researchers should pay meticulous 
attention to mesh quality when using FEM/SRI-T10. 
 

Conclusions 

In this paper, the FS-FEM/ANP-T4 has been proposed to solve 3D explicit dynamic and 
quasi-static problems of nearly-incompressible solids. In FS-FEM/ANP-T4, the FS-FEM is 
used for deviatoric deformation. And the ANP responds to the volumetric deformation. 
Several features of FS-FEM/ANP-T4 have been confirmed by selected numerical examples. 
 
The ANP can provide the “under integration” effects to FS-FEM which is ideal for volumetric 
part deformation of nearly-incompressible solids. 
 
Although FS-FEM/ANP-T4 still encounters pressure oscillation issue, it shows more mild 
pressure oscillation than FEM/ANP-T4 and FS/NS-FEM-T4. 
 
FS-FEM/ANP-T4 has higher accuracy and convergence than FEM/ANP-T4. The “overly-
stiff” behavior of linear T4 element is relieved by FS-FEM. FS-FEM can improve the 
performance for the deviatoric part deformation of nearly-incompressible solids. 
 
FS-FEM/ANP-T4 is still very robust for mesh distortion as FS-FEM-T4. Because the ANP is 
based on FEM-T4 which is also special case of CS-FEM-T4. 
 
Since the ANP is not too “soft”, FS-FEM/ANP-T4 also works well for large deformation of 
nearly-incompressible solids. 
 
FS-FEM/ANP-T4 use much less computational time than FEM/RI-T10 with same mesh in 
explicit dynamic simulation. 
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Abstract 
A cell-based smoothed finite element method (CS-FEM) is formulated for non-linear free 
vibration analysis of a plate attached to a rigid rotating hub. The first–order shear deformation 
theory which is known as Mindlin plate theory is used to model the plate. In the process of 
formulating the system stiffness matrix, the discrete shear gap (DSG) method is used to 
construct the strains to overcome the shear locking issue. The effectiveness of the CS-FEM is 
first demonstrated in some static cases and then extended for free vibration analysis of a 
rotating plate considering the non-linear effects arising from the coupling of vibration of the 
flexible structure with the undergoing large rotational motions. The nonlinear coupling 
dynamic equations of the system are derived via employing Lagrange’s equations of the 
second kind. The effect of different parameters including thickness ratio, aspect ratio, hub 
radius ratio and rotation speed on dimensionless natural frequencies are investigated. The 
dimensionless natural frequencies of CS-FEM are compared with those other existing method 
including the finite element method (FEM) and the assumed modes method (AMM). It is 
found that the CS-FEM based on Mindlin plate theory provides more accurate and “softer” 
solution compared with those of other methods even if using coarse meshes. In addition, the 
frequency loci veering phenomena associated with the mode shape interaction are examined 
in detail. 
 
Keywords：cell-based smoothed finite element method, rotating Mindlin plate, discrete shear 
gap method, shear locking, natural frequencies, frequency veering. 

 
1   Introduction 
A lot of engineering structures consist of a flexible appendage attached to a rigid body, which 
are called rigid-flexible coupled structures, such as space robotic manipulators, satellite 
antenna, helicopter rotors, solar energy panels and aircraft engine blades and so on. Such 
structures can often be simplified to a rotating hub-beam or rotating-plate for dynamic 
analysis. Compared to the modal characteristics of non-rotating structures, those of rotating 
structures behave significantly, due to the coupling of the non-linear effects arising from the 
coupling of vibration of the flexible structure with the undergoing large rotational motions. 
Therefore, it is essential to conduct accurate analysis of natural frequencies and mode shapes 
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of these rotating structures in the design stages, considering the nonlinear effects.  
 
The rotating structures are often idealized as rotating beams in early stage researching.  The 
earliest works on the natural frequency of rotating beams was performed by Southwell and 
Gough[1] in 1921. The famous Southwell equation was presented in their work. Later, a lot of 
research achievement has been obtained about rotating beams [2-7]. However, there are many 
structures with low aspect ratios that behave like plates rather than beams. It’s obvious that 
beam models can’t obtain accurate modal characteristics and rotating plate models are more 
appropriate for those plate-like structures. Dokainish and Rawtani [8] used a finite element 
technique to determine the natural frequencies and the mode shapes of a cantilever plate 
mounted on the periphery of a rotating disc. The effect of the aspect ratio, the speed of 
rotation, the disc radius and the setting angle for the natural frequencies were discussed. 
Ramamurti and Kielb [9] used FEM to analyze the natural frequencies of twisted rotating 
plates. Yoo [10,11] used AMM to investigate the modal characteristics of a rotating cantilever 
plate and dimensionless parameters were identified through dimensional analysis. Hashemi 
[12] developed a finite element formulation for vibration analysis of rotating thick plates. The 
effect of different dimensionless parameters on dimensionless natural frequencies were 
investigated and discussed.  In these references, there are two things in common: the discrete 
methods are FEM or AMM; the modeling theory is most based on classic plate theory 
(Kirchhoff plate theory), which does not work for thicker plates. Thus,  more effective discrete 
methods based on higher order theory are necessary. 
 
Recently, a new discrete method named smoothed FEM (S-FEM) has been proposed [13]. 
This method combines with the conventional FEM and the strain smoothing technique used in 
meshfree methods. It possesses the features of both FEM and meshfree methods. According to 
the different smoothing domain creation, there are a series of S-FEM models: the cell-based 
S-FEM (CS-FEM) [14-16], the node-based S-FEM (NS-FEM) [17-19], the edge-based S-
FEM (ES-FEM) [20-22] and the face-based S-FEM (FS-FEM) [23,24], each of which has 
especial properties.  
 
This paper extends the CS-FEM for non-linear free vibration analysis of a rotating plate based 
on Mindlin plate theory. In the present CS-FEM, we use triangular elements that can be 
automatically generated. The discrete shear gap (DSG) method is used to construct the strains 
to overcome the shear locking issue. The effectiveness of the CS-FEM is first demonstrated in 
some static cases and then extended for free vibration analysis of a rotating plate considering 
the non-linear effects arising from the coupling of vibration of the flexible structure with the 
undergoing large rotational motions. The effect of different parameters including thickness 
ratio, aspect ratio, hub radius ratio and rotation speed on dimensionless natural frequencies are 
investigated. The dimensionless natural frequencies of CS-FEM are compared with those 
other existing method including the finite element method (FEM) and the assumed modes 
method (AMM). It is found that the CS-FEM based on Mindlin plate theory provides “softer” 
solution compared with those of other methods. In addition, the frequency loci veering 
phenomena associated with the mode shape interaction are examined in detail. 
2  Formulation of FEM for the Mindlin plate 
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Consider a plate under bending deformation as shown in Fig.1. The middle (neutral) surface 
of plate is chosen as the reference plane and the problem domain. The plate is discretized with 
a set of three nodes triangular element as shown in Fig.2.  

 

Fig. 1 Mindlin plate with uniform thickness 

 

Fig. 2 Discretization of the plate using triangular elements 

 

Fig. 3 A typical three nodes triangular element 
In one triangular element as shown in Fig.3, the displacement of an arbitrary point can be 
expressed as  
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where u3 is transverse deflection, and xϕ , yϕ  are the rotations of the middle plane around y-

axis and x-axis, respectively. 3iφ (i=1,2,3) are the shape functions corresponding to three nodes 

of the triangular element and their expressions are 

3i i i ia b x c yφ = + +                                                  (2) 
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c x x
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
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
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= −



= −


                                        (3) 

where Ae is the area of the triangular element. xj and yj (j=1,2,3) are the coordinate values at 
the jth node. The subscript i, j and k vary from 1 to 3 and are determined by cyclic 
permutation in the order of i, j and k. For example, if i=1, then j=2, k=3; or if i=2, then j=3, 
k=1. 

The nodal displacement vector associated to node i can be expressed as 
T

3i i xi yiu ϕ ϕ  d = .  

Then the bending and shear strains in the matrix forms are 
3

1
i i e
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= =∑B d Bdζ                                           (4) 
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i i e
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= =∑ S d Sdγ                                                           (5) 
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[ ]T
1 2 3e =d d d d                                                        (8) 

Substituting Eq.(3) into Eq.(6) and Eq.(7), the bending strain matrix can be written as 
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[ ]1 2 3

0 0 0 0 0 0
1 0 0 0 0 0 0

2
0 0 0

1
2

e

e

b c c b
d a d a

A
d a b c d c a b

A

− − 
 − − 
 − − − − 

=

B =

B B B

                  (9) 

Where 

2 1 2 1

3 1 3 1

a x x b y y
c y y d x x

= − = −
= − = −

                                               (10) 

As reported in many literatures, the shear locking issue often occurs when using thick plate 
theory to analyze thin plates. To avoid this problem, many numerical techniques have been 
well developed [25-30].  Recently, the discrete shear gap (DSG) method was proposed by 
Bletzinger et al. [31]. This method can be applied to both triangular and rectangular elements 
of different polynomial order. According to DSG method, the shear strain matrix can be 
written as 

[ ]1 2 3

0
1 2 2 2 2

2 0
2 2 2 2

1
2

e

e
e

e

ac bc bd bcb c A c b

ad bd ad acA d a A d a

A

 − − − − 
 
 − − − −  

=

S =

S S S

     (11) 

Then the discretized system equation of Mindlin plate with FEM for static analysis can be 
expressed as 

 T T
b sΩ Ω

dΩ dΩ= +∫ ∫B D B S D SΚ                                         (12) 

Where the matrices bD  and sD are related to the bending deformation and shear deformation, 

respectively. They are given by 
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b 2

1 0
= 1 0
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(1 )0 0
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 
 
 
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D                                         (13) 

1 0
0 12(1 )s

Ehκ
µ

 
=  +  

D                                      (14) 

Where E is the Young’s modulus, h is the thickness of the Mindlin plate, µ is the Poisson’s 

ratio andκ  is the shear correction factor which is given by 5
6

κ = . In order to improve the 

accuracy of the solutions and stabilize shear force oscillations, Bischoff [32] suggested that a 
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stabilization term should be added to the element. Such a modification can be simply achieved 

by replacing  sD  in Eq.(14) with the following equation 

 
3

2 2

1 0
0 12(1 )( )s

Eh
h he

κ
µ α

 
=  + +  

D                            (15) 

Where he is the longest length of the edges of the element and α is a ppositive constant which 

is called stabilized parameter [33]. In this paper, α is fixed at 0.1. 
For the free vibration analysis, the discretized system equation of Mindlin plate can be 
expressed as 

2( )ω− M d = 0Κ                                                            (16) 

Where ω is the natural frequency and d is the global displacement vector. M is the global 
mass matrix and defined by 

T T

Ω Ω
1

dΩ dΩ
e

e
i

N
e
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= = ∑∫ ∫M m mφ φ φ φ                                      (17) 

In which m is a constant matrix about the mass density ρ and thickness of the plate, which is 
given by 

3
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 
 
 
 =  
 
 
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m                                                            (18) 

3  Formulation of CS-FEM for the Mindlin plate 
In CS-FEM, each triangular element domain is further devided into three triangular smoothing 
domains by simply connecting three field nodes of the element to the central point of the 
element, as shown in Fig.4. These smoothing domains are not overlapping and there are no 
gaps between them.  
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Fig. 4 Three triangular smoothing domains 

Define the triangular element domain as Ωe  and three triangular smoothing domains as 1∆ ,

2∆ and 3∆ .Then we have 3
1Ω and 0 ( )e i i i j i j== ∆ ∆ ∆ = ≠U I . The coordinates of the central 

point [ ]T
o o ox y=x are calculated by  

1 2 3

1 2 3
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3
1 ( )
3

o

o

x x x x

y y y y

 = + +

 = + +


                                                (19) 

Where [ ]T
i i ix y=x with i=1,2,3 are the three field nodes of the element. The displacement 

vector od at the central point O is assumed to be the simple average of three displacement 

vectors at three field nodes of the element 

1 2 3
1 ( )
3o = + +d d d d                                                 (20) 

On the first subtriangle 1∆ (1-2-O), the displacement of an arbitrary point in the element can 

be expressed as  
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∆

     
     + +     
          

u = d d d     (21) 

Substituting Eq.(20) into Eq.(21), then 1
e

∆u can be rewritten as 

2  

1  

3 

O 1∆

2∆

3∆
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1

31 33 32 33

31 33 1 32 33 2

31 33 32 33

33

33 3

33

0 0 0 0 0 0 0 0
1 10 0 + 0 0 0 0 + 0 0
3 3

0 0 0 0 0 0 0 0

0 0
1 0 0
3

0 0

e

φ φ φ φ
φ φ φ φ

φ φ φ φ

φ
φ

φ

∆

          
          +          
                    

 
 +  
  

u = d d

d

(22) 

Then the strain matrices in the subtriangle 1∆ can be obtained 

1 1 1 1 1 1 1
1 3 2 3 3

1 1 1+ +
3 3 3 e e

∆ ∆ ∆ ∆ ∆ ∆ ∆ = =  
B B B B B d B dζ                  (23)

1 1 1 1 1 1 1
1 3 2 3 3

1 1 1+ +
3 3 3 e e

∆ ∆ ∆ ∆ ∆ ∆ ∆ = =  
S S S S S d S dγ                    (24) 

Where 1∆B and 1∆S are calculated similarly as Eq.(9) and Eq.(11). The only difference is that 

the corresponding functions are computed in the domain of subtriangle 1∆ , which means the 

three field nodes are 1x , 2x and ox , respectively. Similarly, the strain matrices in the 

subtriangles  2∆ (2-3-O)and 3∆ (3-1-O) can be obtained by cyclic permutation like described in 

section 2. Their expressions are as follows 

2 2 2 2 2 2 2
1 2 1 3 1

1 1 1+ +
3 3 3 e e

∆ ∆ ∆ ∆ ∆ ∆ ∆ = =  
B B B B B d B dζ              (25) 

2 2 2 2 2 2 2
1 2 1 3 1

1 1 1+ +
3 3 3 e e

∆ ∆ ∆ ∆ ∆ ∆ ∆ = =  
S S S S S d S dγ                (26) 

3 3 3 3 3 3 3
1 2 2 3 2

1 1 1+
3 3 3 e e

∆ ∆ ∆ ∆ ∆ ∆ ∆ = + =  
B B B B B d B dζ              (27) 

3 3 3 3 3 3 3
1 2 2 3 2

1 1 1+
3 3 3 e e

∆ ∆ ∆ ∆ ∆ ∆ ∆ = + =  
S S S S S d S dγ                (28) 

By applying the strain smoothing technique, the smoothed bending strain and smoothed shear 
strain in each triangular element can be obtained as  

( )31 2

1 2 3

Ω

1 2 3

1 ( , )dΩ

1 d d d

e
e

e

e

x y
A

A
∆∆ ∆

∆ ∆ ∆

=

= ∆ + ∆ + ∆

∫

∫ ∫ ∫

%ζ  ζ

ζ ζ ζ
                (29) 
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( )31 2

1 2 3

Ω

1 2 3

1 ( , )dΩ

1 d d d

e
e

e

e

x y
A

A
∆∆ ∆

∆ ∆ ∆

=

= ∆ + ∆ + ∆

∫

∫ ∫ ∫

%γ  γ

γ γ γ
                 (30) 

Because the strain in the subtriangles are constant, Eq.(29) and Eq.(30) can be rewritten as  
31 2

1 2 3
e

e

A A A
A

∆∆ ∆
∆ ∆ ∆+ +

= = Bd% %ζ ζ ζ
ζ                                   (31) 

31 2

1 2 3
e

e

A A A
A

∆∆ ∆
∆ ∆ ∆+ +

= = Sd%%
γ γ γ

γ                                    (32) 

Where the smoothed strain matrices are as follows 
31 2

1 2 3

e

A A A
A

∆∆ ∆
∆ ∆ ∆+ +B B B

B =%                                        (33) 

31 2

1 2 3

e

A A A
A

∆∆ ∆
∆ ∆ ∆+ +S S S

S =%                                        (34) 

In which eA is the area of triangular element. 
1

A∆ ,
2

A∆ and
3

A∆ are the areas of three 

subtriangles, respectively. Substituting Eqs.(33) and (34) into Eq.(12), the smoothed element 
stiffness matrix can be given by 

T T

Ω Ω
dΩ dΩ

e e
e b e s e+∫ ∫K = B D B S D S% %% % %                              (35) 

Where the matrices bD and sD are the same as Eqs.(13) and (15). Then the global stiffness 

matrix of the CS-FEM can be assembled by 

1

ˆ
eN

e
e=

= ∑K K%                                                         (36) 

It should be mentioned that the central point in each element is only used to form the 
smoothing domain. Finally, the displacement vector of this point will be replaced by those of 
three field nodes of the element as shown in Eq.(22). Hence, there are no extra DOFs, which 
means the DOFs of CS-FEM are the same as FEM if using the same mesh. 

 
4  Nonlinear dynamic equations of rotating plates based on Mindlin plate theory 

4.1  Dynamic equations of a Mindlin plate undergoing overall motion 
In Mindlin plate theory, the plate doesn’t demand the cross section be perpendicular to the 
neutral plane after deformation. The transverse shear strain which is neglected in classical thin 
plate theory is taken into account. In this section, the nonlinear dynamic equations of a 
rotating rectangular Mindlin plate undergoing overall motion in three-dimensional space will 
be presented in detail.  
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Fig. 5 The configuration of a rectangular Mindlin plate  
Consider a flexible plate undergoing overall motion as shown in Fig.5. The inertial coordinate 
system and the local coordinate system which is fixed to the neutral surface of the plate are 
denoted by O-XYZ and o-xyz, respectively. The physical parameters of the plate are as follows:  
length a, width b, thickness h, Young’s modulus E, mass density ρ and Poisson’s ratio μ. P0 is 
an arbitrary point on the undeformed neutral surface of the plate in the local coordinate system. 
After deformation, it moves to P and the displacement vector is denoted by u = (u1, u2, u3)T 
where u1, u2 and u3 are the displacement components along the x, y and z axis in the local 
coordinate system, respectively. The displacement components u1 and u2 can be expressed as  

23
1 1 0

23
2 2 0

1 ( ) d
2
1 ( ) d
2

x

x

y

y

uu w x z
x
uu w y z
y

ϕ

ϕ

∂ = − + ∂
 ∂ = − +

∂

∫

∫
                              (37) 

Where 1w  and 2w  are neutral surface stretch along the x and y axis, respectively. 

23
0

1 ( ) d
2

x u x
x

∂
−

∂∫  and 23
0

1 ( ) d
2

y u y
y

∂
−

∂∫ are the coupling terms of the deformation which are 

caused the transverse deformation. In the traditional approximate model, these two coupling 

terms are ignored because of the small deformation assumption. xϕ and yϕ  are the rotations of 

the middle plane around y-axis and x-axis, respectively. The velocity vector of an arbitrary 
point P in the inertial coordinate system can be expressed as  

0( ) PA
P o A= + × + +V V ω ρ u V                              (38) 

Where oV and Aω are the velocity and angular velocity of the local coordinate system relative 

X 

Z 

x 

z 

y 

ρ0 u 

r 
ro 

Y 

P 

P0 

O 

o 

m 

n 
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to the inertial coordinate system, respectively. 0ρ  and PAV  are the position vector of point P0 

and the velocity vector of point P in the local coordinate system, respectively. These vectors 
are as follows 

1 1 2 2 3 3o v v v= + +V e e e        1 1 2 2 3 3ω ω ω= + +Aω e e e                           (39)                                                                            

0 1 2x y= +ρ e e     1 1 2 2 3 3u u u= + +u e e e    1 1 2 2 3 3PA u u u= + +V e e e& & &         (40) 

Where 1e , 2e and 3e are the unit vectors along x, y, and z axis, respectively. Substituting 

Eqs.(39) and (40) into Eq.(38), the velocity vector of an arbitrary point P in the inertial 
coordinate system can be obtained as  

1 1 2 3 3 2 1 2 2 3 1 1 3 2

3 3 1 2 2 1 3

[ ( )] [ ( ) ]
[ ( ) ( )]

P v u u y u v u x u u
v u y u x u

ω ω ω ω

ω ω

= + + − + + + + + −

+ + + + − +

V e e
e

& &
&

  (41) 

Then the kinetic energy of the system is  
T T1 1d d

2 2P P P PV A
T V h Aρ ρ= =∫ ∫∫V V V V                     (42) 

According to Mindlin plate theory, the strain vectors can be obtained as  

1

2

1 2

3

3

=

x
xx

y
yy

yx
xy

xz x

yz y

w z
x x
w z
y y

w w z
y x y x

u
x
u
y

ϕ
ε

ϕ
ε

ϕϕ
γ

γ ϕ

γ ϕ

∂∂ = + ∂ ∂
∂∂ = + ∂ ∂


∂  ∂∂ ∂

≈ + + +  ∂ ∂ ∂ ∂ 
 ∂
 = +

∂
 ∂

= +
∂

ε                    (43)  

Compared to the Kirchhoff plate theory, the strain components xzγ and yzγ are not equal zero. 

Then the stress vectors for isotropic materials are obtained as 

2

1 0 0 0
1 0 0 0

= 0 0 (1 ) / 2 0 0
1

0 0 0 (1 ) / 2 0
0 0 0 0 (1 ) / 2

xx

yy

xy

xz

yz

E

εµ
εµ
γµ

µ
γκ µ
γκ µ

  
  
  
  −

−   −   
  −   

σ      (44) 

Where κ  is the shear correction factor which is given by 5
6

κ = . Now the total potential 

energy of the system is as follows 
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T

2 2 2 2 2
2

1 2

1 d
2
1 1 (1 ) (1 )( 2 + + )d
2 1 2 2 2

V

xx xx yy yy xy xz yzV

U V

E V

U U

µ κ µ κ µ
ε µε ε ε γ γ γ

µ

=

− − −
= + + +

−
= +

∫∫∫

∫∫∫

ε σ

    (45) 

Where U1 represents the bending strain energy and U2 represents the in-plane strain energy of 
the plate. They can be denoted as 

2 2 21 2 1 2 1 2
1 2

1 { [( ) ( ) 2 ( )( )] ( ) }d
2 1 2(1 )A

w w w w w wEh EhU A
x y x y y x

µ
µ µ

∂ ∂ ∂ ∂ ∂ ∂
= + + + +

− ∂ ∂ ∂ ∂ + ∂ ∂∫∫ (46) 

223
2 2 2

2 2 2 2

2 23 3

1[( ) ( ) 2 ( )( ) ( ) ]d
24(1 ) 2

[( ) ( ) ]d
4(1 )

y y yx x x
A

x yA

EhU A
x y x y y x

u uEh A
x y

ϕ ϕ ϕϕ ϕ ϕµ
µ

µ
κ

ϕ ϕ
µ

∂ ∂ ∂∂ ∂ ∂−
= + + + +

− ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂

+ + + +
+ ∂ ∂

∫∫

∫∫
 (47) 

Discretize the plate using triangular elements as shown in Fig.2. The unknown deformation 
variables can be expressed as 

3

1 1 1 1 1
1

3

2 2 2 2 2
1

3

3 3 3 3 3
1
3

4 3 4 3
1

5 3 5

( , , ) ( , ) ( ) ( , ) ( )

( , , ) ( , ) ( ) ( , ) ( )

( , , ) ( , ) ( ) ( , ) ( )

( , , ) ( , ) ( ) ( , ) ( )

( , , ) ( , ) ( ) ( , )

i i
i

i i
i

i i
i

x i i
i

y i i

w x y t x y q t x y t

w x y t x y q t x y t

u x y t x y t x y t

x y t x y t x y t

x y t x y t x y

φ

φ

ϕ

ϕ

=

=

=

=

= =

= =

= =

= =

= =

∑

∑

∑

∑

q

q

q q

q q

q

φ

φ

φ Φ

φ φ

φ φ
3

3
1

( )
i

t
=

















∑ q

                (48) 

Where 1 ( , )i x yφ , 2 ( , )i x yφ , 3iφ , 4iφ and 5iφ  are shape functions in one element corresponding 

to the node i. ( ) ( 1, 2,3)i t i =q are generalized coordinates. Let 4 4z=Φ φ and 5 5z=Φ φ , then 

substituting them into Eq.(37), we can have the displacement and velocity components  

T
1 1 1 3 1 3 4 3

T
2 2 2 3 2 3 5 3

1 ( , )
2
1 ( , )
2

u x y

u x y

 = − +

 = − +


q q H q q

q q H q q

φ Φ

φ Φ
                           (49) 

T
1 1 1 3 1 3 4 3

T
2 2 2 3 2 3 5 3

( , )

( , )

u x y

u x y

 = − +


= − +

q q H q q

q q H q q

& & &&

& & &&

φ Φ

φ Φ
                             (50) 

Where 1( , )x yH and 2 ( , )x yH are coupling shape functions which are defined by 
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3 3 3 3
0

3 3 3 3

0

T T T T
1 3, 3, 3, 3,

T T T T
2 3, 3, 3, 3,

d d

d d

il

j j i i
jl ik

il

j j i i
jl il

x x

x x x xx x
i mP

y y

y y y yy y
i nP

x x

y y

∈

∈

 = +

 = +


∑∫ ∫

∑∫ ∫

H R R R R

H R R R R

φ φ φ φ

φ φ φ φ
               (51) 

If these coupling terms are neglected, the results will be divergent when the angular velocity 

is high. There will be a so-called dynamic stiffening problem [34].In Eq.(51), 
3j

R is the 

orientation matrix decided by nodal numbering of the element. The comma means the first 

shape derivative of shape function versus x or y. 0mP  and 0nP denote the collection of 

elements through these two segments.  

Let T T T T
1 2 3[ , , ]=q q q q be the generalized coordinate vector. Substituting Eqs.(42) and (45) into 

Lagrange’s equations of the second kind 

d ( )
d

T T U
t

∂ ∂ ∂
− + =

∂ ∂ ∂
0

q q q&
                                                (52) 

Then the strong-coupled and nonlinear dynamic equations of the plate undergoing overall 
motion can be given by 

11 13 1 12 13 1 11 12 13 1 1

22 23 2 21 23 2 21 22 23 2 2

31 32 33 3 31 32 33 3 31 32 33 3 3

             
             + + =             
                          

M 0 M q 0 G G q K K K q Q
0 M M q G 0 G q K K K q Q

M M M q G G G q K K K q Q

&& &
&& &
&& &

   (53) 

Where  

11 11=M W ， 22 22=M W ， 33 33 44 55= + +M W W W                      (54) 

T
31 13 41= =M M W      T

32 23 52= =M M W                          (55) 

T
12 21 3 122ω= − = −G G W    T

23 32 1 232ω= − = −G G W                      (56) 

T
13 31 2 13 3 152( )ω ω= − = −G G W W                                  (57) 

33 2 43 34 3 54 45 1 35 532 ( ) 2 ( ) 2 ( )ω ω ω= − + − + −G W W W W W W             (58) 

2 2
11 11 2 3 11( )f ω ω= − +K K W     12 12 1 2 3 12( )f ω ω ω= + −K K W&             (59) 

2 2
13 1 3 2 13 2 3 14 1 2 3 15( ) ( ) ( )ω ω ω ω ω ω ω ω= + − + + −K W W W& &                  (60) 

21 21 1 2 3 21( )f ω ω ω= + +K K W&       2 2
22 22 1 3 22( )f ω ω= − +K K W          (61) 

2 2
23 2 3 1 23 3 1 2 24 1 3 25( ) ( ) ( + )ω ω ω ω ω ω ω ω= − + + −K W W W& &                   (62) 

2 2
31 1 3 2 31 2 3 41 1 2 3 51( ) ( ) ( )ω ω ω ω ω ω ω ω= − − + + +K W W W& &                   (63) 
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2 2
32 2 3 1 32 1 2 3 42 1 3 52( ) ( ) ( + )ω ω ω ω ω ω ω ω= + + − −K W W W& &                   (64)

2 2 2 2 2 2
33 33 1 2 33 2 3 44 1 3 55 2 34 1 35

1 3 2 43 1 2 3 45 2 3 1 53 3 54
2 2 2 2
2 3 11 1 3 22 1 2 3 12 1 2 3 21 01 1 02 2

( ) ( ) ( )

(2 ) (2 ) (2 )

( ) ( ) ( ) ( )

f

a a

ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω ω

= − + − + − + − +

+ + + − + − +

+ + + + − + − − − −

K K W W W W W
W W W W

D D D D C C

& &
& & & &

& &
  (65) 

2 2 T T T
1 2 3 11 1 2 3 21 01 1( ) ( ) aω ω ω ω ω= + − − −Q S S Y&                             (66) 

2 2 T T T
2 1 3 22 1 2 3 12 02 2( ) ( ) aω ω ω ω ω= + − + −Q S S Y&                            (67) 

T 2 2 T T T
3 1 3 2 13 2 3 14 1 2 3 15 2 3 1 23

T 2 2 T T T T
1 2 3 24 1 3 25 03 3 01 4 02 5

( ) ( ) ( ) ( )

( ) ( ) a a a

ω ω ω ω ω ω ω ω ω ω ω

ω ω ω ω ω

= − − + + − + − +

− − + + − − −

Q S S S S

S S Y Y Y

& & &

&
 (68) 

In which 01a , 02a and 03a are the acceleration of point O in the local coordinate system which 

are denoted as  

01 1 2 3 3 2( )a v v vω ω= + −&        02 2 3 1 1 3( )a v v vω ω= + −&    03 3 1 2 2 1( )a v v vω ω= + −&     (69) 
The constant matrices in Eq.(53) are defined by 

T d ( 1, ,5; 1, ,5)ij i jV
V i jρ= = =∫∫∫W L LΦ Φ                       (70) 

d ( 1, 2)i iA
h A iρ= ⋅ =∫∫C H                                               (71) 

1 d ( 1, 2)i iA
h x A iρ= ⋅ ⋅ =∫∫D H                                        (72) 

2 d ( 1, 2)i iA
h y A iρ= ⋅ ⋅ =∫∫D H                                       (73) 

   1 d ( 1, ,5)i iV
x V iρ= =∫∫∫S LΦ                                       (74) 

 2 d ( 1, ,5)i iV
y V iρ= =∫∫∫S LΦ                                     (75) 

d ( 1, ,5)i iV
V iρ= =∫∫∫Y LΦ                                        (76) 

T T
11 1, 1, 1, 1,2

1( )d
1 2f x x y yA

Eh Aµ
µ

−
= +

−∫∫K Φ Φ Φ Φ                    (77) 

T T T
12 21 1, 2, 1, 2,2

1( )d
1 2f f x y y xA

Eh Aµ
µ 

µ
−

= = +
−∫∫K K Φ Φ Φ Φ              (78) 

T T
22 2, 2, 2, 2,2

1( )d
1 2f y y x xA

Eh Aµ
µ

−
= +

−∫∫K Φ Φ Φ Φ                     (79) 
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3
T T T T

33 4, 4, 5, 5, 4, 5, 5, 4,2

T T T T
4, 4, 5, 5, 4, 5, 5, 4,

T T T T
3, 3, 3, 3, 4 4 5 5

T T T T
3, 4 4 3, 3, 5 5 3,

[ ( )
12(1 )

1 ( )]d
2

[
2(1 )

]d

f x x y y x y y xA

y y x x y x x y

x x y yA

x x y y

Eh

A

Eh

A

µ
µ

µ

κ
µ

= + + +
−

−
+ + + +

+ + + +
+

+ + + +

∫∫

∫∫

K Φ Φ Φ Φ Φ Φ Φ Φ

Φ Φ Φ Φ Φ Φ Φ Φ

Φ Φ Φ Φ Φ Φ Φ Φ

Φ Φ Φ Φ Φ Φ Φ Φ

(80) 

Nonlinear dynamic equation (53) can be used not only for the analysis of thin plates, but also 
for the analysis of thick plates.  These underlined terms in Eq.(65) are additional dynamic 
stiffness terms which are caused by considering the coupling shape functions. If these 
coupling terms are neglected, the results will be divergent when the angular velocity is high 
which is mentioned in reference [34]. 

 
4.2  Formulation for vibration analysis of a rotating cantilever Mindlin plate 
Consider a flexible plate attached to a rigid hub with radius R, and rotating around the y axis 
with a constant rotation speed Ω  in the local coordinate system xyz which is fixed to the 
neutral surface of the plate as shown in Fig.5. The physical parameters of the plate are as 
follows:  length a, width b, thickness h, Young’s modulus E, mass density ρ and Poisson’s 
ratio μ. 

 

Fig. 6 The configuration of a rotating cantilever Mindlin plate  
In the local coordinate system xyz, the velocity and angular velocity of point O in the direction 
of x, y, and z axis are  

1 2 3 1 3 20, , 0,v v v RΩ ω ω ω Ω= = = − = = =                              (81) 

Ignoring the in-plane motions of the plate and the right-hand side terms in Eq.(53), the 
dynamic equation for the free vibration analysis of the rotating plate can be obtained as 

2 2
33 3 1 11 33 44 33 3[ ( ) ( ) ]fRΩ Ω+ + − + + =M q C D W W K q 0&&                   (82) 

Note that the underlined term is the dynamic stiffness term due to rotation, the second term is 

y
Ω  

b

z

a

h

x

u
v
w  

0P

P

R 
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the dynamic softness term and the last term is the static stiffness term. Rewrite Eq.(82) in a 
non-dimensional form. The following non-dimensional variables are defined: 

= a
b

δ ，
h
a

η = ，
R
a

σ = ， Tϖ ω= ， Tγ Ω=                         (83)  

Where 4= /T ha Dρ . Then Eq.(82) can be rewritten in the non-dimensional form: 

 2 2
33 3 1 11 33 44 33 3[ ( ) ( ) ]fRΩ Ω+ + − + + =M q C D W W K q 0&&            (84) 

 Their expressions can be found in Eqs.(70),(71),(72) and (80). The difference is that the 
integration of constant matrices is from 0 to 1 in Eq.(84). 

 
5  Numerical results 
5.1  Elimination of shear locking 
To examine the efficiency of CS-FEM for static deflection analyses, consider a rectangular 
plate with uniform load f=1N/m2 as shown in Fig.1. The geometric and material property 

parameters are as follows: 10.0ma = , 10.0mb = , 9 21.0 10 N/mE = × and 0.3µ = . Define a 

deflection coefficient 4
max /w D fbξ = , where maxw is the maximum deflection at the center of 

the plate and  the elastic rigidity of the plate is 
3

212(1 )
EhD

µ
=

−
. 

Table 1 shows the deflection coefficient of the clamped plate against the different mesh 
densities N×N for the thin plate (aspect ratio h/a=0.001) and thick plate(aspect ratio h/a=0.1). 
It is seen that the CS-FEM and FEM with DSG method both provide a locking-free solution. 
The plate is meshed by more elements, the results will be more accurate.  In addition, the 
results of CS-FEM are more accurate and softer than those of FEM with the same DOFs for 
both thin and thick plates. The deflection coefficient of the simply supported plate against the 
different mesh densities N×N for the thin plate (aspect ratio h/a=0.001) and thick plate(aspect 
ratio h/a=0.1) is presented in Table2. The same comments as in the clamped plate can be 
obtained again.  

Table 1 The deflection coefficient of the clamped plate  

h/a Method 
Mesh densities  N×N Analytical 

solutions[35] 4×4 8×8 10×10 16×16 20×20 

0.001 

FEM 0.000906 0.001121 0.001167 0.001225 0.001239 

0.001266 CS-

FEM 

0.001123 0.001227 0.001241 0.001256 0.001259 

0.1 

FEM 0.001203 0.001425 0.001456 0.001487 0.001493 

0.001499 CS-

FEM 

0.001357 0.001467 0.001480 0.001495 0.001498 
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Table 2 The deflection coefficient of the simply supported plate  

h/a Method 
Mesh densities  N×N Analytical 

solutions[35] 4×4 8×8 10×10 16×16 20×20 

0.001 

FEM 0.002949 0.003728 0.003844 0.003975 0.004006 

0.004062 CS-

FEM 

0.003517 0.003928 0.003977 0.004030 0.004042 

0.1 

FEM 0.003349 0.004058 0.004142 0.004225 0.004243 

0.004273 CS-

FEM 

0.003748 0.004143 0.004190 0.004240 0.004252 

5.2  Free vibration analysis of the plate with different boundary conditions 
Consider a rectangular plate as shown in Fig.1. The geometric and material property 

parameters are as follows: 10.0ma = , 10.0mb = , 11 22.0 10 N/mE = × , =8000ρ kg/m3 and 

0.3µ = . Define a dimensionless frequency coefficient 2 4 1/4=( / )a h Dϖ ω ρ , where ω is the 

natural frequency and  D is the elastic rigidity of the plate which is the same as mentioned in 
last section. The combined boundary condition is defined by different symbols. The symbols F, 
S and C represent the free, simply supported and clamped boundary conditions, respectively.  
For example, SFCF means a combined boundary condition for a plate whose four edges are 
simply supported, free, clamped and free. In order to get more accurate results [36], the well-
known lumped mass matrix is used in this paper. 
Tables 3 and 4  show the six lowest dimensionless frequencies of thin plate (aspect ratio 
h/a=0.005) and thick plate (aspect ratio h/a=0.1)with SSSS boundary condition. It is seen that 
the results of the CS-FEM agree well with the results of reference [37]. For the thin plate, 
there is no shear locking phenomenon because of using DSG method. The results of CS-FEM 
are more accurate than those of FEM with the same DOFs. In particular, the CS-FEM can 
provide accurately values of frequencies even if using coarse meshes. Tables 5 and 6 show the 
six lowest dimensionless frequencies of thin plate (aspect ratio h/a=0.005) and thick plate 
(aspect ratio h/a=0.1) with CCCC boundary condition and the obtained comments in the SSSS 
plate are confirmed for the CCCC plate again. The other five different boundary conditions: 
SSSF, SFSF, CCCF, CFCF and CFSF for thin plate (aspect ratio h/a=0.005) are listed in Table 
7. The plate is discretized with 2×16×16 triangular elements. It is again observed that the 
results of CS-FEM agree well with the results of reference. The six lowest shape modes of 
thin plate (aspect ratio h/a=0.005) with SSSS boundary condition are plotted in Fig.7. It is 
seen that they express exactly the real physical modes and there is no spurious energy modes 
are found. 

Table 3 The dimensionless frequency coefficient ϖ  of a SSSS plate (h/a=0.005) 

Mesh Method 
Mode number 

1 2 3 4 5 6 
4×4 FEM 4.9382 7.8786 8.9396 10.5890 12.2902 12.9570 
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CS-FEM 4.4965 7.1241 7.2503 9.0931 10.0933 10.1619 

8×8 
FEM 4.5708 7.2889 7.5694 9.6691 10.8368 11.0471 

CS-FEM 4.4543 7.0536 7.0791 8.9750 10.0418 10.0477 

16×16 
FEM 4.4745 7.0941 7.1603 9.1230 10.1731 10.1872 

CS-FEM 4.4453 7.0310 7.0367 8.9051 9.9590 9.9592 

20×20 
FEM 4.4629 7.0691 7.1108 9.0396 10.0871 10.0928 

CS-FEM 4.4443 7.0284 7.0320 8.8972 9.9492 9.9493 

 Exact 

[37] 

4.4430 7.0250 7.0250 8.8860 9.9350 9.9350 

 
Table 4 The dimensionless frequency coefficient ϖ  of a SSSS plate (h/a=0.1) 

Mesh Method 
Mode number 

1 2 3 4 5 6 

4×4 
FEM 4.7556 7.4493 8.1649 9.6534 10.9393 11.3686 

CS-FEM 4.4032 6.7790 6.8435 8.3901 9.0714 9.0889 

8×8 
FEM 4.4526 6.9470 7.0927 8.8583 9.8241 9.9006 

CS-FEM 4.3743 6.7560 6.7712 8.3830 9.2329 9.2341 

16×16 
FEM 4.3861 6.7950 6.8252 8.4862 9.3746 9.3788 

CS-FEM 4.3683 6.7470 6.7511 8.3623 9.2256 9.2257 

20×20 
FEM 4.3788 6.7766 6.7954 8.4386 9.3195 9.3211 

CS-FEM 4.3676 6.7460 6.7486 8.3595 9.2242 9.2243 

 Exact 

[37] 

4.37 6.74 6.74 8.35 9.22 9.22 

Table 5 The dimensionless frequency coefficient ϖ   of a CCCC plate (h/a=0.005) 

Mesh Method 
Mode number 

1 2 3 4 5 6 

4×4 
FEM 6.8025 9.5749 10.4873 11.7647 13.1176 13.5040 

CS-FEM 6.1712 8.6783 8.9731 10.3804 11.0673 11.2107 

8×8 
FEM 6.2735 9.0386 9.3955 11.5044 12.7057 12.9603 

CS-FEM 6.0475 8.6471 8.7198 10.5863 11.7010 11.7459 

16×16 
FEM 6.0709 8.6976 8.7894 10.7738 11.8234 11.8616 

CS-FEM 6.0101 8.5862 8.6030 10.4502 11.5285 11.5556 
20×20 FEM 6.0446 8.6504 8.7090 10.6462 11.6973 11.7265 
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CS-FEM 6.0057 8.5784 8.5891 10.4317 11.5059 11.5328 

 Exact 

[37] 

5.999 8.568 8.568 10.407 11.472 11.498 

Table 6 The dimensionless frequency coefficient ϖ   of a CCCC plate (h/a=0.1) 

Mesh Method 
Mode number 

1 2 3 4 5 6 

4×4 
FEM 6.2704 8.5690 9.2591 10.3480 11.3969 11.7235 

CS-FEM 5.8163 7.8647 8.0481 9.2126 9.6233 9.7156 

8×8 
FEM 5.8578 8.1344 8.3480 9.8978 10.7828 10.9282 

CS-FEM 5.7350 7.9027 7.9501 9.3817 10.1442 10.2003 

16×16 
FEM 5.7402 7.9437 7.9937 9.4901 10.3007 10.3528 

CS-FEM 5.7117 7.8846 7.8965 9.3442 10.1319 10.1803 

20×20 
FEM 5.7267 7.9197 7.9513 9.4319 10.2369 10.2858 

CS-FEM 5.7087 7.8819 7.8895 9.3378 10.1284 10.1766 

 Exact 

[37] 

5.71 7.88 7.88 9.33 10.13 10.18 

Table 7 The dimensionless frequency coefficient ϖ  of a thin plate (aspect ratio h/a=0.005) 
with various boundary conditions 

Boundary type 
Mode number 

1 2 3 4 

SSSF 3.4168 5.2565 6.4200 7.6802 

Exact[37] 3.4176 5.2684 6.4185 7.6854 

SFSF 3.1033 4.0072 6.0235 6.2430 

Exact[37] 3.1034 4.0168 6.0602 6.2406 

CCCF 4.8945 6.3176 7.9672 8.7349 

Exact[37] 4.9010 6.3276 7.9682 8.7613 

CFCF 4.7131 5.1372 6.5755 7.8384 

Exact[37] 4.7193 5.1506 6.6079 8.0291 

CFSF 3.8994 4.5307 6.2707 7.0404 

Exact[37] 3.9096 4.5468 6.3152 7.0356 
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(a)                                (b) 

 

(c)                                (d) 

 

(e)                                (f) 

Fig. 7 The six lowest shape modes of thin plate (aspect ratio h/a=0.005) with SSSS 
boundary condition. (a)-(h): 1-8 shape modes 

 
5.3  Free vibration analysis of a rotating cantilever Mindlin plate  
In order to examine the efficiency of the CS-FEM, the results are compared with those of 
FEM and AMM which are based on Kirchhoff plate theory. The plate is discretized with 
2×16×16 triangular elements in CS-FEM and FEM. Five cantilever beam mode functions and 
seven free-free beam mode functions are combined to generate 35 plate mode functions in 
AMM according to reference [11]. Table 8 shows the lowest five dimensionless natural 

frequencies with =1δ , =0.01η and =0σ . It is seen that the dimensionless natural frequencies 

increase with the increasing angular velocity. Under the same angular velocity, the results of 
AMM is bigger than those of FEM, which means AMM provides stiffer results if using the 
same modeling theory. The results of CS-FEM are always smaller than the other two methods. 
That means the Mindlin plate theory make the structure become softer because of considering 
the shear deformation. In other words, the Kirchhoff plate theory is always overvalued on the 
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natural frequencies of the structure. Table 9 shows the lowest five dimensionless natural 

frequencies with =1δ , =0.01η and =1σ . The same comments obtained above can be 

confirmed again. Compared with the results in Table 8, it is observed that the dimensionless 
natural frequencies increase with the increasing hub radius. 

Table 8 Five lowest dimensionless natural frequencies of a rotating plate 
( =1δ , =0.01η , =0σ ) 

Non-dimensional 

angular velocity 

Mode CS-FEM FEM AMM 

1γ =  1 3.4963 3.4983 3.5156 

2 8.4799 8.5215 8.5328 

3 21.3255 21.4703 21.520 

4 27.0454 27.1473 27.353 

5 30.8780 31.0911 31.206 

2γ =  1 3.5751 3.5760 3.5963 

2 8.4901 8.5357 8.5507 

3 21.6413 21.8101 21.865 

4 27.0245 27.1756 27.384 

5 31.1047 31.3537 31.477 

Table 9 Five lowest dimensionless natural frequencies of a rotating plate 
( =1δ , =0.01η , =1σ ) 

Non-dimensional 

angular velocity 

Mode CS-FEM FEM AMM 

1γ =  1 3.7127 3.7151 3.7324 

2 8.5944 8.6112 8.6240 

3 21.4835 21.6533 21.706 

4 27.0333 27.183 27.394 

5 30.9789 31.2315 31.350 

2γ =  1 4.3615 4.3670 4.3805 

2 8.8492 8.8878 8.9087 

3 22.3442 22.5107 22.580 

4 27.2023 27.3434 27.557 

5 31.6681 31.9054 32.043 
Fig.8 shows the five lowest dimensionless natural frequencies of a rotating cantilever 

plate( 5δ = ， 0.01η = ， 1σ = ) using CS-FEM versus angular velocity. It is seen that the 
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second and third frequency loci approach each other as the angular velocity increases and then 
veer away from each other. This interesting phenomenon is referred to as eigenvalue loci 
veering and was first discussed by Leissa [38]. Yoo [11] said these two frequency loci crossed 
each other between symmetric and skew-symmetric modes. However, it can be found from 
Fig.8(b) that they are only very closely each other and the eigenvalue crossing doesn’t occur. 
Compared with reference [11] using AMM, the results of CS-FEM are milder.  
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(a)                                                        (b) 

Fig. 8 The five lowest dimensionless natural frequencies of a rotating cantilever plate 

versus angular velocity ( 5δ = ， 0.01η = ， 1σ = ) 
Fig.9 shows the second and third vibration modes in the veering region when the non-

dimensional angular velocity is 7, 7.58,7.6 and 8 with 5δ = ， 0.01η = and 1σ = , 

respectively. When the non-dimensional angular velocity is 7, it is clearly observed from 
figs.(a) and (b) that the second mode is bending mode and the third mode is torsion mode. 
When the non-dimensional angular velocity is 8, it is clearly observed from figs. (g) and (h) 
that the second mode is torsion mode and the third mode is bending mode. This phenomenon 
means that the second and third modes switch their shapes when the non-dimensional angular 
velocity changes from 7 to 8. This switching phenomenon does not occur suddenly but has a 
process. It is clearly seen from figs.(c),(d),(e) and (f) that there are both bending and torsion 
modes in the second and third modes. When the non-dimensional angular velocity is 7.58, the 
bending effect is greater than the torsion effect for the second mode and the torsion effect is 
greater than the bending effect for the third mode. That means the torsion effect is increasing 
for the second mode and the bending effect is increasing for the third mode when the non-
dimensional angular velocity increases in the veering region. When the non-dimensional 
angular velocity is 7.6, we see the opposite situation, which the torsion effect is greater than 
the bending effect for the second mode and the bending effect is greater than the torsion effect 
for the third mode. Finally, when the non-dimensional angular velocity increases to 8, the 
switching process is complete. 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1459



  
(a) =7γ Second mode                            (b) =7γ Third mode 

 

(c) =7.58γ  Second mode                         (d) =7.58γ  Third mode 

 

(e) =7.6γ  Second mode                         (f) =7.6γ  Third mode 

 

(g) =8γ  Second mode                          (h) =8γ  Third mode 

Fig. 9 The second and third vibration modes of a rotating cantilever plate 

( 5δ = ， 0.01η = ， 1σ = ) 
Fig.10 shows the eight lowest dimensionless natural frequencies of a rotating cantilever 
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plate( 1δ = ， 0.01η = ， 10γ = ) versus hub radius ratio σ . It is seen that the dimensionless 

natural frequencies increase as the hub radius ratio increases. The first two frequencies are 
very closely. The frequency loci veering occurs from the fourth to seventh natural frequencies 
and there are two veering phenomena in the sixth natural frequency. Fig.11 shows the eight 

lowest dimensionless natural frequencies of a rotating cantilever plate( 0σ = ， 0.01η = ，

10γ = ) versus aspect ratio δ . It is observed that there are many abrupt frequency loci veering 

phenomena. Compared with fig.10, the aspect ratio has a greater effect on the frequency loci 
veering phenomena than the hub radius ratio. Fig.12 shows the eight lowest dimensionless 

natural frequencies of a rotating cantilever plate ( 1δ = ， 0σ = , 10γ = ) versus thickness 

ratio η . The results of FEM are based on Kirchhoff plate theory and those of CS-FEM are 

based on Mindlin plate theory. It is seen that the results of FEM are constant and they don’t 
change with the thickness ratio. However, the results of CS-FEM decrease as the thickness 
ratio increases. In the low order frequencies, the results of these two modeling theories are 
very closely, which means different modeling theories have a small effect on low order 
frequencies but have a great effect on high order frequencies. In addition, the results of CS-
FEM are always smaller than those of FEM and this is confirmed again that the Kirchhoff 
theory overestimates the structural dynamic characteristics.   

0 2 4 6 8 10
0

20

40

60

80

100

120

140 CS-FEM

D
im

en
si

on
le

ss
 n

at
ur

al
 fr

eq
ue

nc
ie

s

Hub radius ratio 

 

Fig. 10 The eight lowest dimensionless natural frequencies of a rotating cantilever plate 
versus hub radius ratio σ  ( 1δ = ， 0.01η = ， 10γ = ) 
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Fig. 11 The eight lowest dimensionless natural frequencies of a rotating cantilever plate 
versus aspect ratio δ  ( 0σ = ， 0.01η = ， 10γ = ) 
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Fig. 12 The eight lowest dimensionless natural frequencies of a rotating cantilever plate 
versus thickness ratio η  ( 1δ = ， 0σ = , 10γ = ) 

 
6   Conclusion 
In this paper, a cell-based smoothed finite element method (CS-FEM) is formulated for non-
linear free vibration analysis of rotating Mindlin plates. In order to overcome the shear 
locking problem, the discrete shear gap (DSG) method is used. The static cases and free 
vibration analysis of plates with various boundary conditions demonstrate the effectiveness of 
the CS-FEM. It is found that the CS-FEM based on Mindlin plate theory can provide more 
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accurate and “softer” solution compared with those of the conventional FEM even if using 
coarse meshes. For the analysis of free vibration of a rotating cantilever plate, the CS-FEM 
results are compared with the FEM and AMM.  It is found that the natural frequencies of 
neighboring modes may “kissing” each other, when the angular velocity, aspect ratio and hub 
radius ratio changes, but they do not go cross. At the frequency kissing point, the vibration 
modes switch. It is also found that because of the use of the Mindlin plate theory, the natural 
frequencies decrease as the thickness ratio increases, which is not observed when the 
Kirchhoff plate theory is used.  Moreover, the effect of thickness ratio is more significant in 
high order frequencies. 
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Abstract 
Improving the applicability of electrical machines depends on knowing their performance on 
different operation conditions. In this paper a technique based on B-spline neural networks for 
obtaining a high performance of direct current shunt motors is proposed. This algorithm sets 
the control signal on line without the need to know a system model and, therefore, their 
performance is not dependent on the equilibrium point of design and prior knowledge of the 
parameters. Motor operation is subjected to highly demanding conditions for variant speed 
reference, also takes advantage of the feature of including a load torque from zero to full with 
minimal impact on the rotor speed. Time domain simulations and laboratory measurements in 
a test direct current shunt motor demonstrate the applicability of the proposal.  

Keywords: Automatic Learning, DC shunt motors, Model-Free Control, Neural Networks. 

Introduction 
Currently, electrical machines are presented in a wide variety of applications from use in homes 
to remote research applications on land, in air, in water and finally in space, each with its own 
characteristics and specific protections [1]. However, the demanding operation conditions are 
increasingly, consequently it is necessary to develop new proposals for operation, control and 
protection [2][3]. 
Although direct current, DC, machines have been studied, there are still many possibilities for 
its use as motors and generators [4]. It is an open research topic mainly for implementation 
purpose with robust performance and low digital control demand. Therefore, it must be 
demonstrated satisfactory performance in a wide range of operating conditions and adaptability 
characteristics in face to the changing demands of the load torque and environmental conditions. 
DC motors are used in many areas such as mobile robotics, industrial robotic arms, elevators, 
cranes, drills, in addition, its simple model (some configurations) facilitates their use as test 
systems for evaluating new drivers [4]. 
The control area is widely in electric motors [4]-[9]. There are several controllers based on 
conventional PID linear techniques or a combination, robust based on sliding mode, adaptive 
algorithms, asymptotic differentiation, neural networks, and fuzzy logic. Most of them require 
full or partial information of the mathematical model and motor parameters, limiting its 
application because control laws are dependent on having available these values [4]-[6]. 
Consequently, if are not known, the performance of the control law is degraded. Additionally, 
some of them have a high computational cost which restricts its operation in real time 
applications [5]. 
In particular the analysis and design of DC motors controllers is emphasized for so called direct 
current permanent magnet, or separate excitation, reaching simple linear models, and justifying 
its performance against certain operating conditions [4]-[6][9]. Its operation is guaranteed 
around equilibrium point and also is highly dependent on prior knowledge of the motor 
parameters. In this configuration the inrush current is limited only by the armature resistance, 
this resistance is relatively high for small motors and there are no problems. But for motors of 
several kilowatts, the armature resistance is small, then an excessively high armature current is 
presented in starter condition at rated voltage [10]. Therefore, a starter resistor is connected in 
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series with the armature winding, causing losses and the need to include and disconnect starting 
resistors. 
The DC motor configuration discussed in this paper has the distinction of having a nonlinear 
model, which makes its control a non-simple task [10]. Also, conventional controllers in some 
cases may not be sufficient due that the wide range of operating conditions. With this 
configuration is intended that the change in the mechanical load torque from zero to full, have 
a minimal impact on the rotor speed, also it changes over time. This analysis allows visualizing 
that the electrical DC motors have wide applicability, but is required to expand the existing 
studies with the inclusion of adaptive control techniques to cover highly demanding conditions, 
which the motor could be subjected. 
The use of artificial neural networks, ANN, offers an attractive alternative for tracking speed 
of DC motors. The ANN are able to model and control on line nonlinear and non-stationary 
systems. Technique nature makes it robust, adaptive and optimal controller that can be used in 
independent or hybrid configurations with existing techniques. These features allow being an 
important option for practice engineers who are in face with the physical systems changing and 
high demands of connected loads. ANN are particularly attractive for controlling electric 
motors. At the same time, they consider the complexity of the physical system and provide a 
realistic control with less computational time for an effective and robust control in a wide 
operating range. B-spline neural networks, BSNN, are a particular class of neural networks that 
have exhibited important results in various physical systems [11]-[13]. This paper presents the 
design and performance with the qualities required for a real time application. The results 
exhibit its ability to adapt and how to face the change in load torque and motor conditions. 
The proposed controller shows that only a previous off line training for some operating 
conditions is required and based on weights updating together with the base functions shape, it 
adapts to changes in the original design without losing its high performance. The result is an 
adaptive controller that enhances the motor operation even in different operation condition 
where the design was done.      

DC Shunt Motor Model 

There are various configurations of DC motors, where one in particular provides important 
operating characteristics where the rotor speed does not change appreciably as the load torque 
varies from zero to its nominal value [10]. Fig. 1 shows a connection diagram of the motor 
under study. 

 
Figure 1. Equivalent circuit of a direct current shunt motor 

We can see that the voltage source supplies both the field winding and the armature winding, 
therefore the total current is the sum of the two circulating currents. Considering a linear 
voltage-current relation for resistive and inductive elements, the DC motor model is obtained 
by, 
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where the electric torque is ߬௘ ൌ  ௔௙݅௙݅௔. The mathematical model exhibits that it is a coupledܮ
nonlinear system. Therefore, conventional linear controllers guarantee the operation around an 
equilibrium point. The equilibrium points of the system can be determined by, 
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where ݑ௜௡ ൌ ௔ݑ ൌ  ௙. It can be seen that the equilibrium points depend on the voltage appliedݑ
on terminals, the load torque and motor parameters. Therefore, the motor has multiple 
equilibrium points; it depends precisely on the operating condition. 
The conventional PI controller used in this study is designed to have stable poles by ݇௣ ൌ 10 
and ݇௜ ൌ 100. 

Adaptive B-Spline Controller 

Considering the nonlinear nature of DC motors described in section two and a linear controller, 
a problem arises with the regulation of the interest variables. If it is possible the control law 
must get a driver that is robust even tracking speed trajectories over time. In that sense, in this 
work an adaptive controller based on B-spline neural networks is proposed. Its design consists 
of two stages: first in defining the structure and characteristics of the inputs and the training 
rule; the second part is an on line learning where the ANN can determine changes in the 
reference signal, load torque and motor parameters. 
In the off line training corresponding to the first part of the design, data of the interest variables, 
armature voltage and instantaneous rotor speed are used. With these data the neural network 
structure is validated, if the closed loop control meets expected performance proceeds to its on 
line operation, where continuous learning of new operational and/or parametric variations of 
the motor is done. 
Among the objectives of the proposed controller we are looking to have a robust but simple 
design features and implementation on an experimental level. Time domain simulations and 
laboratory results demonstrate these aspects. In this work the diagram, Fig. 2, defines the 
proposed neural controller and the output is defined by [14], 
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where ݓ௜ and ܽ௜ are the i-th weighting factor and the i-th basis function output, respectively; p 
is the number of weights of the neural network structure. The base function output changes with 
a nonlinear relationship of the input values, defined by the base function shape. For the 
proposed controller two monovariable functions of third order are used. The weight vector is 
updated by an instantaneous learning rule, defined by [14] 
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where ߟ is the learning rate and ݁ఠ is the error between the desired and actual rotor speed. The 
update of the weights depends on the base functions output and the learning rule; therefore, the 
neural network performance is not conditional on the reference type (constant or variable) or to 
the actual operating condition. The operational test conditions for defining the neural network 
structure are shown in Table 1. 
 

Table 1. Operation Conditions for off line Training 

Load Torque 
߬௅ (Nm) 

Rotor Speed 
߱ (rad/sec) 

0.5 30 
0.3 100 
1.25 50 
1.1 70 
0.4 120 
0.75 45 

 
Figure 2. Proposed adaptive controller structure with the main elements 

There are some applications of adaptive controllers based on B-spline neural networks where 
how to define the base functions, neural network structure and a training rule is explained [11]-
[13]. Clearly simple structure facilitates the form of implementation and adaptation to different 
systems, in addition, the number of neurons, structure and shape of base functions have 
similarity in all these cases, therefore, and same structure is able to extend systems of different 
characteristics. 
It is important to note that the implementation of these controllers prior knowledge of the 
operation and control system analysis is required. Finally, this particular BSNN structure makes 
them a very attractive structure that can be exploited in hybrid with other control strategies that 
can be linear, robust or adaptive configurations. 

Test DC Shunt Motor 

In order to evaluate the speed regulation, digital simulations and laboratory tests are 
accomplished using the DC motor arrangement described in Fig. 1, under different disturbances. 
The parameters used in the simulation studies are presented in Table 2; these values are 
approximate of the physical system. It is shown that the proposed with an initial off line training 
controller for tracking reference is sufficient to face the change on motor kind and the operation 
change. 
To verify the proposed controller robustness the analysis is divided in two parts: a) simulation 
with BSNN controller; b) laboratory tests with BSNN controller. For simplicity the load in 
simulation study is represented proportional to velocity as, 
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where the constant B is calculated by trial and error procedure, considering the current and 
voltage measured in laboratory tests in steady state with different load values. 
 

Table 2. Motor Parameters of a DC Shunt Motor 

Parameter Value Unit 
ܴ௔ 7.5 Ω 

௙ܴ 469.75 Ω 
௔ܮ 55.3 mH 
 ௙ 2.4123 Hܮ
 ௔௙ 2.2881 Hܮ
ܬ 0.0013 Kg-m2 
ܾ 1e-4 N.m.s 

 

Simulation Results 

Two scenarios are presented for adaptive controller analysis based on DC shunt motor, section 
2. These results exemplify the adaptive controller evolution in possible real world scenarios, 
but strictly they are not necessary for laboratory experiments. DC motor is subjected to two 
tests scenarios: case 1 with tracking reference speed from 0 to 52 rad/sec considering a constant 
load torque 0.5 Nm is applied, after that a load torque change in ݐ ൌ 5 to 1.2 Nm, and finally is 
reduced to 0.1 Nm; case 2 a similar speed reference but with different magnitude is considered, 
also in ݐ ൌ 5 sec a variable load between 0.2 and 1 Nm is added. 
Fig. 3 displays the DC motor speed controlled by the B-spline neural network. The transient 
and steady state condition exhibits a good performance for tracking a reference shape. Similar 
performance is maintained in the presence of load torque change, the modification considers a 
load constant for each adjustment. The reference signal is in blue color. 

 
Figure 3. Rotor speed performance for reference tracking, case 1. 

Fig. 4 presents the electrical torque required for operating conditions demanded in case 1. The 
armature current evolution is in accordance with DC motor performance, it is clear that the main 
overshoot is presented when the rotor speed change from 0 to 52 rad/sec with a constant load 
torque, Fig. 5. The oscillations are eliminated faster with the proposed adaptive controller. The 
settling time is near to 0.1 sec for BSNN. 
The adaptive neural controller performance is guarantee by two main features: the off line 
training and the second the continuous learning in each sample time, and is reflected in the 
weight factor. This evolution is exhibited in Fig. 6 by one on the two weights of the B-spline 
neural network structure, the main change is presented when some of the motor system 
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configuration change, and obviously in steady state condition its value is maintained constant 
due that the error magnitude is near to zero. The learning rate is related to the velocity response 
of the weight factors, in this case it has a initial value equal to 5100 obtained in the previous 
training. This performance is expected while the continuous learning rule (8) is operating. 

 
Figure 4. Electrical torque evolution, case 1. 

 
Figure 5. Armature current behavior, case 1. 

 
Figure 6. Weight factor evolution, case 1. 

In Fig. 7 the rotor speed is presented, when the motor is exposed to operation conditions 
described in case 2. The BSNN has the ability of being updated to a new operating condition, 
improving its performance. The propose technique has a good performance because a speed 
tracking operation is demanded, additionally when the load torque is modified as a time 
function, the adaptive controller also achieves the reference speed requirements. This kind of 
performance is one of the main advantages of the adaptive controller when a design structure 
was well conditioned. The error between reference and actual speed is less than 1.5 rad/sec in 
transient period. 
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Figure 7. Rotor speed performance for reference tracking, case 2. 

The input current for armature winding applied to the motor has an evolution as shows in Fig. 8. 
It is evident that the proposed controller confirms its faster response, therefore it could maintain 
similar behavior for both cases and different system requirements. In this study the input voltage 
is the only control variable, initially the motor is operating at 60 rad/sec with constant load 
torque. 

 
Figure 8. Armature current performance, case 2. 

As a DC shunt motor, the field current is variable but the magnitude presented is fewer that 
armature current, Fig. 9. This feature allows complex load torque specifications for variable rotor 
speed. The behavior is a consequence of external load demands. 

 
Figure 9. Field current evolution, case 2. 

Measurement variables in laboratory test motor 

The performance and applicability of the proposition are proved by hardware implementation 
on a laboratory DC motor. This strategy allows controlling appropriately the motor speed where 
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the load and set point is modified. The neural control is able to adapt by itself to different 
operating conditions, in other strategies turn out to be diminished in some situations, especially 
under different operating conditions for which its parameters have been tuned. Thus, the 
feedback signals to the BSNN are pertinent for a suitable control of the DC motor (shunt 
connected) velocity exhibiting a well performance for different operating points without 
modifications in control law. The applicability is demonstrated by laboratory results, some 
interest variables are presented in Fig. 10-13. 
The DC motor to three scenarios was exposed. First case a, all variables are zero, after the speed 
reference is changed to 52 rad/sec, considering a constant load torque. An AC synchronous 
generator connected to the motor rotor is used as load. In this case the generator has an excited 
constant system, no electrical elements are wire to AC terminals. 
The rotor speed and total current are showed in Fig. 10 and 11. The DC motor performance is 
in accordance with the simulations results. The proposed BSNN controller is able to regulate 
the speed with a desired behavior without knowledge of the system model and parameters. It is 
enough a collected data from the physical system in this case input voltage a rotor speed or and 
approximate mathematical model to know some possible characteristics about interest variables 
in transient and steady state condition. 

 
Figure 10. Rotor speed performance for reference tracking, case a. 

 
Figure 11. Total current performance, case a. 

The second case b exhibits the reference tracking performance when the value is changed from 
80 to 60 rad/sec. The controller has a good evolution when the speed reference is diminished, 
Fig. 12. The laboratory test where develop with operation conditions similar to simulation test. 
Discrepancies with simulations are due to a rough estimation of parameters. The comparison is 
only for demonstrating the behavior of the proposed adaptive controller. 
The final case c includes a load torque with different values, first the rotor speed achieves 80 
rad/sec; after that at t = 3 sec an AC synchronous generator is included. At t = 4.5, 6 and 8 
seconds a three phase resistive load is inserted in the generator terminals, the resistive load is 
increased in each time. In the last part at t = 11.7 sec the resistive load is disconnected from the 
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generator terminals. The total current exemplify the system performance, all variables attain a 
behavior with similar features with all presented study cases. 

 
Figure 12. Rotor speed performance for reference tracking, case b. 

The adaptability of the proposed controller has been presented by prior off line design. A 
mathematical model with approximate motor parameters was used, and the design was 
performed by data collected by the model and laboratory test system. The performance of the 
proposed adaptive controller is evaluated by simulation model analysis and results obtained 
experimentally. The observed performance validates the initial design methodology. 

 
Figure 13. Total current behavior, case c. 

Conclusions 

It has been shown that with a prior off line neural network design we achieve a robust and 
adaptive controller, the instantaneous learning rule permits that the controller adapts by itself 
in each demanded operation condition. The same behavior is exhibited with real world 
operation conditions for the motor. For this proposition is not need the use of mathematical 
model furthermore the dependency of motor parameters is omitted. The main feature is an 
adaptive nature and an easy way to implement in physical motor. The hardware implementation 
validates the proposed design; several operation conditions are taking into account. 
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Abstract

Real-time estimation and differentiation of signals are common tasks in diverse applications
of active vibration control. In this paper, an asymptotic approach for signal differentiation is
applied in an active vehicle suspension system. The synthesis of the differentiation approach
evades the use of a mathematical model of the suspension system. Estimation of unknown
exogenous disturbances due to irregular road surfaces are also estimated. Estimates of time
derivatives of the output variable and disturbances are then used for the implementation of an
active vibration control scheme. Some numerical results are provided to show the effectiveness
of the real-time estimation of the unavailable signals as well as a reasonable vibration attenua-
tion level on a linear quarter-vehicle active suspension system.

Keywords: Active Vibration Control, Vehicle Suspension System, Differential Flatness, Signal
Differentiation, Disturbance Rejection.

Introduction

Real-time estimation of parameters and signals is an active research subject in vibration control.
Several approaches about parameter and signal estimation for mass-spring-damper systems,
vibration absorbers and rotor-bering systems have been proposed in [1, 2, 3, 4, 5, 6]. Time
derivatives of some system variables (e.g., velocity and acceleration) could be also required
for implementation of active vibration control schemes. In fact, error signal differentiation is
demanded in classical Proportional-Integral-Derivative (PID) control which is applied in many
industrial engineering systems. Moreover, availability of signal derivatives can be used to re-
construct disturbance forces affecting a vibration mechanical system. State vector estimation is
commonly based on asymptotic observers designed for specific dynamical systems. In practice,
differentiation of signals is also performed by real-time numerical computations from samplings
of the available output signals. Nevertheless, numerical differentiation could deteriorate the ef-
ficiency and robustness of system identification or control when measurements are corrupted by
noise.

Recently, an asymptotic differentiation approach of signals for angular acceleration estimation
for DC motors has been proposed in [7]. This paper describes the application of this signal dif-
ferentiation approach to approximately estimate time derivatives and disturbances in vibrating
mechanical systems. Signal differentiation is applied to control an active vehicle suspension
system as well. The synthesis of the differentiation approach evades the use of a mathemati-
cal model of the suspension system. Hence, the differentiation approach can be employed in
vibration mechanical systems where time derivative of some signal is required. It is shown
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that unknown exogenous disturbances due to irregular road surfaces can be algebraically recon-
structed from estimates of time derivatives. Estimates of time derivatives of the output variable
and disturbances are then used for the implementation of an active vibration control scheme.
Some numerical results are provided to show the effectiveness of the real-time estimation of
the unavailable signals. A reasonable level of forced vibration attenuation on an active linear
quarter-vehicle suspension system is also verified.

1 Mathematical Model of a Vehicle Suspension System

Firstly, consider the mathematical model (1) of the active quarter-vehicle suspension system
schematically shown in Fig.1:

msz̈s + cs(żs − żu) + ks(zs − zu) =u
muz̈u + kt(zu − zr)− cs(żs − żu)− ks(zs − zu) =− u (1)

where the sprung mass ms represents the mass of the car-body part, the unsprung mass mu de-
notes the mass of the assembly of the axle and wheel, cs is the damper coefficient of suspension,
ks and kt are the spring coefficients of the suspension and tire, respectively. The generalized
coordinates are the displacements of both masses zs and zu, zr is the terrain disturbance and u
is the control force input provided by some (electromagnetic or hydraulic) actuator.

Figure 1: Quarter-vehicle suspension system: (a) passive suspension system, (b) active
suspension system with an electromagnetic actuator, (c) active suspension system with a
hydraulic actuator.

Defining the state variables as x1 = zs, x2 = żs, x3 = zu and x4 = żu, mathematical model (1)
adopts the state-space description

ẋ1 =x2

ẋ2 =− ks

ms

x1 −
cs

ms

x2 + ks

ms

x3 + cs

ms

x4 + 1
ms

u

ẋ3 =x4

ẋ4 = ks

mu

x1 + cs

mu

x2 −
ks + kt

mu

x3 −
cs

mu

x4 −
1
mu

u+ kt

mu

zr (2)
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The active suspension system (2) is a differentially flat system, where a flat output y is given by
[8, 9]:

y = msx1 +mux3 (3)

Therefore, state and control variables can be expressed in terms of the flat output y and a finite
number of its time derivatives. Indeed, from y and its time derivatives up to fourth order:

ẏ = msx2 +mux4

ÿ = kt (zr − x3)
y(3) = kt (żr − x4)

y(4) = 1
mu

u+ kt

mu

x3 −
1
mu

(Fsc + Fsk)− kt

mu

zr + ktz̈r (4)

with

Fsk = ks (x1 − x3)
Fsc = cs (x2 − x4) (5)

the differential parameterization results as follows

x1 = 1
ms

y + mu

ktms

ÿ − mu

ms

zr

x2 = 1
ms

ẏ + mu

ktms

y(3) − mu

ms

żr

x3 = − 1
kt

ÿ + zr

x4 = − 1
kt

y(3) + żr

u = 1
b

(
a0y + a1ẏ + a2ÿ + a3y

(3) + y(4) − ξ
)

(6)

with

a0 = kskt

msmu

, a1 = cskt

msmu

a2 = ks

ms

+ ks + kt

mu

, a3 = cs

ms

+ cs

mu

b = kt

mu

(7)

and

ξ (t) =
(
kt

ms

+ kt

mu

)
kszr +

(
kt

ms

+ kt

mu

)
csżr + ktz̈r (8)

Thus from (6) the flat output is governed by the perturbed input-output differential equation

y(4) + a3y
(3) + a2ÿ + a1ẏ + a0y = bu+ ξ (9)

Hence, the following active vibration control scheme based on differential flatness can be di-
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rectly synthesised:

u = 1
b
(υ + a3y

(3) + a2ÿ + a1ẏ + a0y − ξ) (10)

with
υ = −α3y

(3) − α2ÿ − α1ẏ − α0y

Nevertheless, implementation of the control law (10) needs measurements or estimates of some
time derivatives of the flat output variable y. In addition, information of the profile of irregular
road surfaces zr could be also demanded.

On the other hand, note that from (4) the flat output y and its derivatives up to third order can be
computed from state variables and disturbance zr. Otherwise, time derivatives of the flat output
can be also estimated directly. Moreover, the disturbance zr can be calculated by

zr = 1
kt

ÿ + x3 = 1
kt

(msẍ1 +muẍ3) + x3 (11)

Thus, in the next section it is described a signal differentiation approach to get approximate
derivatives for some stable dynamical system [7].

2 A Signal Differentiation Approach

The synthesis of the signal differentiation scheme with respect to time is based on the local
approximation of some bounded signal Y by a family of Taylor polynomials of forth degree as

Y (t) ≈
4∑

i=0
qit

i (12)

where coefficients qi are assumed to be unknown.

Therefore, the signal Y can be locally reconstructed by the dynamical system

Ẏf = Y1

Ẏ1 = Y2

Ẏ2 = Y3

Ẏ3 = Y4

Ẏ4 = Y5

Ẏ5 = F (13)

where Y1 = Y , Y2 = Ẏ , · · · , Y5 = Y (4), Yf =
∫ t

0 Y dt, and F is considered as an unknown
bounded perturbation signal including the influence of high frequency noise and small residual
terms of the truncated Taylor polynomial expansion (12) (see [7]). Moreover, we have assumed
that the time derivatives up to fifth order of Y are uniformly absolutely bounded.

Hence, from (13) we propose the following state observer for asymptotic estimation of some
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time derivatives of the signal Y :

̂̇
Y f = Ŷ1 + β5

(
Yf − Ŷf

)
̂̇
Y 1 = Ŷ2 + β4 (Yf − ŷf )̂̇
Y 2 = Ŷ3 + β3

(
Yf − Ŷf

)
̂̇
Y 3 = Ŷ4 + β2

(
Yf − Ŷf

)
̂̇
Y 4 = Ŷ5 + β1

(
Yf − Ŷf

)
̂̇
Y 5 = β0

(
Yf − Ŷf

)
(14)

which only uses information of the filtered output signal Yf . Here, we use the notation (̂·) for
the estimated signals.

Then, the estimation error dynamics is governed by

ėf = e1 − β5ef

ė1 = e2 − β4ef

ė2 = e3 − β3ef

ė3 = e4 − β2ef

ė4 = e5 − β1ef

ė5 = −β0ef (15)

which is completely independent of any coefficients qi of the Taylor polynomial expansion of
the output signal Y . Here, ei = Yi − Ŷi, i = 1, 2, . . . , 5, ef = Y − Ŷf . Notice that, estimator
gains should be properly selected in order to have a stable characteristic polynomial for the
observer-based closed-loop system dynamics. Additionally, the estimation dynamics should be
sufficiently fast to get estimates opportunely to be used by the active vibration control scheme.
Note that, it is widely known that delays in measurements or estimations could become unsta-
ble a dynamical systems. Better estimates can be obtained by employing a Taylor polynomial
model of higher order.

3 Simulation results

Effectiveness of the differentiation approach for approximate estimation of time derivatives and
road disturbance signals required for implementation of the active vibration control scheme
(10) for an active linear quarter-vehicle suspension system was verified by some preliminary
computer simulations. The vehicle suspension system is characterized by the set of parameters
described in Table 1 [10].

In Fig. 2 is shown the unknown exogenous disturbance excitation due to irregular road surfaces
which is described by [11]:

zr (t) =



f1 (t) + f (t) for t ∈ [3.5, 5)
f2 (t) + f (t) for t ∈ [5, 6.5)
f3 (t) + f (t) for t ∈ [8.5, 10)
f3 (t) + f (t) for t ∈ [10, 11.5)
f (t) else

(16)
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Table 1: Parameters of the vehicle suspension system.

Parameter Value
Sprung mass ms 216.75 kg

Unsprung mass mu 28.85 kg
Spring stiffness ks 21700 N/m

Damping constant cs 1200 Ns/m
Tire stiffness kt 184000 N/m

with

f1 (t) = −0.0592 (t− 3.5)3 + 0.1332 (t− 3.5)2

f2 (t) = 0.0592 (t− 6.5)3 + 0.1332 (t− 6.5)2

f3 (t) = 0.0592 (t− 8.5)3 − 0.1332 (t− 8.5)2

f3 (t) = −0.0592 (t− 11.5)3 − 0.1332 (t− 11.5)2

f (t) = 0.002 sin (2πt) + 0.002 sin (7.5πt)

t [s]0 5 10 15 20

z r
[m

]

-0.2

-0.1

0

0.1

0.2

Figure 2: Irregular profile of the road surface.

Fig. 4 describes a reasonable attenuation level of vibrations induced by irregular road surfaces
(16) using the active vibration control scheme based on high-gain signal differentiation. To get
a fast signal estimation the characteristic polynomial of the estimation error dynamics was set
as

PO(s) = (s2 + 2ζoωos+ ω2
o)3 (17)

with ωo = 2000 rad/s and ζo = 5.

Acceptable approximate estimation of the disturbance signal zr is depicted in Fig. 4. On the
other hand, the active control force applied to the vehicle suspension system is illustrated in Fig.
5. The control gains were chosen to have the closed loop characteristic polynomial

Pc(s) = (s2 + 2ζcωcs+ ω2
c )2 (18)
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Figure 3: Position responses of sprung and unsprung masses.

with ωc = 10 rad/s and ζc = 0.7071.

t [s]0 5 10 15 20

ẑ r
[m

]

-0.2

-0.1

0

0.1

0.2

Actual

Estimate

Figure 4: High-gain fast estimation of the irregular profile of the road surface.
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Figure 5: Active control force applied to the vehicle suspension system.

4 Conclusions

The application of a signal differentiation approach with respect to time has been described
for an active linear quarter-vehicle suspension system. Certain signal derivatives and unknown
exogenous disturbances due to irregular road surfaces were estimated. Approximate estimates
were then used for the implementation of an active vibration control scheme based on differen-
tial flatness. Numerical results illustrate an acceptable estimation of the disturbance signal due
to irregular road surfaces. It was also shown that the active vibration control scheme archives a
reasonable vibration attenuation level on a linear quarter-vehicle active suspension system when
the estimation error dynamics is sufficiently fast with respect to the closed loop vehicle suspen-
sion system and disturbances. Thus, the effectiveness of the on-line signal estimation algorithm
without employing some specific mathematical model of the controlled dynamical system re-
quires fast velocities for signal processing and high estimation gains. Actually, high speed and
precise sensors, DSP boards, and software with high computational performance operating at
high sampling rates are now available. Hence, the described differentiation approach represents
a good choice to approximately estimate disturbances and time derivatives for scenarios where
evasion of the use of some mathematical model for the system or a minimal number of sensors
are desired.
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Abstract

Real-time system identification for electric machinery is an active research topic. Diagnostic or
adaptive control tasks could demand the knowledge of the energy conversion system parameters
and, possibly, load mechanical torque as well. In this paper, an on-line identification scheme is
proposed for estimation of all parameters and load torque for an efficiently controlled DC shunt
motor. The parameters of the nonlinear electromechanical system and load torque are estimated
algebraically and quickly. A PI control law is also described for regulation and tracking tasks
on this nonlinear energy conversion system. Some numerical simulation results are provided to
show the effective closed-loop estimation of all system parameters and mechanical torque.

Keywords: DC shunt motor, System identification, Algebraic identification, PI control.

Introduction

In recent decades, several applications of electric motors can be found at industry and homes.
In fact, motor-driven equipment is approximately 60% of manufacturing final electricity world-
wide [1]. Among them are direct current (DC) motors and, particularly, shunt connection allows
advantages over those well-known permanent magnet motors. This configuration is commonly
applied for operation conditions of variable load torque with a reduced effect on the rotor speed.
Further, it does not handle high currents as series DC motors, therefore, it is a useful config-
uration that allows starting and nominal torques with relatively low currents in transient and
steady state operation. Several control schemes for DC electrical machines have been reported
in the literature (see, e.g., [2, 3, 4]). However, most of them are focused on permanent magnet
or separately excited, limiting the load torque operation mainly in starting and tracking variable
speed condition. In addition, a priori knowledge of the motor parameters and, possibly, load
torque are required to get an efficient control performance under variable velocity operation
scenarios. Thus, parameter identification techniques have been commonly employed [5, 6, 7].
Nevertheless, this requirement is a difficult aspect to guarantee because a DC shunt motor is
a nonlinear dynamical system with parameters changing in time. The parameter identification
area for electrical machines is very extensive, where important aspects of implementation are
searched. In general, closed loop parametric identification should be performed on-line and fast
to be used simultaneously with some control technique applied to the motor [8].

There are numerous research works that propose different parameter identification techniques
[9, 10, 11]. Recent contributions based on neural networks, fuzzy logic, Kalman filter, com-
plementary, and using optimization procedures such as genetic algorithms, ant colony, particle
swarm have been proposed for motor parameters estimation [10, 11]. They are suitable for
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on-line or off-line application depending mostly on high computational requirements. One of
the drawbacks of some of the proposed strategies is that correct parameters estimation is not
guaranteed because a nonlinear and coupled nature of the interest variables are not included.
Additionally, identification schemes have a weak performance in some operation conditions
due to in many cases the complex behavior presented in electrical motors are not considered in
the design stage. In general, there are some considerations that must be taken into account in
parameters estimation as continuous variations of the load torque, the impact of the electronic
controllers in transient response and noise included in measured variables, and tracking speed.
Such schemes must meet high precision in face to continuous motor changes with low com-
putational cost for implementation in real time platform. On the other hand, recent algebraic
parametric identification methods have shown an excellent and fast performance [12]. In fact,
algebraic identification have been successfully applied to estimate parameters and signals in
flexible mechanical systems [13, 14, 15]. Numerical and experimental results have confirmed
that algebraic identification represents an very good choice for the synthesis of on-line parame-
ter estimators.

In this paper, an on-line identification scheme is proposed for estimation of all parameters and
load torque for an efficiently controlled DC shunt motor. The parameters of the nonlinear elec-
tromechanical system and load torque are estimated algebraically and quickly. A PI control law
is also described for regulation and tracking tasks on this nonlinear energy conversion system.
Some numerical simulation results are provided to show the effective closed-loop estimation of
all system parameters and mechanical torque.

1 Mathematical Model of a Controlled DC Shunt Motor

Consider the nonlinear mathematical model of a DC motor with field and armature circuits
connected in parallel

Lf
d

dt
if =−Rf if + u

La
d

dt
ia =−Raia − Laf ifω + u

J
d

dt
ω =− bω + Laf if ia − τL

y =ω (1)

where the positive parameters of the field circuit are the inductance Lf and resistance Rf . La
and Ra are the inductance and resistance of the armature circuit, respectively, and Laf is the
mutual inductance. J and b are the inertia moment and viscous damping of the mechanical
subsystem. Here, u is the voltage control input, y = ω is the controlled output angular velocity
and τL is the constant load torque. The field and armature current signals are respectively if
and ia.

From basic control fundamentals, one can very that the dynamics of the output angular velocity
y = ω around some desired equilibrium operation state (ωe, iea, ief , ue) is governed by

ÿ + a1ẏ + a0y = γu+ φ (2)
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with

a1 = b

J
+ Ra

La

a0 =
L2
af

JLa

(
ief
)2

+ Rab

JLa

γ = Laf
JLa

ief + Laf
JLf

iea (3)

φ =
[
L2
af

JLa

(
ief
)2

+ Rab

JLa

]
ωe −

(
Laf
JLa

ief + Laf
JLf

iea

)
uea

+
[
Laf
J

(
Ra

La
− Rf

Lf

)
iea −

L2
af

JLa
iefω

e

]
ifδ (4)

Notice that, constants a0, a1 and γ depend on the system parameters and desired operation state.
Thus, high operation efficiency levels could require information about some approximated val-
ues of the parameters of the motor subjected to completely unknown load torque disturbances.

In the design of some classical control law, φ could be considered as an completely unknown
disturbance signal depending on the equilibrium operation state specified for the electrome-
chanical system. Moreover, for a constant operation velocity y = ω, if −→ ief and, as a
consequence, φ −→ φe = constant. Therefore, we propose the following PI angular velocity
tracking controller:

u = −kpe− ki
∫ t

0
e dt (5)

where the proportional and integral control gains, kp and ki, should be chosen such as the
characteristic polynomial associated to the closed loop tracking error dynamics, e = ω − ω?,

P (s) = s3 + a1s
2 + (a0 + γkp) s+ γki (6)

is a Hurwitz polynomial. Hence, closed loop system stability can be verified. Notice that, the
control gains should be also selected properly in accordance with the equilibrium operation
point for the motor. Certainly, the on-line knowledge of the system parameters and load torque
allows to tune easily the control gains during the operation of the machine.

The main objective of this paper is to propose an alternative choice for on-line estimation of
all parameters and load torque for a DC Shunt Motor. Thus, in the next section estimators are
synthesized to get estimates of the system parameters algebraically and on-line.

2 On-line Algebraic Parameter Identification

Firstly, consider the dynamics of the electrical subsystem. Multiplication of the first two equa-
tions of model (1) by ∆ = t− ti, and integrating the resulting expressions twice with respect to
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time yields to

Lf

[
∆if −

∫ t

ti
if dt

]
+Rf

∫ t

ti
∆if dt

=
∫ t

ti
∆uf dt

La

[
∆ia −

∫ t

ti
ia dt

]
+Ra

∫ t

ti
∆ia dt+ Laf

∫ t

ti
∆ifω dt

=
∫ t

ti
∆ua dt (7)

where ti > 0 is the start time to perform the parameter identification process.

By integrating up to twice Eqs. (7), we get the following equation systems

Aiθi = Bi, i = f, a (8)

where θf =
[
Lf Rf

]T
and θa =

[
La Ra Laf

]T
are the parameter vectors associated

with the electrical subsystem to be identified on-line. Matrices Ai and Bi are given by

Af =
[
a11,f a12,f
a21,f a22,f

]

Aa =

 a11,a a12,a a13,a
a21,a a22,a a23,a
a31,a a32,a a33,a



Bf =
[
b1,f
b2,f

]

Ba =

 b1,a
b2,a
b3,a



(9)
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with

a11,f = ∆if −
∫ t

ti
if dt

a12,f =
∫ t

ti
∆if dt

a21,f =
∫ t

ti
a11,f dt

a22,f =
∫ t

ti
a12,f dt

b1,f =
∫ t

ti
∆u dt

b2,f =
∫ t

ti
b1,f dt

a11,a = ∆ia −
∫ t

ti
ia dt

a12,a =
∫ t

ti
∆ia dt

a13,a =
∫ t

ti
∆ifω dt

b1,a =
∫ t

ti
∆ua dt

akh,a =
∫ t

ti
ak−1h,a(τ1)dτ1

bk,a =
∫ t

ti
bk−1,a(τ1)dτ1 (10)

with k = 2, 3 and h = 1, 2, 3.

Therefore, from (8) the electrical subsystem parameters can be computed algebraically as

θi = A−1
i Bi (11)

Nevertheless, parameter identifiers (11) could present problems of singularities when detAi =
0. Hence, we propose the following algebraic identifiers to get estimates of the parameters of
the electrical subsystem without singularities ∀ti > 0:

L̂f =
∫ t
ti
|∆1,f | dt∫ t
ti
|∆f | dt

R̂f =
∫ t
ti
|∆2,f | dt∫ t
ti
|∆f | dt

L̂a =
∫ t
ti
|∆1,a| dt∫ t
ti
|∆a| dt

R̂a =
∫ t
ti
|∆2,a| dt∫ t
ti
|∆a| dt

L̂af =
∫ t
ti
|∆3,a| dt∫ t
ti
|∆a| dt

(12)
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Now, consider the dynamics of the mechanical subsystem described by third equation of model
(1). By applying the same procedure explained before, one can get the following estimators for
the mechanical parameters and load torque:

Ĵ = L̂af
σ1

b̂ = σ2

σ1
L̂af

τ̂L = σ3

σ1
L̂af (13)

where σj , j = 1, 2, 3, are given by

σ1 =
∫ t
ti
|∆1,m| dt∫ t
ti
|∆m| dt

σ2 =
∫ t
ti
|∆2,m| dt∫ t
ti
|∆m| dt

σ3 =
∫ t
ti
|∆3,m| dt∫ t
ti
|∆m| dt

(14)

with
θm =

[
σ1 σ2 σ3

]T
= A−1

m Bm (15)

Am =

 a11,m a12,m a13,m
a21,m a22,m a23,m
a31,m a32,m a33,m



Bm =

 b1,m
b2,m
b3,m

 (16)

and

a11,m =
∫ t

ti
∆if ia dt

a12,m = −
∫ t

ti
∆ω dt

a13,m = −
∫ t

ti
∆ dt

b1,m = ∆ω −
∫ t

ti
ω dt

akh,m =
∫ t

ti
ak−1h,m(τ1)dτ1

bk,m =
∫ t

ti
bk−1,m(τ1)dτ1 (17)

with k = 2, 3 and h = 1, 2, 3.
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3 Simulation results

Effectiveness of the proposed parameter estimation scheme was verified by computer simula-
tions. The parameter values of the DC motor are described in Table 1.

Table 1: Parameters of the DC motor.

Ra = 7.5 Ω Laf = 2.2881 H

La = 0.0553 H J = 0.0013 Kg m2

Rf = 469.75 Ω b = 0.001 Nms

Lf = 2.4123 H τL = 0.5 Nm

The reference velocity trajectory ω? planned for the electromechanical system is shown in Fig.
1 and described by

ω?(t) =


0 for 0 ≤ t < Ti

$ (t, Ti, Tf ) ω̄ for Ti ≤ t ≤ Tf
ω̄ for t > Tf

(18)

where ω̄ = 10 rad/s, Ti = 0 s, Tf = 5 s, $ (t, Ti, Tf ) is a Bézier interpolation polynomial, with
$ (Ti, Ti, Tf ) = 0 and $ (Tf , Ti, Tf ) = 1, given by

$(t) =
(
t− Ti
Tf − Ti

)5 [
d1 − d2

(
t− Ti
Tf − Ti

)

+d3

(
t− Ti
Tf − Ti

)2

− ...− d6

(
t− Ti
Tf − Ti

)5


with d1 = 252, d2 = 1050, d3 = 1800, d4 = 1575, d5 = 700, d6 = 126. This profile was
established to efficiently take the motor from a rest state to a low operation velocity of 10 rad/s
in 5 seconds.

t [s]0 5 10 15

ω
�

0

5

10

Figure 1: Reference angular velocity planned for the DC motor.

Fig. 2 depicts the satisfactory closed loop tracking of the desired velocity reference trajectory
(18). A small velocity tracking error is clearly observed. The responses of the control voltage,
current signals and electric powers are shown in Figs. 3 and 4. It can be observed that the
properly controlled motion planning (18) avoids high peaks of the electric signals of voltage,
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currents and powers in presence of load torque from the start. Moreover, it is known widely
that large fluctuations of voltage could cause control saturations and system instability. Thus,
planning motion tracking control represents an excellent choice to reduce these undesirable
issues. PI controller gains were conveniently set as: kp = 100 and ki = 10. Nevertheless, the
controller gains can be easily adjusted on-line for diverse operation states for the electric motor,
including uncertain changes in the system parameters and load mechanical torque.

t [s]0 5 10 15

ω
[r
a
d
/
s]

0

5

10

15

ω�

t [s]0 5 10 15

e
=

ω
−

ω
�

-10

-5

0

2

Figure 2: Closed loop tracking of the reference velocity trajectory.

On the other hand, the efficient performance of the parameter and torque identification scheme
is presented in Figs. 5-7. An effective and fast estimation of the system parameters and load
torque is confirmed. Estimates of all parameters and mechanical torque are quickly obtained
before 1 second. Thus, those estimates can be used to tune the controller gains to improve
the dynamic performance of the closed loop system and guarantee asymptotic stability around
possibly varying-time desired operation states for the electric machine. Moreover, estimators
could be updated continually for possible changes of the parameters and load torque during the
motor operation.
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Figure 3: Closed loop responses of the control voltage and electric current signals.
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Figure 4: Closed loop responses of the electric powers of the armature circuit Pa, field Pf
and total PT = Pa + Pf .
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Figure 5: Algebraic estimation of the resistance parameters.

4 Conclusions

In this paper we have proposed an on-line estimation scheme for parameters and load torque for
DC shunt motors. Connection in parallel of the field and armature windings of the motor results
in a nonlinear system dynamics. The proposed estimation approach is performed algebraically
and on-line. In addition, a PI tracking control law was also described to take the motor from a
rest state toward a desired operation velocity. Controlled motion planning was established by a
Bézier interpolation polynomial. It was shown that the suitable trajectory tracking avoid large
fluctuations of voltage and, as a consequence, in the electric current signals as well. Analytical
and numerical results show the effectiveness of the parameter and torque estimation for tracking
tasks of reference angular velocity trajectories. Therefore, tracking control can be combined
with on-line and algebraic estimation of system parameters and load mechanical torque to get
satisfactory efficiency levels for DC shunt motors.
References
[1] Aimee McKane, Ali Hasanbeigi, Motor systems energy efficiency supply curves: A methodology

for assessing the energy efficiency potential of industrial motor systems, Energy Policy, vol. 39, pp.
6595-6607, 2011.

[2] Aleksei Tepljakov, Emmanuel A. Gonzalez, Eduard Petlenkov, Juri Belikov, C. A. Monje, Ivo Pe-
tras, Incorporation of fractional-order dynamics into an existing PI/PID DC motor control loop, ISA
Transactions, vol. 60, pp. 262-273, 2016.

[3] I. G. A. P. Raka Agung, S. Huda, I. W. Arta Wijaya, Speed control for DC motor with pulse width
modulation (PWM) method using infrared remote control based on ATmega16 Microcontroller,
IEEE International Conference on Smart Green Technology in Electrical and Information Systems,
(ICSGTEIS), pp. 108-112, 2014.

[4] F. Beltran-Carbajal, A. Favela-Contreras, A. Valderrabano-Gonzalez, J. C. Rosas-Caro, Output feed-

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1495



t [s]
0 0.2 0.4 0.6 0.8 1

̂ L
f
[H

]

0

1

2

3 Actual value

t [s]
0 0.2 0.4 0.6 0.8 1

̂ L
a
[H

]

0

0.05

0.1
Actual value

t [s]
0 0.2 0.4 0.6 0.8 1

̂ L
a
f
[H

]

0

1

2

3 Actual value

Figure 6: Algebraic estimation of the inductance parameters.

back control for robust tracking of position trajectories for DC electric motors, Electric Power Sys-
tems Research, vol. 107, pp. 183-189, 2014.

[5] R. Isermann, M. Munchhof, Identification of Dynamic Systems, Springer-Verlag, Berlin (2011).
[6] L. Ljung, Systems Identification: Theory for the User, Prentice-Hall, Upper Saddle River, NJ (1987).
[7] T. Soderstrom, P. Stoica, System Identification, Prentice-Hall, New York, NY (1989).
[8] P. Dhinakaran, D. Manamalli, Novel strategies in the Model-based Optimization and Control of

Permanent Magnet DC motors, Computers & Electrical Engineering, vol. 44, pp. 34-41, 2015.
[9] T. Boileau, N. Leboeuf, B. Nahid-Mobarakeh, F. Meibody-Tabar, Online identification of PMSM

parameters: parameter identifiability and estimator comparative study, IEEE Trans Indust Appl, vol.
47, No. 4, 2011.

[10] A. Rahimi, F. Bavafa, S. Aghababaei, M. Hassan Khooban, S. Vahid Naghavi, The online param-
eter identification of chaotic behaviour in permanent magnet synchronous motor by Self-Adaptive
Learning Bat-inspired algorithm, Electrical Power and Energy Systems, vol. 78, pp. 285-291, 2016.

[11] M. Jirdehi, A Rezaei, Parameters estimation of squirrel-cage induction motors using ANN and

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1496



t [s]
0 0.2 0.4 0.6 0.8 1

J
[K

g
m

2
]

×10-3

0

1

2 Actual value

t [s]
0 0.2 0.4 0.6 0.8 1

̂ b
[N

m
s]

×10-3

0

1

2
Actual value

t [s]
0 0.2 0.4 0.6 0.8 1

τ̂
[N

m
]

0

0.5

1
Actual value

Figure 7: Algebraic estimation of the mechanical subsystem parameters and load torque.

ANFIS, Alexandria Engineering Journal, vol. 55, pp. 357-368, 2016.
[12] M. Fliess and H. Sira-Ramirez, An algebraic framework for linear identification, ESAIM: Control,

Optimization and Calculus of Variations, 9 (2003) 151-168.
[13] F. Beltran-Carbajal, G. Silva-Navarro, Adaptive-like vibration control in mechanical systems with

unknown parameters and signals, Asian Journal of Control 15 (6) (2013), 1613-1526.
[14] F. Beltran-Carbajal, G. Silva-Navarro, M. Arias-Montiel, Active unbalance control of rotor systems

using on-line algebraic identification methods, Asian Journal of Control, 15 (6) (2013), 1627-1637.
[15] F. Beltran-Carbajal, G. Silva-Navarro, L. G. Trujillo-Franco, Evaluation of on-line algebraic modal

parameter identification methods, Proc. of the 32nd IMAC, A conference and Exposition on Struc-
tural Dynamics, Orlando, Florida, USA, February 3-6, 2014, 145-152.

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1497



Novel 6-DoF dexterous parallel manipulator with CRS kinematic chains  
†M.A. Hosseini¹  

1Department of Mechanical Engineering, University of Mazandaran, Babolsar, Iran. 

*Presenting author: ma.hosseini@umz.ac.ir  
†Corresponding author: ma.hosseini@umz.ac.ir 

Abstract 
In this research work, a novel parallel manipulator with 6 degrees of freedom (DoF) and high 
positioning and orienting rate is introduced. Kinematics and Jacobian analysis are investigated. 
Workspace of mechanism considering different rotation capabilities are computed and 
illustrated in Cartesian coordinates. Defining global maximum and minimum singular values 
of homogenized jacobian matrix through the workspace has been utilized in order to synthesis 
positioning and orienting rates capability of mechanism. Thus, improving high rates of 
displacement is achieved by elimination of moving elements and changing kinematic chains 
compared with general stewart-gough mechanism, which makes it suitable in pick and place 
or motion stabilizer devices and high speed machining applications with lower payload. 

Keywords: Kinematics, Workspace, 6-CRS, Parallel robot.  

Introduction 

Potential superior properties of parallel manipulators such as low inertia, high stiffness, high 
precision and high load carrying capacity [1]-[2] of parallel manipulators lead to extensive 
attention over the last three decades of them. Performance indices such as manipulability, 
condition number, conditioning and dexterity are useful for comparison studies of different 
robot structures. Manipulability at first was introduced by Yoshikawa [3] as the square root of 
the determinant of the product of the manipulator Jacobian by its transpose. 

 
The Jacobian matrix maps a unit ball in the joint space into a rotated or reflected ellipsoid in 

the Cartesian space. The geometric interpretation of the mapping is proportional to the volume 
of the ellipsoid or the manipulability [3]. Moreover, the volume is equal to the products of the 
singular values of the Jacobian [3]. Salisbury and Craig [4] introduced the ratio between the 
maximum and minimum singular values as the condition number. The inverse of the Euclidean 
condition number is defined as conditioning index which varies from 0 to 1. if the entries of 
the Jacobian have different units for the manipulators with both positioning and orientation 
tasks, which is the case here, one faces a problem of ordering singular values of different units 
from largest to smallest. Ranjbaran and Angeles [5] introduced carachteristic length to resolve 
this issue. Gosselin [6] introduced a method for formulating dimensionally homogeneous 
Jacobian matrix for a planar mechanism with one rotational and two translational degreeof- 
freedom (dof). Kim and Ryu [7] furthered this work by using the velocities of three points on 
the endeffector platform to develop a dimensionally homogeneous Jacobian matrix. Pond and 
Corretero [8] furthered this method again by using three independent coordinates of three 
points on an end-effector platform. Moreover, Angeles [9] introduced engineering 
characteristic length for a rigid body transformation matrix to make it homogeneous. Finally, 
Hosseini et. al. [10]-[11], introduced a weighting factor method to make it homogeneous. 

 
Here a novel mechanism with high positioning and orienting rate is introduced. Its 

kinematic is studied and its Jacobian matrices are derived from these equations. Because of 
complexity of DoF, Jacobian matrix is homogenized by using weighted factor method [10]. 
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Moreover, kinematic indices for a trajectory have been investigated and compared with the 
similar size of stewart-gough mechanism, as a case study. Although decreasing the moving 
elements leads to better dynamic performances, this investigation could demonstrate kinematic 
indices improvement due to structural transformation at all. 

 

I. 6-CRS Parallel Manipulator 
As depicted in Fig. 1, 6-CRS parallel manipulator consists of two platforms connecting to 

each other by six identical active C-R-S (Cylindrical-Revolute-Spherical) legs. The active legs 
consist of a fixed length link connected to the mobile platform by a passive spherical joint. On 
the other extremity of the leg there is an actuated prismatic joint followed by a passive revolute 
joint. 

 

 
Figure 1. CAD model of 6-CRS parallel manipulator 

II. Kinematic Analysis 
Geometrical model of the mechanism is illustrated in Fig. 2. Two moving and global frames 

({P (uvw)} and {O (xyz)}) are attached to the moving and base platforms, respectively. 
The kinematic close loop equation can be written as follow for each leg: 
 
                      lai bi i qi lia b q+ = + +x Rn n n n  .                                                     (1) 
 
where x is the vectors from O to P, i.e. the end effector position vector. Moreover, R is 

rotation matrix carrying frame {P} into an orientation coincident with that of frame {O}; nai is 
the ith spherical joint position unit vector in the moving frame. Similarly, nbi, nqi and nli are the 
unit vectors from O to Bi, Bi to Qi and Qi to Ai, respectively; while a and b are the radius of the 
moving and base platform that joints are posed on. Furthermore, the moving part of the limbs 
length is l. 
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Figure 2. Geometrical Model of 6-CRS 

 
A. Inverse Kinematic 

In the Inverse kinematic problem the pose of the end-effector (EE) is given and the joint 
variables that produce this pose are to be found. Considering the ith leg as depicted in Fig. 3; it 
is obvious that Qi is on the surface of a sphere with the centre Ai and radius of l. Then the 
intersection of this sphere with the slant base concludes the inverse kinematic problem roots. 

The position vector of Ai can be defined by the following equation. 
 
                                      i aia= +a x Rn .                                                         (2) 
 
Considering spherical and universal joints position vector as ai=[xai yai zai]T and bi=[xbi ybi 

0]T the parametric equation of GBi can be written as follow, in which the intersection of all 
slant bases is illustrated by G. 

 
; ;bi i bi bi i bi ix x t x y y t y z ht= − + = − + =                                       (3) 

 
where h is the height of G point. 
 

Substituting the above equations in the parametric equation of sphere as the following: 
 

2 2 2 2( ) ( ) ( ) 0ai ai aix x y y z z l− + − + − − =                                     (4) 
 

Leads to the following equation 
 
                          2 2 0i i i i im t n t p− + =                                                   (5) 
 
In which coefficients are given as: 
 
                      2 2 2( )i bi bim x y h= + +                                                    (6) 
 

            2 2( )i bi bi bi ai bi ai ain x y x x y y hz= + − − +                                         (7) 
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2 2 2 2

2 2

( 2

2 l )
i bi bi bi ai bi ai

bi ai ai

p x x x x y y

y y z

= + − + + −

+ −
                                       (8) 

 
Solving Eq. (5) for ti and substituting the values of Eq. (3) led to the inverse kinematic 

problem solution. This approach could help to avoiding impossible roots such as Ri2 in Fig 3. 
Thus, only the roots are acceptable in which associated ti lie in desired interval satisfied by the 
linear actuator stroke. 

 

 
Figure 3. Schematic configuration of 6-CRS kinematic 

 
The following cases may occur: 
Case 1) The slant guide way does not intersect the associated sphere. Thus there is no 

solution for IKP (Inverse Kinematic Problem), i.e., the assumed position would be out of reach 
by the EE(End Efector). 

 
Case 2) The slant guide way intersects with the associated sphere at one point. Therefore, 

IKP leads to only one solution for the corresponding leg. 
 
Case 3) The slant guide way intersects with the associated sphere at two points. Therefore, 

IKP leads to two solutions for the corresponding leg, as depicted in Fig 3, by Ri1 and Ri2. 
 
Therefore, the IKP might leads to 26 solutions (with considering dual roots) or no solution 

at all. 
 

III. Jacobian Matrix and Velocity Analysis 
The first time derivative of Eq. (1) leads to: 
 

lp ai i qi l lia q+ × = + ×x ω Rn n ω n                                          (9) 
 

In which ωl and ωp are the angular velocities of the fixed length link and the moving 
platform, respectively. Inner product of the both sides of Eq.9 by nli, upon simplifications leads 
to: 

 
T T T

li p ai li qi lia q+ × =xn ω Rn n n n                                          (10) 
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Equation (10) can be rewritten as bellow 
 
                    ( )T T

li li ai p li qia q+ × =n x n Rn ω n n                                          (11) 
 
Writing the foregoing equation for the three legs yields to: 
 
                      =Ax Bq                                                                   (12) 
 
In which x  and q are EE twist array and joint space velocity vector, respectively. Moreover, 

A and B are two Jacobian matrices which are given as: 
 
                            [ ]

6 6li li aia
×

= ×A n n Rn                                                       (13) 
 

                     
1 1

6 6

0 0

0 0

T

l q

T

l q

=

 
 
 
  

n n

B

n n

 6                                                      (14) 

 
The Jacobian matrix can be determined by Eq. 15. 
 
                                         1−=J B A                                                                (15) 

IV. Singularity Analysis 
Generally, singularity occurs whenever the manipulator loses some DoF or gains some 

uncontrollable DoF. In parallel manipulators singularities occur whenever A, B or both 
become singular. Thus, for the manipulator at hand a distinction can be made among three 
types of singularities, which have different kinematic interpretations. 

For the 6-CRS parallel manipulator, singularity occurs in four cases, namely; 
 
Case 1) First type of singularity or Inverse Singularity; in this case B is invertible and A is 

singular, i.e. when 
 
                           det( B) = 0&det( A)≠0                                                        (16) 
 
The physical condition happens when one of the fixed length link is perpendicular to the 

direction of the associated linear guide way. 
 
Case 2) Second type of singularity or Direct Singularity; arises when B is singular and A is 

invertible, i.e. when 
 
                           det( B) ≠ 0&det( A) = 0                                                      (17) 
 
This case occurs when the z coordinates of the fixed-length links vector is equal to zero. In 

this condition all three legs lie in the plane of the moving platform which is parallel to the base 
one, as well. Hence, by increasing or decreasing the actuator length, there are two options for 
Ai to locate, as depicted in Fig. 4, by 1 and 2. 
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Case 3) Third type of singularity; this type of singularity arises even if both B and A are 
simultaneously singular. Under a singularity of this type the manipulator can undergo finite 
motions even if the actuators are locked. As well, a finite motion of actuators produces no 
motion for EE in some directions. 

 
Case 4) Constraint singularity; this case will occur when the moving platform rotates 90 

degrees around x or y axis. In this case the platform will lose one rotational dof. Zalatanov et. 
al. [12] illustrated some constraint singularities, as well. 

 

 
Figure 4. Schematic for direct singularity 

 

V. Workspace and Optimization 
Applying the inverse kinematic equations and a search algorithm in different height leads to 

the bound of reachable workspace [13]. This operation will be continuing as the geometric 
constraints are satisfied, subject to Table 1. 
 

Table 1. Geometrical constraint for mechanism 
 

Actuator 
(mm) 

l (mm) λ 
(deg) 

b (mm) a (mm) 

0-600 100-
300 

10-80 300-
500 

100-300 

 
As a case study, the Cartesian workspace of the structure according to Table 2, with the 

foregoing constraints is depicted in Fig. 5 in which the workspaces are depicted considering 
different rotation capabilities around three axes. Moreover, sub workspaces include bounded 
local conditioning indices into a minimum allowable of 0.0003 are depicted in Fig. 6 which 
singularity avoidance is performed. 
 

Table 2. The case study design parameters 
 

l 
(mm) 

λ 
(deg) 

b 
(mm) 

a 
(mm) 

300 30 300 100 
 

ICCM2016, 1-4 August, 2016, Berkeley, CA, USA

1503



Considering 100 (mm) weight factor for homogenized jacobian matrix, for the workspace 
with 20 degree rotation capability, the performance indices such as global conditioning index 
(GCI), average minimum and maximum singular values are depicted in Table 3. 
 

Table 3. The case study performance indices 
 

V(mm3) GCI maxσ  minσ  
6.51e+6 0.9895 1.5016e+4 2.5899 

 
Global conditioning index (GCI) [6], are defined as following equations. 

 

 
a. 0 deg Rotation Capability Cartesian Workspace 

 

 
b. 5 deg Rotation Capability Cartesian Workspace 
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b. 10 deg Rotation Capability Cartesian Workspace 

 
Figure 5. The case study workspaces with different rotation capabilities 

 
                 
 

 
d. Subworkspace with 0 deg Rotatioon Capability with 

minimum 0.0003 LCI 

 
e. Subworkspace with 5 deg Rotatioon Capability with 

minimum 0.0003 LCI 
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f. Subworkspace with 10 deg Rotatioon Capability with 

minimum 0.0003 LCI 
           

Figure 6. Sub workspaces with different rotation capabilities 
 
 

     
dv

GCI
dv

κ
= ∫
∫

                                                              (18) 

 
In which local conditioning index (κ) for the workspace element is determined by the 

respective of minimum and maximum singular values of homogenized jacobian matrix using 
weighted factor method. 

 

                                 min

max

σ
κ

σ
=                                                                 (19) 

 
Respectively, the average maximum singular value and average minimum singular value 

indices as the performances indices for positioning and orienting rates are defined as follow. 
 

                          max

max

dv

dv

σ
σ = ∫

∫
                                                           (20) 

 
And 

 

                                                          min

min

dv

dv

σ
σ = ∫

∫
                                                               (21) 

 
Lower value of maxσ led to higher end-effector positioning and orienting resolution and 

higher value of minσ  led to higher positioning and orienting rates [6]. 
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Conclusions 

In this research work a novel parallel manipulator with 6-CRS kinematic chains is 
introduced. The mechanism has 6 degrees of freedom. Inverse kinematic equations with a 
geometrical approach have been solved and used to workspace evaluation. Proposed 
parametric solution method leads to avoidance of actuators to locate into other inverse 
kinematic solutions sets. Jacobian matrix is derived by taking the first time derivation respect 
to time. Jacobian entries inhomogeneity has resolved by weighted factor approach equal with 
moving platform radius. Considering minimum desired rotation angles workspaces estimated 
in Cartesian workspaces. Bounding minimum local conditioning indices to the minimum 
allowable value led to sub workspaces with different rotation capabilities. Finally for the case 
study structure, some global indices are calculated in order to have performance indices for 
comparison between other same-dof parallel manipulator.  
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Abstract 

For any given geometry of blade-type structure with desired outer-surface shape that may be 
determined by a CFD software for desired performance for thermal and fluid flows, a three-
dimensional solid of the blade is converted into a CAD file. An optimization process is then 
designed to produce optimal interior structure of the blade that follows the proposed step-by-
step procedure, considering both the pressure on the outer surface and centrifugal forces 
produced by the rotational movements of the blade. The optimized blade will be hollow with 
minimum materials needed to take the pressure loading on the outer skin of the blade and the 
centrifugal force.  3D printers were used to produce the optimized blades.  
 

Keywords: Optimization procedure, FEM, engine blade, topology optimization, hollow blade, 

centrifugal force 

Optimization procedure 

The proposed optimization process to produce optimal interior structure of the blade follows 

the following step-by-step procedure.   

Step 1: Read in the CAD file of the solid blade into a finite element method (FEM) software 

package with standard meshing and topology design capability (such as ABAQUS® 

that is commercially available). A typical blade generated in this step is shown in 

Figure 1. 

Step 2: Designate a non-design space for the blade, which is a very thin skin of the surface of 

the solid blade. The blade tip may not have a skin, if so desired.  

Step 3: Designate the interior part (solid blade excluded the thin skin) as the design space for 

the topology optimization. 

Step 4: Create FEM elements for both the non-design and design spaces of the blade solid 

(see, Figure 2) 

Step 5: Assign material properties to all FEM elements for this blade.  

Step 6: Specify the boundary conditions on the blade base.  

Step 7: Apply loads on the blade surface, including the pressure from the CFD solution when 

determining the outer surface of the blade. 
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Figure 1  Geometry of a typical solid blade with outer surface determined by a CFD solver for 

desired performance for thermal and fluid flows under cruise conditions.   

 

 

 

 
 

Figure 2  A typical finite element mesh for the solid blade. Left: fine mesh 

with dense tetrahedral elements; right: a zoomed in view 
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Step 8: Apply centrifugal loading for any given rotation of speed that the blade experiences at 

a steady state operational cruise condition.  

Step 9: Set topology constraints, including limiting the stress below the material yield stress 

with a proper safety factor, frequency constraints, and life cycle constraints.  

Step 10: Set topology optimization goal, such as aiming to create the stiffest possible 

structure.  

Step 11: Run optimization using the standard FEM package to generate the optimized 

topological structure that is partially hollow, and satisfy all the design condition 

imposed.  Figure 3 shows such a topologically optimized hollow blade 

 

 

 
Figure 3  Topologically optimized hollow blade. The non-design space of the 

thin skin remains to achieve the desired performance of the blade considering thermal 

and fluid flow conditions. The design space of the interior solids is partially removed 

with materials only on the front and back surfaces of the blade near the base.  
 

Step 12:  Produce the topologically optimized blade using 3D printers.  
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Figure 3  Topologically optimized hollow blade printed using 3D printer. 

Conclusions 

A topology optimization procedure has been developed using a commercially available FEM 

software package such ABAQUS® or any other FEM codes. For one particular example of an 

engine blade, the outcome of the weight reduction was 60-65%, and the max stress reduced by 

as much as 70%.  The blade design was printed using 3D printers, and proven practical for 

topology optimal design for rotating structures for optimal performance with minimum 

weight.  
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