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SUMMARY: Satellite Attitude Control System (SACS) pointing accuracy is dependent of its actuator and 
sensor performance and robustness, where the first design requirement can be associated with bandwidth while 
the second is related to the ability of SACS to keep performance in face of system parameters variation. One 
way to gain attitude control algorithms confidence is through the conjunction of computational methods and 
experimental design, which allows hardware and software interface test, besides decreasing the SACS design 
cost. As for maneuver pointing accuracy the reaction wheel (RW) is a key actuator, because its disturbance can 
influence the accuracy and stability of SACS. This paper studies how the dynamics and the control algorithm 
strategy of the reaction wheels with its respective DC motor can influence the performance and robustness of the 
SACS control in three axes. To do this one develops a 3D satellite simulator nonlinear model based on the State-
Dependent Riccati Equation (SDRE) method taking into account the RW parameters.  One compares the 
performance and robustness of the SACS where the RW is commanded by the SDRE control law with algorithm 
based on current and speed feedback compensation. Simulations of the computational methods developed have 
shown that the RW with speed feedback compensation has improved the SACS performance and robustness.  
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1.  INTRODUCTION 
 
The design of a SACS, that involves plant uncertainties and large angle maneuvers followed by stringent 
pointing control, may require new nonlinear attitude control techniques in order to have adequate stability, good 
performance and robustness. Experimental SACS design using nonlinear control techniques through prototypes 
is one way to increase confidence in the control algorithm. Experimental design has the important advantage of 
representing the satellite dynamics in a laboratory setting, from which it is possible to accomplish different 
simulations to evaluate the SACS [1]. However, the drawback of experimental testing is the difficulty of 
reproducing zero gravity and torque free space conditions. A Multi-objective approach [2] has been used to 
design a satellite controller with real codification. An investigated through experimental procedure has been 
used by Conti and Souza in [3] for simulator inertia parameters identification. An algorithm based on the least 
squares method to identify mass parameters of a rotating space vehicle during attitude maneuvers has been 
developed by Lee and Wertz in [4]. The H-infinity control technique was used in [5] to design robust control 
laws for a satellite composed of rigid and flexible panels. In the SDRE method, the nonlinear dynamics are 
brought to a time-invariant, linear-like structure containing state-dependent coefficients. Infinite-horizon LQR is 
then applied to the linear-like structure with the coefficient matrices being evaluated at the current operational 
point in the state space. The process is repeated in the next sampling periods therefore producing and controlling 
several state dependent linear models out of a non-linear one. The SDRE method was applied in [6] for 
controlling a nonlinear rotatory flexible beam system with two-degrees of freedom. However, it did not 
incorporate the SDRE filter (Kalman filter ) as a state observer for the SDRE method, so that uncertainties could 
be accounted for in the filtering process. This paper studies how the dynamics and the control algorithm strategy 
of the reaction wheels with its respective DC motor can influence the performance and robustness of the SACS 
control in three axes. To do this one develops a 3D satellite simulator nonlinear model based on the State-
Dependent Riccati Equation (SDRE) method taking into account the RW largest possible number of variables.  
One compares the performance and robustness of the SACS where the RW is commanded by the SDRE control 
law with algorithm based on current and speed feedback compensation. Simulations results have shown that the 
RW with speed feedback compensation has improved the SACS performance and robustness.  As a result, the 



simulations has shown the computational feasibility for real time implementation of the SDRE control method 
based on speed feedback algorithm in satellite´s onboard computer.  
 
2.  SDRE CONTROL METHODOLOGY 
 
The Linear Quadratic Regulation (LQR) approach is well known and its theory has been extended for the 
synthesis of nonlinear control laws for nonlinear systems [7]. This is the case for satellite dynamics that are 
inherently nonlinear. A number of methodologies exist for the control design and synthesis of these highly 
nonlinear systems; these techniques include a large number of linear design methodologies such as Jacobean 
linearization and feedback linearization used in conjunction with gain scheduling [8]. Nonlinear design 
techniques have also been proposed including dynamic inversion and sliding mode control, recursive back 
stepping and adaptive control [9].   
Compared to multi-objective optimization nonlinear control methods the SDRE method has the advantage of 
avoiding intensive interaction calculations, resulting in simpler control algorithms that are more appropriate for 
implementation on a satellite´s onboard computer.  
The Nonlinear Regulator problem for a system represented in the State-Dependent Riccati Equation form with 
infinite horizon, can be formulated by minimizing the cost functional given by  
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with the state 𝑥𝑥 ∈ ℜ𝑛𝑛 and control  𝑢𝑢 ∈ ℜ𝑚𝑚 subject to the nonlinear system constraints given by 
 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥) +  𝐵𝐵(𝑥𝑥)𝑢𝑢 
  𝑦𝑦 = 𝐶𝐶(𝑥𝑥)𝑥𝑥                                                                                              (2) 
𝑥𝑥(0) = 𝑥𝑥0                    

 
where 𝐵𝐵 ∈ ℜ𝑛𝑛𝑛𝑛𝑚𝑚 and C are the system input and the output matrices, and 𝑦𝑦 ∈ ℜ𝑠𝑠 (ℜ𝑠𝑠 is the dimension of the 
output vector of the system). The vector initial conditions is x(0), 𝑄𝑄(𝑥𝑥) ∈ ℜ𝑛𝑛𝑛𝑛𝑛𝑛 and  𝑅𝑅(𝑥𝑥) ∈ ℜ𝑚𝑚𝑛𝑛𝑚𝑚  are the 
weight matrix semi defined positive and  defined positive. 
Applying a direct parameterization to transform the nonlinear system into State Dependent Coefficients (SDC) 
representation, the dynamic equations of the system with control can be write in the form 

 
�̇�𝑥 = 𝐴𝐴(𝑥𝑥)𝑥𝑥 +  𝐵𝐵(𝑥𝑥)𝑢𝑢                                                                                    (3) 

 
with  𝑓𝑓(𝑥𝑥) = 𝐴𝐴(𝑥𝑥)𝑥𝑥  , where 𝐴𝐴 ∈ ℜ𝑛𝑛𝑛𝑛𝑛𝑛 is the state matrix. By and large 𝐴𝐴(𝑥𝑥) is not unique. In fact there are an 
infinite number of parameterizations for SDC representation. This is true provided there are at least two 
parameterizations for all 0 ≤ α ≤ 1 satisfying 
 

𝛼𝛼𝐴𝐴1(𝑥𝑥)𝑥𝑥 + (1 − 𝛼𝛼)𝐴𝐴2(𝑥𝑥)𝑥𝑥 = 𝛼𝛼𝑓𝑓(𝑥𝑥) +  (1 − 𝛼𝛼)𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)                                   (4) 
 
The choice of parameterizations to be made must be appropriate in accordance with the control system of 
interest. An important factor for this choice is not violating the controllability of the system, i.e., the matrix 
controllability state dependent [𝐵𝐵(𝑥𝑥) + 𝐴𝐴(𝑥𝑥)𝐵𝐵(𝑥𝑥) … 𝐴𝐴𝑛𝑛−1(𝑥𝑥)𝐵𝐵(𝑥𝑥)] must be full rank.  
The state-dependent algebraic Riccati equation (SDARE) can be obtained applying the conditions for optimality 
of the variational calculus. As a result, the Hamiltonian for the optimal control problem given by Equations (1) 
and (2) is given by  

          𝐻𝐻(𝑥𝑥,𝑢𝑢, 𝜆𝜆) =  
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(𝑥𝑥𝑇𝑇𝑄𝑄(𝑥𝑥)𝑥𝑥 + 𝑢𝑢𝑇𝑇𝑅𝑅(𝑥𝑥)𝑢𝑢 ) + 𝜆𝜆𝑇𝑇(𝐴𝐴(𝑥𝑥)𝑥𝑥 + 𝐵𝐵(𝑥𝑥)𝑢𝑢)                                (5) 
  
where  𝜆𝜆 ∈ ℜ𝑛𝑛 is the Lagrange multiplier.  
Applying to the Eq.(5) the necessary conditions for the optimal control given by  �̇�𝑥 =  𝜕𝜕𝑯𝑯
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 �̇�𝑥 = 𝐴𝐴(𝑥𝑥)𝑥𝑥 +  𝐵𝐵(𝑥𝑥)𝑢𝑢                                                                                                   (7)        

                                        



   0 = 𝑅𝑅(𝑥𝑥)𝑢𝑢 +  𝐵𝐵(𝑥𝑥)𝜆𝜆                                                                                                   (8) 
 
Assuming the co-state in the form λ=P(x)x, which is dependent of the state, from Eq.(8) one obtains  the 
feedback control law 
 

𝑢𝑢 =  −𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥)𝑥𝑥                                                                                       (9) 
 
Substituting this result into Eq. (7) one gets  

                                                           
  �̇�𝑥 = 𝐴𝐴(𝑥𝑥)𝑥𝑥 − 𝐵𝐵(𝑥𝑥)𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥)𝑥𝑥                                                               (10) 

 
To find the function P (x) one differentiates λ = P (x) with respect the time along the path from which one gets  
 

�̇�𝜆 = �̇�𝑃(𝑥𝑥)𝑥𝑥 + 𝑃𝑃(𝑥𝑥)�̇�𝑥 = �̇�𝑃(𝑥𝑥)𝑥𝑥 + 𝑃𝑃(𝑥𝑥)𝐴𝐴(𝑥𝑥)𝑥𝑥 − 𝑃𝑃(𝑥𝑥)𝐵𝐵(𝑥𝑥)𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥)𝑥𝑥                             (11) 
 
Substituting Eq.(11)  in the first necessary condition of optimal control (Eq.6) one obtains 
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     Arranging the terms more appropriately one has 
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+ [ 𝑃𝑃(𝑥𝑥)𝐴𝐴(𝑥𝑥) +  𝐴𝐴𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥) − 𝑃𝑃(𝑥𝑥)𝐵𝐵(𝑥𝑥)𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥) + 𝑄𝑄(𝑥𝑥)]𝑥𝑥                                                
=    0                                                                                                                                                                                            (13) 
 
In order to satisfy the equality of Eq.(13) one obtains two important relations. The first one is state-dependent 
algebraic Riccati equation (SDARE) which solution is P(x) given by  
 

𝑃𝑃(𝑥𝑥)𝐴𝐴(𝑥𝑥) + 𝐴𝐴𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥) − 𝑃𝑃(𝑥𝑥)𝐵𝐵(𝑥𝑥)𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥) + 𝑄𝑄(𝑥𝑥) = 0                                          (14)    
 
The second one is the necessary condition of optimality which must be satisfied and it is given by 
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= 0                                                                                                                                                                                               (15)  
 
For the infinite time problem and considering the standard Linear Quadratic Regulator (LQR) problem, this is a 
condition that satisfies the optimality of the solution suboptimal control. 
Finally, the nonlinear control law fed back by the states has the following form 
 

𝑢𝑢 =  −𝑆𝑆(𝑥𝑥)𝑥𝑥 ,   𝑤𝑤𝑤𝑤𝑑𝑑ℎ   𝑆𝑆(𝑥𝑥) = 𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥)                                                           (16) 
 
       For some special cases, such as systems with little dependence on the state or with few state variables, Eq. 
(14) can be solved analytically. On the other hand, for more complex systems the numerical solution can be 
obtained using an adequate sampling rate.  It is assumed that the parameterization of the coefficients dependent 
on the state is chosen so that the pair (A(x), B(x)) and (C(x) , A(x)) are in the linear sense for all x belonging to the 
neighborhood about the origin, point to point, stabilizable and detectable, respectively. Similar to the LQR 
method the SDRE nonlinear regulator need that all states are available to be feedback, otherwise one has to use 
the Kalman filter to estimates the data that is not measurable.  
 
3.  SIMULATOR MODEL 
 
Figure 1 shows the INPE 3-D simulator which has a disk-shaped platform, supported on a plane with a spherical 
air bearing. Considering that the INPE 3-D simulator is not complete build, one assumes that there are three 



reaction wheel configuration set capable to perform maneuver around the three axes and that there are three 
angular velocities sensor, like gyros. Apart from the difficulty of reproducing zero gravity and torque free 
condition, modeling a 3-D simulator, basically, follows the same step of modeling a rigid satellite with rotation 
in three axes free in space.  

 

 
Figure 1- INPE 3-D simulator three reaction wheels. 

 
The orientation of the platform is given by the body reference system Fb with respect to inertial reference system 
FI considering the principal axes of inertia and using the Euler angles (θ1, θ2, θ3) in the sequence 3-2-1, to 
guarantee that there is no singularity in the simulator attitude rotation.  The equations of motions are obtained 
using Euler´s angular moment theorem given by 
 

h g=
 

                                                                                                (17) 
where g  and h


are the torque and the angular moment of the system, which is given by 

 

( )wh I Iw w= + Ω+
  

                                                                                (18) 

where I = diag (I11, I22, I33) is the system matrix inertia moment, w


 is the angular velocity of  the platform,  wI


= diag (Iw1, Iw2, Iw3)  is the reaction wheel matrix inertia moment and Ω = (Ω1, Ω2, Ω3)  are the reaction wheel 
angular velocity.  
Differentiating Eq. (18) and considering that the angular velocity of bF  is w


 and that the external torque is 

equal to zero, one has 

0xh hw+ =
                                                                                          (19) 

 
Substituting Eq.(18) into Eq.(19), the acceleration of the system is  
                                          

( ) ( )1 x x
w w w wI I I I I Iw w w w−  = + − + − Ω− Ω  

     

                                                  (20) 

The simulator attitude as function of the angular velocity is 

 

1 3 2 3 2 1

2 3 3 2

3 3 2 2 3 2 2 3

0 sin / cos cos / cos
0 cos sin
1 sin sin / cos cos sin / cos

θ θ θ θ θ w
θ θ θ w
θ θ θ θ θ θ θ w

    
    = −    

       







                                                (21) 

 
Here one simulates the angular maneuver which represents the fine pointing mode control where the reaction 
wheel is the best actuator, so the state’s x are  (𝜃𝜃1  𝜃𝜃2  𝜃𝜃3  𝜔𝜔1  𝜔𝜔2 𝜔𝜔3)𝑇𝑇 and the control are due to the reaction wheel 
velocities (Ω̇1  Ω̇2  Ω̇3)T One knows that the reaction wheel generates internal torques and the attitude control is 
performed by exchange of angular moment between the reaction wheel and the satellite. From the union of the 
Equations (20) and (21) one obtains the matrices A(x), B(x) and C(x) in state space form, which represents the 
satellite simulator nonlinear plant (yellow block) as showed in Figure 5. It should be stressed, that a great 
advantage of the SDRE method is that it is not necessary to linearize the system. The SDRE method can deal 
with the nonlinearities of the system, which here come from the product of the angular velocities of the platform 



and reaction wheel (Eq.(20)) and with the trigonometric function of Eq.(21) associated with the angular position 
that represent the attitude of the system.  
 
 
4. REACTION WHEEL DYNAMICS 
 
In the sequel one derives the reaction wheel dynamics which is triggered by a DC motor as show in Figure 2. 
For simplicity, here one ignores the losses due to the transformation of electrical energy into mechanical. 
Therefore, the electrical power is equal to the mechanical power given by  
 

)()()()( twtTtitV =                                                                                        (22) 

)()()()( te
dt

tdiLtRitV ++=                                                                           (23) 

dt
tdwjtBwtT )()()( +=                                                                                (24) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2- DC Motor dynamics representation. 

 
Where R is the electrical resistance of the motor, L is the inductance of the motor, B is the viscous friction of the 
motor, J is the moment of inertia of the reaction wheel, w is the angular velocity of the wheel, i is the electric 
current of the motor, V is the electrical voltage at the motor terminals and e is the voltage generated due to 
movement of the motor rotor within a magnetic flux. 
For a permanent magnet motor, the following relationship given below is valid 
 

)()( twKte e=                                                                        (25) 
 
where  Ke  is associated with the motor tension. One also knows that in an engine of this type the relationship 
between torque and current is given by 

)()( tiKtT t=                                                                                         (26) 
 
where Kt is a constant associated with the motor torque. Substituting Eq. (25) into Eq. (23) one has 
 

)()()()( twk
dt

tdiLtRitV e++=                                                                  (27) 

 
Substituting Equation (26) into Equation (24) one has 
 

dt
tdwjtBwtiKt
)()()( +=                                                                     (28) 

Arranging the Equations (27) and (28) with the first order terms in the left hand side and the zero order terms in 
the right  hand one has  

 

N 

S 

R 

L e V 

i 

J 

w 
B 



                wKRiV
dt
diL e−−=                                                                 (29)                 

BwiK
dt
dwj t −=                                                                (30) 

 
Putting Equations (29) and (30) in the Matlab/Simulink form, one has the block diagram given by Figures 3 and 
4, respectively.  

         
 

Figure 3 - block diagram of Eq. (29)                                                Figure 4 - block diagram of Eq. (30) 
 
Joining the two block diagrams of the Figures 3 and 4 above, one gets the complete block diagram of the entire 
reaction wheel (blue bock)  as showed in Figure 5. 
 
5. SIMULATIONS RESULTS 
 
Now one has the Simulink/Matlab  model for the Satellite Simulator with Nonlinear Plant (yellow block), the 
control system using the SDRE Controller (green block) and the reaction wheel dynamics with velocity or 
current feedback (blue block), so grouping them one gets the Complete Simulator System , showed in Figure 5. 
In such system one has as input the reference angles to where the SDRE controller must maneuver the satellite 
and as output the angles and the angular velocity of the satellite. For simplicity the external torque is zero. 
 

 
 

Figure 5 – Entire Simulator with plant of the satellite, SDRE Controller and the Reaction Wheel dynamics. 
 
The satellite simulator model is inertia moment depend, so here one uses I11 = I22=1185.0; I33=1136.0 and for the 
DC motors parameters R = 7,3 , L = 2,5 , B = 0,00494, J = 2.0, Kt = 0,05, Ke = 0,05. The SDRE controller must 
maneuver the satellite from initial angles zeroes to final angles are Theta1 = 10°, Theta2 = 5°, Theta3 = - 5°.  
The control system has used three different reaction wheel configurations. In the first one the reaction wheel has 
no feedback, in the second and thirty configurations one employs velocity feedback and current feedback, as 
showed in Figure 6, in order to evaluate the reaction wheel performance for the three cases. 

 



                
Figure 6 – reaction wheel block diagram with velocity and current feedback  

 

The first simulation is the design of the SDRE controller where the reaction wheel loop has no feedback. The 
SDRE controller gain S(x) depend on matrices of the simulator model A(x), B(x) and C(x), see  [16] for details, 
and  of  the tuning matrices Q  and R  which one assumes the values Q  = diag( 1, 1, 1,100, 100, 100) and R  
(0.001, 0.001,0.011). Once one has design the SDRE controller the next step is to design the reaction wheel 
control loop which can have velocity or current feedback. After some try and error one get the gain K = 50 to 
feedback with velocity or current the reaction wheel. The performance of the entire SACS for the previously 
angular maneuver is showed in Figures 7, 8 and 9 for each axis angles Theta1, 2 and 3, without feedback and 
with feedback of velocity and current, respectively 

.  
   Figure 7 – Attitude angle Theta 1            Figure 8 – Attitude angle Theta 2                 Figure 9 – Attitude angle Theta 3             
 

In order to investigate the reaction wheel performance one increases its gain to K= 250 and perform the same 
previously angular maneuver. Figures 10, 11 and 12 show the SACS action for each angle Theta1, 2 and 3, 
without feedback and with feedback of velocity and current, respectively 

 

     Figure 10 – Attitude angle Theta 1              Figure 11 – Attitude angle Theta 2           Figure 12 – Attitude angle Theta 3             

As one observes the SACS performance has been improved when the reaction wheel gain increases, so one 
increases it a bit more to K= 500 and one performs the same angular  maneuver. Figures 13, 14 and 15 show that 
the SACS performance to control the angles  Theta1, 2 and 3 has been deteriorated both with velocity and 
current feedback. 



 

     Figure 13 – Attitude angle Theta 1            Figure 14 – Attitude angle Theta 2          Figure 15 – Attitude angle Theta 3             

 
4.  CONCLUSIONS  
 
From the first simulation one observes that the SACS with reaction wheel loop using the gain K=50 has better 
performance than the SACS with reaction wheel without both velocity or current feedback, since there is an 
improvement in the level of the overshoot and the maneuver has been done faster, although one observes that 
there is a stead state error when using the current feedback.  So one can conclude that increasing the reaction 
wheel gain the velocity feedback has better performance that current feedback.  In order to investigate this and 
to improve the maneuver one has increase the reaction wheel loop gain to K = 250, in that case one notices that 
stead state error introduced by the current feedback increase, although the overshoot has decreased. As a result, 
one could conclude that increasing the reaction wheel gain the SACS performance using the velocity feedback 
in the reaction wheel loop could be better than current. But this is not true since when one increase a bit more 
the gain to K = 500, the maneuver using the reaction wheel with velocity feedback has been performed in more 
time than the maneuver using   K= 250. This just shows that there exists a limit value for the reaction wheel gain 
which possible is around 250. Besides, it is important to say that the reaction wheel gain is as function of its axis 
since the inertia moments are different for each axis.  Finally, one observes that there are two ways to improve 
the SACS design, the first one could be using a kind of optimal control technique to obtain the reaction wheel 
gains, and the other one is including a Kalman filter to estimate the possible measurements that eventually are 
not available to be feedback, since here one has consider that all states are available to be feedback into the 
control loop.  
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