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Abstract 
Forces are generally defined in physics as functions of position (Newton: gravity) or velocity 
(Laplace: magnetic force on a moving electric charge). Damping forces are little known even today 
and represent one of the most intriguing subjects of physics. Maxwell elements and fractional 
derivatives are used to modelize time domain natural hysteretic damping. The resulting models are 
comparatively complicated and have a limited domain of validity especially when strong non-
linearity is involved. The mathematical model we use is based on the introduction of a new state 
variable and is particularly suitable in the non-linear vibration case. S.I.D. (Strain Integral 
Damping: see ref. [2]) is a very suitable mean to modelize natural hysteretic damping in the time 
domain and for nonlinear rubber elements in particular. In the present paper the stress is on 
modelling of nonlinear elements. The effectiveness of SID is shown by an example concerning a 
strongly non-linear spring. A ‘’Scilab’’ script is provided to better explain. 
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Introduction 

Natural damping is only seldom viscous. Natural hysteretic damping is much more common and 
can be described as follows in the frequency domain. 
If: 

                
  

 
  

 
(1) 

Where an imaginary part of the stiffness matrix is introduced (tg(φ)). We shall call this I.S.D. 
(Imaginary Stiffness Damping) in the following. 
Such a formulation is much used in the frequency domain because it is simple and practical to use 
and not because there is a real physical theory behind it. S.I.D. (Strain Integral Damping) wants to 
be as simple and practical to use for hysteretic damping modeling in the time domain. The 
formulation of SID will be now briefly recalled. See references [2] and [3]. 
 
 
 
 
 



1 SID Formulation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Hysteresis of a spring-damper 
 

Let us consider the spring-damper of FIG. 1. If  is the displacement at time ‘’t’’ and we apply a 
sinusoidal force we shall obtain: 
 
  (2) 
 
Velocity ‘’v’’ and acceleration ‘’a’’:           
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(4) 

 
The applied force will be: 
 
  (5) 
 
‘’F’’ being the force amplitude. We can rewrite: 
 
  (6) 
 
Following equation (1) the springer-damper stiffness ‘’k’’ is defined by: 
 
  (7) 
We can then write equation (6) in the form: 
 
  (8) 
 
By substituting equations (2) and (3) in equation (8) we obtain: 
 

Force F 
Force 

Displacement 



 
 

(9) 

 
Where we have introduced the same  factor of eq. (1). 
Now we must express the ‘’ω’’ of eq. (9) as a function of state variables only. We may think of 
expressing the ‘’1/ω‘’ factor of eq. (9) as the ratio: 
 
 

 
(10) 

 
But as it is shown in reference [1], forces cannot in general be expressed as functions of the 
accelerations and this leads us to define a new state variable which is the solution of the differential 
eq.: 
 
 

 
(11) 

 
The solution is: 
 
 

 
(12) 

 
The constant ‘’ω1’’ is introduced to define as ‘‘remote past’’ all events for which: 
 
  (13) 
 
Such events will have negligible effect on ‘’y’’ (strain integral) and, as a consequence, on the 
damping force. We must remark that if ‘’ω1’’ is zero, ‘’y’’ goes to infinity for all x(t) whose 
average is not zero (spring preloading). This of course wouldn’t be physical. So ‘’ω1’’ can be 
seen as a high pass filter parameter: it has the same physical dimensions as a frequency and it must 
be set well lower than the frequencies of interest but it must not be negligible in comparison with 
the frequencies of interest to avoid  ‘’y’’ to go to  infinity. We can better understand this by writing 
eq. (11) in the frequency domain: 
 
 

 
(14) 

 
Where X and Y are the complex amplitudes of ‘’x’’ and ‘’y’’ respectively. We can see from this 
formula that if ω is an angular frequency of interest, it must be  for ‘’y’’ to be close to the 
integral of ‘’x’’.  is a possible value. 
We can then assume: 
 
 

 
(15) 

 
By substituting eq. (15) into eq. (9) we easily obtain: 
 



  (16) 
 
We remark that the term    has the physical dimensions of a displacement but is 
‘’phased’’ like a velocity. 
 
We assume as initial condition for ‘’y’’: 
 
  (17) 
 
We can easily see that, with this initial condition, the cycle starts at the origin like the dotted curve 
shown in Fig. 1. 
Work experience has shown that the introduction of factor ‘’ω1’’ in eq. (11) is not enough to avoid 
that ‘’y’’ goes to infinity. This problem of course can only exist in case of spring (engine mount) 
preloading. The problem is easily solved by the introduction of a moving average in equation (11): 
 
 

 
(18) 

 
The moving average  is defined as the solution of the following differential equation: 
 
 

 
(19) 

 
The solution is: 
 
 

 
(20) 

 
 
 
 
And the corresponding weighted moving average: 
 
 

 
(21) 

 
Where: 
 
  (22) 
 
Is the normalization factor.  We can see from eq. (21) that such an average has the important 
property that all events of the ‘’past’’ that happened at time  such that: 
 
  (23) 
 
Are ‘’squeezed’’ by the weighting factor: 
 



  (24) 
 
So that only the most ‘’recent’’ events are really included in the average.  
The fact that factor (22) goes to infinity when t=0 is generally avoided by the substitution: 
 
  (25) 
 
In practice we often assume: 
 
  (26) 

But this is not a general rule: depends on the speed by which the “quasi static” preloading varies and 
must be set accordingly. Sometimes static preloads are not really constant. For example the engine torque 
varies depending on how much the driver presses on the accelerator and ‘’static’’ loads on the mounts will 
vary accordingly. In the driveline model of section 4.2 for example we had: 

                                                                = 0.01;      = 8 
 
Because of the quickly increasing engine torque due to quickly mounting RPM. The RPM rose 
quickly because of simulation of a steep sloping down startup of the vehicle. Consider for example 
the famous “Gross Glochner” very steep descent in Austria. 

2 Nonlinearity 

SID is most useful in nonlinear problems. To introduce non linearity we only need modifying eq. 
(16) as follows: 
 
  (27) 
 
Where ‘’spl’’ is a spline representing the non-linear spring and kS is the secant stiffness (very 
seldom the tangent stiffness as explained in reference [3]). In references [2] and [3] the user is 
provided with useful advice and cautions concerning the practical use of SID. For example the 
“boxcar effect” [4] needs sometimes being considered in analyzing results obtained by time step 
integration. It must be remarked that assuming the secant stiffness (load divided by displacement) to 
drive the damping phenomenon corresponds to assuming damping forces to be proportional to the 
loads acting on the nonlinear element. In the author’s experience such an assumption is often closer 
to reality than assuming damping forces to be proportional to the differential stiffness. 

3 Frequency independence of SID nonlinear cycles (Numerical example) 

We are now going to present with a numerical example concerning the property of a SID spring 
hysteresis cycle to remain the same whatever the frequency of the imposed displacement. Such a 
property is a feature of natural damping as it is observed in physical reality.  SID has the remarkable 
power of insuring that such a property is verified also in the case of calculation of a strongly 
nonlinear spring. The Scilab script in the appendix was used to perform the calculations. By setting 
the imposed displacement frequency at 20, 40 and 60 Hz we are now going to see that the cycle 
doesn’t change. We can see that the cycle in figure (5) is practically identical to that in figure (3) 
although the frequency is twice and that the cycle in figure (7) is again practically identical to that 
in figure (3) although the frequency is 3 times higher. 

 



3.1 Calculation at 20 Hertz. 

 
Figure 2. Displacement 

 

 
Figure 3. Cycle 



 

3.2 Calculation at 40 Hertz. 

 
Figure 4. Displacement 

 
 

 
Figure 5. Cycle 



3.3 Calculation at 60 Hertz. 

 
Figure 6. Displacement 

 
 

 
Figure 7. Cycle 



4 The kind of models SID is used in 

4.1 “Global car model” 

 
 

Figure 10. “Global car model” 
 
Figure 10 shows a “VeLab” model inclusive of practically everything which is needed to predict a 
vehicle startup behavior. Models of the following subsystems are included: 

- Starter 
- Engine, pistons, crankshaft, links, engine mounts  
- Clutch 
- Gearbox, gears, differential, transmissions 
- Suspensions, dampers, steering apparatus 
- Wheels 
- Tires 
- Rigid or flexible car body and suspension frameworks 
- Torsional dampers 

4.1.1 Applicability 

It is generally possible to devise and validate such subsystems separately and then assemble them in 
the global model. Such “global” models are seldom used except for special problems involving the 
whole of the vehicle like for example the study of vibration energy transmission from the engine 
through the suspensions and to the car body. Animation of this model helps understanding “global” 
problems sometimes. 



4.2 “Driveline model” 

 
Figure 11. “Driveline model” 

 
Figure 1 shows a driveline model that was used to study a pendulum damper dynamic behavior. The 
starter, gear, differential and wheels are modelized together with the vehicle which is represented by 
a big flywheel in such a model.  

4.2.1 Applicability 

Such models are more often used than the “global” one. The effects of the SHR (wheel longitudinal 
vibration) mode can be studied by such a model and SID is used to modelize practically everything 
flexible in the model.  Only the tire model also includes viscous damping, tire longitudinal stiffness 
being concerned. 

5 General remarks 

SID is of great help in preparing such models because it provides the desired natural damping 
behavior. Using viscous damping for example would require adapting the damping to the new 
situation every time some eigenfrequencies change because of structural modification. Viscous 
damping cycles are in facts strongly frequency dependent. Once the 3 parameters governing SID are 
set, instead one can almost forget damping modelling and go on trying new solutions in a most 



expedite way. SID also has the prize of simplicity: it would be very difficult obtaining the same 
result displayed in figures 3-5-7 by other methods and by 18 lines of code only (see the script in the 
appendix). One can quickly prepare macros that formulate SID for all elastic elements in a model. It 
is very important to remark that the phenomena dealt with by such models all start by low levels of 
vibration and then soar to higher vibration levels as the transient goes on: this is precisely the kind 
of phenomena SID was born to deal with. This is also the reason for the “rising amplitude imposed 
displacement” (figures 2-4-6) chosen for the examples of figures 3-5-7 and the corresponding 
SciLab script in the appendix. 

Conclusions 

The validity of a theory can only be proved by its agreement with reliable experimental results   like 
the well-known result of eq. (5). In this sense SID has been shown to give the kind of results we 
expect (see figures 3-5-7). We don’t know whether SID is a ‘’beable’’ which is what the physicists 
call something that has a real link with physical reality: only the future can say. We can say 
however that it is a very practical and easy method that corresponds, in the time domain, to the 
imaginary stiffness damping of eq. (1) in the frequency domain: no physical base to it but 
everybody uses it because it is simple and practical (see the general remarks of paragraph 5). SID 
only needs three parameters to be defined. SID is a suitable mathematical description of hysteretic 
damping and gives fairly physical results when applied to non-linear problems (see figures 3-5-7).  
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Appendix 

In the following script the variables correspond to: 

freqq = frequency 

tt = time 

dd = displacement 

cs1 = natural hysteretic damping 

k1 = linear stiffness 

dt = time differential 

zh1 = SID ω2 parameter of eq. (19) 

h1 = SID ω1 parameter of eq. (11) 

va = velocity 

z1 = solution of eq. (19) 

ss1 = solution of eq. (11) 

z1av = moving average of eq. (21) 

force1 = force of nonlinear spring: spline spl(x) of eq. (27) 

secstiff = secant stiffness: (force/displacement) that is ks of eq. (27) 

force1 = after definition of secstiff, it is the total force including damping force 

 

SCILAB SCRIPT 
clear;  
freqq = 20; fig1 = 1; fig2 = 2;  
tt=(1:4096)/4096; ll = 2* %pi; dd = sin(ll*tt*freqq)/10; 
for kk = 1 : 2048; dd(kk) = dd(kk) * tt(kk)/tt(2048); end; 
figure(fig1); title('FREQ = ' + msprintf('%.2f',freqq)); plot(tt,dd,'r'); xlabel('Seconds'); ylabel('Meters'); 
csi1 = 0.4; m1 = 400; f1 = 2; k1 = (ll*f1)*(ll*f1)*m1; dt = 1/4096; 
ss1 = 0; h1 = 0.2; z1 = 0; zh1 = 0.0001; force1 = 0.; 
for kk = 1 : 4096 - 1; 
va = (dd(kk+1) - dd(kk))/dt; z1 = z1 + (-z1 * zh1 + dd(kk)) * dt; 
z1av = z1 * zh1 / max(0.0001,1-exp(-zh1*tt(kk))); 
ss1 = ss1 + (-ss1 * h1 + dd(kk)-z1av) * dt; 
force1 = (dd(kk))*k1 + 2.*((dd(kk)) > 0.03)*(dd(kk)-0.03)**2*1000000; 
secstif = abs(force1/ (dd(kk))); 
force1 = force1 + (-0.*0.15+sign(va))*(abs(ss1 * va))**0.5 * secstif * csi1; 
force(kk) = force1; 
end 
dd = dd(1:length(dd)-1); figure(fig2); title('FREQ = ' + msprintf('%.2f',freqq)); plot((dd),force,'b'); 
xlabel('Meters'); ylabel('Newtons'); 
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